搜档网
当前位置:搜档网 › 浙江省2021届高考数学一轮复习第六章平面向量复数补上一课平面向量中的极化恒等式及有关最值范围问题含解析

浙江省2021届高考数学一轮复习第六章平面向量复数补上一课平面向量中的极化恒等式及有关最值范围问题含解析

浙江省2021届高考数学一轮复习第六章平面向量复数补上一课平面向量中的极化恒等式及有关最值范围问题含解析
浙江省2021届高考数学一轮复习第六章平面向量复数补上一课平面向量中的极化恒等式及有关最值范围问题含解析

平面向量中的极化恒等式及有关最值(范围)问题

知识拓展

1.极化恒等式:a ·b =14

[(a +b )2-(a -b )2

].

几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的1

4

.

2.平行四边形PMQN ,O 是对角线交点.则:

(1)PM →·PN →=14[PQ 2-NM 2](平行四边形模式);(2)PM →·PN →=PO 2

-14NM 2(三角形模式).

3.平面向量中的最值(范围)问题

(1)向量数量积投影、向量的模、夹角的最值(或范围);(2)向量表达式中字母参数的最值(或范围).

题型突破

题型一 极化恒等式的应用

【例1】 (1)在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →

=________.

(2)已知正三角形ABC 内接于半径为2的圆O ,点P 是圆O 上的一个动点,则PA →·PB →

的取值范围是________.

解析 (1)因为M 是BC 的中点,由极化恒等式得AB →·AC →=AM 2

-14BC 2=9-14×100=-16.

(2)取AB 的中点D ,连接CD ,因为三角形ABC 为正三角形,所以O 为三角形ABC 的重心,O 在

CD 上,且OC =2OD =2,所以CD =3,AB =2 3.

又由极化恒等式得PA →·PB →=PD 2-14

AB 2=PD 2

-3,

因为P 在圆O 上,所以当P 在点C 处时,PD max =3, 当P 在CO 的延长线与圆O 的交点处时,PD min =1, 所以PA →·PB →

∈[-2,6]. 答案 (1)-16 (2)[-2,6]

【训练1】 (1)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·DA →

的值为________. (2)若点O 和点F 分别为椭圆x 24+y 2

3=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP

→的最大值为( ) A.2 B.3 C.6

D.8

解析 (1)取AE 中点O ,设AE =x (0≤x ≤1),则AO =12x ,∴DE →·DA →=DO 2-14AE 2=12

+? ????12x 2-

14

x 2=1.

(2)如图,由已知|OF |=1,取FO 中点E ,连接PE ,由极化恒等式得 OP →·FP →

=|PE |2-14|OF |2=|PE |2-14

∵|PE |2

max =254,∴OP →·FP →的最大值为6.

答案 (1)1 (2)C

题型二 平面向量中的最值(范围)问题

类型1 利用函数型

【例2-1】 (1)设θ为两个非零向量a ,b 的夹角,已知对任意实数t ,|b -t a |的最小值为1,则( )

A.若θ确定,则|a |唯一确定

B.若θ确定,则|b |唯一确定

C.若|a |确定,则θ唯一确定

D.若|b |确定,则θ唯一确定

(2)已知m ,n 是两个非零向量,且|m |=1,|m +2n |=3,则|m +n|+|n|的最大值为( )

A. 5

B.10

C.4

D.5

解析 (1)由|b -t a |的最小值为1知(b -t a )2

的最小值为1,令f (t )=(b -t a )2

,即f (t )=b

2

-2t a ·b +t 2a 2

,则对于任意实数t ,f (t )的最小值为4a 2

·b 2

-(2a ·b )

2

4a 2

=4a 2b 2

-(2|a ||b |cos θ)2

4a 2

=1,化简得b 2(1-cos 2

θ)=1,观察此式可知,当θ确定时,|b |唯一确定,选B.

(2)因为(m +2n )2

=4n 2

+4m ·n +1=9,所以n 2

+m ·n =2,所以(m +n )2

=m 2

+2m ·n +n 2

=5-

n 2,所以|m +n |+|n |=5-|n |2+|n |.令|n |=x (0

-2x 25-x

2

+1.由f ′(x )=0,得x =102,所以当00时,当10

2

???0,102上单调递增,在? ??

??102,5上单调递减,所以f (x )max =f ?

??

??

102=10,故选B. 答案 (1)B (2)B

【训练2-1】 (1)(2017·浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.

(2)如图,在边长为1的正方形ABCD 中,E 为AB 的中点,P 为以A 为圆心,AB 为半径的圆弧(在正方形内,包括边界点)上的任意一点,则AP →·BP →的取值范围是________;若向量AC →=λDE →+

μAP →

,则λ+μ的最小值为________.

解析 (1)由题意,不妨设b =(2,0),a =(cos θ,sin θ)(θ∈[0,2π)), 则a +b =(2+cos θ,sin θ),a -b =(cos θ-2,sin θ). 令y =|a +b |+|a -b |

=(2+cos θ)2

+sin 2

θ+(cos θ-2)2

+sin 2

θ =5+4cos θ+5-4cos θ,

则y 2=10+225-16cos 2

θ∈[16,20]. 由此可得(|a +b |+|a -b |)max =20=25, (|a +b |+|a -b |)min =16=4,

即|a +b |+|a -b |的最小值是4,最大值是2 5.

(2)以点A 为坐标原点,分别以AB ,AD 所在的直线为x 轴、y 轴建立平

面直角坐标系,则易得A (0,0),B (1,0),C (1,1),D (0,1),E ? ??

??12,0,P (cos θ,sin θ)?

??

??

0≤θ≤π2

,则AP →·BP →

=(cos θ,sin θ)·(cos θ

-1,sin θ)=cos 2θ-cos θ+sin 2θ=1-cos θ,又因为0≤θ≤π

2

所以AP →·BP →=1-cos θ∈[0,1].由AC →=λDE →+μAP →得(1,1)=λ? ????12,-1+μ(cos θ,sin

θ)=? ????12λ+μcos θ,-λ+μsin θ,所以???

??12λ+μcos θ=1,-λ+μsin θ=1,解得?????λ=2sin θ-2cos θ

2cos θ+sin θ,μ=32cos θ+sin θ,

则λ+μ=

2sin θ-2cos θ2cos θ+sin θ+3

2cos θ+sin θ

2sin θ-2cos θ+32cos θ+sin θ,当θ=π2时,λ+μ=2sin θ-2cos θ+32cos θ+sin θ=5,当θ≠π

2时,λ

+μ=2sin θ-2cos θ+32cos θ+sin θ=2tan θ-2+3tan 2

θ+12+tan θ,设f (x )=2x -2+3x 2

+12+x (x ≥0),

f ′(x )=

?

????2+3x x 2

+1(2+x )-(2x -2+3x 2+1)(2+x )

2

6x 2

+1+6x -3(2+x )

2x 2+1

>0(x ≥0),所以函数f (x )=2x -2+3x 2

+1

2+x 在[0,+∞)上单调递增,则

当tan θ=0时,λ+μ=2tan θ-2+3tan 2

θ+12+tan θ取得最小值1

2.综上所述,λ+μ的最小

值为1

2

.

答案 (1)4 2 5 (2)[0,1] 1

2

类型2 利用不等式型

【例2-2】 (1)(2020·浙江名校新高考研究联盟三联)已知边长为1的正方形ABCD ,E ,F 分别是边BC ,DC 上的两个动点,AE →+AF →=xAB →+yAD →,若x +y =3,则|EF →

|的最小值为________.

(2)(一题多解)(2019·七彩阳光联盟三联)已知平面向量a ,b ,c 满足|a |=|b |=|c |=1,a ·b

=0,则|2c -a |+????

??12c -b 的最小值为( )

A.

17

2

B.2

C.52

D. 5

(3)(2016·浙江卷)已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.

