搜档网
当前位置:搜档网 › 步进电机控制系统的设计

步进电机控制系统的设计

步进电机控制系统的设计
步进电机控制系统的设计

东北石油大学课程设计

课程单片机课程设计

题目步进电机控制系统的设计

院系电气信息工程学院测控系

专业班级

学生姓名

学生学号

指导教师刘霞张岩

2012年3 月19日

东北石油大学课程设计任务书

课程单片机课程设计

题目步进电机控制系统的设计

专业测控技术与仪器姓名学号

一、任务

设计一款基于AT89C51单片机的步进电机控制系统,实现对步进电机转速、方向控制。

二、设计要求

[1] 采用AT89C51单片机,完成对步进电机转速、方向控制的设计方案。

[2] 写出详细的设计报告。

[3] 给出电路原理图和软件程序源代码清单。

三、参考资料

[1] 张家生.电机原理与拖动基础[M].北京:北京邮电大学出版社,2006.

[2] 马淑华,王凤文,张美金.单片机原理与接口技术[M].北京:北京邮电大学

出版社,2007.

[3] 顾德英,张健,马淑华.计算机控制技术[M].北京:北京邮电大学出版社,

2006.

[4] 华成英,童诗白.模拟电子技术基础[M].北京:高等教育出版社,2008.

[5] 张靖武,周灵彬.单片机系统的PROTEUS设计与仿真[M].北京:电子工业

出版社,2007.

完成期限2012.3.19至2012.3.30

指导教师刘霞张岩

专业负责人曹广华

2012年3月18 日

目录

第1章绪论 (1)

1.1引言 (1)

1.2步进电机及其发展 (1)

1.3研究的内容 (2)

第2章总体方案论证与设计 (3)

2.1 步进电机原理及控制技术 (3)

2.2 方案论证 (5)

2.3 总体硬件组成框图 (5)

2.4 元器件介绍 (6)

第3章系统硬件设计 (9)

3.2 最小系统 (10)

3.3 驱动电路 (10)

3.4 显示电路 (11)

3.5 总体电路图 (12)

第4章系统的软件设计 (13)

4.1 主程序设计 (13)

4.2 定时中断设计 (14)

4.3 外部中断设计 (15)

第5章系统调试与测试结果分析 (17)

5.1 软件调试记录 (17)

5.2 硬件调试记录 (17)

结论 (18)

参考文献 (19)

附录1 程序 (20)

附录2 仿真效果图 (23)

第1章绪论

1.1引言

单片机是现代电子技术、计算机技术的新兴领域,以单片机为代表的嵌入式系统的出现标志着现代电子系统时代的到来。采用嵌入式系统集成器件,将电子系统的设计从单纯的硬件设计变为智能化的硬、软件设计,从而使现代电子系统软硬结合,具有智能化、系统功能,具有柔韧性及激励-运行-响应等特点。目前,单片机的价格己很低廉,这使得单片机的应用更为广泛,因此就有可能比较普遍地应用微机来控制各类电机完成各种新颖的、高性能的控制策略,使电机的各种潜在能力得到充分的发挥,使电机的性能更符合使用要求,还可以制造出各种便于控制的新型电机,使电机出现新的面貌。

比较简单的电机微机控制,例如在适当的时刻让小型电动机起动、制动或反转之类,只要用微机控制继电器或电子开关元件使电路开通或关断就可以了。在各种机床设备及生产流水线中,现在已普遍采用带微机的可编程控制器,按一定的规律控制各类电动机的动作。至于复杂的控制,则要用微机控制电机的电压、电流、转矩、转速、转角等等,使电机按给定的指令准确工作。通过微机控制,可使电机的性能有很大的提高。例如传统的直流电机和交流电机各有优缺点,直流电动机的调速性能很好,但带有机械换向器。有机械磨损及换向火花等问题,交流电动机,不论是异步电动机还是同步电动机,结构都比直流电动机简单,工作也比直流电机可靠,但在频率恒定的电网上运行时,它们的速度不能方便而又经济地调节。交流电机采用正弦脉宽调制方式进行变频调速是比较理想的,但若要用普通的模拟电路或数电路完成这一任务,电路相当复杂,用微机控制就简单多了。若要进一步提高调速精度及动态性能,可采用矢量控制方案,它的调速性能将与直流电动机相当。但矢量控制比较复杂,用传统的模拟电路或数电路很难做到,而应用微机控制则能方便地实现。

1.2步进电机及其发展

步进电机又称脉冲电机或阶跃电机,国外一般称为Stepmotor或Stepping motor,Pulse motor,Stepper servo,Stepper等等。目前,随着电子技术拉制技术以及电动机本体的发展和变化,传统电机分类间的界面越来越模糊。这是机电一体化元件组件的必然趋势。就传统的步进电机来说,可以简单地定义为,根据输入的脉冲信号,每改变一次励磁状态就前进一定角度(或长度),若不改变励磁状态则保持一定位里而静止的电动机。从广义上讲,步进电机是一种受电脉冲信号控制的无刷式直流电机,也可看作是在一定频率范围内转速与控制脉冲频率

同步的同步电机。步进电机的机理是基于基本的电磁铁作用,其原始模型起源于1830年至1860年间。1870年前后开始以控制为目的的尝试,应用于氮弧灯的电极输送机构中。这被认为是最初的步进电机。此后,在电话自动交换机中广泛使用了步进电机。不久又在缺乏交流电源的船泊和飞机等独立系统中广泛应用。

20世纪60年代后期,在步进电机本体方面随着永磁材料的发展,各种实用性步进电机应运而生,而半导体技术的发展则推进了步进电机在众多领域的应用。在近30年间,步进电机迅速地发展并成熟起来,从发展趋向来讲,步进电机已经能与直流电机、异步电机,以及同步电机并列,从而成为电机的一种基本类型。传统的步进电机一般可分为永磁式步进电机(PM Step Motor),反应式步进电机(VR Step Motor)和混合式步进电机(Hybrid Step Motor )三种。永磁式步进电机类似于永磁转子的同步电机,转子上安装有永磁体,但定子一般为集中式绕组。反应式步进电机靠变磁阻原理运行,没有永磁体。混合式步进电机最初是作为一种低速驱动用的交流同步电机而设计的,后来发现如果各相绕组通以直流脉冲,这种电机也能步进运动。它的转子嵌有轴向充磁磁钢,主要依靠定转子磁场相互作用产生转矩,由于它特殊的结构,它的步距角远小于永磁式步进电机,也可看成是一种极对数很多的永磁式转子同步电机。

我国步进电机的研究及制造始于本世纪50年代后期。从50年代后期到60年代后期,主要是高等院校和科研机构为研究一些装置而使用或开发少量产品。这些产品以多段结构三相反应式步进电机为主。70年代初期,步进电机的生产和研究有所突破。除反映在驱动器设计方面的长足进步外,对反应式步进电机本体的设计研究发展到一个较高水平。70年代中期至80年代中期为成品发展阶段,新品种高性能电机不断被开发。自80年代中期以来,由于对步进电机精确模型做了大量研究工作,各种混合式步进电机及驱动器作为产品广泛利用。自本世纪中叶,步进电机的应用渗进到数控制的各个领域,尤其在(数控)机械中广泛利用其开环拉制的特点。近十几年来,步进电机在FA机器(Factory Automation)和计算机外部设备等领域作为控制用电动机和驱动用电动机而广泛使用。

1.3研究的内容

本论文研究的是反应式步进电动机驱动控制系统,以MCS-51系列单片机8951为核心控制器,采用分频和频率选择控制电机速度,采用细分驱动控制方式,选用8713脉冲分配器,它可以驱动三相、四相反应式步进电动机。本设计内容主要是基于单片机的反应式步进电动机驱动控制系统硬件设计,包括控制部分硬件设计、驱动部分硬件设计、电源供电部分的设计和系统软件部分设计。

第2章总体方案论证与设计

2.1步进电机原理及控制技术

由于步进电机是一种将电脉冲信号转换成直线或角位移的执行元件,它不能直接接到交直流电源上,而必须使用专业设备——步进电机控制驱动器,典型步进电机控制系统如图2-1所示:

