搜档网
当前位置:搜档网 › 稀疏矩阵三元组实现矩阵转置算法实验报告

稀疏矩阵三元组实现矩阵转置算法实验报告

稀疏矩阵三元组实现矩阵转置算法实验报告
稀疏矩阵三元组实现矩阵转置算法实验报告

实验三稀疏矩阵的三元组表示实现矩阵转置算法

学院专业班

学号姓名

一.实习目的

1.掌握稀疏矩阵的三元组顺序表存储表示;

2.掌握稀疏矩阵三元组表示的传统转置算法的实现;

3.掌握稀疏矩阵三元组表示的快速转置算法的实现;

二.实习内容

1.稀疏矩阵的按三元组形式输入,即按行序输入非零元的行号、列号、值,实现传统转置

算法,输出按通常的阵列形式输出。

2.稀疏矩阵的按三元组形式输入,即按行序输入非零元的行号、列号、值,实现快速转置

算法,输出按通常的阵列形式输出。

三.实验步骤

1.三元组的定义

#define MAX_SIZE 100 编写三元组传统转置函数。

4. 编写三元组快速转置函数。

4. .主函数

(1)程序代码

#include ""

#include ""

#define MAX_SIZE 100 =0; ||m==[i-1].i&&n<=[i-1].j) =m; =n;

[i].e =e;

}

return 1;

}

void PrintSMatrix(TSMatrix M)

{ ==col)

{

[q].i= [p].j;

[q].j=[p].i;

[q].e= [p].e;

++q;

}

}

}

void FastTransposeSMatrix(TSMatrix M,TSMatrix &T)

{ ; ++num[ col]; }

cpot[1]=1; ; ]; =[p].j;

[q].j=[p].i;

[q].e=[p].e;

++cpot[col]; // T第col行的下1个非零元在中的序号 }

}

printf("转置后cpot数组的值为:\n");

for(col=1;col<=;++col)

printf("%4d",cpot[col]);

printf("\n");

free(num);

free(cpot);

}

void main()

{

TSMatrix A,T;

printf("创建矩阵A: ");

CreateSMatrix(A);

PrintSMatrix(A);

TransposeSMatrix(A,T);

printf("传统矩阵转置程序执行后的矩阵t(A的转置):\n"); PrintSMatrix(T);

FastTransposeSMatrix(A,T);

printf("快速矩阵转置程序执行后的矩阵t(A的转置):\n"); PrintSMatrix(T);

}

(2)调试程序

(3) 运行程序(截图)

四.实习小结

自己写

实现稀疏矩阵(采用三元组表示)的基本运算实验报告

实现稀疏矩阵(采用三元组表示)的基本运算实验报告 一实验题目: 实现稀疏矩阵(采用三元组表示)的基本运算二实验要求: (1)生成如下两个稀疏矩阵的三元组a 和b;(上机实验指导P92 )(2)输出a 转置矩阵的三元组; (3)输出a + b 的三元组; (4)输出a * b 的三元组; 三实验内容: 3.1 稀疏矩阵的抽象数据类型: ADT SparseMatrix { 数据对象:D={aij| i = 1,2,3,….,m; j =1,2,3,……,n; ai,j∈ElemSet,m和n分别称为矩阵的行数和列数 } 数据关系 : R={ Row , Col } Row ={ | 1≤ i≤m , 1≤ j≤ n-1} Col ={| 1≤i≤m-1,1≤j≤n} 基本操作: CreateSMatrix(&M)

操作结果:创建稀疏矩阵M PrintSMatrix(M) 初始条件:稀疏矩阵M已经存在 操作结果:打印矩阵M DestroySMatrix(&M) 初始条件:稀疏矩阵M已经存在 操作结果:销毁矩阵M CopySMatrix(M, &T) 初始条件:稀疏矩阵M已经存在 操作结果:复制矩阵M到T AddSMatrix(M, N, &Q) 初始条件:稀疏矩阵M、N已经存在 操作结果:求矩阵的和Q=M+N SubSMatrix(M, N, &Q) 初始条件:稀疏矩阵M、N已经存在 操作结果:求矩阵的差Q=M-N TransposeSMatrix(M, & T) 初始条件:稀疏矩阵M已经存在