解析 (1)因为四边形ABCD 是正方形,以C 为坐标原点建立平面直角坐标系,则A (1,1),B (1,0),C (0,0).设E (a ,0),F (0,b ),则0≤a ,b ≤1.所以AE →=(a -1,-1),AF →

=(-1,b -1),因为AE →+AF →=xAB →+yAD →,所以有y =2-a ,x =2-b .因为x +y =3,所以a +b =1.所以|EF →

|=a 2

+b 2

(a +b )2

2=22,所以|EF →

|min =22,当且仅当a =b =12

时取到最小值. (2)法一 因为|a |=|b |=|c |=1,且a ⊥b .所以通过计算有|2c -a |=|c -2a |,??????12c -b =

??????c -12b ,所以|2c -a |+??????12c -b =|c -2a |+??????c -12b ≥?

?????2a -12b =172

,故选A.

法二 因为|a |=|b |=|c |=1,且a ⊥b ,所以可设a =(1,0),b =(0,1),c =(x ,y ),则

有x 2

+y 2

=1,所以|2c -a |+????

??12c -b =(2x -1)2+4y 2

14x 2+? ??

??12y -12=

4x 2-4x +1+4y

2

14x 2+14

y 2

-y +1=x 2-4x +4+y 2+x 2+y 2-y +

1

4

=(x -2)2+y 2

x 2

+? ????y -122

≥22

+? ??

??122

=172,故选A. (3)由已知可得6≥|a ·e |+|b ·e |≥|a ·e +b ·e |=|(a +b )·e | 由于上式对任意单位向量e 都成立. ∴6≥|a +b |成立.

∴6≥(a +b )2

=a 2

+b 2

+2a ·b =12

+22

+2a ·b . 即6≥5+2a ·b ,∴a ·b ≤1

2.

答案 (1)

22 (2)A (3)12

【训练2-2】 (1)(2020·杭州四中仿真)若非零向量a ,b 满足a 2

=(5a -4b )·b ,则cos 〈a ,

b 〉的最小值为________.

(2)(2019·浙江名师预测卷一)已知向量a ,b 满足|b |=1,|a +b |=2|a -b |,则|a |2-|b |2

的取值范围是( )

A.????

??-89,8 B.??????-19,8

C.?

?????-2,19 D.????

??-19,19 (3)(2020·温州适应性测试)已知平面向量a ,b ,c 满足:a ·b =0,|c |=1,|a -c |=|b -

c |=5,则|a -b |的最小值为( )

A.5

B.6

C.7

D.8

解析 (1)由a 2=(5a -4b )·b 得a ·b =15(a 2+4b 2)≥15×2|a |2·4|b |2

=45|a |·|b |,则cos

〈a ,b 〉=a ·b |a |·|b |≥4

5|a |·|b ||a |·|b |=4

5,当且仅当|a |=2|b |时等号成立,所以cos 〈a ,b 〉的

最小值为4

5

.

(2)因为|b |=1,所以|(a +b )-(a -b )|=2|b |=2.两边平方得|a +b |2

+|a -b |2

-2(|a |2

-|b |2

)=4,又|a +b |=2|a -b |,所以|a |2

-|b |2

=5|a -b |2

-4

2

,又因为|a +b |-|a -b |≤|(a

+b )-(a -b )|≤|a +b |+|a -b |,即|a -b |≤2≤3|a -b |,故23

≤|a -b |≤2,所以|a |2-|b |

2

=5|a -b |2

-42的取值范围是????

??-89,8,故选A.

(3)|a -b |2=|(a -c )-(b -c )|2=(a -c )2-2(a -c )(b -c )+(b -c )2

=50-2(a ·b -a ·c -

b ·

c +1)=48+2(a +b )·c =48+2|a +b |cos θ(其中θ为a +b 与c 的夹角),因为|a -b |

=|a +b |,所以|a -b |2

=48+2|a -b |cos θ,则由cos θ∈[-1,1],得48-2|a -b |≤|a -b |2

≤48+2|a -b |,解得6≤|a -b |≤8,即|a -b |的最小值为6,此时向量a -b 的方向与向量c 的方向相反,故选B. 答案 (1)4

5

(2)A (3)B

类型3 利用向量平行(垂直)、向量的投影型

【例2-3】 (1)如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若A ,B ,C ,D 四点均位于图中的“晶格点”处,且A ,B 的位置如图所示,则AB →·CD →

的最大值为________.

(2)已知|a |=2,|b |=|c |=1,则(a -b )·(c -b )的最大值为________,最小值为________. 解析 (1)先建立平面直角坐标系如图,因为正六边形的边长均为1,所以B (0,0),A ?

??

??

32,92,当CD →在AB →方向上的投影最大时,AB →·CD →最大,此时取C (0,5),D (-3,0),即(AB →·CD →)max =? ??

??

32,-92·(-3,-5)=32+452=24.

(2)设M =a ·c -a ·b -b ·c ,则(a -b )(c -b )=a ·c -a ·b -b ·c +b 2

=1+a ·c -a ·b -

b ·

c =1+M .而(b -a -c )2=6+2M ,M =-3+12

(b -a -c )2,∴当(b -a -c )2=0时,M min =-3,

∴[(a -b )(c -b )]min =1-3=-2;当b ,-a ,-c 共线且同向时,M max =-3+1

2(1+2+1)2=5,

∴[(a -b )·(c -b )]max =1+5=6. 答案 (1)24 (2)6 -2

【训练2-3】 (1)已知向量a ,b ,c 满足|b |=|c |=2|a |=1,则(c -a )·(c -b )的最大值是________,最小值是________.

(2)已知|OA →|=|OB →|=|OC →|=2,|OP →|=1,且OA →=BO →,记PA →·PB →+PB →·PC →+PC →·PA →

的最大值为

M ,最小值为m ,则M +m =( )

A.6

B.4

C.-2

D.-4

解析 (1)由题意得|a |=12,|b |=|c |=1,则(c -a )·(c -b )=|c |2

-c ·b -c ·a +a ·b =

|c |2+12(-a -b +c )2-12(|a |2+|b |2+|c |2)=-18+12

(-a -b +c )2

,则当向量-a ,-b ,c 同

向共线时,(c -a )·(c -b )取得最大值-18+12? ????12+1+12=3,当-a -b +c =0时,(c -a )·(c

-b )取得最小值-1

8

.

(2)因为PA →·PB →+PB →·PC →+PC →·PA →=(OA →-OP →)·(OB →-OP →)+(OB →-OP →)·(OC →-OP →)+(OC →

-OP →

)·(OA →-OP →)=3OP →2-2OP →·OC →-4,令3OP →=OQ →,2OC →=OM →,PA →·PB →+PB →·PC →+PC →·PA →=OP →·MQ

-4,如图,设OC →与OP →夹角为θ(θ∈[0,π]).因为MQ →=OQ →-OM →.所以MQ →·OP →

|OP →|=OP →(3OP →-2OC →

)

=3-4cos θ,又因为cos θ∈[-1,1],所以MQ →在OP →

方向上的投影d ∈[-1,7],即M =3,

m =-5,所以M +m =-2,故选C.

答案 (1)3 -1

8

(2)C

类型4 利用轨迹图形性质(数形结合)型

【例2-4】 (1)(一题多解)(2018·浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2

-4e ·b +3=0,则|a -b |的最小值是( )

A.3-1

B.3+1

C.2

D.2- 3

(2)已知向量|a |=3,|b |=6,a ·b =9,则|a +t (b -a )|+|(1-t )(b -a )-1

3b |(其中t ∈[0,

1])的最小值是________.

解析 (1)法一 设O 为坐标原点,a =OA →,b =OB →=(x ,y ),e =(1,0),由b 2

-4e ·b +3=0得x 2

+y 2

-4x +3=0,即(x -2)2

+y 2

=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π

3

,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -

b |min =|CA →|-|CB →

|=3-1.故选A.

