搜档网
当前位置:搜档网 › 比例线段与相似三角形培优(含部分答案)

比例线段与相似三角形培优(含部分答案)

比例线段与相似三角形培优(含部分答案)
比例线段与相似三角形培优(含部分答案)

比例线段/黄金分割/相似三角形

【知识要点】

一、比例线段的性质:

1.把

b a 的值叫做线段b a ,的比,若d c

b a =,则称线段d

c b a ,,,成比例线段。 2.bc a

d d c b a d

c

b a =?=?=::,其中d

c b a ,,,分别叫第一、第二、第三、第四比例

项,d a ,称为外项,c b ,称为内项;外项的积等于内项的积。

3.

n

1

=实际距离图上距离,我们称为比例尺,进行有关比例尺的计算时,要注意统一单位

4.比例性质:①基本性质:bc ad d c b a =?=;②反比性质:c d a b d c b a =?=; ③更比性质:a

b c a d c b a =?=; ④合比性质:d b

c b b a

d c b a ±=±?=;

⑤等比性质:

n n b a b a b a b a === 332211,则1

12121b a

b b b a a a n n =+++++ 5.比例中项:若a

c b =2

,则称b 是ac 的比例中项

二、黄金分割:

6.若点P 分线段AB 得到较长线段是较短线段和整条线段的比例中项,则称点P 是线段AB 的黄金分割点; 7.

2

1

5,

215--==较长线段较短线段整条线段较长线段叫做黄金比值。 四.三角形一边平行线的性质定理:

平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例. 三角形一边的平行线性质定理的推论:

平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.

五.三角形一边平行线的判定定理:

如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边。

三角形一边的平行线判定定理的推论:

如果一条直线截三角形的两边的延长线(这两边的延长线在第三边的同侧)所得的对 应线段成比例,那么这条直线平行于三角形的第三边。 六.平行线分线段成比例定理 :

两条直线被三条平行的直线所截,截得的对应线段成比例。 推论:

两条直线被三条平行的直线所截,如果在一条直线上截得的线段相等,那么在另一条 直线上截得的线段也相等。 七.三角形的重心:

定义:三角形重心是三角形三边中线的交点。

性质:重心到顶点的距离与重心到对边中点的距离之比为2:1。 八. 相似三角形的判定:

①两角对应相等,两个三角形相似

②两边对应成比例且夹角相等,两三角形相似 ③三边对应成比例,两三角形相似

④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似

⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 九、 相似三角形的性质

①相似三角形的对应角相等 ②相似三角形的对应边成比例

③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比

⑤相似三角形面积的比等于相似比的平方 经典例题:

例1:若25a c e b d f ===,求a c b d --,234234a c e b d f +-+-

例2:y+z x =z+x y =x+y

z =k,求k 的值

例3:已知:b a =d c =f

e

=3(且有b+d ≠0,d+f ≠0),求证:d b c a ++=f d e c ++=3. 例5:若

6

5

432+==+c b a ,且2132=+-c b a ,试求c b a ::

例6:已知点C 是线段AB 的黄金分割点AC =2,且AC >BC ,求线段AB 与BC 的长

例7:若ABC ?三边3:4:6::=c b a ,三边上的高分别为321h h h 、、,求321::h h h 的值。

例8:如图 4-85. AB ⊥于l. CD ⊥l 于 C,E 为 AD 中点.求证:△EBC 是等腰三角形.

例9:如图4-86,CB ⊥AB ,DA ⊥AB ,M 为CD 中点.求证:∠MAB =∠MBA .

例10:如图已知BE

AB

=

ME

AM =CE

AC 。

求证:BC CA BC AB ++=ME

AE

例11:如图,延长正方形ABCD 的一边CB 至E ,ED 与AB 相交于点F ,过F 作FG ∥BE 交AE 于G ,求证GF =FB .

例12:如图3所示,在Rt △ABC 中,∠A=30°,点D 是斜边AB 的中点,当G 是Rt △ABC 的重心,GE ⊥AC 于点E ,若BC=6cm ,则GE= cm 。

例13:在△ABC 中,中线AD 、BE 相交于点O ,若△BOD 的面积等于5,求△ABC 的面积。

例14:如图,在等边△ABC 中,P 为BC 上一点,D 为AC 上一点,且∠APD=60°,

BP CD ABC ==

12

3,,求△的边长

例15:已知:如图,梯形ABCD 中,AD ∥BC ,AC 、BD 交于点O ,EF 经过点O 且和两底

平行,交AB 于E ,交CD 于F ,求证:OE=OF

例16:已知:如图,△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F ,

求证:

AE AF AC

AB

=

例17:如图,D为△ABC中BC边上的一点,∠CAD=∠B,若AD=6,AB=8,BD=7,求DC的长。

例18:如图,在矩形ABCD中,E是CD的中点,BE⊥AC于F,过F作FG∥AB交AE 于G,求证:AG2=AF·FC

例19:如图,在梯形ABCD中,AD∥BC,若∠BCD的平分线CH⊥AB于点H,BH=3AH,且四边形AHCD的面积为21,求△HBC的面积。

例20:如图,Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于点D,过点C作CE⊥AD

于E,CE的延长线交AB于点F,过点E作EG∥BC交AB于点G,AE·AD=16,AB 45,

(1)求证:CE=EF

(2)求EG的长

部分答案解析

10、证明:∵BE AB =ME AM =CE AC ,∴ CE BE AC AB ++=EM AM

即BC AC AB +=ME AM ,∴BC CA BC AB ++=ME ME AM +,即BC CA BC AB ++=ME AE 11、证明:∵GF ∥AD ∴AD GF =ED EF

(1) 又FB ∥DC ∴DC FB =ED EF

(2)

