搜档网
当前位置:搜档网 › 实验三计算机图形学多边形填充算法汇总

实验三计算机图形学多边形填充算法汇总

实验三计算机图形学多边形填充算法汇总
实验三计算机图形学多边形填充算法汇总

洛阳理工学院实验报告

实验内容:

1.使用MFC技术实现多边形有效边表填充算法,参考界面效果如下:

// ChildView.cpp : CChildView 类的实现

#include "stdafx.h"

#include "demo.h"

#include "ChildView.h"

#include

#define Round(d) int(floor(d+0.5))//四舍五入宏定义

#ifdef _DEBUG

#define new DEBUG_NEW

#endif

// CChildView

CChildView::CChildView()

{

}

CChildView::~CChildView()

{

}

BEGIN_MESSAGE_MAP(CChildView, CWnd)

ON_WM_PAINT()

ON_WM_CREATE()

ON_COMMAND(ID_DRAW_PIC, &CChildView::OnDrawPic)

END_MESSAGE_MAP()

2.使用MFC技术实现多边形边缘填充算法,参考界面效果如下:

// demoView.cpp : CdemoView 类的实现

#include "stdafx.h"

#include "demo.h"

#include "demoDoc.h"

#include "demoView.h"

#include

#define Round(d) int(floor(d+0.5))//四舍五入宏定义

#ifdef _DEBUG

#define new DEBUG_NEW

#endif

// CdemoView

IMPLEMENT_DYNCREATE(CdemoView, CView)

BEGIN_MESSAGE_MAP(CdemoView, CView)

// 标准打印命令

ON_COMMAND(ID_FILE_PRINT, &CView::OnFilePrint)

ON_COMMAND(ID_FILE_PRINT_DIRECT, &CView::OnFilePrint)

ON_COMMAND(ID_FILE_PRINT_PREVIEW, &CdemoView::OnFilePrintPreview)

ON_COMMAND(ID_DRAW_PIC, &CdemoView::OnDrawPic)

END_MESSAGE_MAP()

// CdemoView 构造/析构

CdemoView::CdemoView()

{

多边形区域填充算法

13. 设五边形的五个顶点坐标为(10, 10),(15, 5),(12, 5),(8, 2)和(4, 5),利用多边形区域填充算法,编一程序生成一个实心图。 解:假设以上五个顶点依次对应编号A-B-C-D-E,首先计算得到ET表: 6-10 5 4 3 2 1 该多边形的AET指针的内容为: 1 AET为空 2 3 4 1 2 3 4 5 6 7 8 9 10 01234567891011121314 1516

5 6 7 8 9 10 具体编程实现如下: 第1步:(1) 根据输入的五个顶点坐标找到y 值最小的点(例如点D ,此时y=2),并找到与D 有边关系的两个顶点(此时为E 和C),在y=2处建立ET 边表记录(ymax 、xi 和m 值均可通过顶点坐标间的计算得到,例如DE 边的建立,特别注意:当D 点和E 点y 坐标值相同时,也即是DE 与x 轴平行,该边不能计入ET 边表),之后标记D 点被访问过;(2) 排除访问过的点以及和该点相关联的边,重复(1)直至将ET 表建立完善。 [注]边关系的建立可通过邻接矩阵的数据结构实现,权值可以为该矩阵行编号对应点的y 坐标值,ET 边表采用邻接表的数据结构 第2步:根据ET 表构建AET 表,并逐行完成多边形填充,具体的C++代码如下: (1) 建立头文件base_class.h ,主要是边表结点结构体和ET 边表类的实现 enum ResultCode{Success, Failure}; template struct Enode { Enode() {next=NULL;} Enode(T pymax, float pxi, float pm, Enode *pnext) { ymax=pymax; xi=pxi; m=pm; next=pnext; } T ymax, xi; //ymax 表示最大的y 值,xi 表示最底端点的x 坐标值 float m; //m 表示斜率的倒数 Enode *next; }; //定义了ET 表和AET 表中结点的结构体