图2-1 步进电机运行过程中频率变化曲线

控制器可以发出脉冲频率从几赫兹到几千赫兹可以连续变化的脉冲信号,它为环形分配器提供脉冲序列,环形分配器的主要功能是把来自控制环节的脉冲序列按一定的规律分配后,经过功率放大器的放大加到步进电机驱动电源的各项输入端,以驱动步进电机的转动,环形分配器主要有两大类:一类是用计算机软件设计的方法实现环形分配器要求的功能,通常称软环形分配器。另一类是用硬件构成的环形分配器,通常称硬环形分配器。功率放大器主要对环形分配器的较小输出信号进行放大,以达到驱动步进电机的目的,步进电机的基本控制包括转向控制和速度控制两个方面。从结构上看,步进电机分为三相单三拍、三相双三拍和三相六拍3种,其基本原理如下:

1.换相顺序的控制

通电换相这一过程称为脉冲分配。例如,三相步进电机在单三拍的工作方式下,其各相通电顺序为A→B→C→A,通电控制脉冲必须严格按照这一顺序分别控制A、B、C相的通断。三相双三拍的通电顺序为AB→BC→CA→AB,三相六拍的通电顺序为A→AB→B→BC→C→CA→A。

2.步进电机的换向控制

如果给定工作方式正序换相通电,步进电机正转。若步进电机的励磁方式为三相六拍,即A→AB→B→BC→C→CA→A。如果按反序通电换相,即

A→AC→C→CB→B→BA→A,则电机就反转。其他方式情况类似。

3.步进电机的速度控制

如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。两个脉冲的间隔越短,步进电机就转得越快。调整送给步进电机的脉冲频率,就可以对步进电机进行调试。

4.步进电机的起停控制

步进电机由于其电气特性,运转时会有步进感。为了使电机转动平滑,减小振动,可在步进电机控制脉冲的上升沿和下降沿采用细分的梯形波,可以减小步进电机的步进角,跳过电机运行的平稳性。在步进电机停转时,为了防止因惯性而使电机轴产生顺滑,则需采用合适的锁定波形,产生锁定磁力矩,锁定步进电机的转轴,使步进电机转轴不能自由转动。

5.步进电机的加减速控制

在步进电机控制系统中,通过实验发现,如果信号变化太快,步进电机由于惯性跟不上电信号的变化,这时就会产生堵转和失步现象。所有步进电机在启动时,必须有加速过程,在停止时波形有减速过程。理想的加速曲线一般为指数曲线,步进电机整个降速过程频率变化规律是整个加速过程频率变化规律的逆过程。选定的曲线比较符合步进电机升降过程的运行规律,能充分利用步进电机的有效转矩,快速响应性好,缩短了升降速的时间,并可防止失步和过冲现象。在一个实际的控制系统中,要根据负载的情况来选择步进电机。步进电机能响应而不失步的最高步进频率称为“启动频率”,于此类似“停止频率”是指系统控制信号突然关断,步进电机不冲过目标位置的最高步进频率。电机的启动频率、停止频率和输出转矩都要和负载的转动惯量相适应,有了这些数据,才能有效地对电机进行加减速控制。加速过程有突然施加的脉冲启动频率f0。步进电机的最高启动频率(突跳频率)一般为0.1KHz到3~4KHz,而最高运行频率则可以达到N*102KHz,以超过最高启动频率的频率直接启动,会产生堵转和失步的现象。

在一般的应用中,经过大量实践和反复验证,频率如按直线上升或下降,控制效果就可以满足常规的应用要求。用PLC实现步进电机的加P减速控制,实践上就是控制发脉冲的频率。加速时,使脉冲频率增高,减速则相反。如果使用定时器来控制电机的速度,加减速控制就是不断改变定时中断的设定值。速度从v1~v2变化,如果是线性增加,则按给定的斜率加P减速;如果是突变,则按阶梯加速处理。在此过程中要处理好两个问题:

(1)速度转换时间应尽量短。为了缩短速度转换的时间,可以采用建立数据表的方法。结合各曲线段的频率和各段间的阶梯频率,就可以建立一个连续的数据表,并通过转换程序将其转换为定时初始表。通过在不同的阶段调用相应的定时初值,就可控制电机的运行。定时初值的计算是在定时中断外实现的,并不占用中断时间,保证电机的高速运行。

(2)保证控制速度的精确性。要从一个速度准确达到另一个速度,就要建立一个校验机制,以防超过或未达到所需速度。

6.步进电机的换向控制

步进电机换向时,一定要在电机降速停止或降到突跳频率范围之内在换向,以免产生较大的冲击而损坏电机。换向信号一定要在前一个方向的最后一个脉冲结束后以及下一个方向的第一个脉冲前发出。对于脉冲的设计主要要求其有一定的脉冲宽度、脉冲序列的均匀度及高低电平方式。在某一高速下的正、反向切换实质包含了降速→换向→加速3个过程。

步进电机有如下特点:

(1)步进电机的角位移与输入脉冲数严格成正比,因此当它转一转后,没有累计误差,具有良好的跟随性。

(2)由步进电机与驱动电路组成的开环数控系统,既非常方便、廉价,也非常可靠。同时,它也可以有角度反馈环节组成高性能的闭环数控系统。

(3)步进电机的动态响应快,易于启停、正反转及变速。

(4)速度可在相当宽的范围内平滑调节,低速下仍能保证获得很大的转矩,因此一般可以不用减速器而直接驱动负载。

(5)步进电机只能通过脉冲电源供电才能运行,它不能直接用交流电源或直流电源。

(6)步进电机自身的噪声和振动比较大,带惯性负载的能力强。

2.2方案论证

从该系统的设计要求可知,该系统的输入量为速度和方向,速度应该有增减变化,通常用加减按钮控制速度,这样只要2根口线,再加上一根方向线盒一根启动信号线共需要4根输入线。系统的输出线与步进电机的绕组数有关。这里选进电机,该电机共有四相绕组,工作电压为+5V,可以个单片机共用一个电源。步进电机的四相绕组用P1口的P1.0~P1.3控制,由于P1口驱动能力不够,因而用一片2803增加驱动能力。用P0口控制第一数码管用于显示正反转,用P2口控制第二个数码管用于显示转速等级。数码管采用共阳的。

2.3总体硬件组成框图

总体硬件组成框图如图2-2所示。

图2-2 总体硬件组成框图

2.4元器件介绍

1.步进电机

步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。步进电机区别于其他控制电机的最大特点是:它是通过输入脉冲信号来进行控制的,即电机的总转动角度由输入脉冲数决定,而电机的转速由脉冲信号频率决定。

步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB),步进电机又称为脉冲电机,是工业过程控制和仪表中一种能够快速启动,反转和制动的执行元件,其功用是将电脉冲转换为相应的角位移或直线位移,由于开环下就能实现精确定位的特点,使其在工业控制领域获得了广泛应用。步进电机的运转是由电脉冲信号控制的,其角位移量或线位移量与脉冲数成正比,每个一个脉冲,步进电机就转动一个角度(步距角)或前进、倒退一步。步进电机旋转的角度由输入的电脉冲数确定,所以,也有人称步进电机为数字/角度转换器。

(1)四相步进电机的工作原理

该设计采用了20BY-0型步进电机,该电机为四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机转动。当某一相绕组通电时,对应的磁极产生磁场,并与转子形成磁路,这时,如果定子和转子的小齿没有对齐,在磁场的作用下,由于磁通具有力图走磁阻最小路径的特点,则转子将转动一定的角度,使转子与定子的齿相互对齐,由此可见,错齿是促使电机旋转的原因。

(2)步进电机的静态指标及术语

相数:产生不同队N、S磁场的激磁线圈对数,常用m表示。

拍数:完成一个磁场周期性变化所需脉冲用n表示,或指电机转过一个齿距

角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB→BC→CD→DA→ AB ,四相八拍运行方式即A→AB→B→BC→C→CD→D→DA→A 。