又AD =DC (3)由(1)(2)(3)得:AD GF =AD FB

,∴GF=FB

12、解:Rt △ABC 中,∠A=30°,BC=6 ∴AB=BC=12,D 是斜边AB 的中点,∴CD=AB=6

G 是Rt △ABC 的重心,∴CG=CD=4由CD=AD ,∠A=30°,∠GCE=30°

Rt △GCE 中,∠GCE=30°,CG=4,∴GE=CG=2(cm )

13、解:∵O 是△ABC 的重心,∴AO ∶OD=2∶1

∴S △AOB ∶S △BOD =2∶1 即S △AOB =2 S △BOD =10,∴S △ABD = S △AOB + S △BOD =10+5=15 又AD 是△ABC 的中线 ∴ S △ABC =2 S △ABD =30。 14、解:∵△ABC 是等边三角形,∴∠C=∠B=60° 又∵∠PDC=∠1+∠APD=∠1+60°,∠APB=∠1+∠C=∠1+60°

∴∠PDC=∠APB ∴△PDC ∽△APB ∴PC AB CD

PB = 设PC=x ,则AB=BC=1+x , ∴,∴,x

x x 1231

2+==

∴AB=1+x=3。 ∴△ABC 的边长为3。

15、证明:∵AD ∥EF ∥BC ,∴

,OE BC AE AB OE AD EB

AB

== ∴OE BC OE AD AE AB EB AB AB AB +=+==1,∴111

BC AD OE

+=

同理:

111BC AD OF +=,∴11OE OF = ,

∴OE=OF 从本例的证明过程中,我们还可以得到以下重要的结论:

①∥∥AD EF BC AD BC OE ?

+=111,②∥∥AD EF BC OE OF EF ?==12 ③∥∥AD EF BC AD

BC OE ?+=111 ==

112

2EF OF 即112AD BC EF += 这是梯形中的一个性质,由此可知,在AD 、BC 、EF 中,已知任何两条线段的长度,都可以求出第三条线段的长度。

16、证明:在△ABD 和△ADE 中,∵∠ADB=∠AED=90° ∠BAD=∠DAE , ∴△ABD ∽△ADE , ∴

AB AD AD

AE

= ∴AD 2=AE·AB , 同理:△ACD ∽△ADF ,可得:AD 2=AF·AC ∴AE·AB=AF·AC ,∴

AE AF AC

AB

= 17、解:在△ADC 和△BAC 中,∵∠CAD=∠B ,∠C=∠C

∴△ADC ∽△BAC ,∴

AD AB DC AC AC

BC

== 又∵AD=6,AD=8,BD=7,∴

DC AC AC DC =+=73

4

即DC AC AC DC =+=???????3

4

734

解得:DC=9

18、证明:在矩形ABCD 中,AD=BC ,∠ADC=∠BCE=90°

又∵E 是CD 的中点,∴DE=CE ,∴Rt △ADE ≌Rt △BCE ∴AE=BE , ∵FG ∥AB ,∴

AE BE AG

BF

=,∴AG=BF 在Rt △ABC 中,BF ⊥AC 于F ,∴Rt △BFC ≌Rt △AFB ∴

AF BF FB

FC

=, ∴BF 2=AF·FC ,∴AG 2=AF·FC 19、解:延长BA 、CD 交于点P ∵CH ⊥AB ,CD 平分∠BCD

∴CB=CP ,且BH=PH ,∵BH=3AH ,∴PA :AB=1:2,∴PA :PB=1:3 ∵AD ∥BC , ∴△PAD ∽△PBC ,∴::△△S S PAD PBC =19 ∵△△S S P C H PBC

=

12, ∴:△四边形S S PAD AHCD ==27 ∵四边形S AHCD =21,∴△S PAD =6

∴S PBC △=54 ,∴△△S S HBC PBC =

=1

2

27

20、解:(1)∵AD 平分∠CAB ,∴∠CAE=∠FAE ,又∵AE ⊥CF

∴∠CEA=∠FEA=90°,又∵AE=AE ∴△ACE ≌△AFE (ASA ),∴CE=EF (2)∵∠ACB=90°,CE ⊥AD ,∠CAE=∠DAC

∴△CAE ∽△DAC ∴

AC AD AE

AC

= ∴AC AE AD 216==· 在Rt △ACB 中

BC AB AC 2222451664=-=-=() ∴BC =8

又∵CE=EF ,EG ∥BC ∴FG=GB ∴EG 是△FBC 的中位线, ∴EG BC =

=1

2

4

培优相似辅导专题训练附答案

一、相似真题与模拟题分类汇编(难题易错题) 1.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题: (1)求证:△BEF∽△DCB; (2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值; (3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由; (4)当t为何值时,△PQF为等腰三角形?试说明理由. 【答案】(1)解:证明:∵四边形是矩形, 在中, 分别是的中点, (2)解:如图1,过点作于,

(舍)或秒 (3)解:四边形为矩形时,如图所示: 解得: (4)解:当点在上时,如图2,

当点在上时,如图3, 时,如图4, 时,如图5, 综上所述,或或或秒时,是等腰三角形. 【解析】【分析】(1)根据矩形的性质可证得AD∥BC,∠A=∠C,根据中位线定理可证得EF∥AD,就可得出EF∥BC,可证得∠BEF=∠C,∠BFE=∠DBC,从而可证得结论。(2)过点Q作QM⊥EF,易证QM∥BE,可证得△QMF∽△BEF,得出对应边成比例,可求出QM的值,再根据△PQF的面积为0.6cm2,建立关于t的方程,求解即可。 (3)分情况讨论:当点 Q 在 DF 上时,如图2, PF=QF;当点 Q 在 BF 上时, PF=QF,如图3;PQ=FQ 时,如图4;PQ=PF 时,如图5,分别列方程即可解决问题。