扫描线填充算法讲解

扫描线算法(S c a n-L i n e F i l l i n g) 扫描线算法适合对矢量图形进行区域填充,只需要直到多边形区域的几何位置,不需要指 定种子点,适合计算机自动进行图形处理的场合使用,比如电脑游戏和三维CAD软件的渲染等等。 对矢量多边形区域填充,算法核心还是求交。《计算几何与图形学有关的几种常用算法》 一文给出了判断点与多边形关系的算法――扫描交点的奇偶数判断算法,利用此算法可以 判断一个点是否在多边形内,也就是是否需要填充,但是实际工程中使用的填充算法都是 只使用求交的思想,并不直接使用这种求交算法。究其原因,除了算法效率问题之外,还 存在一个光栅图形设备和矢量之间的转换问题。比如某个点位于非常靠近边界的临界位置,用矢量算法判断这个点应该是在多边形内,但是光栅化后,这个点在光栅图形设备上看就 有可能是在多边形外边(矢量点没有大小概念,光栅图形设备的点有大小概念),因此, 适用于矢量图形的填充算法必须适应光栅图形设备。 2.1扫描线算法的基本思想 扫描线填充算法的基本思想是:用水平扫描线从上到下(或从下到上)扫描由多条首尾相 连的线段构成的多边形,每根扫描线与多边形的某些边产生一系列交点。将这些交点按照 x坐标排序,将排序后的点两两成对,作为线段的两个端点,以所填的颜色画水平直线。 多边形被扫描完毕后,颜色填充也就完成了。扫描线填充算法也可以归纳为以下4个步骤:(1)求交,计算扫描线与多边形的交点 (2)交点排序,对第2步得到的交点按照x值从小到大进行排序; (3)颜色填充,对排序后的交点两两组成一个水平线段,以画线段的方式进行颜色填充; (4)是否完成多边形扫描?如果是就结束算法,如果不是就改变扫描线,然后转第1步 继续处理; 整个算法的关键是第1步,需要用尽量少的计算量求出交点,还要考虑交点是线段端点的 特殊情况,最后,交点的步进计算最好是整数,便于光栅设备输出显示。 对于每一条扫描线,如果每次都按照正常的线段求交算法进行计算,则计算量大,而且效 率底下,如图(6)所示: 图(6)多边形与扫描线示意图

实验三 区域填充算法的实现

实验三区域填充算法的实现 一、实验目的和要求: 1、掌握区域填充算法基本知识 2、理解区域的表示和类型,能正确区分四连通和八连通的区域 3、了解区域填充的实现原理,利用Microsoft Visual C++ 6.0或win-TC实现区 域种子填充的递归算法。 二、实验内容: 1、编程完成区域填色 2、利用画线函数,在屏幕上定义一个封闭区域。 3、利用以下两种种子填充算法,填充上述步骤中定义的区域 (1)边界表示的四连通区域种子填充的实现 (2)内点表示的四连通区域种子填充的实现 4、将上述算法作部分改动应用于八连通区域,构成八连通区域种子填充算法, 并编程实现。 三、实验结果分析 四连通图的实现: 程序代码: #include #include #include #include void BoundaryFill4(int x,int y,int Boundarycolor,int newcolor) { if(getpixel(x,y) != newcolor && getpixel(x,y) !=Boundarycolor) { putpixel(x,y,newcolor); Sleep(1); BoundaryFill4(x-1,y,Boundarycolor,newcolor); BoundaryFill4(x,y+1,Boundarycolor,newcolor); BoundaryFill4(x+1,y,Boundarycolor,newcolor); BoundaryFill4(x,y-1,Boundarycolor,newcolor); } } void polygon(int x0,int y0,int a,int n,float af) { int x,y,i; double dtheta,theta;

计算机图形学实验三报告

计算机科学与通信工程学院 实验报告 课程计算机图形学 实验题目二维图形变换 学生姓名 学号 专业班级 指导教师 日期

成绩评定表

二维图形变换 1. 实验内容 完成对北极星图案的缩放、平移、旋转、对称等二维变换。 提示:首先要建好图示的北极星图案的数据模型(顶点表、边表)。另外,可重复调用“清屏”和“暂停”等函数,使整个变换过程具有动态效果。 2. 实验环境 软硬件运行环境:Windows XP 开发工具:visual studio 2008 3. 问题分析

4. 算法设计 程序框架: //DiamondView.h class CDiamondView : public CView { …… public: //参数输入和提示对话框 void Polaris();//北极星 …… }; //DiamondView.cpp void CDiamondView::OnMenuDiamond() { IsCutting = FALSE; if(dlgDiamond.DoModal()==IDOK) DrawDiamond(dlgDiamond.m_nVertex,dlgDiamond.

m_nRadius,100);//调用绘制金刚石的函数 } //北极星 void CDiamondView::Polaris() {......} 5. 源代码 //北极星 void hzbjx(CDC* pDC,long x[18],long y[18]) { CPen newPen1,*oldPen; newPen1.CreatePen(PS_SOLID,2,RGB(255,0,0)); oldPen = pDC->SelectObject(&newPen1); POINT vertex1[11]={{x[1],y[1]},{x[2],y[2]},{x[3],y[3]},{x[4],y[4]},{x[5],y[5]},{x[3],y[3]},{x[1],y[1]}, {x[6],y[6]},{x[3],y[3]},{x[7],y[7]},{x[5],y[5]}}; pDC->Polyline(vertex1, 11); newPen1.DeleteObject(); newPen1.CreatePen(PS_SOLID, 2, RGB(0,255,0)); oldPen = pDC->SelectObject(&newPen1); POINT vertex2[5]={{x[6],y[6]},{x[8],y[8]},{x[9],y[9]},{x[3],y[3]},{x[8],y[8]}}; pDC->Polyline(vertex2, 5); POINT vertex3[5]={{x[4],y[4]},{x[10],y[10]},{x[11],y[11]},{x[3],y[3]},{x[10],y[10]}}; pDC->Polyline(vertex3, 5);