步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。θ=360°/(转子齿角运行拍数),以常规二、四相,转子齿角50齿角电机为例。四相运行时步距角为θ=360°/(50*4)=1.8°,八拍运行时步距角为θ=360°/(50*80)=0.9°。

定位转矩:电机在不通电的状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)。

静转矩:电机在额定静态作业下,电机不做旋转运动时,电机转轴的锁定力矩。此力矩是衡量电机体积的标准,与驱动电压及驱动电源等无关。虽然静态转矩与电磁激磁匝数成正比,与定子和转子间的气隙有关。但过分采用减小气隙,增加励磁匝数来提高静转矩是不可取的,这样会造成电机的发热及机械噪音。 (3)四相步进电机的脉冲分配规律 目前,对步进电机的控制主要有分散器件组成的环形脉冲分配器、软件环形脉冲分配器、专用集成芯片环形脉冲分配器等。本设计利用单片机进行控制,主要是利用软件进行环形脉冲分配。四相步进电机的工作方式为四相单四拍,双四拍和四相八拍工作的方式。各种工作方式在电源通电时的时序与波形分别如图2-3 a 、b 、c 所示。本设计的电机工作方式为四相单四拍,根据步进电机的工作的时序和波形图,总结出其工作方式为四相单四拍时的脉冲分配规律,四相双四拍的脉冲分配规律,如表2-1、2-2。在每一种工作方式中,脉冲的频率越高,其转速就越快,但脉冲频率高到一定程度,

步进电机跟不上频率的变化后电机会出现失步现象,所以脉冲频率一定要控制在步进电机允许的范围内。

图2-3 步进电机工作时序波形图

表2-1 四相单四拍脉冲分配表

表2-2 四相双四拍脉冲分配表

2.AT89C51单片机

Atmel公司生产的AT89C51单片机是一种低功耗、低电压、高性能的8位单片机,它采用CMOS和高密度非易失性存储技术,而且其输出引脚和指令系统都与MCS-51兼容;片内的Flash ROM允许在系统内改编程序或用常规的非易失性编程器来编程,内部除CPU外,还包括256字节RAM,4个8位并行I/O 口,5个中断源,2个中断优先级,2个16位可编程定时计数器,AT89C51单片机是一种功能强、灵活性高且价格合理的单片机,完全满足本系统设计需要。

第3章系统硬件设计

本设计的硬件电路只要包括控制电路、最小系统、驱动电路、显示电路四大部分。最小系统只要是为了使单片机正常工作。控制电路只要由开关和按键组成,由操作者根据相应的工作需要进行操作。显示电路主要是为了显示电机的工作状态和转速。驱动电路主要是对单片机输出的脉冲进行功率放大,从而驱动电机转动。

3.1控制电路

根据系统的控制要求,控制输入部分设置了启动控制,换向控制,加速控制和减速控制按钮,分别是K1、K2、S2、S3,控制电路如图3-1所示。通过K1、K2状态变化来实现电机的启动和换向功能。当K1、K2的状态变化时,内部程序检测P1.0和P1.1的状态来调用相应的启动和换向程序,发现系统的电机的启动和正反转控制。

图3-1 控制电路原理图

根据步进电机的工作原理可以知道,步进电机转速的控制主要是通过控制通入电机的脉冲频率,从而控制电机的转速。对于单片机而言,主要的方法有:软件延时和定时中断在此电路中电机的转速控制主要是通过定时器的中断来实现的,该电路控制电机加速度主要是通过S2、S3的断开和闭合,从而控制外部中断根据按键次数,改变速度值存储区中的数据(该数据为定时器的中断次数),

这样就改变了步进电机的输出脉冲频率,从而改变了电机的转速。

3.2最小系统

单片机最小系统或者称为最小应用系统,素质用最少的元件组成的单片机可以工作的系统,对51系列单片机来说,最小系统一般应该包括:单片机、复位电路、晶振电路。

复位电路:使用了独立式键盘,单片机的P1口键盘的接口。该设计要求只需4个键对步进电机的状态进行控制,但考虑到对控制功能的扩展,使用了6路独立式键盘。复位电路采用手动复位,所谓手动复位,是指通过接通一按钮开关,使单片机进入复位状态,晶振电路用30PF的电容和一12M晶体振荡器组成为整个电路提供时钟频率。如图3-2示。

晶振电路:8951单片机的时钟信号通常用两种电路形式电路得到:内部震荡方式和外部中断方式。在引脚XTAL1和XTAL2外部接晶振电路器(简称晶振)或陶瓷晶振器,就构成了内部晶振方式。由于单片机内部有一个高增益反相放大器,当外接晶振后,就构成了自激振荡器并产生振荡时钟脉冲。内部振荡方式的外部电路如图3-2示。其电容值一般在5~30 pf,晶振频率的典型值为12MHz,采用6MHz的情况也比较多。内部振荡方式所得的时钟信号比较稳定,实用电路实用较多。

图3-2 复位及时钟振荡电路

3.3驱动电路

通过ULN2803构成比较多的驱动电路,电路图如图3-3所示。通过单片机

的P1.0~P1.3输出脉冲到ULN2803的1B~4B口,经信号放大后从1C~4C口分别输出到电机的A、B、C、D相。

图3-3 步进电机驱动电路

3.4显示电路

在该步进电机的控制器中,电机可以正反转,可以加速、减速,其中电机转速的等级分为七级,为了方便知道电机的运行状态和电机的转速的等级,这里设计了电机转速和电机的工作状态的显示电路。在显示电路中,主要是利用了单片机的P0口和P2口。采用两个共阳数码管作显示。第一个数码管接的a、b、c、d、e、f、g、h分别接P0.0~P0.7口,用于显示电机正反转状态,正转时显示“1”,反转时显示“一”,不转时显示“0”。第二个数码管的a、b、c、d、e、f、g、h 分别接P2.0~P2.7口,用于显示电机的转速级别,共七级,即从1~7转速依次递增,“0”表示转速为零。电路如图3-4所示。

图3-4 显示电路

3.5总体电路图

把各个部分的电路图组合成总电路图,如附录2所示。

第4章系统的软件设计

通过分析可以看出,实现系统功能可以采用多种方法,由于随时有可能输入加速、加速信号和方向信号,因而采用中断方式效率最高,这样总共要完成4个部分的工作才能满足课题要求,即主程序部分、定时器中断部分、外部中断0和外部中断1部分,其中主程序的主要功能是系统初始参数的设置及启动开关的检测,若启动开关合上则系统开始工作,反之系统停止工作;定时器部分控制脉冲频率,它决定了步进电机转速的快慢;两个外部中断程序要做的工作都是为了完成改变速度这一功能。下面分析主程序与定时器中断程序及外部中断程序。

4.1主程序设计

主程序中要完成的工作主要有系统初始值的设置、系统状态的显示以及各种开关状态的检测判断等。其中系统初始状态的设置内容较多,该系统中,需要初始化定时器、外部中断;对P1口送初值以决定脉冲分配方式,速度值存储区送初值决定步进电机的启动速度,对方向值存储区送初值决定步进电机旋转方向等内容。若初始化P1=11H、速度和方向初始值均设为0,就意味着步进电机按四相单四拍运行,系统上电后在没有操作的情况下,步进电机不旋转,方向值显示“0”,速度值显示“0”,主程序流程图如图4-1所示。

图4-1 主程序流程图

4.2定时中断设计

步进电机的转动主要是给电机各绕组按一定的时间间隔连续不断地按规律通入电流,步进电机才会旋转,时间间隔越短,速度就越快。在这个系统中,这个时间间隔是用定时器重复中断一定次数产生的,即调节时间间隔就是调节定时器的中断次数,因而在定时器中断程序中,要做的工作主要是判断电机的运行方向、发下一个脉冲,以及保存当前的各种状态。程序流程图如图4-2所示。

图4-2 定时中断程序流程图

4.3外部中断设计

外部中断所要完成的工作是根据按键次数,改变速度值存储区中的数据(该数据为定时器的中断次数),这样就改变了步进电机的输出脉冲频率,也就是改变了电机的转速。速度增加按钮S2为INT0中断,其程序流程为原数据,当值等于7时,不改变原数值返回,小于7时,数据加1后返回;速度减少按钮S3,当原数据不为0,减1保存数据,原数据为0则保持不变。程序流程图如图4-3所示。