九年级培优圆与相似辅导专题训练含答案

九年级培优圆与相似辅导专题训练含答案 一、相似 1.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧). (1)求函数y=ax2+bx+c的解析式; (2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率; (3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的 Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由. 【答案】(1)解:y=x2+2x+1=(x+1)2的图象沿x轴翻折,得y=﹣(x+1)2, 把y=﹣(x+1)2向右平移1个单位,再向上平移4个单位,得y=﹣x2+4, ∴所求的函数y=ax2+bx+c的解析式为y=﹣x2+4 (2)解:∵y=x2+2x+1=(x+1)2, ∴A(﹣1,0), 当y=0时,﹣x2+4=0,解得x=±2,则D(﹣2,0),C(2,0); 当x=0时,y=﹣x2+4=4,则B(0,4), 从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB, ∵AC=3,AD=1,CD=4,AB= ,BC=2 ,BD=2 , ∴△BCD为等腰三角形, ∴构造的三角形是等腰三角形的概率=

(3)解:存在, 易得BC的解析是为y=﹣2x+4,S△ABC= AC?OB= ×3×4=6, M点的坐标为(m,﹣2m+4)(0≤m≤2), ①当N点在AC上,如图1, ∴△AMN的面积为△ABC面积的, ∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1, 当m=0时,M点的坐标为(0,4),N(0,0),则AN=1,MN=4, ∴tan∠MAC= =4; 当m=1时,M点的坐标为(1,2),N(1,0),则AN=2,MN=2, ∴tan∠MAC= =1; ②当N点在BC上,如图2, BC= =2 , ∵BC?AN= AC?BC,解得AN= , ∵S△AMN= AN?MN=2,

相似三角形培优拔高题(精编文档).doc

【最新整理,下载后即可编辑】 第一讲 相似三角形 1、已知432z y x ==,且1032=+-z y x ,则z y x ++= 。 2、已知△ABC 中,AB=AC,∠BAC=120°,求AB:BC 的值。 3、若点P 在线段AB 上,点Q 在线段AB 的延长线上,AB=10, 23==BQ AQ BP AP ,求线段PQ 的长。 4、若55432+==+c b a ,且2132=+-c b a ,试求a:b:c 。 5、△ABC 为等边三角形,点E 在BA 的延长线上,点D 在BC 边上,且ED=EC 。若△ABC 的边长为4,AE=2,则BD 的长 为 。 6、点D,E 分别在△ABC 的边AB ,AC 上,DE ∥BC ,点G 在边BC 上,AG 交DE 于点H ,点O 是线段AG 的中点,若 13=DB AD ,则 =OH AO

7、在正方形ABCD 中,P 是CD 的中点,连接AP 并延长交BC 的延长线于点E ,连接DE ,取DE 的中点Q ,连接PQ ,求证: PQ=PC. 8、四边形ABCD 与四边形A 1B 1C 1D 1相似,相似比为2:3,四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2相似,相似比为5:4,则四边形ABCD 与四边形A 2B 2C 2D 2相似且相似比为 。 9、已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿 AE 将△ABE 向上折叠,使B 点落在AD 上的F 处。若 四边形EFDC 与矩形ABCD 相似,则AD= 10、已知∠1=∠2=∠3,求证:△ABC ∽△ADE 11、点C 、D 在线段AB 上,△PCD 是等边三角形

反比例函数培优生试题讲义

第六章反比例函数培优生试题讲义 (资料编辑:薛思优) 1.如图,函数y=与y=﹣kx+1(k≠0)在同一直角坐标系中的图象大致为() A.B.C.D. 2.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=(x>0)的图 象上运动,且AC=BC,则△ABC的面积大小变化情况是() A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变 3.函数y=(m2﹣m)是反比例函数,则() A.m≠0 B.m≠0且m≠1 C.m=2 D.m=1或2 4.反比例函数y=的图象如图所示,以下结论正确的是() ①常数m<1; ②y随x的增大而减小; ③若A为x轴上一点,B为反比例函数上一点,则S△ABC=; ④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上. A.①②③B.①③④C.①②③④D.①④ 5.如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C, 过点D作CD⊥x轴,垂足为D,且OA=AD,则以下结论: ①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④方程 2x2﹣2x﹣k=0有解. 其中正确结论的个数是() A.1 B.2 C.3 D.4 6.反比例函数的图象上有两点M,N,那么图中阴影部分面积最大的是() A.B.C.D.