计算机图形学课程设计-有效边表填充算法的实现

计算机图形学课程设计设计题目改进的有效边表算法对多边形的填充学院名称信息科学与技术学院 专业名称计算机科学与技术 学生姓名刘柯 学生学号201213030112 任课教师梅占勇 设计(论文)成绩 教务处制 2015年9 月28 日

目录 一、设计内容与要求 (3) 1.1设计题目 (3) 1.2 设计内容 (3) 1.3 设计目标 (3) 二、总体设计 (3) 2.1 多边形的表示 (3) 2.2 x-扫描线算法 (4) 2.3 改进的有效边表算法 (4) 2.3.1 改进的有效边表算法 (4) 2.3.2 有效边表 (5) 2.3.3 边表 (6) 三、详细设计 (8) 3.1 改进的有效边表算法的实现 (8) 3.2 有效边表算法程序流程图 (9) 四、测试结果 (9) 五、总结 (15) 六、源代码 (15) 参考文献 (26)

一、设计内容与要求 1.1设计题目 用改进的有效边表算法实现多边形的填充 1.2 设计内容 使用OpenGL实现用改进的有效边表算法填充多边形 1.3 设计目标 参照课本上改进的有效边表算法的思想,实现该算法的C语言代码,并用该算法搭配OpenGL以像素点的方式绘制出给定顶点坐标的多边形。 二、总体设计 2.1 多边形的表示 在计算机图形学中,多边形有2种重要的表示方法:顶点表示和点阵表示。 顶点表示用多边形的顶点序列来刻画多边形,这种方法直观、几何意义强,占用内存少,应用普遍,但它没有明确指出哪些像素在多边形内,故不能直接用于面着色。 点阵表示用位于多边形内的像素的集合来刻画多边形。这种表示法虽然失去了许多重要的几何信息,但便于运用帧缓存表示图形,是面着色所需要的图形表示形式。 大多数图形应用系统采用顶点序列表示多边形,而顶点表示又不能直接用于显示,那么就必须有从多边形的顶点表示到点阵表示的转换,这种转换称为多边形的扫描转

扫描线填充算法

任意封闭多边形的扫描线填充算法类收藏 这个代码不是我写的,但是我肯定这代码是一个牛人写的,放在这里供大家学习和使用啦!感谢原作者! 我在这里做了些改进: 1 去除了绘制多边形的函数,使其成为了一个纯的填充算法模块 2 改进了其成员变量,使其更容易让大多数人所使用 3 改进了填充,使其“看”(代码上)起来更像用扫描线在填充 改进后的扫描线算法类如下: //扫描线填充算法类 class CPFill { public: CPoint *Point; //指向点坐标的指针 int Count; //多边形点的个数 public: CPFill(int,int[],int[]);//构造函数 bool FillPolygon(CDC*);//填充多边形 bool CrossJudge(CPoint,CPoint,CPoint,CPoint,CPoint&);//判断两条线段是否相交 int GetAi(int);//获取下一个点的索引号 int GetBi(int);//获取前一个点的索引号 bool Sort(int*,int);//冒泡排序 ~CPFill();//析构函数 }; //构造函数(模块入口,koradji 注,合理的设计这个地方,就可以完全不用改动其他的地方就可以使用这个类) CPFill::CPFill(){ } //获取前一个点的索引号 int CPFill::GetBi(int i) { return (i==0)? Count-1:i-1; } //获取下一个点的索引号

int CPFill::GetAi(int i) { return (i==Count-1)?0:i+1; } //在指定的pDC设备中,填充多边形 bool CPFill::FillPolygon(CDC* pDC) { //获取多边形中所有坐标点的最大值和最小值,作为扫描线循环的范围 int minX=Point[0].x , minY=Point[0].y; int maxX=Point[0].x , maxY=Point[0].y; for(int i=1;iPoint[i].x) minX=Point[i].x; if(minY>Point[i].y) minY=Point[i].y; if(maxXPointCross.y)&&(Point[Ai].y>PointCross.y)) { //边顶点的y值大于交点的y值,x坐标取两次 xArray.Add(PointCross.x); xArray.Add(PointCross.x); } else { //边顶点的y值在交点的y值之间,即一个顶点的y值大于交点的y值,而另一个小于,相应的x坐标取一次 if((Point[Bi].y-PointCross.y)*(Point[Ai].y-PointCross.y)<0) xArray.Add(PointCross.x);