法二 由b 2

-4e ·b +3=0得b 2

-4e ·b +3e 2

=(b -e )·(b -3e )=0.

设b =OB →,e =OE →,3e =OF →,所以b -e =EB →,b -3e =FB →,所以EB →·FB →

=0,取EF 的中点为C ,则B 在以C 为圆心,EF 为直径的圆上,如图,设a =OA →

,作射线OA ,使得∠AOE =π3,所以|a

-b |=|(a -2e )+(2e -b )|≥|a -2e |-|2e -b |=|CA →|-|BC →

|≥3-1.故选A.

(2)由cos 〈a ,b 〉=a ·b |a ||b |=1

2

得a ,b 的夹角为60°,又因为|a |=3,

|b |=6,所以△OAB 为直角三角形,B =30°.如图,令a =OA →,b =OB →

,∠BOA =60°,AC →=tAB →,DB →=13OB →,则|OA →+tAB →|=|OC →|,??????(1-t )AB →-13OB →=

|CD →|,问题转化为当点C 在线段AB 上运动时,求|OC →|+|CD →

|的最小值.

作点D 关于线段AB 对称的点G ,连接OG ,则OG 即为所求的最小值.在Rt△BDE 中,∠BED =90°,BD =2,B =30°,则DE =1,DG =2DE =2,在△ODG 中,OD =4,∠ODG =120°,DG =2,由余弦定理得OG =OD 2

+DG 2

-2OD ·DG cos∠ODG =27. 答案 (1)A (2)27

【训练2-4】 (1)已知|a |=|b |=1,向量c 满足|c -(a +b )|=|a -b |,则|c |的最大值为________.

(2)(一题多解)(2019·宁波模拟)已知向量a ,b ,c 满足|a |=1,|b |=2,|c -b |=1,则|a +c |的取值范围为________.

解析 (1)由|c -(a +b )|=|a -b |得向量c 的终点的轨迹为以向量a +b 的终点为圆心,|a -

b |为半径的圆,则|

c |的最大值为|a +b |+|a -b |,

又因为|a +b |+|a -b |≤2[(a +b )2+(a -b )2

] =2(|a |2

+2a ·b +|b |2

+|a |2

-2a ·b +|b |2

)=22,

当且仅当|a +b |=|a -b |,即a ⊥b 时等号成立,所以|c |的最大值为2 2.

(2)法一 令m =a +c ,则问题转化为|m |的取值范围.由三角不等式有||m |-|a +b ||≤|m -(a +b )|,则|a +b |-1≤|m |≤1+|a +b |,又||a |-|b ||≤|a +b |≤|a |+|b |,即1≤|a +b |≤3,故0≤|m |≤4,即|a +c |的取值范围为[0,4].

法二 如图,由已知,作OB →

=b ,分别以点O ,B 为圆心作单位圆,则-a 的终点A 在圆O 上,

c 的终点C 在圆B 上,则AC →=c -(-a )=c +a ,故|a +c |=|AC →

|表示两圆上两点连线的长,因

此,由圆的性质得0≤|AC →

|≤4,即|a +c |的取值范围为[0,4].

答案 (1)2 2 (2)[0,4]

补偿训练 一、选择题

1.(2013·浙江卷)在△ABC 中,P 0是边AB 上一定点,满足P 0B =1

4AB ,且对于边AB 上任一点P ,

恒有PB →·PC →≥P 0B →·P 0C →

,则( ) A.∠ABC =90° B.∠BAC =90° C.AB =AC

D.AC =BC

解析 取BC 边中点D ,由极化恒等式得PB →·PC →=PD →2-14BC →2,P 0B →·P 0C →=P 0D →2-14BC →2,由PB →·PC

≥P 0B →·P 0C →,得PD →2≥P 0D →2,即|PD →|≥|P 0D →|,D 到AB 的最短距离为P 0D ,∴DP 0→⊥AB →

,设AB 的中点为P ′,又P 0B =1

4AB ,∴DP ∥CP ,∴CP ⊥AB ,故AB =AC .

答案 C

2.(2020·诸暨适应性考试)已知AB 是圆O 的直径,AB 长为2,C 是圆O 上异于A ,B 的一点,

P 是圆O 所在平面上任意一点,则(PA →+PB →)·PC →

的最小值为( )

A.-14

B.-13

C.-12

D.-1

解析 PA →+PB →=2PO →,∴(PA →+PB →)·PC →=2PO →·PC →,取OC 中点D ,由极化恒等式得PO →·PC →=PD 2

-14OC 2=PD 2-14,又PD 2

min =0,∴(PA →+PB →)·PC →的最小值为-12. 答案 C

3.(一题多解)如图,BC ,DE 是半径为1的圆O 的两条直径,BF →=2FO →,则FD →·FE →

=( )

A.-34

B.-89

C.-14

D.-49

解析 法一 ∵BF →=2FO →,圆O 的半径为1,∴|FO →|=1

3

∴FD →·FE →=(FO →+OD →)·(FO →+OE →)=FO →2+FO →·(OE →+OD →)+OD →·OE →=? ????

132+0-1=-89.

法二 OF =1

3,由极化恒等式得

FD →·FE →

=OF 2-14DE 2=19-1=-89.

答案 B

4.如图,在△ABC 中,点D ,E 是线段BC 上两个动点,且AD →+AE →=xAB →+yAC →

,则1x +4y

的最小值

为( )

A.32

B.2

C.52

D.92

解析 由图可设AD →=λAB →+(1-λ)AC →,AE →=μAB →+(1-μ)AC →,其中λ,μ∈(0,1),则AD →

+AE →

=(λ+μ)AB →+(2-λ-μ)AC →

.由题知,x =λ+μ,y =2-λ-μ,所以有x +y =2,所

以1x +4y =12? ????1x +4y (x +y )=12?

????5+y x +4x y ≥12? ????5+2

y x ×4x y =9

2

,当且仅当y =2x ,即x =23,y

=4

3时,取等号,故选D. 答案 D

5.在△ABC 中,BC =2,A =45°,B 为锐角,点O 是△ABC 外接圆的圆心,则OA →·BC →

的取值范围是( ) A.(]-2,22 B.(]-22,2 C.[]-22,22

D.()-2,2

解析 依题意得△ABC 的外接圆半径R =12·BC sin 45°=2,|OA →

|=2,

如图所示,A 在弧A 1C 上(端点除外),

OA 2→与BC →同向,此时OA →·BC →

有最大值22,

又OA 1→·BC →=-2,故OA →·BC →

∈(]-2,22.故选A. 答案 A

6.记max{a ,b }=?

????a ,a ≥b ,

b ,a

AB 上一动点.设M =

max{OP →·OA →,OP →·OB →

},则当M 取最小值时,AP PB

=( )

A.

OA OB

B.

OA OB

C.? ????OA OB 2

D.? ??

??OA OB 3

解析 M 取最小值时,OP →·OA →=OP →·OB →,即OP →·AB →

=0,亦即OP ⊥AB .根据直角三角形的射影定理可得|AP ||PB |=AP ·PB PB 2=? ????OP PB 2=? ????OA OB 2

,故选C.

