搜档网
当前位置:搜档网 › 三角、反三角函数图像及性质与三角公式

三角、反三角函数图像及性质与三角公式

三角、反三角函数图像及性质与三角公式
三角、反三角函数图像及性质与三角公式

三角、反三角函数图像

(附:资料全部来自网络,仅对排版做了改动,以方便打印及翻阅,其中可能出现错误,阅者请自行注意。)

1.六个三角函数值在每个象限的符号:

sinα·cscα cosα·secα tanα·cotα

2.三角函数的图像和性质:

1-1y=sinx

-3π2

-5π2

-7π2

7π2

2

3π2

π2

-π2

-4π-3π

-2π4π

2ππ

o

y x

1-1y=cosx

-3π

2

-5π2

-7π

2

7π2

5π2

3π2

π2

-π2

-4π-3π-2π4π

π

o

y

x

y=tanx

3π2

π

π2

-

3π2

-

π2

o

y

x

y=cotx

3π2

π

π2

-

π2

o

y

x

函数 y=sinx y=cosx y=tanx

y=cotx

定义域

R

R

{x |x ∈R 且x≠kπ+

2

π

,k ∈Z } {x |x ∈R 且x≠kπ,k ∈Z }

值域

[-1,1]x=2kπ+

2π 时

y max =1

x=2kπ-2

π

时y min =-1

[-1,1] x=2kπ时y max =1 x=2kπ+π时

y min =-1

R 无最大值 无最小值

R

无最大值 无最小值 周期性 周期为2π 周期为2π 周期为π 周期为π 奇偶性

奇函数

偶函数

奇函数

奇函数

单调性在[2kπ-

2

π

,2kπ+

2

π

上都是增函数;在

[2kπ+

2

π

,2kπ+

3

2

π]

上都是减函数(k∈Z)

在[2kπ-π,2kπ

上都是增函数;

在[2kπ,2kπ+π]

上都是减函数

(k∈Z)

在(kπ-

2

π

kπ+

2

π

)内都是增

函数(k∈Z)

在(kπ,kπ+π)内

都是减函数

(k∈Z)

3.反三角函数的图像和性质:

arcsinx arccosx

arctanx arccotx

名称反正弦函数反余弦函数反正切函数反余切函数

定义

y=sinx(x∈

〔-

2

π

,

2

π

〕的反函

数,叫做反正弦函

数,记作x=arsiny

y=cosx(x∈

〔0,π〕)的反函

数,叫做反余弦

函数,记作

x=arccosy

y=tanx(x∈(-

2

π

,

2

π

)的反函数,叫

做反正切函数,记作

x=arctany

y=cotx(x∈(0,π))

的反函数,叫做

反余切函数,记

作x=arccoty

理解

arcsinx表示属于

[-

2

π

,

2

π

且正弦值等于x的

arccosx表示属

于[0,π],且

余弦值等于x的

arctanx表示属于

(-

2

π

,

2

π

),且正切值

等于x的角

arccotx表示属于

(0,π)且余切值等

于x的角

定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞)

值域[-

2

π

2

π

][0,π](-

2

π

2

π

) (0,π)单调性

在〔-1,1〕上是增

函数

在[-1,1]上是

减函数

在(-∞,+∞)上是增

在(-∞,+∞)上是

减函数奇偶性

arcsin(-x)=-arcsinx arccos(-x)=π-ar

ccosx

arctan(-x)=-arctanx arccot(-x)=π-arc

cotx 周期性都不是周期函数

arcsin(-x)=-arcsinx arccos(-x)=π-arccosx

arctan(-x)=-arctanx arccot(-x)=π-arccotx

arcsinx+arccosx=arctanx+arccotx=π/2

sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x

当 x∈[-π/2, π/2] arcsin(sinx)=x

x∈[0,π] arccos(cosx)=x

x∈(-π/2, π/2) arctan(tanx)=x

x∈(0, π) arccot(cotx)=x

三角公式总表

1.正弦定理:

A a sin =

B b sin =C

c sin = 2R (R 为三角形外接圆半径)