计算机图形学 区域填充算法的实现

实验四区域填充算法的实现 班级 08信计2班学号 20080502088 姓名许延恒分数 一、实验目的和要求: 1、理解区域的表示和类型。 2、能正确区分四连通和八连通的区域 3、了解区域填充的实验原理。 4、利用C++实现区域填充的递归算法。 二、实验内容: 1假设在多边形内有一像素已知,由此出发利用连通性找到区域内所有像素。 2 取(x,y)为种子点将整个区域填充为新的颜色。 3 进行递归填充。 三、实验结果分析 区域填充属性包括填充样式,填充颜色和填充图案的类型。C语言中定义了某种图形后,即可调用-floodfill函数,对指定区域进行填充 . 程序代码 #include #include #include void floodfill4(int x,int y,int oldcolor,int newcolor) { if(getpixel(x,y)==oldcolor) { putpixel(x,y,newcolor); Sleep(1); floodfill4(x,y+1,oldcolor,newcolor); floodfill4(x,y-1,oldcolor,newcolor); floodfill4(x-1,y,oldcolor,newcolor); floodfill4(x+1,y,oldcolor,newcolor); } } main() { int a,b,c,d,i,j; int graphdriver=DETECT; int graphmode=0; initgraph(&graphdriver,&graphmode,"");

计算机图形学实验

实验1 直线的绘制 实验目的 1、通过实验,进一步理解和掌握DDA和Bresenham算法; 2、掌握以上算法生成直线段的基本过程; 3、通过编程,会在TC环境下完成用DDA或中点算法实现直线段的绘制。实验环境 计算机、Turbo C或其他C语言程序设计环境 实验学时 2学时,必做实验。 实验内容 用DDA算法或Besenham算法实现斜率k在0和1之间的直线段的绘制。 实验步骤 1、算法、原理清晰,有详细的设计步骤; 2、依据算法、步骤或程序流程图,用C语言编写源程序; 3、编辑源程序并进行调试; 4、进行运行测试,并结合情况进行调整; 5、对运行结果进行保存与分析; 6、把源程序以文件的形式提交; 7、按格式书写实验报告。 实验代码:DDA: # include # include

void DDALine(int x0,int y0,int x1,int y1,int color) { int dx,dy,epsl,k; float x,y,xIncre,yIncre; dx=x1-x0; dy=y1-y0; x=x0; y=y0; if(abs(dx)>abs(dy)) epsl=abs(dx); else epsl=abs(dy); xIncre=(float)dx/(float)epsl; yIncre=(float)dy/(float)epsl; for(k=0;k<=epsl;k++) { putpixel((int)(x+0.5),(int)(y+0.5),4); x+=xIncre; y+=yIncre; } } main(){ int gdriver ,gmode ;

画圆与凸多边形填充算法

华北水利水电大学 计算机图形学 实验报告 2017--2018学年 第一学期 2014级 计算机科学与技术 专业 指导老师 曹源昊 班级 2014157 学号 201415717 姓名 李卫朋 实验四、画圆与凸多边形填充算法 1. 实验目的 练习对Bezier 曲线的绘制和Bezier 曲线的de Casteljau 算法。 2. 实验内容和要求 按要求完成以下一个作业。提交纸质实验报告,同时提交实验报告和源代码的电子版。 实现Bezier 曲线的de Casteljau 递推算法,能够对任意介于0和1之间的参数t 计算Bezier 曲线上的点,然后把Bezier 曲线绘制成首尾相连的直线段。 要求: (1). 对[0,1]参数区间进行100等分。 (2). 控制点的数目至少为5个,即Bezier 曲线的次数不低于4次。 (3). 同时绘制控制多边形。 (4). 至少绘制两条Bezier 曲线,具有不同的次数,颜色和曲线宽度。 形如: 3. 算法描述 使用vs2012编译环境,使用OpenGL 进行绘图操作。 4. 源程序代码 // 实验4.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #include #include #include GLfloat ctrlPoints[5][2] = { { -0.8f, 0.1f }, {-0.4f, 0.6f }, { 0.0f, 0.8f }, { 0.5f, 0.2f },{0.9f,0.7f} }; 1P 2P 3P 4 P 5P

计算机图形学实验报告

《计算机图形学》实验报告姓名:郭子玉 学号:2012211632 班级:计算机12-2班 实验地点:逸夫楼507 实验时间:15.04.10 15.04.17

实验一 1 实验目的和要求 理解直线生成的原理;掌握典型直线生成算法;掌握步处理、分析实验数据的能力; 编程实现DDA 算法、Bresenham 中点算法;对于给定起点和终点的直线,分别调用DDA 算法和Bresenham 中点算法进行批量绘制,并记录两种算法的绘制时间;利用excel 等数据分析软件,将试验结果编制成表格,并绘制折线图比较两种算法的性能。 2 实验环境和工具 开发环境:Visual C++ 6.0 实验平台:Experiment_Frame_One (自制平台) 3 实验结果 3.1 程序流程图 (1)DDA 算法 是 否 否 是 是 开始 计算k ,b K<=1 x=x+1;y=y+k; 绘点 x<=X1 y<=Y1 绘点 y=y+1;x=x+1/k; 结束