答案 C

7.(2019·浙江名师预测卷四)已知a ,b 是单位向量,向量c 满足|c -b +a |=|a +b |,则|c |的最大值为( )

A.2

B.2 2

C.3

D.3 2

解析 由|c -(b -a )|=|a +b |得向量c 的终点的轨迹为以向量b -a 的终点为圆心,|a +b |为半径的圆,则|c |的最大值为|a +b |+|b -a |. 又因为|a +b |+|b -a |≤2[(a +b )2

+(b -a )2

]

=2(|a |2

+2a ·b +|b |2

+|b |2

-2a ·b +|a |2

)=2 2.当且仅当|a +b |=|b -a |,即a ⊥b 时等号成立,所以|c |的最大值为2 2. 答案 B

8.(2020·浙江教育绿色评价联盟适考)在矩形ABCD 中,

AB =1,AD =2,动点P 在以C 为圆心且与BD 相切的圆上,若BP →=λBA →+μBC →

,设λ+2μ的

最大值为M ,最小值为N ,则M -N 的值为( )

A.210

5 B.310

5

C.410

5

D.10

解析 如图,以C 为坐标原点,分别以直线BC ,CD 为x ,y 轴建立平面直角坐标系,则B (-2,0),A (-2,1),由已知,圆C 的方程为x 2+y 2

=45,设P ? ????25cos θ,25sin θ,又BP →=λBA

→+μBC →

,则????? 2

5cos θ+2=2μ, 25sin θ=λ,即λ+2μ=25(sin θ+cos θ)+2=

22

5sin ? ????θ+π4+

2,故M -N =?

????225+2-? ??

??-225+2=410

5,故选C.

答案 C

9.(2018·天津卷)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E 为边CD 上的动点,则AE →·BE →

的最小值为(

)

A.2116

B.32

C.2516

D.3

解析 以A 为坐标原点,AB 所在直线为x 轴,建立如图的平面直角坐标系,

因为在平面四边形ABCD 中,AB =AD =1,∠BAD =120°,所以A (0,0),

B (1,0),D ? ????-12,

32.设C (1,m ),E (x ,y ),所以DC →

=? ????32

,m -32,AD

→=? ????-12,32,因为AD ⊥CD ,所以? ????3

2

,m -32·? ????-12,32=0,则32×(-12)+32? ????m -32=0,

解得m =3,即C (1,3).因为E 在CD 上,所以32≤y ≤3,由k CE =k CD ,得3-y

1-x =3-

3

21+1

2

即x =3y -2,因为AE →=(x ,y ),BE →=(x -1,y ),所以AE →·BE →=(x ,y )·(x -1,y )=x 2

-x +y 2

=(3y -2)2

-3y +2+y 2

=4y 2

-53y +6,令f (y )=4y 2

-53y +6,y ∈????

??

32,3.因为函数f (y )=4y 2

-53y +6在??????32,538上单调递减,在? ??

??

538,3上单调递增,

所以f (y )min =4×?

??

??538 2-53×538+6=2116.所以AE →·BE →

的最小值为2116,故选A. 答案 A 二、填空题

10.在△ABC 中,BC =3,AB →·AC →

=4,则BC 边上的中线AM 的长是________. 解析 因为AB →·AC →=14[(2AM →)2-BC →2

],

AM →2=14(4AB →·AC →+BC →2)=254,即|AM →

|=52

所以BC 边上的中线AM 的长为5

2.

答案 52

11.在面积S =2的△ABC 中,E ,F 分别是AB ,AC 的中点,点P 在直线EF 上,则PC →·PB →+BC →2

的最小值是________.

解析 取BC 的中点为D ,连接PD ,

则由极化恒等式得PC →·PB →+BC →2=PD →2-BC →24+BC →2=PD →2+34BC →2≥h 2

4+34BC →2

(其中h 为A 点向BC 边作

的高),

当且仅当PD →⊥BC →

时取等号. 由上可知PC →·PB →+BC →2≥h 2

4+34BC →2

≥2

h 24

·34

BC →2

≥3S =2 3.

答案 2 3

12.在Rt△ABC 中,CA =CB =2,M ,N 是斜边AB 上的两个动点,且MN =2,则CM →·CN →

的取值范围是________.

解析 取MN 的中点为P ,由极化恒等式得CM →·CN →=14[(2CP →)2-MN →2]=CP →2-12.问题转化为求|CP

|的取值范围,当P 为AB 的中点时,|CP →|取最小值为2,则CM →·CN →

的最小值为32

;当M 与A (或

N 与B )重合时,|CP →

|取最大值为

102,则CM →·CN →的最大值为2,所以CM →·CN →的取值范围是????

??32,2. 答案 ????

??32,2

13.(2020·浙江新高考仿真卷二)在△ABC 中,A =120°,BC =213,AC =2,则AB =________;当|CB →+λCA →

|取到最小值时,则λ=________.

解析 在△ABC 中,由余弦定理得BC 2

=AC 2

+AB 2

-2AC ·AB cos A ,即(213)2

=22

+AB 2

2×2AB cos 120°,解得AB =6,则cos C =BC 2+AC 2-AB 22BC ·AC =(213)2+22-622×213×2

=51326,则|CB

+λCA →|2=|CB →|2+λ2|CA →|2+2λCB →·CA →=(213)2+λ2×22+2λ×213×2×51326=4λ2

20λ+52,则当λ=-

202×4=-52

时,|CB →+λCA →

|取得最小值.

答案 6 -5

2

14.若非零向量a 和b 满足|a +b |=|b |=2,则|a |的取值范围是________,|a -b |的取值范围是________.

解析 因为||a +b |-|b ||≤|a |=|a +b -b |≤|a +b |+|b |=4,又a 是非零向量,所以|a |的取值范围是(0,4],因为|a -b |+|a +b |≥2|b |=|(a +b )-(a -b )|≥||a -b |-|a +b ||,所以-4≤|a -b |-|a +b |≤4,|a -b |+|a +b |≥4,又|a +b |=2,解得|a -b |的取值范围是[2,6].

答案 (0,4) [2,6]

15.(2020·杭州三校三联)如图,圆O 是半径为1的圆,OA =1

2,设B ,C 为圆上的任意2个点,

则AC →·BC →

的取值范围是________.

解析 设a =OA →,b =OB →,c =OC →,则有|a |=12,|b |=|c |=1,则AC →·BC →

=(c -a )·(c -b )≤|c

-a |·|c -b |≤(|c |+|a |)·(|c |+|b |)=3

2×2=3,当且仅当a ,b 同向共线,且与c 反向

共线时,等号成立,所以AC →·BC →的最大值为 3.AC →·BC →

=(c -a )·(c -b )=1-c ·(a +b )+

a ·

b ≥1-|

c |·|a +b |+a ·b =1-|a +b |+a ·b =1-

5

4

+2a ·b +a ·b ,令a ·b =t ,则易得t ∈????

??-12,12,AC →·BC →

=(c -a )·(c -b )≥1-

5

4

+2t +t ,设f (t )=1-5

4

+2t +t ? ??

??-1

2≤t ≤12,则f ′(t )=1-

15

4

+2t .易得当t =-1

8时,f (t )=1-

5

4

+2t +t 取得最小值-18.综上所述,AC →·BC →的取值范围为????

??-18,3. 答案 ????

??-18,3 16.已知平面向量a ,b ,c 满足|a |=1,|b |=2,|c -a |=|c -b |,则|c |的最小值为________,此时a ·b =________.

解析 由|c -a |=|c -b |,得c 2

-2a ·c +a 2

=c 2

-2b ·c +b 2

,即2b ·c -2a ·c =b 2

-a 2

=3,

则(b -a )·c

=32≤|b -a |·|c |≤(|b |+|a |)·|c |=3|c |,所以|c |≥1

2,当且仅当a 与b 方

向相反且a ,b ,c 共线时等号成立,所以|c |的最小值为1

2,此时a ·b =|a ||b |cos π=-2.

答案 1

2

-2

17.已知正三角形ABC 的边长为4,O 是平面ABC 内的动点,且∠AOB =π3,则OC →·AB →

的最大值

为________.

解析 如图,圆E 2为△ABC 的外接圆,圆E 1与圆E 2关于直线AB 对称,由题意知O 在圆E 1,E 2的优弧AB ︵

上(圆E 1,E 2半径相等),设AB 的中点为D ,OC →·AB →=(DC →-DO →)·AB →=BA →·DO →=|BA →|·|DO →

|·cos∠ADO ,易

知当∠ADO 为锐角,且DO →在BA →方向上的射影最大时,OC →·AB →取得最大值,易知DO →在BA →

方向上射影的最大值为△ABO 外接圆的半径,故所求最大值为4×42sin

π3=163

3.