2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2

-2ab C cos

bc

a c

b A 2cos 2

22-+=

=

21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C

B A c sin 2sin sin 2=pr=))()((c p b p a p p ---

(其中)(2

1

c b a p ++=, r 为三角形内切圆半径)

4.同角关系:

⑴商的关系:①θtg =θθ

cos sin =θθsec sin ? ②θθθ

θθcsc cos sin cos ?==ctg ③θθθtg ?=cos sin ④θθθθcsc cos 1

sec ?==

tg ⑤θθθctg ?=sin cos ⑥θθθ

θsec sin 1

csc ?==ctg

⑵倒数关系:1sec cos csc sin =?=?=?θθθθθθctg tg

⑶平方关系:1csc sec cos sin 2

22222=-=-=+θθθθθθctg tg

⑷)sin(cos sin 22?θθθ++=

+b a b a (其中辅助角?与点(a,b )在同一象限,且

a

b

tg =

?)

5.和差角公式

①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos(

=± ③β

αβ

αβαtg tg tg tg tg ?±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=±

⑤γ

βγαβαγ

βαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ?-?-?-??-++=++1)( 其中当A+B+C=π时,有:

i).tgC tgB tgA tgC tgB tgA ??=++ ii).12

22222=++C

tg B tg C tg A tg B tg A tg

6.二倍角公式:(含万能公式)

①θ

θ

θθθ2

12cos sin 22sin tg tg +=

= ②θ

θ

θθθθθ2

22

2

2

2

11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθ

θ2122tg tg tg -=

④22cos 11sin 222

θθθθ-=+=tg tg ⑤2

2cos 1cos 2

θθ+=

7.半角公式:(符号的选择由

2

θ

所在的象限确定) ①2

cos 12sin θθ-±= ②2cos 12sin 2θθ-= ③2

cos 12cos θθ+±= ④2cos 12cos 2θθ+= ⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2

sin 2cos )2sin 2(cos sin 12θ

θθθθ±=±=±

⑧θθ

θθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg

8.积化和差公式:

①[])sin()sin(21

cos sin βαβαβα-++=

②[])sin()sin(21

sin cos βαβαβα--+=

③[])cos()cos(21

cos cos βαβαβα-++= ④()[]βαβαβα--+-=cos )cos(2

1

sin sin

9.和差化积公式:

①2cos

2sin

2sin sin β

αβ

αβα-+=+

②2sin 2cos 2sin sin β

αβαβα-+=- ③2cos 2cos 2cos cos β

αβαβα-+=+ ④2

sin

2sin 2cos cos β

αβαβα-+-=-

三角函数,反三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2 A )= A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cos b = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB 积化和差 sinasinb = - 21[cos(a+b)-cos(a-b)] cosacosb = 2 1 [cos(a+b)+cos(a-b)]

三角和反三角函数图像

三角、反三角函数图像 六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质: 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x

函数 y=sinx y=cosx y=tanx y=cotx 定义域R R {x|x∈R且x≠kπ+ 2 π ,k∈Z} {x|x∈R且x≠kπ,k∈Z}值域 [-1,1]x=2kπ+ 2 π 时y max=1 x=2kπ- 2 π 时y min=-1 [-1,1] x=2kπ时y max=1 x=2kπ+π时y min=-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性周期为2π周期为2π周期为π周期为π 奇偶性奇函数偶函数奇函数奇函数 单调性 在[2kπ- 2 π ,2kπ+ 2 π ]上都是增函数;在 [2kπ+ 2 π ,2kπ+ 3 2 π]上都是减函数(k∈Z) 在[2kπ-π,2kπ]上都是增函数; 在[2kπ,2kπ+π]上都是减函 数(k∈Z) 在(kπ- 2 π ,kπ+ 2 π )内都是增函数 (k∈Z) 在(kπ,kπ+π)内都是减函数 (k∈Z)

高中数学常用反三角函数公式

反三角函数公式 arc sin x + arc sin y = arc sin x – arc sin y = arc cos x + arc cos y = arc cos x – arc cos y = arc tan x + arc tan y = arc tan x – arc tan y = 2 arc sin x = 2 arc cos x = 2 arc tanx = cos (n arc cos x) = .