(2)Mid_Bresenham 算法 是 否 否 是 是 是 否 是 否 开始 计算dx,dy dx>dy D=dx-2*dy 绘点 D<0 y=y+1;D = D + 2*dx - 2*dy; x=x+1; D = D - 2*dy; x=x+1; x

3.2程序代码 //-------------------------算法实现------------------------------// //绘制像素的函数DrawPixel(x, y); (1)DDA算法 void CExperiment_Frame_OneView::DDA(int X0, int Y0, int X1, int Y1) { //----------请实现DDA算法------------// float k, b; float d; k = float(Y1 - Y0)/float(X1 - X0); b = float(X1*Y0 - X0*Y1)/float(X1 - X0); if(fabs(k)<= 1) { if(X0 > X1) { int temp = X0; X0 = X1; X1 = temp; }

区域填充算法的实现

实验四区域填充算法的实现 一、实验目的和要求: 1、掌握区域填充算法基本知识 2、理解区域的表示和类型,能正确区分四连通和八连通的区域 3、了解区域填充的实现原理,利用Microsoft Visual C++ 6.0(及EasyX_2011版) 实现区域种子填充的递归算法。 二、实验内容: 1、编程完成区域填色 2、利用画线函数,在屏幕上定义一个封闭区域。 3、利用以下两种种子填充算法,填充上述步骤中定义的区域 (1)边界表示的四连通区域种子填充的实现 (2)内点表示的四连通区域种子填充的实现 4、将上述算法作部分改动应用于八连通区域,构成八连通区域种子填充算法, 并编程实现。 三、实验结果分析 1、以上各种算法相应代码及运行结果如下: 程序代码: #include #include #include void FloodFill4(int x,int y,int oldcolor,int newcolor) { if(getpixel(x,y)==oldcolor) { putpixel(x,y,newcolor); Sleep(1); FloodFill4(x-1,y,oldcolor,newcolor); FloodFill4(x,y+1,oldcolor,newcolor); FloodFill4(x+1,y,oldcolor,newcolor); FloodFill4(x,y-1,oldcolor,newcolor); } } void main() { int a,b,c,d,i,j; int graphdriver=DETECT; int graphmode=0; initgraph(&graphdriver,&graphmode," "); cleardevice();

《计算机图形学》有序边表填充算法

实验报告 一、实验目的 1、掌握有序边表算法填充多边形区域; 2、理解多边形填充算法的意义; 3、增强C语言编程能力。 二、算法原理介绍 根据多边形内部点的连续性知:一条扫描线与多边形的交点中,入点和出点之间所有点都是多边形的内部点。所以,对所有的扫描线填充入点到出点之间所有的点就可填充多边形。 判断扫描线上的点是否在多边形之内,对于一条扫描线,多边形的扫描转换过程可以分为四个步骤: (1)求交:计算扫描线与多边形各边的交点; (2)排序:把所有交点按x值递增顺序排序; (3)配对:第一个与第二个,第三个与第四个等等;每对交点代表扫描线与多边形的一个相交区间; (4)着色:把相交区间内的象素置成多边形颜色,把相交区间外的象素置成背景色。 p1,p3,p4,p5属于局部极值点,要把他们两次存入交点表中。如扫描线y=7上的交点中,有交点(2,7,13),按常规方法填充不正确,而要把顶点(7,7)两次存入交点表中(2,7,7,13)。p2,p6为非极值点,则不用如上处理。

为了提高效率,在处理一条扫描线时,仅对与它相交的多边形的边进行求交运算。把与当前扫描线相交的边称为活性边,并把它们按与扫描线交点x坐标递增的顺序存放在一个链表中,称此链表为活性边表(AET)。 对每一条扫描线都建立一个与它相交的多边形的活性边表(AET)。每个AET的一个节点代表一条活性边,它包含三项内容 1.x -当前扫描线与这条边交点的x坐标; 2.Δx -该边与当前扫描线交点到下一条扫描线交点的x增量; 3.ymax -该边最高顶点相交的扫描线号。 每条扫描线的活性边表中的活性边节点按照各活性边与扫描线交点的x值递增排序连接在一起。 当扫描线y移动到下一条扫描线y = y+1时,活性边表需要更新,即删去不与新扫描线相交的多边形边,同时增加与新扫描线相交的多边形边,并根据增量法重新计算扫描线与各边的交点x。 当多边形新边表ET构成后,按下列步骤进行: ①对每一条扫描线i,初始化ET表的表头指针ET[i]; ②将ymax = i的边放入ET[i]中; ③使y =多边形最低的扫描线号; ④初始化活性边表AET为空; ⑤循环,直到AET和ET为空。 ●将新边表ET中对应y值的新边节点插入到AET表。 ●遍历AET表,将两两配对的交点之间填充给定颜色值。 ●遍历AET表,将 ymax= y的边节点从AET表中删除,并将ymax> y的各边节点 的x值递增Δx;并重新排序。 ●y增加1。 三、程序源代码 #include "graphics.h" #define WINDOW_HEIGHT 480 #define NULL 0 #include "alloc.h" #include "stdio.h" #include "dos.h" #include "conio.h" typedef struct tEdge /*typedef是将结构定义成数据类型*/ { int ymax; /* 边所交的最高扫描线号 */