7.如图所示,在平面坐标系中,AB⊥x轴,反比例函数y=(k1≠0)过B点,反比例函数y=(k2 ≠0)过C、D点,OC=BC,B(2,3),则D点的坐标为() A.(,)B.(,)C.(,)D.(,) 8.如图,直线y=﹣x+b与双曲线交于点A、B,则不等式组的 解集为() A.﹣1<x<0 B.x<﹣1或x>2 C.﹣1<x≤1 D.﹣1<x<1 9.如果点A(﹣2,y1),B(﹣1,y2),C(2,y3)都在反比例函数的图象上,那么y1,y2,y3的大小关系是() A.y1<y3<y2B.y2<y1<y3C.y1<y2<y3D.y3<y2<y1 10.反比例函数y=(k≠0)的图象经过点(﹣1,﹣2),当自变量x>1时,函数值y的取值范围是()A.y>1 B.y<1 C.y>2 D.0<y<2 11.如图,一次函数y=ax+b与x轴、y轴交于A、B两点,与反比例函数y=相交于C、D两点,分别过C、 D两点作y轴、x轴的垂线,垂足为E、F,连接CF、DE、EF.有下列三个结论:①△CEF 与△DEF的面积相等;②△DCE≌△CDF;③AC=BD.其中正确的结论个数是() A.0 B.1 C.2 D.3 12.如图,反比例函数的图象经过点A(2,1),若y≤1,则x的范围为() A.x≥1 B.x≥2 C.x<0或0<x≤1 D.x<0或x≥2 13.若函数的图象经过点(3,﹣4),则它的图象一定还经过点() A.(3,4)B.(2,6)C.(﹣12,1) D.(﹣3,﹣4) 14.若直线y=2x﹣1与反比例函数y=的图象交于点P(2,a),则反比例函数y=的图象还必过点()A.(﹣1,6)B.(1,﹣6)C.(﹣2,﹣3)D.(2,12) 15.如图,反比例函数y=﹣(x>0)图象经过矩形OABC边AB的中点E,交边BC于F点,连接EF、OE、OF,则△OEF的面积是() A.B.C.D.

中考数学培优(含解析)之圆与相似及详细答案.docx

中考数学培优 (含解析 )之圆与相似及详细答案 一、相似 1.如图,在四边形ABCD 中, AD//BC,, BC=4, DC=3, AD=6.动点P 从点 D 出 发,沿射线 DA 的方向 ,在射线 DA 上以每秒 2 两个单位长的速度运动,动点发,在线段 CB 上以每秒 1 个单位长的速度向点 B 运动,点 P、 Q 分别从点 Q从点C D,C 同时出发 出 ,当 点 Q 运动到点 B 时,点 P 随之停止运动.设运动的时间为t(秒 ). ( 1)设的面积为,直接写出与之间的函数关系式是________(不写取值范围) . (2)当 B,P,Q 三点为顶点的三角形是等腰三角形时,求出此时的值. (3)当线段PQ 与线段 AB 相交于点O,且 2OA=OB 时,直接写出=________.(4)是否存在时刻,使得若存在,求出的值;若不存在,请说明理由 . 【答案】(1) (2)解:如图1,过点 P 作 PH⊥ BC 于点 H, ∴∠ PHB=∠ PHQ=90 ,° ∵∠ C=90 ,°AD∥ BC, ∴∠ CDP=90 ,° ∴四边形 PHCD是矩形, ∴PH=CD=3, HC=PD=2t, ∵CQ=t, BC=4, ∴H Q=CH-CQ=t,BH=BC-CH=4-2t,BQ=4-t, ∴BQ2=,BP2=,PQ2=, 由 BQ2=BP2可得:,解得:无解; 由 BQ2=PQ2可得:,解得:; 由 BP2= PQ2可得:,解得:或, ∵当时, BQ=4-4=0,不符合题意,

∴综上所述,或; (3) (4)解:如图 3,过点 D 作 DM∥ PQ 交 BC的延长线于点 M, 则当∠ BDM=90°时, PQ⊥ BD,即当 BM2=DM2+BD2时, PQ⊥ BD, ∵AD∥ BC, DM∥ PQ, ∴四边形 PQMD 是平行四边形, ∴Q M=PD=2t , ∵QC=t, ∴CM=QM-QC=t, ∵∠ BCD=∠MCD=90 °, ∴BD2=BC2+DC2=25, DM2=DC2 +CM2=9+t 2, ∵B M2=(BC+CM)2=(4+t)2, ∴由 BM2=BD2+DM2可得:,解得:, ∴当时,∠ BDM=90 °, 即当时, PQ⊥ BD. 【解析】【解答】解:(1)由题意可得BQ=BC-CQ=4-,t点 P 到 BC 的距离 =CD=3, ∴S△PBQ= BQ × 3=; ( 3 )解:如图2,过点 P 作 PM⊥ BC交 CB的延长线于点M , ∴∠ PMC=∠ C=90 ,° ∵AD∥ BC, ∴∠ D=90 ,°△ OAP∽ △ OBQ,

中考数学备考之圆与相似压轴突破训练∶培优 易错 难题篇含答案

中考数学备考之圆与相似压轴突破训练∶培优易错难题篇含答案 一、相似 1.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC. (1)求证:BD是⊙O的切线; (2)求证:CE2=EH?EA; (3)若⊙O的半径为,sinA= ,求BH的长. 【答案】(1)证明:如图, ∵∠ODB=∠AEC,∠AEC=∠ABC, ∴∠ODB=∠ABC, ∵OF⊥BC, ∴∠BFD=90°, ∴∠ODB+∠DBF=90°, ∴∠ABC+∠DBF=90°, 即∠OBD=90°, ∴BD⊥OB, ∴BD是⊙O的切线 (2)证明:连接AC,如图2所示: ∵OF⊥BC, ∴, ∴∠CAE=∠ECB, ∵∠CEA=∠HEC,

∴△CEH∽△AEC, ∴, ∴CE2=EH?EA (3)解:连接BE,如图3所示: ∵AB是⊙O的直径, ∴∠AEB=90°, ∵⊙O的半径为,sin∠BAE= , ∴AB=5,BE=AB?sin∠BAE=5× =3, ∴EA= =4, ∵, ∴BE=CE=3, ∵CE2=EH?EA, ∴EH= , ∴在Rt△BEH中,BH= . 【解析】【分析】(1)要证BD是⊙O的切线,只需证∠OBD=90°,因为∠OBC+∠BOD=90°,所以只须证∠ODB=∠OBC即可。由圆周角定理和已知条件易得∠ODB=∠ABC,则∠OBC+∠BOD=90°=∠ODB+∠BOD,由三角形内角和定理即可得∠OBD=90°; (2)连接AC,要证CE2=EH?EA;只需证△CEH∽△AEC,已有公共角∠AEC,再根据圆周角定理可得∠CAE=∠ECB,即可证△CEH∽△AEC,可得比例式求解; (3)连接BE,解直角三角形AEB和直角三角形BEH即可求解。 2.如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.