反三角函数图像与特征 反正弦曲线图像与特征反余弦曲线图像与特征 拐点(同曲线对称中心):,该点切线斜率为1 拐点(同曲线对称中心): ,该点切线斜率为-1 反正切曲线图像与特征反余切曲线图像与特征 拐点(同曲线对称中心):,该点切线斜率 为1 拐点: ,该点切线斜率为-1 渐近线: 渐近线: .

名称 反正割曲线反余割曲线 方程 图像 顶点 渐近线 反三角函数的定义域与主值范围 函数主值记号定义域主值范围 反正弦若,则 反余弦若,则 反正切若,则 反余切若,则 反正割若,则 反余割若,则 式中n为任意整数. .

反三角函数的相互关系 arc sin x = arc cos x = arc tan x = arc cot x = sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞= -1 And x < -0.5 Then ArcSin = -Atn(Sqr(1 - x * x) / x) - 2 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcSin = Atn(x / Sqr(1 - x * x)) If x > 0.5 And x <= 1 Then ArcSin = -Atn(Sqr(1 - x * x) / x) + 2 * Atn(1) End Function .

三角和反三角函数图像

三角和反三角函数图像 The Standardization Office was revised on the afternoon of December 13, 2020

三角、反三角函数图像 六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质: 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x

函数 y=sinx y=cosx y=tanx y=cotx 定义域 R R {x |x ∈R 且x≠kπ+ 2 π ,k ∈Z } {x |x ∈R 且x≠kπ,k ∈Z } 值域 [-1,1]x=2kπ+ 2 π 时y max =1 x=2kπ- 2 π 时y min =-1 [-1,1] x=2kπ时y max =1 x=2kπ+π时y min =-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性 周期为2π 周期为2π 周期为π 周期为π 奇偶性 奇函数 偶函数 奇函数 奇函数 单调性 在[2kπ- 2π,2kπ+2 π ]上都是增函数;在[2kπ+2 π ,2kπ+32π]上都是减函数(k ∈Z) 在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k ∈Z) 在(kπ- 2π,kπ+2 π )内都是增函数(k ∈Z) 在(kπ,kπ+π)内都是减函数(k ∈Z)

常用反三角函数公式表

反三角函数公式

反三角函数图像与特征 1 :

反三角函数的定义域与主值范围 式中n为任意整数.

反三角函数的相互关系 sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞= -1 And x < -0.5 Then ArcSin = -Atn(Sqr(1 - x * x) / x) - 2 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcSin = Atn(x / Sqr(1 - x * x))

If x > 0.5 And x <= 1 Then ArcSin = -Atn(Sqr(1 - x * x) / x) + 2 * Atn(1) End Function ArcCos(x) 函数 功能:返回一个指定数的反余弦值,以弧度表示,返回类型为Double。 语法:ArcCos(x)。 说明:其中,x的取值范围为[-1,1],x的数据类型为Double。 程序代码: Function ArcCos(x As Double) As Double If x >= -1 And x < -0.5 Then ArcCos = Atn(Sqr(1 - x *x) / x) + 4 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcCos = -Atn(x/ Sqr(1 - x * x)) + 2 * Atn(1) If x> 0.5 And x <= 1 Then ArcCos = Atn(Sqr(1 - x*x) / x) End Function