扫描线填充算法讲解

扫描线算法(Scan-Line F illing) 扫描线算法适合对矢量图形进行区域填充,只需要直到多边形区域的几何位置,不需要指定种子点,适合计算机自动进行图形处理的场合使用,比如电脑游戏 和三维CAD软件的渲染等等。 对矢量多边形区域填充,算法核心还是求交。《计算几何与图形学有关的几种 常用算法》一文给出了判断点与多边形关系的算法――扫描交点的奇偶数判断 算法,利用此算法可以判断一个点是否在多边形内,也就是是否需要填充,但 是实际工程中使用的填充算法都是只使用求交的思想,并不直接使用这种求交 算法。究其原因,除了算法效率问题之外,还存在一个光栅图形设备和矢量之 间的转换问题。比如某个点位于非常靠近边界的临界位置,用矢量算法判断这 个点应该是在多边形内,但是光栅化后,这个点在光栅图形设备上看就有可能 是在多边形外边(矢量点没有大小概念,光栅图形设备的点有大小概念),因此,适用于矢量图形的填充算法必须适应光栅图形设备。 2.1扫描线算法的基本思想 扫描线填充算法的基本思想是:用水平扫描线从上到下(或从下到上)扫描由 多条首尾相连的线段构成的多边形,每根扫描线与多边形的某些边产生一系列 交点。将这些交点按照x坐标排序,将排序后的点两两成对,作为线段的两个 端点,以所填的颜色画水平直线。多边形被扫描完毕后,颜色填充也就完成了。扫描线填充算法也可以归纳为以下4个步骤: (1)求交,计算扫描线与多边形的交点 (2)交点排序,对第2步得到的交点按照x值从小到大进行排序; (3)颜色填充,对排序后的交点两两组成一个水平线段,以画线段的方式进 行颜色填充; (4)是否完成多边形扫描?如果是就结束算法,如果不是就改变扫描线,然 后转第1步继续处理; 整个算法的关键是第1步,需要用尽量少的计算量求出交点,还要考虑交点是 线段端点的特殊情况,最后,交点的步进计算最好是整数,便于光栅设备输出 显示。

计算机图形学实验报告 (2)

中南大学信息科学与工程学院 实验报告实验名称 实验地点科技楼四楼 实验日期2014年6月 指导教师 学生班级 学生姓名 学生学号 提交日期2014年6月

实验一Window图形编程基础 一、实验类型:验证型实验 二、实验目的 1、熟练使用实验主要开发平台VC6.0; 2、掌握如何在编译平台下编辑、编译、连接和运行一个简单的Windows图形应用程序; 3、掌握Window图形编程的基本方法; 4、学会使用基本绘图函数和Window GDI对象; 三、实验内容 创建基于MFC的Single Document应用程序(Win32应用程序也可,同学们可根据自己的喜好决定),程序可以实现以下要求: 1、用户可以通过菜单选择绘图颜色; 2、用户点击菜单选择绘图形状时,能在视图中绘制指定形状的图形; 四、实验要求与指导 1、建立名为“颜色”的菜单,该菜单下有四个菜单项:红、绿、蓝、黄。用户通过点击不同的菜单项,可以选择不同的颜色进行绘图。 2、建立名为“绘图”的菜单,该菜单下有三个菜单项:直线、曲线、矩形 其中“曲线”项有级联菜单,包括:圆、椭圆。 3、用户通过点击“绘图”中不同的菜单项,弹出对话框,让用户输入绘图位置,在指定位置进行绘图。

五、实验结果: 六、实验主要代码 1、画直线:CClientDC *m_pDC;再在OnDraw函数里给变量初始化m_pDC=new CClientDC(this); 在OnDraw函数中添加: m_pDC=new CClientDC(this); m_pDC->MoveTo(10,10); m_pDC->LineTo(100,100); m_pDC->SetPixel(100,200,RGB(0,0,0)); m_pDC->TextOut(100,100); 2、画圆: void CMyCG::LineDDA2(int xa, int ya, int xb, int yb, CDC *pDC) { int dx = xb - xa; int dy = yb - ya; int Steps, k; float xIncrement,yIncrement; float x = xa,y= ya; if(abs(dx)>abs(dy))