相似三角形培优专题讲义

相似三角形培优专题讲义 知识点一:比例线段有关概念及性质 (1)有关概念 1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那 么就说这两条线段的比是AB:CD =m :n 例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。 2.比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即 d c b a =(或a :b= c : d ),那么,这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。(注意:在求线段 比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。) 例:b,a,d,c 是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d 的长度。 (2)比例性质 1.基本性质: bc ad d c b a =?= (两外项的积等于两内项积) 2.反比性质: c d a b d c b a =?= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项): ()()()a b c d a c d c b d b a d b c a ?=?? ?=?=???=??, 交换内项,交换外项. 同时交换内外项 4.等比性质:(分子分母分别相加,比值不变.) 如果 )0(≠++++====n f d b n m f e d c b a ,那么 b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零. (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.

中考数学培优专题复习反比例函数练习题附答案.doc

中考数学培优专题复习反比例函数练习题附答案 一、反比例函数 1.如图,已知抛物线y=﹣ x2+9 的顶点为A,曲线 DE 是双曲线y=(3≤x≤)12的一部分,记作 G1,且 D( 3, m)、 E(12, m﹣3),将抛物线y=﹣ x2 +9 水平向右移动 a 个单位,得到抛物线 G2. (1)求双曲线的解析式; (2)设抛物线 y=﹣ x2+9 与 x 轴的交点为 B、 C,且 B 在 C 的左侧,则线段 BD 的长为 ________; (3)点( 6,n )为 G1与 G2的交点坐标,求 a 的值. (4)解:在移动过程中,若G1与 G2有两个交点,设G2的对称轴分别交线段DE 和 G1于M、 N 两点,若MN <,直接写出 a 的取值范围. 【答案】(1)把 D( 3, m)、 E( 12, m﹣ 3)代入 y=得,解得, 所以双曲线的解析式为y=; (2) 2 (3)解:把( 6, n)代入 y= 得 6n=12,解得 n=2,即交点坐标为( 6, 2),抛物线 G2的解析式为 y=﹣( x﹣ a)2+9, 把( 6, 2)代入 y=﹣( x﹣ a)2 +9 得﹣( 6﹣ a)2+9=2,解得 a=6 ±, 即 a 的值为 6±; (4)抛物线 G2 的解析式为 y=﹣( x﹣ a)2+9, 把 D( 3,4)代入 y=﹣( x﹣ a)2+9 得﹣( 3﹣a)2+9=4,解得 a=3﹣或 a=3+ ; 把 E( 12, 1 )代入y=﹣( x﹣ a)2+9 得﹣( 12﹣ a)2+9=1,解得a=12﹣ 2 或 a=12+2 ; ∵G1 2 与 G 有两个交点, ∴3+ ≤ a ≤﹣12 , 设直线 DE 的解析式为y=px+q,

相似三角形培优训练含答案

相似三角形分类提高训练 一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动 点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作 EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒. (1)当t为何值时,AD=AB,并求出此时DE的长度; (2)当△DEG与△ACB相似时,求t的值. 2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C 移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒. (1)①当t=2.5s时,求△CPQ的面积; ②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC 于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N. (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着 AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的 速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.

相似三角形培优训练(含答案)之令狐文艳创作

相似三角形分类提高训练 令狐文艳 一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC 交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值. 2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点 到达终点时,它们都停止移动.设移动的时间为t 秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的 面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D 在边AB上运动,DE平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q 从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x 为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由. 5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB 边从A开始向点B以2cm/s的速度移动;点Q沿DA边从 点D开始向点A以1cm/s的速度移动.如果P、Q同时出 发,用t(s)表示移动的时间(0<t<6)。 (1)当t为何值时,△QAP为等腰直角三角形?(2)当t 为何值时,以点Q、A、P为顶点的三角形与△ABC相似?

反比例函数培优习题精选

反比例函数习题精选 1、如图1,点P 是x 轴正半轴上的一个动点,过点P 作x 轴的垂线PA 交双曲线x 1 y = 于点A ,连结OA 。 (1) 如图1,当点P 在x 轴的正方向上运动时,Rt △AOP 的面积大小是否变化若不变, 请求出Rt △AOP 的面积;若改变,请说明理由。 (2)如图2,在x 轴上的点P 的右侧有一点D ,过点D 作x 轴的垂线交双曲线x 1 y =于 点B ,连结BO 交AP 于点C ,设△AOP 的面积为S 1,梯形BCPD 的面积为S 2,则S 1与S 2的大小关系是 。 (3)如图3,AO 的延长线与双 曲线x 1 y =的另一个交点是F , FH ⊥x 轴,垂足为H ,连接AH ,PE ,试证明四边形APFH 的面积是一个常数。 ; 2、如图2,已知正方形OABC 的面积为9,点O 为坐标原点,点A 在x 轴上,点c 在y 轴上, 点B 在函数x k y =(k ﹥0,x ﹥0)的图象上,点P(m,n)是函数x k y =(k ﹥0,x ﹥0)的图象上的任意一点,过点P 分别作x 轴、y 轴的垂线,垂中足分别是E 、F ,并设矩形OEPF 和正方形OABC 不重合部份的面积为S 。 (1)求B 点的坐标和k 的值。 (2)当S=2 9 时,求点P 的坐标。 (3)写出S 关于m 的函数关系式。 ¥