三角、反三角函数图像与性质与三角公式

三角、反三角函数图像 ( 附:资料全部来自网络, 仅对排版做了改动, 以方便打印及翻阅, 其中可能出现错误,阅者请自行注意。 ) 1. 六个三角函数值在每个象限的符号: sin α· csc α cos α· sec α tan α· cot α 2. 三角函数的图像和性质: y=sinx y -5 - 2 1 2 -7 o -4 -3 -2 -3 - 2 -1 2 3 7 2 5 2 2 3 4 2 2 x y=cosx y -5 - 2 1 -32 - -4 -7 -2 -3 o 2 2 -1 y y=tanx 3 3 7 2 2 2 5 4 2 2 y y=cotx x - 3 - - 2 2 o 3 2 2 x - - 2 o 3 2 x 2 2 函数 y=sinx y=cosx y=tanx { x | x ∈ R 且 定义域 R R x ≠ k π+,k ∈ Z } [ -1,1] 2 [ -1,1]x=2k π+ 时 x=2k π时 y max =1 2 R y max =1 x=2k π +π时 值域 无最大值 y min =-1 无最小值 x=2k π-时 y min =-1 2 y=cotx { x | x ∈ R 且 x ≠ k π∈,kZ } R 无最大值 无最小值 周期性 周期为 2π 周期为 2π 周期为 π 周期为 π 奇偶性 奇函数 偶函数 奇函数 奇函数 1 / 5

在[ 2kπ-,2kπ+ ]在[ 2kπ-π,2kπ] 在 (k π- , 在 (k π,kπ+π)内上都是增函数;都是减函数 22 在[ 2kπ,2kπ+π]2 (k ∈ Z) 上都是增函数;在 单调性 2上都是减函数k π+ )内都是增 [ 2kπ+,2k(k ∈ Z)2 π+ π] 函数 (k ∈ Z) 23 上都是减函数(k ∈Z) 3.反三角函数的图像和性质: arcsinx arccosx arctanx 名称反正弦函数 y=sinx(x ∈ 〔- ,〕的反函 2 2 定义 数,叫做反正弦函 数,记作 x=arsiny arcsinx 表示属于 理解 [ -, ] 22 x 的 且正弦值等于 角 定义域[ -1, 1] 值域[ -,] 性 22 单调性 在〔 -1, 1〕上是增 质函数 奇偶性 arcsin(-x)=-arcsinx 周期性都不是周期函数反余弦函数 y=cosx(x ∈ 〔0, π〕)的反 函数,叫做反余 弦函数,记作 x=arccosy arccosx 表示属于 [ 0,π],且 余弦值等于 x 的 角 [-1, 1] [0,π] 在[ -1,1]上 是减函数 arccos(- x)= π- ar ccosx arccotx 反正切函数反余切函数 y=tanx(x ∈ (-, y=cotx(x ∈(0, π )) 的反函数,叫做 2 反余切函数,记 2 )的反函数,叫作 x=arccoty 做反正切函数,记作 x=arctany arctanx表示属于arccotx 表示属于 (-,),且正切值 (0,π)且余切值等 于 x 的角 22 等于 x 的角 (-∞,+∞)(-∞, +∞) (-,)(0,π) 2 2 在(-∞, +∞)上是增在(-∞,+∞)上是 数减函数 arctan(-x)=-arctanx arccot(- x)= π- arc cotx 2/ 5

三角函数_反三角函数_积分公式_求导公式

sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A - cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2 )2(tan 12tan 2a a - 6、其他非重点三角函数 csc(a) = a sin 1 sec(a) =a cos 1 7、(a +b )的三次方,(a -b )的三次方公式

反三角函数公式(完整)

反三角函数 分类 反正弦 反余弦 余弦函数x y cos =在]0[π,上的反函数,叫做反余弦函数。记作x cos arc ,表示一个 余弦值为x 的角,该角的范围在]0[π,区间内。定义域]11[, - , 值域]0[π,。 反正切 反余切 余切函数y=cot x 在)0(π,上的反函数,叫做反余切函数。记作x arc cot ,表示一个余切值为x 的角,该角的范围在)0(π,区间内。定义域R ,值域)0(π,。

反正割 反余割 运算公式 余角关系 2 arccos sin arc π = +x x 2 cot tan arc π =+x arc x 2 csc ec a π = +x arc x rcs 负数关系 x x sin arc )sin(arc -=- x x rc arccos )cos(a -=-π x x tan arc )tan(arc -=- x rc x c cot a )(ot arc -=-π

x rc x sec a )(arcsec -=-π x arc x c sec )(sc arc -=- 倒数关系 x arc x csc )1 arcsin(= x arc x sec )1 arccos(= x arc x arc x cot 2cot )1arctan(-==π x x x arc arctan 23arctan )1cot(-=+=ππ x x arc arccos )1 sec(= x x arc arcsin )1 csc(= 三角函数关系