图4-3 外部中断程序流程图

第5章系统调试与测试结果分析

5.1软件调试记录

把编好的程序(包括正反转程序、停止程序、显示程序等)合理安排好结合到一起进行编译。由于编译只能检查是否存在语法错误,所以还要看是否存在逻辑错误。程序修改好以后,当显示编译0错误,0警告的时候,这说明已经没有语法错误了,是否有逻辑错误还要看接上电路板通过仿真以后,步进电机能否正常转动,显示是否正常。

5.2硬件调试记录

1.LM7812输出电压错误与解决方法

电路的工作离不开电源,所以电源是必不可少的。电源采用的是利用变压器将220V的电压转换为12V的电压,再利用桥堆整流使交流电变成直流电,最后分别利用LM7812和LM7805芯片得到12V和5V的电压。

电路板焊接好以后,首先要检查一下电路设计是否合理、元器件焊接是否正确,焊接好以后需要仔细检查。用万用表分别检测从7812和7805第三个端口出来的是否是12V和5V,结果发现7805两端电压正常,7812两端电压非常不稳定。用万用表仔细检查了每根线,发现了原因,电路板存在虚焊的现象。再次将电路板焊好,检查好以后,用万用表检测两端输出电压,结果正确,电源准备工作完毕。

2.步进电机转动错误及解决方法

步进电机一开始不能正常转动,以为是电路焊接有问题,为了防止再次出现虚焊,首先将电路板用万用表检查了一遍,没问题。程序也是正确的。后来仔细看了步进电机工作原理,原来步进电机要正常实现正反转,四个相序必须弄清。把电机接上电源,用高电平分别接触电机的引线,每接触一下电机就会向前或向后转动一下,经过几次试验,终于搞清了电机的四个相序,排列顺序分别是1-A,2-C,3-B,4-D。弄清了相序,把电路板重新布线,焊接好,结果电机能够正常转动了。

四相步进电机控制系统设计资料讲解

四相步进电机控制系 统设计

课题:四相五线单4拍步进制电动机的正反转控制专业:机械电子工程 班级:2班 学号: 20110259 姓名:周后银 指导教师:李立成 设计日期: 2014.6.9~2014.6.20 成绩:

1概述 本实验旨在通过控制STC89C52芯片,实现对四相步进电机的转动控制。具体功能主要是控制电机正转10s、反转10s,连续运行1分钟,并用1602液晶显示屏显示出来。 具体工作过程是:给系统上电后,按下启动开关,步进电机按照预先 实验具体用到的仪器:STC89C52芯片、开关单元、四项步进电机、等硬件设 备。 实验具体电路单元有:单片机最小系统、步进电机连接电路、开关连接电路、1602液晶显示屏显示电路。 2四相步进电机 2.1步进电机 步进电机是一种将电脉冲转化为角位移的执行机构。电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 2.2步进电机的控制 1.换相顺序控制:通电换相这一过程称为脉冲分配。 2.控制步进电机的转向控制:如果给定工作方式正序换相通电,步进 电机正转,如果按反序通电换相,则电机就反转。

3.控制步进电机的速度控制:如果给步进电机发一个控制脉冲,它就 转一步,再发一个脉冲,它会再转一步。两个脉冲的间隔越短,步进电机就转得越快。 2.3步进电机的驱动模块 ABCD四相工作指示灯指示四相五线步进电机的工作状态 2.4步进电机的工作过程 开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动, 1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,

步进电机驱动器的设计

1 绪论 1.1 引言 步进电动机一般以开环运行方式工作在伺服运动系统中,它以脉冲信号进行控制,将脉冲电信号变换为相应的角位移或线位移。步进电动机可以实现信号的变换,是自动控制系统和数字控制系统中广泛应用的执行元件。由于其控制系统结构简单,控制容易并且无累积误差,因而在20世纪70 年代盛行一时。80 年代之后,随着高性能永磁材料的发展、计算机技术以及电力电子技术的发展,矢量控制技术等一些先进的控制方法得以实现,使得永磁同步电机性能有了质的飞跃,在高性能的伺服系统中逐渐处于统治地位。相应的,步进电机的缺点越来越明显,比如,其定位精度有限、低频运行时振荡、存在失步等,因而只能运用在对速度和精度要求不高,且对成本敏感的领域。 技术进步给步进电动机带来挑战的同时,也带来了新的发展遇。由于电力电子技术及计算机技术的进步,步进电动机的细分驱动得以实现。细分驱动技术是70 年代中期发展起来的一种可以显著改善步进电机综合性能的驱动控制技术。实践证明,步进电机脉冲细分驱动技术可以减小步进电动机的步距角,提高电机运行的平稳性,增加控制的灵活性等。由于电机制造技术的发展,德国百格拉公司于1973 年发明了五相混合式步进电动机,又于1993 年开发了三相混合式步进电动机。根据混合式步进电动机的结构特点,可以将交流伺服控制方法引入到混合式步进电机控制系统中,使其可以以任意步距角运行,并且可以显著削弱步进电机的一些缺点。若引入位置反馈,则混合式步进电机控题正是借鉴了永磁交流伺服系统的控制方法,研制了基于DSP的三相混合式步进电机驱动器。 1.2 步进电机及其驱动器的发展概况 按励磁方式分类,可以将步进电动机分为永磁式(PM)、反应式(VR)和混合式(HB)三类,混合式步进电动机在结构和原理上综合了反应式和永磁式步进电动机的优点,因此混合式步进电动机具有诸多优良的性能,本课题的研究对象正是混合式步进电机。20 世纪60 年代后期,各种实用性步进电动机应运而生,而半导体技术的发展则推进了步进电动机在众多领域的应用。在近30 年间,步进电动机迅速的发展并成熟起来。从发展趋势来讲,步进电动机已经能与直流电动机、异步电动机以及同步电动机并列,从而成为电动机的一种基本类型。特别是混合式步进电动机以其优越的性能(功率密度高于同体积的反应式步进电动机50%)得到了较快的发展。其中,60 年代德国百格拉公司申请了四相(两相)混合式步进电动机专利,70 年代中期,百格拉公司又申请了五相混合式步进电动机

步进电机驱动电路设计

步进电机驱动电路设计 摘要 随着数字化技术发展,数字控制技术得到了广泛而深入的应用。步进电机是一种将数字信号直接转换成角位移或线位移的控制驱动元件, 具有快速起动和停止的特点。因为步进电动机组成的控制系统结构简单,价格低廉,性能上能满足工业控制的基本要求,所以广泛地应用于手工业自动控制、数控机床、组合机床、机器人、计算机外围设备、照相机,投影仪、数码摄像机、大型望远镜、卫星天线定位系统、医疗器件以及各种可控机械工具等等。直流电机广泛应用于计算机外围设备( 如硬盘、软盘和光盘存储器) 、家电产品、医疗器械和电动车上, 无刷直流电机的转子都普遍使用永磁材料组成的磁钢, 并且在航空、航天、汽车、精密电子等行业也被广泛应用。在电工设备中的应用,除了直流电磁铁(直流继电器、直流接触器等)外,最重要的就是应用在直流旋转电机中。在发电厂里,同步发电机的励磁机、蓄电池的充电机等,都是直流发电机;锅炉给粉机的原动机是直流电动机。此外,在许多工业部门,例如大型轧钢设备、大型精密机床、矿井卷扬机、市内电车、电缆设备要求严格线速度一致的地方等,通常都采用直流电动机作为原动机来拖动工作机械的。直流发电机通常是作为直流电源,向负载输出电能;直流电动机则是作为原动机带动各种生产机械工作,向负载输出机械能。在控制系统中,直流电机还有其它的用途,例如测速电机、伺服电机等。他们都是利用电和磁的相互作用来实现向机械能能的转换。 介绍了步进电机和直流电机原理及其驱动程序控制控制模块,通过AT89S52单片机及脉冲分配器(又称逻辑转换器) L298完成步进电机和直流电机各种运行方式的控制。实现步进电机的正反转速度控制并且显示数据。整个系统采用模块化设计,结构简单、可靠,通过按键控制,操作方便,节省成本。 关键词:步进电机,单片机控制,AT89S52,L297,L298目录