操作结果:求矩阵M的转置T MultSMatrix(M, N, &Q) 初始条件:稀疏矩阵M已经存在 操作结果:求矩阵的积Q=M*N }ADT SparseMatrix 3.2存储结构的定义 #define N 4 typedef int ElemType; #define MaxSize 100 //矩阵中非零元素最多个数typedef struct { int r; //行号 int c; //列号 ElemType d; //元素值 } TupNode; //三元组定义 typedef struct { int rows; //行数值 int cols; //列数值 int nums; //非零元素个数

三元组表示稀疏矩阵的转置(一般算法和快速算法)

一、设计要求 1.1 问题描述 稀疏矩阵是指那些多数元素为零的矩阵。利用稀疏特点进行存储和计算可以大大节省存储空间,提高计算效率。求一个稀疏矩阵A的转置矩阵B。 1.2需求分析 (1)以“带行逻辑链接信息”的三元组顺序表表示稀疏矩阵,实现稀疏矩阵的转置运算。(2)稀疏矩阵的输入形式采用三元组表示,运算结果则以通常的阵列形式列出。 (3)首先提示用户输入矩阵的行数、列数、非零元个数,再采用三元组表示方法输入矩阵,然后进行转置运算,该系统可以采用两种方法,一种为一般算法,另一种为快速转置算法。(4)程序需要给出菜单项,用户按照菜单提示进行相应的操作。 二、概要设计 2.1存储结构设计 采用“带行逻辑链接信息”的三元组顺序表表示矩阵的存储结构。三元组定义为:typedef struct { int i;//非零元的行下标 int j;//非零元的列下标 ElemType e; //非零元素值 }Triple; 矩阵定义为: Typedef struct { Triple data[MAXSIZE+1]; //非零元三元组表 int rpos[MAXRC+1]; //各行第一个非零元的位置表 int mu,nu,tu; //矩阵的行数、列数和非零元个数 }RLSMatrix; 例如有矩阵A,它与其三元组表的对应关系如图

2.2 系统功能设计 本系统通过菜单提示用户首先选择稀疏矩阵转置方法,然后提示用户采用三元组表示法输入数据创建一个稀疏矩阵,再进行矩阵的转置操作,并以通常的阵列形式输出结果。主要实现以下功能。 (1)创建稀疏矩阵。采用带行逻辑连接信息的三元组表表示法,提示用户输入矩阵的行数、列数、非零元个数以及各非零元所在的行、列、值。 (2)矩阵转置。<1>采用一般算法进行矩阵的转置操作,再以阵列形式输出转置矩阵B。 <2>采用快速转置的方法完成此操作,并以阵列形式输出转置矩阵B。 三、模块设计 3.1 模块设计 程序包括两个模块:主程序模块、矩阵运算模块。 3.2 系统子程序及其功能设计 系统共设置了8个子程序,各子程序的函数名及功能说明如下。 (1)CreateSMatrix(RLSMatrix &M) //创建稀疏矩阵 (2)void DestroySMatrix(RLSMatrix &M) //销毁稀疏矩阵 (3)void PrinRLSMatrix(RLSMatrix M) //遍历稀疏矩阵 (4)void print(RLSMatrix A) //打印矩阵函数,输出以阵列形式表示的矩阵 (5)TransposeSMatrix(RLSMatrix M,RLSMatrix &T) //求稀疏矩阵的转置的一般算法(6)FastTransposeSMatrix(RLSMatrix M,RLSMatrix &T) //快速转置算法 (7)void showtip() //工作区函数,显示程序菜单 (8)void main() //主函数

矩阵分析实验报告

矩 阵 分 析 实 验 报 告 学院:电气学院 专业:控制工程 姓名:XXXXXXXX 学号:211208010001

矩阵分析实验报告 实验题目 利用幂法求矩阵的谱半径 实验目的与要求 1、 熟悉matlab 矩阵实验室的功能和作用; 2、 利用幂法求矩阵的谱半径; 3、 会用matlab 对矩阵分析运算。 实验原理 理念 谱半径定义:设n n A C ?∈,1λ,2λ,3λ, ,j λ, n λ是A 的n 个特征值,称 ()max ||j j A ρλ= 为关于A 的谱半径。 关于矩阵的谱半径有如下结论: 设n n A C ?∈,则 (1)[]()()k k A A ρρ=; (2)2 2()()()H H A A AA A ρρ==。 由于谱半径就是矩阵的主特征值,所以实验换为求矩阵的主特征值。 算法介绍 定义:如果1λ是矩阵A 的特征值,并且其绝对值比A 的任何其他特征值的绝对值大,则称它为主特征值。相应于主特征值的特征向量1V 称为主特征向量。 定义:如果特征向量中最大值的绝对值等于单位值(例如最大绝对值为1),则称其为是归一化的。