加减法公式 1. ) 10,0()11arcsin(arcsin arcsin ) 10,0()11arcsin(arcsin arcsin ) 10()11arcsin(arcsin arcsin 22222 2 222222>+<<-+---=+>+>>-+--=+≤+≤-+-=+y x y x x y y x y x y x y x x y y x y x y x xy x y y x y x ,,或ππ 2. ) 10,0()11arcsin(arcsin arcsin ) 10,0()11arcsin(arcsin arcsin ) 10()11arcsin(arcsin arcsin 22222 2 222222>+><-----=->+<>----=-≤+≥---=-y x y x x y y x y x y x y x x y y x y x y x xy x y y x y x ,,或ππ 3. ) 0() 11arccos(2arccos arccos ) 0() 11arccos(arccos arccos 2 2 22<+----=+≥+---=+y x x y xy y x y x x y xy y x π 4. ) () 11arccos(arccos arccos ) () 11arccos(arccos arccos 2 2 22y x x y xy y x y x x y xy y x <--+=-≥--+-=- 5. ) 1,0(1arctan arctan arctan ) 1,0(1arctan arctan arctan ) 1(1arctan arctan arctan ><-++-=+>>-++=+<-+=+xy x xy y x y x xy x xy y x y x xy xy y x y x ππ

三角函数和反三角函数图像性质知识点总结

三角函数 1. 特殊锐角(0°,30°,45°,60°,90°)的三角函数值 2. 角度制与弧度制 设扇形的弧长为l ,圆心角为a (rad ),半径为R ,面积为S 角a 的弧度数公式 2π×(a /360°) 角度与弧度的换算 ①360°=2π rad ②1°=π/180rad ③1 rad=180°/π=57° 18′≈57.3° 弧长公式 l a R = 扇形的面积公式 12 s lR = 3. 诱导公式:(奇变偶不变,符号看象限) 所谓奇偶指是整数k 的奇偶性(k ·π/2+a ) 所谓符号看象限是看原函数的象限(将a 看做锐角,k ·π/2+a 之和所在象限) 注: ①:诱导公式应用原则:负化正、大化小,化到锐角为终了

4. 三角函数的图像和性质:(其中z k ∈) ①: 三角函数 x y sin = x y cos = x y tan = cot y x = 函 数 图 象 定义域 R R 2 x k π π≠+ x k π ≠ 值域 [-1,1] [-1,1] R R 周期 2π 2π π π 奇偶性 奇 偶 奇 非奇非偶 单 调 性 2,222k k ππππ? ?-+↑????2,222k k ππππ??-+↑???? []2,2k k πππ-↑ []2,2k k πππ+↓ ,22k k ππππ? ?-+↑???? [],k k πππ+↓ 对 称 性 :2 x k π π=+ 对称轴 对称中心:(,0)k π :x k π =对称轴 : 对称中心(+ ,0) 2k π π : 对称中心( ,0)2 k π 零值点 πk x = 2 π π+ =k x πk x = 2 π π+ =k x 最 值 点 2 π π+ =k x ,1max =y 2 π π- =k x ,1min -=y πk x 2=,1max =y ; 2y k ππ=+,1min -=y

角函数反三角函数积分公式求导公式

1、两角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB tan(A+B)=tanAtanB -1tanB tanA +tan(A-B)=tanAtanB 1tanB tanA +- cot(A+B)=cotA cotB 1-cotAcotB +cot(A-B)=cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A=A tan 12tanA 2-Sin2A=2SinA?CosA Cos2A=Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A -cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a)=-sinacos(-a)=cosa sin(2π-a)=cosacos(2π-a)=sinasin(2π+a)=cosacos(2 π+a)=-sina sin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosa tgA=tanA=a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a +cosa=22)2(tan 1)2(tan 1a a +-tana=2 )2 (tan 12tan 2a a - 6、其他非重点三角函数 csc(a)=a sin 1sec(a)=a cos 1 7、(a +b )的三次方,(a -b )的三次方公式 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a-b)^3=a^3-3a^2b+3ab^2-b^3 a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab+b^2) 8、反三角函数公式 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx

(完整版)反三角函数公式大全

反三角函数公式大全 三角函数的反函数,是多值函数。它们是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x,反正割Arcsec x=1/cosx,反余割Arccsc x=1/sinx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2

arctan(-x)=-arctanx arccot(-x)=∏-arccotx arcsinx+arccosx=∏/2=arctanx+arccotx sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx) 当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x 当x∈〔0,∏〕,arccos(cosx)=x x∈(—∏/2,∏/2),arctan(tanx)=x x∈(0,∏),arccot(cotx)=x x〉0,arctanx=arctan1/x,arccotx类似 若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)

三角和反三角函数图像性质总结

反三角函数的图像和性质 yx,arccos yx,arctanyx,arcsin ,1,1,1,1,,,,R 定义域 ,,,,,,,, ,,,,值域 [0,π] ,,,,2222,,,, 在上单调递增在上单调递减 ,1,1,1,1,,,,在R上单调递增单调性 无减区间无减区间无增区间 3奇偶性奇函数非奇非偶函数奇函数 32, 32,,21212,-1 图象 -22468-224682O11 -1,-1-,2-2 -22468-1 -1O2-2 -1 arcsin()arcsin,,,xxarccos()arccos,,,xx,arctan()arctan,,,xx 运算公x,,[1,1]x,,[1,1] xR,式1 运算公,,,, arccos(cos),[0,]xxx,,, arctan(tan),(,)xxx,,,arcsin(sin),[,]xxx,,,2222式2 运算公 sin(arcsin),[1,1]xxx,,,cos(arccos),[1,1]xxx,,,tan(arctan),xxxR,, 式3 , arctancotxarcx,,运算公,2 arcsinarccos,[1,1]xxx,,,,2式4 xR, 三角函数的图像和性质 4 yx,cosy,tanx yx,sin kZ,343 3222 1一个周11(((113,,2,,,期的图-22468,-22468(-4-2246823,,O,2,O2O--12-12-1-1-1 22像 -2-2 -2

-3,,,x|x,k,,k,Z ,定义域 R R ,,2,, [1,1],[1,1], 值域 R 奇偶性奇函数偶函数奇函数 , 2,2,周期 对 ,直线xk,kZ, ,,,称直线,无 xk,,kZ,2 轴对 称对 性称k,,(,0)k,,kZ, 点,kZ, 点(,0)k,(,0)点,kZ, ,22中 心 ,,,,,在上 [2,2]kk,,[2,22]kk,,,,,,,,,上在,上在(,)kk,,,,2222单调性 ,,3,在上,,[2,2]kk,,,,,[2,2]kk,,在上无减区间 22

大学高数 函数与反三角函数图像

三角函数公式和图象总结 1.与角α终边相同的角,连同角α在内,都可以表示为S={β|β=α+k ×360,k ∈Z} 2.弧长公式:α?=r l 扇形面积公式lR S 21 = 其中l 是扇形弧长,R 是圆的半径。 3.三角函数定义: sin ,cos ,tan y x y r r x ααα===,其中P (,)x y 是α终边上一点,||r OP = 4.同角三角函数的两个基本关系式 22 sin sin cos 1 tan cos ααααα +== sin sin αsin β tan tan α

sin cos), a x b x x? +=+其中tan b a ?=,?所在的象限与点(,) a b所在的象限一 致。

12.①sin()(0)y A x b A ω?=++>、cos()(0)y A x b A ω?=++>的最小正周期为 || ω,最大值为A+b ,最小值为-A+b. ②tan()(0)y A x b A ω?=++>的最小正周期为|| π ω 13.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 14.余弦定理:2 2 2 2cos a b c bc A =+- bc a c b A 2cos 2 22-+= 15.S ⊿= 21a a h ?=21ab C sin =21bc A sin =2 1ac B sin =R abc 4=2R 2 A sin B sin C sin =))()((c p b p a p p ---(其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 反三角函数图像与反三角函数特征 反正弦曲线 反余弦曲线 拐点(同曲线对称中心):,该点切线斜率为1 拐点