3、如图3,直线2x 2 1 +分别交x 、y 轴于点A 、C ,P 是该直线上在第一象限内的一点,PB ⊥ x 轴,B 为垂足,S △ABP =9。 (1)求点P 的坐标。 (2)设点R 与点P 在同一反比例函数的图象上,且点R 在直线PB 的右侧,作RT ⊥x 轴,T 为垂足,当△BRT 和△AOC 相似时,求点R 的坐标。 # 4、如图4,一次函数y=kx+b 的图象与反比例函数x m y = 的图象交于A 、B 两点。 (1)利用图中条件,求反比例函数和一次函数的解析式; (2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围。 】 5、如图5,已知一次函数y=-x+8和反比例函数y=x k (k ≠0) 的图象在第一象限内有两个不同的公共点A 、B 。 (1)求实数k 的取值范围。 (2)若△AOB 的面积为24,求k 的值。 ! 6、已知如图6,反比例函数x 8 y -=与一次函数y=-x+2的图象交于A 、B 两点,求: (1)A 、B 两点的坐标。

相似三角形培优难题集锦(含答_案)

一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F, G是EF中点,连接DG.设点D 运动的时间为t秒. (1)当t为何值时,AD=AB,并 求出此时DE的长度; (2)当△DEG与△ACB相似时, 求t的值. 2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它 们都停止移动.设移动的时间为t 秒. (1)①当t=2.5s时,求△CPQ的 面积; ②求△CPQ的面积S(平方米)关 于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中 , ACB=90°,AC=6,BC= (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中, BA=BC=20cm,AC= 30cm,点P从A点出发, 沿着AB以每秒4cm的速 度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由. 5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P 沿AB边从A开始向点B以2cm/s的速度移动;点Q 沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。 (1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?

相似三角形培优专题

相似三角形培优专题1. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D. 求证:(1)△ACD∽△ABC; (2)AC2=AD?AB; (3)CD2=AD?DB. A 证明:(1)∵∠ACB=90°,CD⊥AB, ∴∠CDA=90°=∠ACB, ∵∠A=∠A, ∴△ACD∽△ABC. (2)∵△ACD∽△ABC, ∴AC AD AB AC =, ∴AC2=AD?AB; (3)∵CD⊥AB, ∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°, ∵∠ACB=90° ∴∠A+∠B=90° ∴∠ACD=∠B ∴△ACD∽△BCD, ∴CD AD BD CD =, ∴CD2=AD?DB.

2.如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=120°,求证: (1)△ACP∽△PDB, (2)CD2=AC?BD. 证明:(1)∵△PCD是等边三角形, ∴∠PCD=∠PDC=∠CPD=60°, ∴∠ACP=∠PDB=120°, ∵∠APB=120°, ∴∠APC+∠BPD=60°, ∵∠CAP+∠APC=60° ∴∠BPD=∠CAP, ∴△ACP∽△PDB; (2)由(1)得△ACP∽△PDB, ∴, ∵△PCD是等边三角形, ∴PC=PD=CD, ∴, ∴CD2=AC?BD.

3. 如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC 的边BC=15,高AH=10, (1)求证:△ADG∽△ABC; (2)求这个正方形的边长和面积. 解:(1)∵四边形形DEFG是正方形, ∴DG∥BC ∴△ADG∽△ABC; (2) 如图,高AH交DG于M,设正方形DEFG的边长为x,则DE=MH=x, ∴AM=AH﹣MH=10﹣x, ∵ADG∽△ABC, ∴DG AM BC AH =, ∴ 10 1510 x x - =, ∴x=6, ∴x2=36. 答:正方形DEFG的边长和面积分别为6,36.

南京备战中考数学反比例函数(大题培优易错试卷)

一、反比例函数真题与模拟题分类汇编(难题易错题) 1.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数 (m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于 D. (1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值; (3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【答案】(1)解:当﹣4<x<﹣1时,一次函数大于反比例函数的值; (2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得, 所以一次函数解析式为y= x+ , 把B(﹣1,2)代入y= 得m=﹣1×2=﹣2; (3)解:如下图所示: 设P点坐标为(t,t+ ), ∵△PCA和△PDB面积相等, ∴? ?(t+4)= ?1?(2﹣t﹣),即得t=﹣,

∴P点坐标为(﹣,). 【解析】【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y= 可计算出m的值;(3)设P点坐标为(t, t+ ),利用三角形面积公式可得到? ?(t+4)= ?1?(2﹣ t﹣),解方程得到t=﹣,从而可确定P点坐标. 2.如图,已知直线y=ax+b与双曲线y= (x>0)交于A(x1, y1),B(x2, y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点 C. (1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标. (2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标. (3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明). 【答案】(1)解:∵直线y=ax+b与双曲线y= (x>0)交于A(1,3),∴k=1×3=3, ∴y= , ∵B(3,y2)在反比例函数的图象上, ∴y2= =1, ∴B(3,1), ∵直线y=ax+b经过A、B两点, ∴解得, ∴直线为y=﹣x+4, 令y=0,则x=4, ∴P(4,O)

苏科版九年级数学下册培优培优相似三角形的判定

第12讲相似三角形的判定 【思维入门】 1.如图4-12-1,△ABC∽△DEF,相似比为1∶2,若BC=1,则EF的长是() A.1B.2C.3D.4 图4-12-1 图4-12-2 2.如图4-12-2,M是Rt△ABC的斜边BC上异于B,C的一定点,过点M作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有() A.1条B.2条C.3条D.4条 3.如图4-12-3,在?ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF∶CF等于() A.3∶2 B.3∶1 C.1∶1 D.1∶2 图4-12-3 图4-12-4 4.如图4-12-4,在?ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形____. 5.如图4-12-5,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转