答案

163

3

18.(2019·浙江卷)已知正方形ABCD 的边长为1,当每个λi (i =1,2,3,4,5,6)取遍±1时,|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →

|的最小值是________,最大值是________.

解析 如图,以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则AB →

=(1,0),AD →

=(0,1).

设a =λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →

=λ1AB →+λ2AD →-λ3AB →-λ4AD →+λ5(AB →+AD →)+λ6(AD →-AB →) =(λ1-λ3+λ5-λ6)AB →+(λ2-λ4+λ5+λ6)AD →

=(λ1-λ3+λ5-λ6,λ2-λ4+λ5+λ6).

故|a|=(λ1-λ3+λ5-λ6)2

+(λ2-λ4+λ5+λ6)2

. ∵λi (i =1,2,3,4,5,6)取遍±1,

∴当λ1-λ3+λ5-λ6=0,λ2-λ4+λ5+λ6=0时,|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →

λ6BD →

|取得最小值0.

考虑到λ5-λ6,λ5+λ6有相关性,要确保所求模最大,只需使|λ1-λ3+λ5-λ6|,|λ2-λ4+λ5+λ6|尽可能取到最大值,即当λ1-λ3+λ5-λ6=2,λ2-λ4+λ5+λ6=4时可取到最大值,

∴|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →

|的最大值为4+16=2 5. 答案 0 2 5

高考数学平面向量专题卷(附答案)

高考数学平面向量专题卷(附答案) 一、单选题(共10题;共20分) 1.已知向量,则=() A. B. C. 4 D. 5 2.若向量,,若,则 A. B. 12 C. D. 3 3.已知平面向量,,且,则=() A. B. C. D. 4.已知平面向量、,满足,若,则向量、的夹角为() A. B. C. D. 5.在中,的中点为,的中点为,则() A. B. C. D. 6.已知平面向量不共线,且,,记与的夹角是,则最大时, () A. B. C. D. 7.在中,,AD是BC边上的高,则等于() A. 0 B. C. 2 D. 1 8.已知,则的取值范围是() A. [0,1] B. C. [1,2] D. [0,2] 9.已知向量,的夹角为,且,则的最小值为() A. B. C. 5 D. 10.已知椭圆:上的三点,,,斜率为负数的直线与轴交于,若原点是的重心,且与的面积之比为,则直线的斜率为()

A. B. C. D. 二、填空题(共8题;共8分) 11.在平面直角坐标系xOy中,已知A(0,﹣1),B(﹣3,﹣4)两点,若点C在∠AOB的平分线上,且 ,则点C的坐标是________. 12.已知单位圆上两点满足,点是单位圆上的动点,且,则 的取值范围为________. 13.已知正方形的边长为1,,,,则________. 14.在平面直角坐标系中,设是函数()的图象上任意一点,过点向直线 和轴作垂线,垂足分别是,,则________. 15.已知为锐角三角形,满足,外接圆的圆心为,半径为1,则的取值范围是________. 16.设是边长为的正六边形的边上的任意一点,长度为的线段是该正六边形外接圆的一条动弦,则的取值范围为________. 17.设的外接圆的圆心为,半径为2,且满足,则 的最小值为________. 18.如图,在中,,点,分别为的中点,若,,则 ________. 三、解答题(共6题;共60分) 19.的内角,,所对的边分别为,,.向量与平行.(Ⅰ)求; (Ⅱ)若,求的面积. 20.在平面直角坐标系中,曲线的参数方程为(为参数),已知点,点是曲线上任意一点,点为的中点,以坐标原点为极点,轴正半轴为极轴建立极坐标系.

高考数学平面向量试题汇编

高考数学平面向量试题汇编 已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0u u u r u u u r u u u r ,那么 ( A ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r (辽宁3) 若向量a 与b 不共线,0≠g a b ,且?? ??? g g a a c =a -b a b ,则向量a 与c 的夹角为( D ) A .0 B . π6 C . π3 D . π2 (辽宁6) 若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( A ) A .(12)--, B .(12)-, C .(12)-, D .(12), (宁夏,海南4) 已知平面向量(11) (11)==-,,,a b ,则向量13 22 -=a b ( D ) A.(21)--, B.(21)-, C.(10)-, D.(12), (福建4) 对于向量,,a b c 和实数λ,下列命题中真命题是( B ) A .若=0g a b ,则0a =或0b = B .若λ0a =,则0λ=或=0a C .若2 2 =a b ,则=a b 或-a =b D .若g g a b =a c ,则b =c (湖北2)

将π2cos 36x y ??=+ ???的图象按向量π24?? =-- ??? ,a 平移,则平移后所得图象的解析式为 ( A ) A.π2cos 234x y ?? =+- ??? B.π2cos 234x y ?? =-+ ??? C.π2cos 2312x y ?? =-- ??? D.π2cos 2312x y ?? =++ ??? (湖北文9) 设(43)=,a , a 在 b 上的投影为2 ,b 在x 轴上的投影为2,且||14≤b ,则b 为( B ) A .(214), B .227? ?- ???, C .227??- ??? , D .(28), (湖南4) 设,a b 是非零向量,若函数()()()f x x x =+-g a b a b 的图象是一条直线,则必有( A ) A .⊥a b B .∥a b C .||||=a b D .||||≠a b (湖南文2) 若O E F ,,是不共线的任意三点,则以下各式中成立的是( B ) A .EF OF OE =+u u u r u u u r u u u r B .EF OF OE =-u u u r u u u r u u u r C .EF OF OE =-+u u u r u u u r u u u r D .EF OF O E =--u u u r u u u r u u u r (四川7) 设A {a ,1},B {2,b },C {4,5},为坐标平面上三点,O 为坐标原点,若方向 在与→ →→OC OB OA 上的投影相同,则a 与b 满足的关系式为 ( A ) (A)354=-b a (B)345=-b a (C)1454=+b a (D)1445=+b a (天津10) 设两个向量22 (2cos )λλα=+-,a 和sin 2 m m α? ?=+ ?? ? ,b ,其中m λα,,为实数.若2=a b ,则 m λ 的取值范围是( A ) A.[-6,1] B.[48], C.(-6,1] D.[-1,6] (浙江7)

2019高考数学真题汇编平面向量

考点1 平面向量的概念及其线性运算 1.平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹 角,则m =( ) A .-2 B .-1 C . 1 D .2 2. 在下列向量组中,能够把向量a =(3,2)表示出来的是( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3) 考点2 平面向量基本定理及向量坐标运算 3.已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 D.152 4.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 考点3 平面向量的数量积及应用 5.已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=___. 6.设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=___. 7.已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的 夹角为β,则cos β=________. 8.若向量a ,b 满足:=1,(a +b )⊥a ,(+b )⊥b ,则|=______. 9.设向量a ,b 满足|a +b |=10,|a -b |=6,则=______. 10.在△ABC 中,已知AB →·AC →=tan A ,当A =π6 时,△ABC 的面积为______. 考点4 单元综合 11.在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足 |CD →|=1,则|OA →+OB →+OD →|的最大值是________. 练习: 1.已知A ,B ,C 是圆O 上的三点,若1()2 AO AB AC =+,则AB 与AC 的夹角为 .