步进电机角度控制设计

目录 摘要 (1) 1设计任务与要求 (2) 1.1设计目的 (2) 1.2设计要求和设计指标 (2) 2方案分析 (3) 3系统硬件部分 (4) 3.1主控模块 (4) 3.2键盘输入模块 (7) 3.3电机模块 (8) 3.4显示模块 (11) 4系统软件部分 (13) 4.1整体流程图及主程序 (13) 4.2按键流程图及程序 (14) 4.3显示模块程序 (19) 4.4电动机模块流程图及程序 (20) 4.5中断程序 (22) 5仿真运行 (24) 6心得体会 (25) 参考文献 (26) 附录一:Protues硬件仿真图 (27) 附录二:系统程序 (27)

摘要 步进电机在控制系统中具有很广泛的应用。它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器或角位移发生器等。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 此次设计使用C语言作为编程语言。C语言是一种计算机程序设计语言,它既具有高级语言的特点,又具有汇编语言的特点。它的应用范围广泛,具备很强的数据处理能力,不仅仅是在软件开发上,而且各类科研都需要用到C语言,适于编写系统软件、三维、二维图形和动画,具体应用例如单片机以及嵌入式系统开发。 硬件部分使用89C51作为主控芯片,并使用ULN2003A将单片机的信号放大以控制步进电机,同时使用4位数码管显示转动角度及次数。 关键词:步进电机C语言AT89C51 ULN2003A 转动角度

步进电机驱动电路设计

如对您有帮助,请购买打赏,谢谢您! 引言 步进电机是一种将电脉冲转化为角位移的执行机构。驱动器接收到一个脉冲信号后,驱动步进电机按设定的方向转动一个固定的角度。首先,通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;其次,通过控制脉冲顿率来控制电机转动的速度和加速度,从而达到涮速的目的。目前,步进电机具有惯量低、定位精度高、无累积误差、控制简单等特点,在机电一体化产品中应用广泛,常用作定位控制和定速控制。步进电机驱动电路常用的芯片有l297和l298组合应用、3977、8435等,这些芯片一般单相驱动电流在2 a左右,无法驱动更大功率电机,限制了其应用范围。本文基于东芝公司2008年推出的步进电机驱动芯片tb6560提出了一种步进电机驱动电路的设计方案 1步进电机驱动电路设计 1.1 tb6560简介 tb6560是东芝公司推出的低功耗、高集成两相混合式步进电机驱动芯片。其主要特点有:内部集成双全桥mosfet驱动;最高耐压40 v,单相输出最大电流3.5 a(峰值);具有整步、1/2、1/8、1/16细分方式;内置温度保护芯片,温度大于150℃时自动断开所有输出;具有过流保护;采用hzip25封装。tb6560步进电机驱动电路主要包括3部分电路:控制信号隔离电路、主电路和自动半流电路。 1.2步进电机控制信号隔离电路 步进电机控制信号隔离电路如图1所示,步进电机控制信号有3个(clk、cw、enable),分别控制电机的转角和速度、电机正反方向以及使能,均须用光耦隔离后与芯片连接。光耦的作用有两个:首先,防止电机干扰和损坏接口板电路;其次,对控制信号进行整形。对clk、cw信号,要选择中速或高速光耦,保证信号耦合后不会发生滞后和畸变而影响电机驱动,且驱动板能满足更高脉冲频率驱动要求。本设计中选择2片6n137高速光耦隔离clk、cw,其信号传输速率可达到10 mhz,1片tlp521普通光耦隔离enable信号。应用时注意:光耦的同向和反向输出接法;光耦的前向和后向电源应该是单独隔离电源,否则不能起到隔离干扰的作用。 1.3步进电机主电路 如图2所示,步进电机主电路主要包括驱动电路和逻辑控制电路两大部分。 驱动电路电源采用28 v,电压范嗣为4.5~40 v,提高驱动电压可增大电机在高频范围转矩的输出,电压选择要根据使用情况而定。vmb、vma为步进电机驱动电源引脚,应接入瓷片去耦电容和电解电容稳压。out_ap、out_am、out_bp、out_bm 引脚分别为电机2相输出接口,由于内部集成了续流二极管,这4个输出口不用

实用的步进电机驱动电路图

实用的步进电机驱动电路(图) 概述 步进电机是一种将电脉冲转化为角位移的执行机构,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 目前,对步进电机的控制主要有由分散器件组成的环形脉冲分配器、软件环形脉冲分配器、专用集成芯片环形脉冲分配器等。本设计选用第三种方案,用PMM8713三相或四相步进电机的脉冲分配器、SI-7300A 两相或四相功率驱动器,组成四相步进电机功率驱动电路,以提高集成度和可靠性,步进电机控制框图见图1。 图1 步进电机控制系统框图 硬件简介 ● PMM8713原理框图及功能 PMM8713是日本三洋电机公司生产的步进电机脉冲分配器,适用于控制三相或四相步进电机。控制三相或四相步进电机时都可以选择3种励磁方式,每相最小吸入与拉出电流为20mA,它不仅满足后级功率放大器的输入要求,而且在其所有输入端上均内嵌施密特触发电路,抗干扰能力强,其原理框图如图2所示。

图2 PMM8713的原理框图 在PMM8713的内部电路中,时钟选通部分用于设定步进电机的正反转脉冲输入发。PMM8713有两种脉冲输入法:双脉冲输入法和单脉冲输入法。采用双脉冲输入法时,CP、CU两端分别输入步进电机正反转的控制脉冲。当采用单脉冲输入时,步进电机的正反转方向由U/D的高、低电位决定。 激励方式控制电路用来选择采用何种励磁方式。激励方式判断电路用于输出检测;而可逆环形计数器则用于产生步进电机在选定的励磁方式下的各相通断时序信号。 ● SI-7300A的结构及功率驱动原理 SI-7300A是日本三青公司生产的高性能步进电机集成功率放大器,该器件为单极性四相驱动,采用SIP18封装。 步进电机功率驱动级电路可分为电压和电流两种驱动方式。电流驱动方式最常用的是PWM恒流斩波驱动电路,也是最常用的高性能驱动方式,其中一相的等效电路图如图3所示。

三相双三拍步进电机控制系统设计要点

摘要 进步电机是几点数字控制系统中常用的控制元件之一。由于其精度高,体积小,控制方便灵活,因此在智能仪表和位置中得到广泛的应用。 步进电机是机电控制中一种常见的执行机构。步进电机最早是在1920年由英国人所开发。1950年后期晶体管的发明也逐渐应用在步进电机上,这对于数字化的控制变得更为容易。以后经过不断改良,使得今日步进电机已广泛运用在需要高定位精度、高分解性能、高响应性、信赖性等灵活控制性高的机械系统中。在生产过程中要求自动化、省人力、效率高的机器中,我们很容易发现步进电机的踪迹,尤其以重视速度、位置控制、需要精确操作各项指令动作的灵活控制性场合步进电机用得最多。步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。他易于实现与计算机或其他数字元件接口,适用于数字控制系统。

1 课程设计任务和要求 课程设计任务 设计一个三相步进电机控制系统,设计一个计算机步进电机程序控制系统,可以对步进电机的转速、转向以及位置进行控制。通过设计,掌握步进电机的工作原理、掌握步进电机控制系统的设计原理、设计步骤,进一步提高综合运用知识的能力。 要求完成的主要任务: (1)设计接口电路和驱动电路,对步进电机进行控制。 (2)选择控制算法,编写控制程序,实现三相步进电机在双三拍工作方式下先正转90度,然后再反转60度,要求其速度可调,转向可控。 (3)写出设计说明书。 课程任务要求 (1)查阅资料,确定设计方案 (2)选择器件,设计硬件电路,并画出原理图和PCB图 (3)画出流程图,编写控制程序 (4)撰写课程设计说明书 2 步进电机的概述 2.1 步进电机的特点 1)一般步进电机的精度为步进角的3-5%,且不累积。 2)步进电机外表允许的温度高。步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。 3)步进电机的力矩会随转速的升高而下降。当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。 4)步进电机低速时可以正常运转,但若高于一定速度就无法启动,并伴有啸叫声。步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的