反三角函数常见公式

反三角函数常见公式 李浩翔 .,)1()1()1()()()1()1(#.,0,,1),1(*)0(,2 3)1(),0(,2)1()0(,2 )1(#),0(,2)1(*arcsin )1csc(,arccos )1sec(sec )1arccos(csc )1arcsin(arccos )arccos(),()(,2 arccos )()2)((sec )sec()(arccos )arccos() (csc )csc()(arcsin )arcsin(2csc sec ,2,2arccos arcsin 是显然的第二个等号由余角关系第一个等号得证证明:是显然的第二个等号由余角关系第一个等号得证于是可直接取反函数>又则证明:令<><>,,余切的特殊性): 倒数关系(注意正切和则可得利用例:设”即可证明□构造“证明利用奇函数的性质即可负数关系: (易证)余角关系: πππππππππππ πππππππ-=?-=-=-?--=--=--=====-=+=-==--=-=-======-=-=-- =-=?? ???-=--=--=-?? ???-=--=--=-=+=+= +arcctgx x arctg x arctg arcctgx x arctg arcctgx x arcctg x arctg x arctg arcctgx y x ctgy x tgy x x arctg y x arcctgx arctgx x arcctg x arcctgx arctgx x arcctg x arctgx arcctgx x arctg x arctgx arcctgx x arctg x x arc x x arc x arc x x arc x x x x f x f x x f x f x arc x arc arcctgx x arcctg x x x arc x arc arctgx x arctg x x x arc x arc arcctgx arctgx x x

三角函数和反三角函数公式

一.三角函数公式 1.诱导公式 sin(-a) = - sin(a) cos(-a) = cos(a) sin(π/2(90度) - a) = cos(a) cos(π/2(90度) - a) = sin(a) sin(π/2 (90度)+ a) = cos(a) cos(π/2 (90度)+ a) = - sin(a) sin(π(180度)- a) = sin(a) cos(π(180度) - a) = - cos(a) sin(π(180度)+ a) = - sin(a) cos(π(180度)+ a) = - cos(a) 2.两角和与差的三角函数 sin(a + b) = sin(a)cos(b) + cos(α)sin(b) cos(a + b) = cos(a)cos(b) - sin(a)sin(b) sin(a - b) = sin(a)cos(b) - cos(a)sin(b) cos(a - b) = cos(a)cos(b) + sin(a)sin(b) tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)] tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)] 3.和差化积公式 sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2] sin(a) sin(b) = 2cos[(a + b)/2]sin[(a - b)/2] cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2] cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2] 4.积化和差公式 sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)] cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)] sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)] 5.二倍角公式 sin(2a) = 2sin(a)cos(b) cos(2a) = cos2(a) - sin2(a) = 2cos2(a) -1=1 - 2sin2(a)

反三角函数的概念和性质

反三角函数的概念和性质 . 一.基础知识自测题: 1.函数y=arcsin x的定义域是 [-1, 1] ,值域是. 2.函数y=arccos x的定义域是 [-1, 1] ,值域是 [0, π] . 3.函数y=arctg x的定义域是R,值域是. 4.函数y=arcctg x的定义域是R,值域是 (0, π) . 5.arcsin(-)=; arccos(-)=; arctg(-1)=; arcctg(-)=. 6.sin(arccos)=; ctg[arcsin(-)]=; tg(arctg)=; cos(arcctg)=. 7.若cos x=-, x∈(, π),则x=. 8.若sin x=-, x∈(-, 0),则x=. 9.若3ctg x+1=0, x∈(0, π),则x=. 二.基本要求: 1.正确理解反三角函数的定义,把握三角函数与反三角函数的之间的反函数关系;