复数、平面向量与算法(教师版)

高考微点二 复数、平面向量与算法 牢记概念公式,避免卡壳 1.复数z =a +b i(a ,b ∈R )概念 (1)分类:当b =0时,z ∈R ;当b ≠0时,z 为虚数;当a =0,b ≠0时,z 为纯虚数. (2)z 的共轭复数z - =a -b i. (3)z 的模|z |=a 2+b 2. 2.复数的四则运算法则 (a +b i)±(c +d i)=(a ±c )+(b ±d )i ; (a +b i)(c +d i)=(ac -bd )+(bc +ad )i ; (a +b i)÷(c +d i)= ac +bd c 2+d 2+bc -ad c 2+ d 2 i(a ,b ,c ,d ∈R ,c +d i ≠0). 3.平面向量的有关运算 (1)两个非零向量平行(共线)的充要条件:a ∥b a =λb . 两个非零向量垂直的充要条件:a ⊥b a ·b =0|a +b |=|a -b |. (2)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (3)若A (x 1,y 1),B (x 2,y 2), 则|AB →|=(x 2-x 1)2+(y 2-y 1 )2. (4)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 2 2. 4.算法的三种基本逻辑结构 (1)顺序结构;(2)条件结构;(3)循环结构. 活用结论规律,快速抢分 1.复数的几个常用结论 (1)(1±i)2=±2i ; (2) 1+i 1-i =i ,1-i 1+i =-i ; (3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i. 2.复数加减法可按向量的三角形、平行四边形法则进行运算. 3.z ·z - =|z |2 =|z - |2. 4.三点共线的判定

高三数学精准培优专题练习8:平面向量

培优点八 平面向量 1.代数法 例1:已知向量a ,b 满足=3a ,b 且()⊥+a a b ,则b 在a 方向上的投影为( ) A .3 B .3- C . D 【答案】C 【解析】考虑b 在a 上的投影为 ?a b b ,所以只需求出a ,b 即可. 由()⊥+a a b 可得:()2 0?+=+?=a a b a a b , 所以9?=-a b .进而?==a b b .故选C . 2.几何法 例2:设a ,b 是两个非零向量,且2==+=a b a b ,则=-a b _______. 【答案】【解析】可知a ,b ,+a b 为平行四边形的一组邻边和一条对角线, 由2==+=a b a b 可知满足条件的只能是底角为60o ,边长2a =的菱形, =. 3.建立直角坐标系 例3:在边长为1的正三角形ABC 中,设2BC BD =uu u v uu u v ,3CA CE =uu v uu u v ,则AD BE ?=u u u v u u u v __________. 【答案】14 AD BE ?=-uuu v uu u v 【解析】上周是用合适的基底表示所求向量,从而解决问题,本周仍以此题为例,从另一个角度解题,

观察到本题图形为等边三角形,所以考虑利用建系解决数量积问题, 如图建系: 3 0, A ?? ? ? ?? , 1 ,0 2 B ?? - ? ?? , 1 ,0 2 C ?? ? ?? , 下面求E坐标:令() , E x y,∴ 1 , 2 CE x y ?? =- ? ?? uu u v , 13 2 CA ? =- ?? uu v , 由3 CA CE = uu v uu u v 可得: 111 3 223 3 3 3 x x y y ???? -=-= ? ?? ?? ?? ? ?? ??= = ??? ? 13 3 E ? ?? , ∴ 3 0, AD ? = ?? uuu v , 53 6 BE ? = ?? uu u v ,∴ 1 4 AD BE ?=- uuu v uu u v . 一、单选题 1.已知向量a,b满足1 = a,2 = b,且向量a,b的夹角为 4 π ,若λ - a b与b垂直,则实数λ的值为() A. 1 2 -B. 1 2 C. 2 D 2 【答案】D 【解析】因为12cos2 4 π ?? ?= a b()2 240 λλλ -?=?=?= a b b,故选D.2.已知向量a,b满足1 = a,2 = b,7 += a b?= a b() A.1 B2C3D.2 【答案】A 对点增分集训

高考数学平面向量及其应用习题及答案

一、多选题 1.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ?=,则0b = B .向量a 、b 为不共线的非零向量,则22 ()a b a b ?=? C .若非零向量a 、b 满足2 2 2 a b a b +=+,则a 与b 垂直 D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2 π 2.在ABC ?中,内角,,A B C 的对边分别为,,,a b c 若,2,6 A a c π ===则角C 的大小 是( ) A . 6 π B . 3 π C . 56 π D . 23 π 3.已知向量()1,0a =,()2,2b =,则下列结论正确的是( ) A .()25,4a b += B .2b = C .a 与b 的夹角为45° D .() //2a a b + 4.已知ABC ?是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且 AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( ) A .1A B CE ?=- B .0OE O C += C .3OA OB OC ++= D .ED 在BC 方向上的投影为 76 5.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C B .在ABC 中,若sin 2A =sin 2B ,则a =b C .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立 D .在ABC 中, sin sin sin +=+a b c A B C 6.下列关于平面向量的说法中正确的是( ) A .已知A 、 B 、 C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ?=?且0b ≠,则a c = C .若点G 为ΔABC 的重心,则0GA GB GC ++= D .已知()1 2a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ< 7.在△ABC 中,若cos cos a A b B =,则△ABC 的形状可能为( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等边三角形

第六章 平面向量与复数

第六章 平面向量与复数 , 第32课 向量的概念与线性运算 激活思维 1. (必修4P 67练习4改编)化简:AB →+CD →+DA →+BC → =________. 2. (必修4P 62习题5改编)判断下列四个命题:①若a ∥b ,则a =b ;②若|a|=|b |,则a =b ;③若|a|>|b|,则a>b ;④若a ∥b ,b ∥c ,则a ∥c .其中正确的个数是________. 3. (必修4P 57习题2改编)对于非零向量a ,b ,“a ∥b ”是“a +b =0”成立的________条件. (第4题) 4. (必修4P 60例1改编)如图,在正六边形ABCDEF 中,BA →+CD →+EF → =________. 5. (必修4P 68习题10改编)在△ABC 中,若|AB →|=|AC →|=|AB →-AC → |,则△ABC 的形状是________. 知识梳理 1. 向量的有关概念 向量:既有大小又有方向的量叫作向量.向量的大小叫向量的________(或模). 2. 几个特殊的向量 (1) 零向量:____________,记作____,其方向是任意的. (2) 单位向量:________________________. (3) 平行向量:________________________,平行向量又称为共线向量,规定0与任一向量共线. (4) 相等向量:________________________. (5) 相反向量:________________________. 3. 向量的加法 (1) 运用平行四边形法则时,将两个已知向量平移到公共起点,和向量是____________的对角线所对应的向量. (2) 运用向量加法的三角形法则时,要特别注意“首尾相接”,即第二个向量要以____________为起点,即由第一个向量的起点指向____________的向量为和向量. 4. 向量的减法 将两个已知向量平移到公共起点,差向量是________的终点指向________的终点的向量.注意方向指向被减向量.

高考数学压轴专题(易错题)备战高考《平面向量》全集汇编附解析

新数学《平面向量》试卷含答案 一、选择题 1.如图,圆O 是等边三角形ABC 的外接圆,点D 为劣弧AC 的中点,则OD =u u u r ( ) A .2133BA AC +u u u r u u u r B .2133BA A C -u u u r u u u r C .1233BA AC +u u u r u u u r D .4233BA AC +u u u r u u u r 【答案】A 【解析】 【分析】 连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,列出相应式子得出结论. 【详解】 解:连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E , 则()() 221121332333 OD BO BE BA BC BA BA AC BA AC ===?+= ++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 故选:A. 【点睛】 本题考查向量的表示方法,结合几何特点,考查分析能力,属于中档题. 2.已知正ABC ?的边长为4,点D 为边BC 的中点,点E 满足AE ED u u u r u u u r =,那么EB EC ?u u u r u u u r 的值为( ) A .8 3 - B .1- C .1 D .3 【答案】B 【解析】 【分析】 由二倍角公式得求得tan ∠BED ,即可求得cos ∠BEC ,由平面向量数量积的性质及其运算得直接求得结果即可. 【详解】