得到△A′B′C,使CB′∥AB,分别延长AB,CA′相交于点D,则线段BD的长为____. 图4-12-5 6.如图4-12-6,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G. (1)求证:△ADE≌△CFE; (2)若GB=2,BC=4,BD=1,求AB的长. 图4-12-6 【思维拓展】 7.以下三角形中,与图4-12-7中的三角形相似的是() 8.如图4-12-8①,在△ACB中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F. (1)求证:DE=EF;

(2)如图②,连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A +∠DGC. 图4-12-8 9.如图4-12-9,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CE于点E. (1)求证:△ACD≌△CBE; (2)已知AD=4,DE=1,求EF的长. 图4-12-9 10.如图4-12-10,等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P. (1)若AE=CF, ①求证:AF=BE,并求∠APB的度数;

2020-2021九年级培优相似辅导专题训练及详细答案

2020-2021九年级培优相似辅导专题训练及详细答案 一、相似 1.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B 运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒. (1)求抛物线的解析式和对称轴; (2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由; (3)设四边形DECO的面积为s,求s关于t的函数表达式. 【答案】(1)解:把A(﹣4,0),B(1,0),点C(0,2)代入 得:,解得:, ∴抛物线的解析式为:, 对称轴为:直线x=﹣; (2)解:存在,∵AD=2t, ∴DF=AD=2t, ∴OF=4﹣4t, ∴D(2t﹣4,0), ∵直线AC的解析式为:,∴E(2t﹣4,t), ∵△EFC为直角三角形,分三种情况讨论: ①当∠EFC=90°,则△DEF∽△OFC, ∴,即,解得:t= ; ②当∠FEC=90°,

∴∠AEF=90°, ∴△AEF是等腰直角三角形, ∴DE= AF,即t=2t, ∴t=0,(舍去), ③当∠ACF=90°,则AC2+CF2=AF2,即(42+22)+[22+(4t﹣4)2]=(4t)2,解得:t= ,∴存在某一时刻t,使得△EFC为直角三角形,此时,t= 或; (3)解:∵B(1,0),C(0,2), ∴直线BC的解析式为:y=﹣2x+2, 当D在y轴的左侧时,S= (DE+OC)?OD= (t+2)?(4﹣2t)=﹣t2+4 (0<t<2); 当D在y轴的右侧时,如图2, ∵OD=4t﹣4,DE=﹣8t+10,S= (DE+OC)?OD= (﹣8t+10+2)?(4t﹣4),即 (2<t<). 综上所述: 【解析】【分析】(1)(1)利用待定系数法,将点A、B、C的坐标代入函数解析式,建立方程组求解即可。 (2)根据题意分别求出AD、DF、OF的长,表示出点D的坐标,利用待定系数法求出直线BC的函数解析式,表示出点E的坐标,再分三种情况讨论△EFC为直角三角形:①当∠EFC=90°,则△DEF∽△OFC,根据相似三角形的性质,列出关于t的方程求解即可; ②∠FEC=90°,∠AEF=90°,△AEF是等腰直角三角形求出t的值即可;③当∠ACF=90°,则AC2+CF2=AF2,建立关于t的方程求解即可,从而可得出答案。 (3)求得直线BC的解析式为:y=-2x+2,当D在y轴的左侧时,当D在y轴的右侧时,如图2,根据梯形的面积公式即可得到结论。 2.已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点

初三数学 相似三角形培优练习题(含答案)

(3题图)E D C B A D B C A N M O 相似三角形练习题 1、如图1,当四边形PABN 的周长最小时,a = . 2、如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( ) A .只有1个 B .可以有2个 C .有2个以上但有限 D .有无数个 3、如图3,等腰ABC ?中,底边BC=a ,A ∠=0 36,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E ,设k = DE=( ) A 、2 K a B 、3 K a C 、2a k D 、 3 a k 4、如图4,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接 OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形 B .四边形MBON 和四边形MODN 都是菱形 C .四边形AMON 与四边形ABC D 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形 5、如图5将放置于平面直角坐标系中的三角板AOB 绕O 点顺时针旋转90°得△A′OB′.已知∠AOB =30°,∠B =90°,AB =1,则B′点的坐标为( ) A .3)22 B .3(22 C .1(22 D .1)22 x (1题图) 图 4 图 5

F E D C B A E F A D C B 6、如图小正方形的边长均为1,则下列图中的三角形(阴影部分)与AB C △相似的是( ) 7、如图7,梯形ABCD 中,AD BC ∥,点E 在BC 上,AE BE =,点F 是CD 的中点,且AF AB ⊥, 若 2.746AD AF AB ===,,,则CE 的长为 A . 1 C. 2.5 D. 2.3 (7题图) 8、如图8,在ABC △中,AB AC =,点E F 、分别在AB 和AC 上,CE 与BF 相交于点D ,若AE CF D =,为BF 的中点,AE AF :的值为___________. 9、如图9,已知ABC ?,延长BC 到D ,使CD=BC 取AB 的中点F,连接FD 交AC 于点E 。 (1)求AE AC 的值;(2)若AB=a ,FB=EC ,求AC 的长。