基于单片机的步进电机控制系统的设计_毕业设计

本科毕业设计 基于单片机的步进电机控制系统的设计

摘要 随着自动控制系统的发展和对高精度控制的要求,步进电机在自动化控制中扮演着越来越重要的角色,区别于普通的直流电机和交流电机,步进电机可以对旋转角度和转动速度进行高精度控制。步进电机作为控制执行元件,是机电一体化的关键组成之一,广泛应用在各种自动化控制系统和精密机械等领域。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 本系统介绍了一种基于单片机的步进电机控制系统的设计,包括了硬件设计和软件设计两部分。其中,硬件设计包括单片机最小系统、键盘控制模块、LCD显示模块、步进电机驱动模块、位置检测模块共5个功能模块的设计。系统软件设计采用C语言编写,包括主程序、数字键处理程序、功能键处理程序、电机驱动处理程序、显示模块、位置采集模块。 本设计采用STC89C52单片机作为主控制器,4*4矩阵键盘作为输入,LCD1602液晶作为显示,ULN2003A芯片驱动步进电机。系统具有良好的操作界面,键盘输入步进电机的运行距离;步进电机能以不同的速度运行,可以在不超过最大转速内准确运行到任意设定的位置,可调性较强;显示设定的运行距离和实际运行距离;方便操作者使用。关键词:单片机步进电机液晶显示键盘驱动

Design of the Stepping Motor Control System Based on SCM Qiu Haizhao (College of Engineering, South China Agricultural University, Guangzhou 510642,China) Abstract:With the development of automatic control system and the requirements of high-precision control, stepping motor control in automation is playing an increasingly important role, different from the common DC and AC motor, stepper motor rotation angle and rotational speed can be high-precision controlled. Stepper motor as a control actuator is a key component of mechanical and electrical integration, widely used in a variety of automated control systems and precision machinery and other fields. Stepper motor is the open-loop control components changing electric pulse signals into angular displacement or linear displacement .In the case of non-overloaded, the motor speed, stop position depends only on the pulse frequency and pulse number, regardless of load changes, that is, to add a pulse motor, the motor is turned a step angle. This system introduces a design of stepper motor control system based on single chip microcomputer, including hardware design and software design in two parts. Among them, the hardware design, including single chip minimal system, keyboard control module, LCD display module, the stepper motor drive module, position detection module five functional modules. System software design using C language, including the main program, process number keys, the key of function processes, motor driver handler, the display module, position acquisition module. This design uses STC89C52 microcontroller as the main controller, 4 * 4 matrix keyboard as an input, LCD1602 LCD as a display, ULN2003A chip as stepper motor driver. System has a good user interface, keyboard input stepper motor running distance; Stepper motor can run at different speed, and run to any given position accurately in any speed without exceeding the maximum speed, with a strong adjustable ; Display the running distance and the actual running distance, which is more convenient for the operator to use. Key words: SCM stepper LCD keyboard driver

【matlab编程代做】步进电机控制器设计

步进电机控制器设计报告 1.绪言 在本次EDA课程设计中,我们组选择了做一个步进电机驱动程序的课题。对于步进电机我们以前并未接触过,它的工作原理是什么,它是如何工作的,我们应该如何控制它的转停,这都是我们迫切需要了解的。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 步进电机及驱动电源是互相联系的整体。步进电机驱动电源框图如图1所示。变频信号源产生频率可调的脉冲信号,调节步进电机的速度。脉冲分配器则根据要求把脉冲信号按一定的逻辑关系加到脉冲放大器上,使步进电机按确定的运行方式工作。 感应子式步进电机以相数可分为:二相电机、三相电机、四相电机、五相电机等。以机座号(电机外径)可分为:42BYG(BYG 为感应子式步进电机代号)、57BYG、86BYG 、110BYG 、(国际标准),而像70BYG 、90BYG 、130BYG 等均为国内标准。 1.1 驱动控制系统组成 使用、控制步进电机必须由环形脉冲,功率放大等组成的控制系统。 1.1.1 脉冲信号的产生 脉冲信号一般由单片机或CPU 产生,一般脉冲信号的占空比为0.3-0.4 左右,电机转速越高,占空比则越大。 1.1.2 信号分配 感应子式步进电机以二、四相电机为主,二相电机工作方式有二相四拍和二相八拍二种,具体分配如下:二相四拍为,步距角为1.8 度;二相八拍为,步距角为0.9 度。四相电机工作方式也有二种,四相四拍为AB-BC-CD-DA-AB,步距角为1.8 度;四相八拍为 AB-B-BC-C-CD-D-AB,(步距角为0.9 度)。

步进电机角度控制(1)

课程设计 课程名称微型计算机控制技术 题目名称步进电机角度控制(1) 学生学院自动化学院 专业班级自动化(4)班 学号 学生姓名 指导教师 2012 年 6 月26 日

一、系统设计说明 1.硬件设计 本次设计要求通过键盘按键实现对步进电机的转动次数和每次转动的角度的控制,并通过数码管显示出来。 本方案中通过按键对步进电机的转动角度进行设定,给各个按键设置不同的键值。按下按键时,给8255A一个信号设定步进电机下一步的动作。8086通过8255A的数据总线读取该信号,并作出反应,通过给8255A一系列的指令驱动其工作,从而驱动步进电机和LED 显示器 2.软件设计 3.显示模块设计说明: 为使显示程序具有通用性和灵活性,在8086内设置一个显示缓冲区,显示缓冲区的每个单元与LED的各位一一对应。当主程序需要显示,只需将要显示的字符送入显示缓冲区,然后调用显示子程序。显示子程序的任务则是逐一取出显示缓冲区中的字符、查字形表转换成相应字型码,然后通过字段口输出显示。显示模块是用四位七段数码管来显示转动次数和每次转动的角度。给八个按键设置不同的子程序,当按下按键时,根据事先设定好的各个按键对应的转动角度的值输出到数码管进行显示。 步进电机模块设计说明: 在此设计中,采用的是八拍步进电机。步进电机控制程序就是完成环形分配器的任务,从而控制电动机的转动,以达到控制转动角度和位移的目的。控制模型可以以立即数的形式一一给出。对于步进电机模块的程序设计采用循环程序设计方法。先把转动的次数和角度的控制模型存放在内存单元中,然后再逐一从单元中取出控制模块并输出。首先启动,按下按键选择步进电机的角度,然后读入转动的控制模型驱动步进电机转动。 二、程序设计流程图

步进电机控制系统设计.