由已知可得:7 , 又23 tan BED 3 BD ED ∠= == 所以22 1tan 1 cos 1tan 7 BED BEC BED -∠∠==-+∠ 所以1||cos 7717EB EC EB EC BEC ?? ?=∠=-=- ??? u u u r u u u r u u u r u u u r ‖ 故选B . 【点睛】 本题考查了平面向量数量积的性质及其运算及二倍角公式,属中档题. 3.若向量a b r r ,的夹角为3 π ,|2|||a b a b -=+r r r r ,若()a ta b ⊥+r r r ,则实数t =( ) A .1 2 - B . 12 C 3 D .3 【答案】A 【解析】 【分析】 由|2|||a b a b -=+r r r r 两边平方得22b a b =?r r r ,结合条件可得b a =r r ,又由()a ta b ⊥+r r r ,可得20t a a b ?+?=r r r ,即可得出答案. 【详解】 由|2|||a b a b -=+r r r r 两边平方得2222442a a b b a a b b -?+=+?+r r r r r r r r . 即22b a b =?r r r ,也即22cos 3 b a b π =r r r ,所以b a =r r . 又由()a ta b ⊥+r r r ,得()0a ta b ?+=r r r ,即20t a a b ?+?=r r r . 所以222 1122b a b t a b ?=-=-=-r r r r r 故选:A

(完整版)《平面向量》测试题及答案

《平面向量》测试题 一、选择题 1.若三点P (1,1),A (2,-4),B (x,-9)共线,则( ) A.x=-1 B.x=3 C.x= 2 9 D.x=51 2.与向量a=(-5,4)平行的向量是( ) A.(-5k,4k ) B.(-k 5,-k 4) C.(-10,2) D.(5k,4k) 3.若点P 分所成的比为4 3 ,则A 分所成的比是( ) A.73 B. 37 C.- 37 D.-7 3 4.已知向量a 、b ,a ·b=-40,|a|=10,|b|=8,则向量a 与b 的夹角为( ) A.60° B.-60° C.120° D.-120° 5.若|a-b|=32041-,|a|=4,|b|=5,则向量a ·b=( ) A.103 B.-103 C.102 D.10 6.(浙江)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( ) A.? ????79,73 B.? ????-73,-79 C.? ????73,79 D.? ????-7 9 ,-73 7.已知向量a=(3,4),b=(2,-1),如果向量(a+x )·b 与b 垂直,则x 的值为( ) A. 3 23 B. 23 3 C.2 D.- 5 2 8.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是( ) A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,- 2 1 ) 9.设四边形ABCD 中,有DC = 2 1 ,且||=|BC |,则这个四边形是( ) A.平行四边形 B.矩形 C.等腰梯形 D.菱形 10.将y=x+2的图像C 按a=(6,-2)平移后得C ′的解析式为( ) A.y=x+10 B.y=x-6 C.y=x+6 D.y=x-10 11.将函数y=x 2+4x+5的图像按向量a 经过一次平移后,得到y=x 2 的图像,则a 等于( ) A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1) 12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是( ) A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 二、填空题 13.设向量a=(2,-1),向量b 与a 共线且b 与a 同向,b 的模为25,则b= 。 14.已知:|a|=2,|b|=2,a 与b 的夹角为45°,要使λb-a 垂直,则λ= 。 15.已知|a|=3,|b|=5,如果a ∥b ,则a ·b= 。 16.在菱形ABCD 中,(AB +AD )·(AB -AD )= 。

20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选A . 例2.(2006年安徽卷)在ABCD Y 中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r ,M 为BC 的中点,则MN =u u u u r ______.(用a b r r 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12 AM a b =+u u u u r r r , 所以,3111()()4 2 4 4 MN a b a b a b =+-+=-+u u u u r r r r r r r . 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量 =CD ( ) (A )BA BC 2 1+- (B ) BA BC 2 1-- (C ) BA BC 2 1- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a r =71,,22b ? ?= ???r ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ?? ?- ??53,5 4 (B) ?? ?- ??53,5 4或?? ? ??-53,54 (C )?? ?- ??31,3 22 (D )?? ?- ??31,3 22或?? ? ? ?- 31,3 22 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题. 解:设所求平面向量为,c r 由433,,, 1. 555c c ???? =-= ? ?????r 4或-时5 另一方面,当222274134312525,,cos ,. 55271432255a c c a c a c ?? ?+?- ?????? =-=== ????????????+++- ? ? ? ?????????r r r r r r r 时

53.高考数学专题26 平面向量(知识梳理)(理)(原卷版)

专题26 平面向量(知识梳理) 一、向量的概念及表示 1、向量的概念:具有大小和方向的量称为向量。 (1)数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。 (2)向量的表示方法: ①具有方向的线段,叫做有向线段,以A 为始点,B 为终点的有向线段记作AB ,AB 的长度记作||AB 。用有向线段AB 表示向量,读作向量AB ; ②用小写字母表示:a 、。 (3)向量与有向线段的区别和联系: ①向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; ②有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段; ③向量可以用有向线段表示,但向量不是有向线段。向量是规定了大小和方向的量,有向线段是规定了起点和终点的线段。 2、向量的模:向量AB 的大小――长度称为向量的模,记作||。 3、零向量:长度等于零、方向是任意的向量,记作。 4、单位向量:长度为一个单位长度的向量。与非零向量共线的单位向量0a =。 5、平行向量:(1)若非零向量a 、的方向相同或相反,则b a //,又叫共线向量; (2)规定与任一向量平行。 6、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关)。 7、相等向量:若非零向量a 、方向相同且模相等,则向量a 、是相等向量。 (1)相等向量:=?模相等,方向相同; (2)相反向量:b a -=?模相等,方向相反。 二、向量的加法 1、三角形法则

图示 2、平行四边形法则 原理 已知两个不共线向量a 、b ,作a AB =,b BC =,则A 、B 、D 三点不共线,以AB 、AD 为邻边 作平行四边形,则对角线上的向量b a AC +=,这个法则叫做两个向量求和的平行四边形法则。 图示 3、多边形法则 原理 已知n 个向量,依次把这n 个向量首尾相连,以第一个向量的始点为始点,第n 个向量的终点为终点 的向量叫做这n 个向量的和向量,这个法则叫做向量求和的多边形法则。 图示 运算律 交换律 a b b a +=+ 结合律 )()(c b a c b a ++=++ 1、相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量,记作a -。 (1)规定:零向量的相反向量仍是零向量; (2)a a =--)(; (3)0)()(=+-=-+a a a a ; (4)若a 与b 互为相反向量,则b a -=,a b -=,0=+b a 。 2、向量的减法:已知向量a 与b (如图),作a OA =,b OB =,则a BA b =+,向量BA 叫做向量a 与b 的差,并记作b a -,即OB OA b a BA -=-=,由定义可知: (1)如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为始点,被减向量的终点为终点的向量; (2)一个向量BA 等于它的终点相对于点O 的位置向量OA 减去它的始点相对于点O 的位置向量OB ,或简记为“终点向量减始点向量”;