初三相似三角形的判定培优同步讲义

初三相似三角形的判定培优同步讲义 学科教师辅导讲义 体系搭建 一、知识框架 二、知识概念 (一)相似三角形的概念 对应角相等,对应边之比相等的三角形叫做相似三角形. 1、相似三角形是相似多边形中的一种; 2、应结合相似多边形的性质来理解相似三角形; 3、相似三角形应满足形状一样,但大小可以不同; 4、母子型:已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD . 5、斜交型: 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。 (有“反 A 共 角型”、“反 A 共角共边型”、 “蝶型”)b5E2RGbCAP 6、垂直型:有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂 直型”) 考点 1:三角形相似判定方法的运用 例 1、如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于点 D ,则图中相似三角形共有( ) A .1 对 B .2 对 C .3 对 D .4 对 p1EanqFDPw 例 2、如图,下列条件不能判定△ADB ∽△ABC 的是( ) A .∠ABD=∠ACB B .∠ADB=∠ABCDXDiTa9E3d C .AB 2 =AD?AC D .= 典例分析 A B C D A B C D E 12 A

A B B C C D D E E 124 1 2 E C B D A B C D E A E
( )
A D C B 例 3、已知:在梯形 ABCD 中,AD∥BC,∠ABC=90°,BC=2AD,E 是 BC 的中点,连接 AE、 AC.RTCrpUDGiT (1)点 F 是 DC 上一点,连接 EF,交 AC 于点 O(如图 1),求证:△AOE∽△COF; (2)若点 F 是 DC 的中点,连接 BD,交 AE 与点 G(如图 2),求证:四边形 EFDG 是菱形. 例 4、如图,在△ABC 中,AB=AC=1,BC=,在 AC 边上截取 AD=BC,连接 BD. (1)通过计算,判断 AD2 与 AC?CD 的大小关系; (2)求∠ABD 的度数. 考点 2:网格图中相似三角形的判定 例 1、下列四个三角形中,与图中的三角形相似的是() A.B.C.D. 实战演练 课堂狙击 1、下列命题中,是真命题的为() A.锐角三角形都相似

相似三角形培优试题(五)

九年级培优试题(五) 一.选择题: 1.下面四组线段中,不能成比例的是( ) A.a=4,b=6,c=5,d=10 B 、a=3,b=9,c=5,d=12 C 、a=2,b=2,c=6,d=3 D 、a=2,b=3,c=4,d=5 2.如图,已知AB CD EF ∥∥,那么下列结论正确的是( ) A .AD BC DF CE = B .B C DF CE AD = C .CD BC EF BE = D .CD AD EF AF = 3.如图,在△ABC 中,DE ∥BC ,AD =3,BD =2,则△ADE 与四边形DBCE 的面积比是 ( ) (A )3︰2; (B )3︰5; (C )9︰16; (D )9 ︰4. 4.如图,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论:(1)DE=1, (2)△CDE ∽△CAB ,(3)△CDE 的面积与△CAB 的面积之比为1:4.其中正确的有:( ) A .0个 B .1个 C .2个 D .3个 5.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角 B .四边形MBON 和四边形MODN 都是菱形 C .四边形AMON 与四边形ABC D 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形 6.等边三角形的中线与中位线长的比值是( ) A 、1:3 B 、2:3 C 、23:21 D 、1:3 7.如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=( ) A.1:4 B.1:3 C.2:3 D.1:2 . 8(2013?牡丹江)如图,在△ABC 中∠A=60°,BM ⊥AC 于点M , CN ⊥AB 于点N ,P 为BC 边的中点, 连接PM ,PN ,则下列结论:①PM=PN ;②;③△PMN 为等边三角形;④当∠ABC=45°时,BN=PC .其中正确的个数是( ) A,1个 B.2个 C.3个 D.4 9如图,已知:∠BAO=∠CAE=∠DCB ,则下列关系式中正确的是( ) A 、 AE BC AD A B = B 、AD B C AE AC = C 、AE BC DE AB = D 、AD AB AE AC = 10.下列四个三角形,与左图中的三角形相似的是() D B C A N M O B C A D E

反比例函数培优-含答案

专题11 双曲线 阅读与思考 形如(0)k y k x =≠的函数叫做反比例函数,这也是现实生活中普遍使用的模型,如通过改变电阻来控制电流的变化,从而使舞台的灯光达到变幻的效果;又如过湿地时,在地面上铺上木板,人对地面的压强减小,从而使人不陷入泥中. 反比例函数的基本性质有: 1. 反比例函数图象是由两条曲线组成的双曲线,双曲线向坐标轴无限延伸,但不能与坐标轴相交; 2. k 的正负性,决定双曲线大致位置及y 随x 的变化情况; 3. 双曲线上的点是关于中心对称的,双曲线也是轴对称图形,对称轴是直线y x =及y x =-. 反比例函数与一次函数有着内在的联系. 如在作图时都要经历列表、描点、连线的过程;研究它们的性质时,都是通过几个具体的函数归纳出一般的规律,但它们毕竟不同. 反比例函数k y x =中k 的几何意义是:k 等于双曲线上任意一点作x 轴、y 轴的垂线所得的矩形的面积,如图: (1)12AOB S k =△; (2)ACOB S k =矩形. 求两个函数图象的交点坐标,常通过解由这两个函数解析式组成的方程组得到. 求符合某种条件的点的坐标,常根据问题的数量关系和几何元素间的关系建立关于横纵坐标的方程(组),解方程(组)求得相关点的坐标. 解反比例函数有关问题时,应充分考虑它的对称性,这样既能从整体上思考问题,又能提高思维的周密性. 反比例函数是描述变量之间相互关系的重要数学模型之一,用反比例函数解决实际问题,既要分析问题情景,建立模型,又要综合方程、一次函数等知识. 例题与求解 【例1】(1)如图,已知双曲线(0)k y x x =>经过矩形OABC 边AB 的中点F 且交BC 于点E ,四边形OEBF 的面积为2,则k = . (兰州市中考试题)

相关主题