2.掌握反三角函数的定义域和值域,y=arcsin x, x∈[-1, 1], y∈[-,], y= arccos x, x∈[-1, 1], y∈[0, π], 在反三角函数中,定义域和值域的作用更为明显,在研究问题时,一定要先看清楚变量的取值范围; 3.符号arcsin x可以理解为[-,]上的一个角或弧,也可以理解为区间[-,] 上的一个实数;同样符号arccos x可以理解为[0,π]上的一个角或弧,也可以理解为区间[0,π]上的一个实数; 4.y=arcsin x等价于sin y=x, y∈[-,], y=arccos x等价于cos y=x, x∈[0, π], 这两个等价关系是解反三角函数问题的主要依据; 5.注意恒等式sin(arcsin x)=x, x∈[-1, 1] , cos(arccos x)=x, x∈[-1, 1], arcsin(sin x)=x, x∈[-,], arccos(cos x)=x, x∈[0, π]的运用的条件; 6.掌握反三角函数的奇偶性、增减性的判断,大多数情况下,可以与相应的三角函数的图象及性质结合起来理解和应用; 7.注意恒等式arcsin x+arccos x=, arctg x+arcctg x=的应用。 例一.下列各式中成立的是(C)。 (A)arcctg(-1)=-(B)arccos(-)=- (C)sin[arcsin(-)]=-(D)arctg(tgπ)=π 解:(A)(B)中都是值域出现了问题,即arcctg(-1)∈(0, π), arccos(-)∈[0, π], (D)中,arctg(tgπ)∈[-, ], 而π[-,], ∴ (A)(B)(D)都不正确。

正切 余切图像的性质 反三角函数

正切、余切函数图象和性质反三角函数 [知识要点] 1.正切函数、余切函数的图象与性质 2.反三角函数的图象与性质 3.已知三角函数值求角 [目的要求] 1.类比正、余弦函数的研究,讨论正切函数与余切函数的图象和性质,关注其不同点. 2.从反函数概念入手,引入反三角函数定义,并定性讨论其图象和性质. 3.能熟练运用正、余弦函数性质解决问题. 4.能用反三角函数值表示不同范围内的角. [重点难点] 1.正切函数图象与性质2.已知三角函数值求角 [内容回顾] 一、正切函数与余切函数图象 由前面我们正、余弦函数图象和性质的过程知,在中学阶段,对一个函数的认识,多是“由图识性”.因此,可以先作出正、余切函数的图象. 作三角函数图象的一般方法,有描点法和平移三角函数线法. 与正、余弦函数的五点法作图相类似,我们可以选择正切函数在一个周期内的图 象上三点及两条重要的辅导线——渐近线,来作正切函

数在区间上的简图,不妨称之为“三点两线法”. 若想迅速作出余切函数y=cotx的图象,如何选择“三点”及“两线”呢?请大家看余切函数的图象,不难得到答案. 二、正、余切函数的性质 由图象可得: 上单减 ,奇函数 注: 1、由定义域知,y=tanx与y=cotx图象都存在无数多个间断点(不连续点). 2、每个单调区间一定是连续的. 3、由单调性可解决比较大小问题,但要务必使两个自变量在同一单调区间内. 三、反三角函数的概念和图象 四种三角函数都是由x到y的多值对应,要使其有反函数,必须缩小自变量x的范围,使之成为由x到y的对应.从方便的角度而言,这个x的范围应该(1)离原点较近;(2)包含所有的锐角;(3)能取到所有的函数值;(4)最好是连续区间.从这个原则出发,我们给出如下定义: 1.y=sinx, x∈的反函数记作y=arcsinx, x∈[-1,1],称为反正弦函数. y=cosx, x∈[0, π]的反函数记作y=arccosx, x∈[-1,1],称为反余弦函数.

三角函数所有公式

倒数关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a. 锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的 对边二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2 (a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2C os^2(a)-1=1-2Sin^2(a) 正切tan2A=(2tanA)/(1-tan^2(A)) 三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导sin(3a) =sin(a+2a) =sin2acosa+cos2asina =2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos2a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sin a(3/4-sin2a) =4sina[(√3/2)2-sin2a] =4sina(sin260°-sin2a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos2a-3/4) =4cosa[cos2a-(√3/2)^2] =4cosa(cos2a-cos230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2] cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasi

相关主题