(完整版)高中数学平面向量测试题及答案

平面向量测试题 一、选择题: 1。已知ABCD 为矩形,E 是DC 的中点,且?→?AB =→a ,?→?AD =→b ,则?→ ?BE =( ) (A ) →b +→a 2 1 (B ) →b -→a 2 1 (C ) →a +→b 2 1 (D ) →a -→ b 2 1 2.已知B 是线段AC 的中点,则下列各式正确的是( ) (A ) ?→?AB =-?→?BC (B ) ?→?AC =?→?BC 2 1 (C ) ?→?BA =?→?BC (D ) ?→?BC =?→ ?AC 2 1 3.已知ABCDEF 是正六边形,且?→?AB =→a ,?→?AE =→b ,则?→ ?BC =( ) (A ) )(2 1→→-b a (B ) )(2 1 →→-a b (C ) →a +→b 2 1 (D ) )(2 1→ →+b a 4.设→a ,→b 为不共线向量,?→?AB =→a +2→b ,?→?BC =-4→a -→b ,?→ ?CD = -5→ a -3→ b ,则下列关系式中正确的是 ( ) (A )?→?AD =?→?BC (B )?→?AD =2?→ ?BC (C )?→?AD =-?→ ?BC (D )?→?AD =-2?→ ?BC 5.将图形F 按→ a =(h,k )(其中h>0,k>0)平移,就是将图形F ( ) (A ) 向x 轴正方向平移h 个单位,同时向y 轴正方向平移k 个单位。 (B ) 向x 轴负方向平移h 个单位,同时向y 轴正方向平移k 个单位。 (C ) 向x 轴负方向平移h 个单位,同时向y 轴负方向平移k 个单位。 (D ) 向x 轴正方向平移h 个单位,同时向y 轴负方向平移k 个单位。 6.已知→a =()1,2 1,→ b =(), 2 22 3- ,下列各式正确的是( ) (A ) 2 2?? ? ??=??? ??→ →b a (B ) →a ·→b =1 (C ) →a =→b (D ) →a 与→b 平行 7.设→ 1e 与→ 2e 是不共线的非零向量,且k → 1e +→ 2e 与→ 1e +k → 2e 共线,则k 的值是( ) (A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数 8.在四边形ABCD 中,?→?AB =?→?DC ,且?→?AC ·?→ ?BD =0,则四边形ABCD 是( ) (A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形 9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且?→ ?PN =-2?→ ?PM ,则P 点的坐标为( ) (A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4)

2020年高考数学试题分类汇编 平面向量

九、平面向量 一、选择题 1.(四川理4)如图,正六边形ABCDEF 中,BA CD EF ++u u u r u u u r u u u r = A .0 B .BE u u u r C .AD u u u r D .CF uuu r 【答案】D 【解析】BA CD EF BA AF EF BF EF C E E F CF ++=++=+=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2.(山东理12)设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=u u u u v u u u u v (λ∈R ),1412A A A A μ=u u u u v u u u u v (μ∈R ),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知平面上的点C ,D 调和分割点A , B 则下面说法正确的是 A .C 可能是线段A B 的中点 B .D 可能是线段AB 的中点 C .C , D 可能同时在线段AB 上 D .C ,D 不可能同时在线段AB 的延长线上 【答案】D 3.(全国新课标理10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题 12:||1[0,)3p a b πθ+>?∈ 22:||1(,]3p a b πθπ+>?∈ 13:||1[0,)3p a b πθ->?∈ 4:||1(,]3p a b πθπ->?∈ 其中真命题是 (A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p 【答案】A 4.(全国大纲理12)设向量a ,b ,c 满足a =b =1,a b g =12- ,,a c b c --=060,则c 的最大值等于 A .2 B .3 C .2 D .1 【答案】A 5.(辽宁理10)若a ,b ,c 均为单位向量,且0=?b a ,0)()(≤-?-c b c a ,则||c b a -+的 最大值为 (A )12- (B )1 (C )2 (D )2 【答案】B 6.(湖北理8)已知向量a=(x +z,3),b=(2,y-z ),且a ⊥ b .若x ,y 满足不等式 1x y +≤, 则z 的取值范围为 A .[-2,2] B .[-2,3] C .[-3,2] D .[-3,3] 【答案】D 7.(广东理3)若向量a,b,c满足a∥b且a⊥b,则(2)c a b ?+= A .4 B .3 C .2 D .0 【答案】D

20高考数学平面向量的解题技巧

20高考数学平面向量 的解题技巧 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题. 【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件.

(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0, 故选A . 例2.(2006年安徽卷)在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN =______.(用a b 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+由得,12 AM a b =+,所 以,3111()()4 2 4 4 MN a b a b a b =+-+=-+. 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量=CD ( ) (A )BA BC 2 1+- (B ) BA BC 21-- (C ) BA BC 21- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a =71,,22b ? ?= ??? ? ? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ???- ??53,54 (B) ???- ??53,54或?? ? ??-53,54 (C )???- ??31,322 (D )???- ??31,322或??? ? ?-31,322 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问 题. 解:设所求平面向量为,c 由433,,, 1. 555c c ???? =-= ? ?????4或-时5

高考数学平面向量及其应用习题及答案 百度文库

一、多选题 1.在ABC ?中,内角,,A B C 的对边分别为,,,a b c 若,2,6 A a c π ===则角C 的大小 是( ) A . 6 π B . 3 π C . 56 π D . 23 π 2.已知点()4,6A ,33,2 B ??- ?? ? ,与向量AB 平行的向量的坐标可以是( ) A .14,33?? ??? B .97,2?? ??? C .14,33?? - - ??? D .(7,9) 3.在ABC 中,AB =1AC =,6 B π =,则角A 的可能取值为( ) A . 6 π B . 3 π C . 23 π D . 2 π 4.已知向量()1,0a =,()2,2b =,则下列结论正确的是( ) A .()25,4a b += B .2b = C .a 与b 的夹角为45° D .() //2a a b + 5.已知ABC ?是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且 AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( ) A .1A B CE ?=- B .0OE O C += C .3OA OB OC ++= D .ED 在BC 方向上的投影为 76 6.ABC 中,2AB =,30ACB ∠=?,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4. B .若4A C =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC = D .若满足条件的ABC 有两个,则24AC << 7.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( ) A . B . C .8 D . 8.ABC 中,4a =,5b =,面积S =c =( ) A B C D .9.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八

第06练-平面向量与复数(解析版)

第06练-平面向量与复数 一、单选题 1.已知复数2a i i +-是纯虚数(i 是虚数单位),则实数a 等于 A .-2 B .2 C .1 2 D .-1 【答案】C 【解析】 2a i i +-21255a a i -+=+是纯虚数,所以2121 0,0552 a a a -+=≠∴=,选C. 2.设i 为虚数单位,复数z 满足21i i z =-,则复数z 的共轭复数等于( ) A .1-i B .-1-i C .1+i D .-1+i 【答案】B 【解析】 【分析】 利用复数的运算法则解得1i z =-+,结合共轭复数的概念即可得结果. 【详解】 ∵复数z 满足 21i i z =-,∴ ()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B. 【点睛】 本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题. 3.虚数()2++x yi ,,x y R ∈,当此虚数的模为1时,y x 取值范围为( ) A .???? B .???? ?? ???? U C .?? D .)( ??? 【答案】B 【解析】 【分析】 虚数()2++x yi ,得0y ≠,根据模长公式可得2 2 (2)1,0x y y ++=≠, y x 表示圆上点(去掉与x 轴交

点)与坐标原点的连线的斜率,当连线为圆的切线时为最大和最小值,即可求出结论. 【详解】 虚数()2++x yi ,得0y ≠, 虚数()2(,)x yi x y R ++∈的模为1, 2222(2)1,(2)1,0x y x y y ∴++=++=≠, y x ∴表示圆上的点(去掉与x 轴交点)与坐标原点的连线斜率, 0y x ∴≠,当过原点的直线与22(2)1x y ++=相切时, y x 取得最值,如下图所示,圆心C ,切点分别为,A B , 3tan tan 3 BOC AOC ∠=∠= , 切线,OA OB 的斜率分别为33 ,33 - , 所以30y x - ≤<或30y x <≤ . 故选:B. 【点睛】 本题以虚数的模的背景,考查斜率的几何意义和直线与圆的位置关系,要注意虚数条件,不要忽略,属于中档题. 4.设复数11i z i =+,21z z i =,12,z z 在复平面内所对应的向量分别为OP uuu v ,OQ uuu v (O 为原点),则OP OQ ?=u u u v u u u v ( ) A .1 2 - B .0

相关主题