计算机图形学 多边形裁剪与填充 计算机图形学课程设计

课程设计报告 课程名称计算机图形学 课题名称多边形裁剪与填充 专业计算机科学与技术 班级计算机0902 学号 姓名 指导教师刘长松曹燚 2012年10 月9 日

湖南工程学院 课程设计任务书 课程名称计算机图形学课题多边形裁剪与填充 专业班级计算机0902 学生姓名 学号 指导老师刘长松曹燚 审批 任务书下达日期2012年9月15 日 任务完成日期2012 年10月9 日

一、设计内容与设计要求 1.设计内容: 交互式地实现多边形的裁剪和填充。。 2.设计要求: 1)窗口功能设计。 2)实现鼠标画多边形与数据存储功能。 3)实现鼠标剪裁窗口选择功能。 4)实现多边形裁剪和填充功能。 3.算法提示: 多边形裁剪算法分析: 基本思想是一次用窗口的一条边裁剪多边形,窗口的一条边以及延长线构成裁剪线,该线把平面分成两个部分:可见一侧,不可见一侧。用一条裁剪边对多边形进行裁剪,得到一个顶点序列,作为下一条裁剪边处理过程的输入点。 对于每一条裁剪边,只是判断点在窗口的哪一测以及求线段与裁剪边的交点算法应随之改变。 多边形填充算法分析: 确定多边形所占有的最大扫描线数,得到多边形顶点的最小和最大y值(ymin 和ymax),从y=ymin 到 y=ymax, 每次用一条扫描进行填充。对一条扫描线填充的过程可分为四个步骤: a.求交b.排序c.交点配对d.区间填色。 二、进度安排 第 3 周星期一8:00——12:00 星期二8:00——12:00 星期三8:00——12:00 星期四8:00——12:00 星期五8:00——12:00 第 4 周星期一8:00——12:00 附: 课程设计报告装订顺序:封面、任务书、目录、正文、附件(A4大小的图纸及程序清单)、评分。正文的格式:一级标题用3号黑体,二级标题用四号宋体加粗,正文用小四号宋体;行距为22。 正文的内容:一、课题的主要功能;二、课题的功能模块的划分(要求画出模块图);三、主要功能的实现(至少要有一个主要模块的流程图);四、程序调试;五、总结;六、附件(所有程序的原代码,要求对程序写出必要的注释)。 正文总字数要求在5000字以上(不含程序原代码)。

实验六 扫描线填充算法

实验六扫描线填充算法 一、实验目的 编写多边形的扫描线填充算法程序,加深对扫描线算法的理解,验证算法的正确性。 二、实验任务(2学时) 编写多边形的扫描线填充算法程序,利用数组实现AET,考虑与链表实现程序的不同。 三、实验内容 1、算法 对一条扫描线的填充一般分为以下4个步骤: (1)求交:计算扫描线与多边形各边的交点; (2)排序:把扫描线上所有交点按递增顺序进行排序; (3)配对:将第一个交点与第二个交点,第三个交点与第四个交点等等进行配对,每对交点代表扫描线与多边形的一个相交区间。 (4)着色:把区间内的像素置为填充色。 2、成员函数的关系 主程序名为fill_area(count, x, y),其中参数x, y是两个一维数组,存放多边形顶点(共c ount个)的x和y坐标。它调用8个子程序,彼此之间的调用关系图1所示为: 图1 fill_area的程序结构 3、算法的程序设计

步骤1:创建“S_L_Fill”工程文件; 步骤2:创建类class:“EACH_ENTRY”。 在工作区“S_L_Fill classes”单击右键-→“new class”-→选择类型“Generic Class”名称为“EACH_ENTRY”,添加成员变量(添加至“class EACH_ENTRY { public:”之内):int y_top; float x_int; int delta_y; float x_change_per_scan; 步骤3:包含头文件,同时初始化定义多边形顶点数目。在“class CS_L_FillView : public Cview……”之前添加代码“#include EACH_ENTRY.h”及“#define MAX_POINT 9”。 #define MAX_POINT 9 #include "EACH_ENTRY.h" 步骤4:在类“class CS_L_FillView”中添加成员变量(鼠标双击工作区“CS_L_FillView”,代码添加至“class CS_L_FillView : public Cview {protected: ……public:之后”):EACH_ENTRY sides[MAX_POINT]; int x[MAX_POINT],y[MAX_POINT]; int side_count,first_s,last_s,scan,bottomscan,x_int_count; 步骤5:利用构造函数“CS_L_FillView::CS_L_FillView()”初始化顶点坐标(鼠标双击工作区“CS_L_FillView”,代码添加至“CS_L_FillView()之内”): x[0]=200;y[0]=100; x[1]=240;y[1]=160; x[2]=220;y[2]=340; x[3]=330;y[3]=100; x[4]=400;y[4]=180; x[5]=300;y[5]=400; x[6]=170;y[6]=380; x[7]=120;y[7]=440; x[8]=100;y[8]=220; 步骤6:在“class CS_L_FillView”下添加实现不同功能的成员函数。在工作区“CS_L_FillView”上单击鼠标右键,选择“Add Member Function”,分别完成以下成员函数的添加: (1)void put_in_sides_list(int entry,int x1,int y1,int x2,int y2,int next_y) 函数说明:put_in_sides_list子程序的主要功能是将一条边存入活性边表之内。操作步骤是:对该边判别是否左顶点或右顶点,如果将入边之终点删去,按照y_top的大小在活性边表中找到该点的合适位置,y值较大者,排在活性边表的靠前位置。 void put_in_sides_list(int entry,int x1,int y1,int x2,int y2,int next_y)// entry为剔除水平边之后的第entry条边,x1, y1,为起点,x2, y2为终点,next_y为终点相邻的下一个顶点y坐标{ int maxy; float x2_temp,x_change_temp; x_change_temp=(float)(x2-x1)/(float)(y2-y1);//计算1/k x2_temp=float(x2); if((y2>y1)&&(y2