毕业设计论文 论文题目:基于单片机的步进电机控制电路板设计 摘要 随着微电子和计算机技术的发展,步进电机的需求量与日俱增,它广泛用于打印机、电动玩具等消费类产品以及数控机床、工业机器人、医疗器械等机电产品中,其在各个国民经济领域都有应用。研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。 步进电机是一种能将电脉冲信号转换成角位移或线位移的机电元件,步进电机控制系统主要由步进控制器,功率放大器及步进电机等组成。采用单片机控制,用软件代替上述步进控制器,使得线路简单,成本低,可靠性大大增加。软件编程可灵活产生不同类型步进电机励磁序列来控制各种步进电机的运行方式。 本设计是采用AT89C51单片机对步进电机的控制,通过IO口输出的时序方波作为步进电机的控制信号,信号经过芯片ULN2003驱动步进电机;同时,用 4个按键来对电机的状态进行控制,并用数码管动态显示电机的转速。 系统由硬件设计和软件设计两部分组成。其中,硬件设计包括AT89C51单片机的最小系统、电源模块、键盘控制模块、步进电机驱动(集成达林顿ULN2003)模块、数码显示(SM420361K数码管)模块、测速模块(含霍尔片UGN3020)6个功能模块的设计,以及各模块在电路板上的有机结合而实现。软件设计包括键盘控制、步进电机脉冲、数码管动态显示以及转速信号采集模块的控制程序,最终实现对步进电机转动方向及转动速度的控制,并将步进电机的转动速度动态显示在LED数码管上,对速度进行实时监控显示。软件采用在Keil软件环境下编辑

************* 第1章绪论 1.1 课题背景 当今社会,电动机在工农业生产、人们日常生活中起着十分重要的作用。步进电机是最常见的一种控制电机,在各领域中得到广泛应用。步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。 随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,其优点是结构简单、运行可靠、控制方便。尤其是步距值不受电压、温度的变化的影响、误差不会长期积累的特点,给实际的应用带来了很大的方便。它广泛用于消费类产品(打印机、照相机、雕刻机)、工业控制(数控机床、工业机器人)、医疗器械等机电产品中。研究步进电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。控制核心采用C51芯片,它以其独特的低成本,小体积广受欢迎,当然其易编程也是不可多得的优点为此,本文设计了一个单片机控制步进电机的控制系统,可以实现对步进电机转动速度和转动方向的高效控制。 1.2 设计目的及系统功能 本设计的目的是以单片机为核心设计出一个单片机控制步进电机的控制系统。本系统采用AT89C51作为控制单元,通过键盘实现对步进电机转动方向及转动速度的控制,并且将步进电机的转动速度动态显示在LED数码管上。 1

毕业设计论文 基于单片机的步进电机控制器

第1章绪论 (2) 1.1引言 (2) 1.2步进电机常见的控制方案与驱动技术简介 (4) 1.2.1常见的步进电机控制方案 (4) 1.2.2步进电机驱动技术 (6) 1.3本文研究的内容 (8) 第2章步进电机概述 (9) 2.1步进电机的分类 (9) 2.2步进电机的工作原理 (10) 2.2.1结构及基本原理 (10) 2.2.2两相电机的步进顺序 (10) 2.3 步进电机的工作特点 (13) 2.4本章小结 (15) 第3章系统的硬件设计 (16) 3.1系统设计方案 (16) 3.1.1系统的方案简述与设计要求 (16) 3.1.2系统的组成及其对应功能简述 (16) 3.2单片机最小系统 (18) 3.2.1AT89S51简介 (18) 3.2.2单片机最小系统设计 (23) 3.2.3单片机端口分配及功能 (24) 3.3串口通信模块 (24) 3.4数码管显示电路设计 (25) 3.4.1共阳数码管简介 (25) 3.4.2共阳数码管电路图 (26) 3.5电机驱动模块设计 (27) 3.5.1L298简介 (27) 3.5.2电机驱动电路设计 (28) 3.6驱动电流检测模块设计 (30) 3.6.1OP07芯片简介 (30) 3.6.2ADC0804芯片简介 (32) 3.6.3电流检测模块电路图 (35) 3.7独立按键电路设计 (36) 3.8本章小结 (36) 第4章系统的软件实现 (37) 4.1系统软件主流程图 (37) 4.2系统初始化流程图 (38) 4.3按键子程序 (39) 结论 (43) 1

第1章绪论 1.1引言 步进电动机又称脉冲电动机或阶跃电动机,国外一般称为Steppingmotor、Pulse motor或Stepper servo,其应用发展已有约80年的历史。步进电机是一种把电脉冲信号变成直线位移或角位移的控制电机,其位移速度与脉冲频率成正比,位移量与脉冲数成正比。步进电机在结构上也是由定子和转子组成,可以对旋转角度和转动速度进行高精度控制。当电流流过定子绕组时,定子绕组产生一矢量磁场,该矢量场会带动转子旋转一角度,使得转子的一对磁极磁场方向与定子的磁场方向一着该磁场旋转一个角度。因此,控制电机转子旋转实际上就是以一定的规律控制定子绕组的电流来产生旋转的磁场。每来一个脉冲电压,转子就旋转一个步距角,称为一步。根据电压脉冲的分配方式,步进电机各相绕组的电流轮流切换,在供给连续脉冲时,就能一步一步地连续转动,从而使电机旋转。步进电机每转一周的步数相同,在不丢步的情况下运行,其步距误差不会长期积累。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,同时步进电机只有周期性的误差而无累积误差,精度高,步进电动机可以在宽广的频率范围内通过改变脉冲频率来实现调速、快速起停、正反转控制等,这是步进电动机最突出的优点[1]。 正是由于步进电机具有突出的优点,所以成了机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用[2]。比如在数控系统中就得到广泛的应用。目前世界各国都在大力发展数控技术,我国的数控系统也取得了很大的发展,我国已经能够自行研制开发适合我国数控机床发展需要的各种档次的数控系统。虽然与发达国家相比,我们我国的数控技术方面整体发展水平还比较低,但已经在我国占有非常重要的地位,并起了 2

步进电机控制系统课程设计

河北xxxxxx学院 课程设计说明 书 题目:步进电机控制系统 学院(系): 年级专业: 学号: 学生姓名: 同组学生: 指导教师:

步进电机控制系统 设计者:xxxxx 指导老师:xxxx 1摘要: 由于步进电机自身的特点、不需要位置、速度等信号反馈,只需要脉冲发生器产生足够的脉冲数和合适的脉冲频率,就可以控制步进电机移动的距离和速度。步进电机的运转方向的控制为输入电机各绕组的通电顺序。例如,一个三相步进电机的通电顺序为:a—ab—b—bc—c—ca—a--.....,此时点击正转,若通电顺序改为:a—ac—c—cb—b—ba—a--.....时点击反转。既可以通过改变环形分配器的脉冲输出顺序,也可以通过编程改变输出脉冲的顺序,来改变输入到各绕组的通电顺序,达到控制电击方向的目的。 关键词:步进电机 PLC 步进电机驱动器 引言步进电机是一种常用的电气执行原件,一种多相或单相同步点击,在数控机床、包装机械等自动控制及检测仪表等方面得到广泛运用。随着plc的不短发展。其功能越来越强大,除了有简单的逻辑功能和顺序控制外,运算功能的加入、pid和各类高速指令、使得plc对复杂和特殊系统的控制应用更加广泛。Plc与数控技术的结合产生了各种不同类型的数控设备。 2 任务与要求 (1) 了解步进电机的原理 (2) 熟练使用PLC控制步进电机,了解步进电机驱动器原理 3 装置原理介绍 3.1控制系统功能框图 在步进电机控制系统中,首先控制步进电机使之稳步启动,然后高速运动,接近制定位置时,减速之后低速运动一段时间,在准确地停在预定的位置上,最后步进电机停留2s后,按照前进时的加速—高速—减速—低速的步骤返回到起始点,其运动状态转换过程平稳,其功能框图如图3.1所以,其简单工作过程如图3.2所示。 由于步进电机本身的结构特性决定了它要实现高速运转必须有加速过程,如果在启动时突然加载高频脉冲,电机会产生啸叫、失步甚至不能启动,在停止阶段也是这样,当高频脉冲突然降到零时,电机会产生啸叫和振动,所以在启动和停止时,都必须有一个加速和减速过程。 3.2步进电机控制系统硬件设计 由于步进电机的硬件结构特性,所以对输入的脉冲的频率有所限制,对于低频的脉冲输出时,plc可以利用定时器来完成。若要求步进电机的速度较快时,就需要用plc的高速脉冲输出指令,这时就需要在程序中设置相应的步骤来完成对步进电机的控制。 3.21 组建器材 (1)主机plc 根据系统的控制要求,采用三菱FX系统系列的plc作为控制器。(2)限位开关此系统中共用了两个限位开关:左限位开关和右限位开关。这两个限位开关的作用是控制物体的位置,防止物体超出合理的工作范围。 (3)步进电机步进电机是该系统的执行机构

两相步进电机驱动器设计

两相步进电机驱动器设计 目录 第1章绪论 (3) 1.1 引言 (3) 1.2 步进电机常见的控制方法与驱动技术简介 (3) 第2章设计方案 (5) 2.1 步进电机的介绍 (5) 2.2 步进电机的特点 (6) 2.3 步进电机的分类 (6)