《计算机图形学实验报告》

一、实验目的 1、掌握中点Bresenham直线扫描转换算法的思想。 2掌握边标志算法或有效边表算法进行多边形填充的基本设计思想。 3掌握透视投影变换的数学原理和三维坐标系中几何图形到二维图形的观察流程。 4掌握三维形体在计算机中的构造及表示方法 二、实验环境 Windows系统, VC6.0。 三、实验步骤 1、给定两个点的坐标P0(x0,y0),P1(x1,y1),使用中点Bresenham直线扫描转换算法画出连接两点的直线。 实验基本步骤 首先、使用MFC AppWizard(exe)向导生成一个单文档视图程序框架。 其次、使用中点Bresenham直线扫描转换算法实现自己的画线函数,函数原型可表示如下: void DrawLine(CDC *pDC, int p0x, int p0y, int p1x, int p1y); 在函数中,可通过调用CDC成员函数SetPixel来画出扫描转换过程中的每个点。 COLORREF SetPixel(int x, int y, COLORREF crColor ); 再次、找到文档视图程序框架视图类的OnDraw成员函数,调用DrawLine 函数画出不同斜率情况的直线,如下图:

最后、调试程序直至正确画出直线。 2、给定多边形的顶点的坐标P0(x0,y0),P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4)…使用边标志算法或有效边表算法进行多边形填充。 实验基本步骤 首先、使用MFC AppWizard(exe)向导生成一个单文档视图程序框架。 其次、实现边标志算法或有效边表算法函数,如下: void FillPolygon(CDC *pDC, int px[], int py[], int ptnumb); px:该数组用来表示每个顶点的x坐标 py :该数组用来表示每个顶点的y坐标 ptnumb:表示顶点个数 注意实现函数FillPolygon可以直接通过窗口的DC(设备描述符)来进行多边形填充,不需要使用帧缓冲存储。(边标志算法)首先用画线函数勾画出多边形,再针对每条扫描线,从左至右依次判断当前像素的颜色是否勾画的边界色,是就开始填充后面的像素直至再碰到边界像素。注意对顶点要做特殊处理。 通过调用GDI画点函数SetPixel来画出填充过程中的每个点。需要画线可以使用CDC的画线函数MoveTo和LineTo进行绘制,也可以使用实验一实现的画直线函数。 CPoint MoveTo(int x, int y ); BOOL LineTo(int x, int y ); 实现边标志算法算法需要获取某个点的当前颜色值,可以使用CDC的成员函数 COLORREF GetPixel(int x, int y ); 再次、找到文档视图程序框架视图类的OnDraw成员函数,调用FillPolygon 函数画出填充的多边形,如下: void CTestView::OnDraw(CDC* pDC) { CTestcoodtransDoc* pDoc = GetDocument(); ASSERT_VALID(pDoc);

多边形填充算法运行代码

private void scanLineFillingToolStripMenuItem_Click(object sender, EventArgs e) { slf.ScanLinePolygonFill(P,g,XiangSu); } private void label2_Click(object sender, EventArgs e) { } private void四联通填充ToolStripMenuItem_Click(object sender, EventArgs e) { tempp.X = tempP[3].X + XiangSu;//选取第4个点内侧(随机猜测) tempp.Y = tempP[3].Y + XiangSu; checkBox.Enabled = false;//让绘制过程中不能改变选择 do_check();//也要检查一遍,不然会出现错误 FloodSeedFill(tempp); checkBox.Enabled = true;//恢复 } ///

///下拉框选择像素回调函数 /// /// /// private void PortList_SelectedIndexChanged(object sender, EventArgs e) { XiangSu = 2 * PortList.SelectedIndex + 2;//根据下拉框选择绘制像素 } /// ///洪泛填充[注入填充] ///将所有联通区域内某种指定颜色的点都替换成另一种颜色 ///边界填充:只要是边界内的点无论是什么颜色,都替换成指定的颜色 /// /// /// private void floodFillAlgorithmToolStripMenuItem_Click(object sender, EventArgs e) {

相关主题