2.4步进电机运动特性及性能参数 (7) 2.5 设计方案的确定 (8) 2.6 设计思想与设计原理 (9) 第3章单元电路的设计 (9) 3.1方波产生电路设计 (9) 3.2 信号的分配 (13) 3.3功率放大电路设计 (15) 3.4 总体设计 (16) 第4章设计方案的论证 (18) 第5章心得体会 (18) 第6章参考文献 (19) 第1章 1.1 引言 步进电动机一般以开环运行方式工作在伺服运动系统中,它以脉冲信号进行控制,将脉冲电信号变换为相应的角位移或线位移。步进电动机可以实现信号的变换,是自动控制系统和数字控制系统中广泛应用的执行元件。由于其控制系统结构简单,控制容易并且无累积误差,因而在20世纪70 年代盛行一时。80 年代之后,随着高性能永磁材料的发展、计算机技术以及电力电子技术的发展,矢量控制技术等一些先进的控制方法得以实现,使得永磁同步电机性能有了质的飞跃,在高性能的伺服系统中逐渐处

于统治地位。相应的,步进电机的缺点越来越明显,比如,其定位精度有 限、低频运行时振荡、存在失步等,因而只能运用在对速度和精度要求不 高,且对成本敏感的领域。技术进步给步进电动机带来挑战的同时,也带 来了新的发展遇。由于电力电子技术及计算机技术的进步,步进电动机的 细分驱动得以实现。细分驱动技术是70 年代中期发展起来的一种可以显 著改善步进电机综合性能的驱动控制技术。实践证明,步进电机脉冲细分 驱动技术可以减小步进电动机的步距角,提高电机运行的平稳性,增加控 制的灵活性等。由于电机制造技术的发展,德国百格拉公司于1973 年发 明了五相混合式步进电动机,又于1993 年开发了三相混合式步进电动机。 根据混合式步进电动机的结构特点,可以将交流伺服控制方法引入到混合 式步进电机控制系统中,使其可以以任意步距角运行,并且可以显著削弱 步进电机的一些缺点。若引入位置反馈,则混合式步进电机控题正是借鉴 了永磁交流伺服系统的控制方法,研制了基于DSP的三相混合式步进电机驱 动器. 1.2 步进电机常见的控制方法与驱动技术简介 1.2.1常见的步进电机控制方案 1、基于电子电路的控制 步进电机受电脉冲信号控制,电脉冲信号的产生、分配、放大全靠电子元器件的动作来实现。由于脉冲控制信号的驱动能力一般都很弱,因此必须有功率放大驱动电路。步进电机与控制电路、功率放大驱动电路组成一体,构成步进电机驱动系统。此种控制电路设计简单,功能强大,可实现一般步进电机的细分任务。这个系统由三部分组成:脉冲信号产生电路、脉冲信号分配电路、功率放大驱动电路。系统组成如图1.1所示。 脉冲控制器 功 率 放 大 驱 动 电 路 环 形 分 配 器 步 进 电 机

步进电机控制驱动电路设计.

实习名称:电子设计制作与工艺实习 学生姓名:周文生 学号:201216020134 专业班级:T-1201 指导教师:李文圣 完成时间: 2014年6月13日 报告成绩:

步进电机控制驱动电路设计 摘要: 本设计在根据已有模电、物电知识的基础上,用具有置位,清零功能的JK 触发器74LS76作为主要器件来设计环行分配器,来对555定时器产生的脉冲进行分配,通过功率放大电路来对步进电机进行驱动,并且产生的脉冲的频率可以控制,从而来控制步进电机的速度,环形分配器中具有复位的功能,在对于异常情况可以按复位键来重新工作。 关键字:555定时器脉冲源环行分配器功率放大电路 一、方案论证与比较: (一)脉冲源的方案论证及选择: 方案一:采用555定时器产生脉冲,它工作频率易于改变从而可以控制步进电机的速度并且工作可靠,简单易行。 C2 10uF 图一 555定时器产生的方法 方案二:采用晶振电路来实现,晶振的频率较大,不利于电机的工作,易失步,我们可以利用分频的方法使晶振的频率变小,可以使电机工作稳定,但分频电路较复杂,并且晶振起振需要一定的条件,不好实现。

X1 1kohm 1kohm 图二晶振产生脉冲源电路 综上所述,我们采用方案一来设计脉冲源。 (二)环形分配器的设计: 方案一:采用74ls194通过送入不同的初值来进行移位依此产生正确的值使步进电机进行转动。但此方案的操作较复杂,需要每次工作时都要进行置位,正反转的操作较复杂,这里很早的将此方案放弃。 方案二:使用单独的JK 触发器来分别实现单独的功能。 图三双三拍正转 图四单三拍正转

图五三相六拍正转 利用单独的做,电路图较简单,单具体操作时不方便,并且不利于工程设计。块分的较零散,无法统一。 方案三:利用JK触发器的自己运动时序特性设计,利用卡诺图来进行画简。 图六单,双三拍的电路图 单,双三拍的正,反转主要由键s1,s2的四种状态来决定四种情况的选择。

步进电机控制系统设计

课程设计任务书 设计题目:微机步进电机控制系统设计 设计目的: 1.巩固和加深课堂所学知识; 2.学习掌握一般的软硬件的设计方法和查阅、运用资料的能力; 3.通过步进电机控制系统设计与制作,深入了解与掌握步进电机的运行方式、方向、速 度、启/停的控制。 设计任务及要求:(在规定的时间内完成下列任务) 任务:控制四相步进电机按双八拍的运行方式运行。按下开关SW1时启动步进电机,按ESC键停止工作。采用循环查表法,用软件来实现脉冲循环分配器的功能 对步进电机绕组轮流加电。 要求对题目进行功能分析(四项功能:快速顺时针旋转,慢速顺时针旋转, 快速逆时针旋转和慢速逆时针旋转),进行步进电机远程控制系统硬件电路设 计,画出电路原理图、元器件布线图、实验电路图;绘制程序流程图,进行 步进电机控制程序设计(采用8086汇编语言);系统调试、运行,提交一个 满足上述要求的步进电机控制系统设计。 时间安排:(部分时间,某些工作可以自己安排重叠进行) 具体要求:设计报告撰写格式要求(按提供的设计报告统一格式撰写), 具体内容如下: ①设计任务与要求②总体方案与说明 ③硬件原理图与说明④实验电路图与说明 ⑤软件主要模块流程图 ⑥源程序清单与注释 ⑦问题分析与解决方案(包括调式记录、调式报告,即在调式过程中遇到的主要问 题、解决方法及改进设想); ⑧小结与体会 附录:①源程序(必须有简单注释)②使用说明③参考资料 指导教师签名:08 年12 月01 日 教研室主任(或责任教师)签名:年月日

目录 第1章需求分析 (1) 1.1课程设计题目 (1) 1.2步进电机介绍 (1) 1.3课程设计任务及要求 (1) 1.4软硬件运行环境及开发工具 (1) 第2章概要设计 (2) 2.1设计原理及实现方法 (2) 2.1.1 步进电机控制原理 (2) 2.1.2微机步进电机控制系统原理图 (2) 2.1.3 运行方式与方向的控制——循环查表法 (3) 2.1.4步进电机的启/停控制——设置开关 (4) 2.2微机步进电机控制系统设计流程图 (4) 第3章详细设计 (5) 3.1 硬件设计与实现 (5) 3.2软件设计 (5) 3.2.1正向慢转子程序 (5) 3.2.2正向快转子程序 (6) 3.2.3反向慢转子程序 (6) 3.2.4反向快转子程序 (6) 3.2.5长延时子程序 (7) 3.2.6短延时子程序 (7) 第4章系统调试与操作说明 (7) 4.1系统调试 (7) 4.2 操作说明 (8) 第5章课程设计总结与体会 (8) 参考文献 (9) 附录微机步进电机控制系统源程序 (9)

相关主题