通过形成新的向量' 12=c n V (1/)[v v v ],其中c=v 且1max {},j i n i ≤≤=v v 可将特 征向量 '12n [v v v ]进行归一化。 设矩阵A 有一主特征值λ,而且对应于λ有唯一的归一化特征向量V 。通过下面这个称为幂法(power method )的迭代过程可求出特征对λ,V ,从下列向量开始: []' 0=111X (1) 用下面递归公式递归地生成序列{}k X : k k Y AX = k+11 1 k k X Y c += (2) 其中1k c +是k Y 绝对值最大的分量。序列{}k X 和{}k c 将分别收敛到V 和λ: 1lim k X V =和lim k c λ= (3) 注:如果0X 是一个特征向量且0X V ≠,则必须选择其他的初始向量。 幂法定理:设n ×n 矩阵A 有n 个不同的特征值λ1,λ2,···,,λn ,而且它们按绝对 值大小排列,即: 123n λλλλ≥≥≥???≥ (4) 如果选择适当的X 0,则通过下列递推公式可生成序列{[() ()( ) ]}12k k k k n X x x x '=???和 {}k c : k k Y AX = (5) 和: 11 1k k k X Y c ++= (6) 其中: () 1k k j c x +=且{} ()()1max k k j i i n x x ≤≤= (7) 这两个序列分别收敛到特征向量V 1和特征值λ1。即: 1lim k k X V →∞ =和1lim k k c λ→∞ = (8) 算法收敛性证明 证明:由于A 有n 个特征值,所以有对应的特征向量V j ,j=1,2,···n 。而且它们是

数据结构稀疏矩阵转置,加法

《数据结构》实验报告 ◎实验题目:稀疏矩阵的转置、加法(行逻辑链接表) ◎实验目的:学习使用三元组顺序表表示稀疏矩阵,并进行简单的运算 ◎实验内容:以三元组表表示稀疏矩阵,并进行稀疏矩阵的转置和加法运算。 一、需求分析 该程序目的是为了用三元组表实现稀疏矩阵的转置和加法运算。 1、输入时都是以三元组表的形式输入; 2、输出时包含两种输出形式:运算后得到的三元组表和运算后得到的矩阵; 3、测试数据: (1)转置运算时输入三元组表:1 2 12 1 3 9 3 1 -3 3 6 14 4 3 24 5 2 18 6 1 15 6 4 -7 得到转置后的三元组表:1 3 -3 1 6 15 2 1 12 2 5 18 3 1 9 3 4 24 4 6 -7 6 3 14 (2)进行加法运算时先输入矩阵A(以三元组表形式):1 1 1 2 2 2 2 3 4 3 1 -4 输入矩阵B(以三元组表形式):1 3 -2 2 3 -5 3 1 8 3 2 -6 A与B的和矩阵以矩阵形式输出为:1 0 -2 0 2 -1 4 -6 0 (二) 概要设计 为了实现上述操作首先要定义三元组表,稀疏矩阵: typedef struct { int i,j; int e; }Triple;//三元组

typedef struct { Triple data[MAXSIZE+1]; int mu,nu,tu; }Matrix;//稀疏矩阵 1.基本操作 void CreatMatrix(Matrix *m) 操作结果:创建一个稀疏矩阵。 void PrintMatrix(Matrix m) 初始条件:矩阵m已存在。 操作结果:将矩阵m以矩阵的形式输出。 void FastTransposeMatrix(Matrix a,Matrix *b) 初始条件:稀疏矩阵a已存在; 操作结果:将矩阵a进行快速转置后存入b中。 void AddMatrix(Matrix a,Matrix b,Matrix *c) 初始条件:稀疏矩阵a和b都已存在; 操作结果:将矩阵a和b的和矩阵存入c中。 2.本程序包含了两个模块: (1)头文件模块; 其中包括定义三元组表Triple和稀疏矩阵Matrix,以及创建矩阵void CreatMatrix(Matrix *m)和输出矩阵void PrintMatrix(Matrix m)两个函数; (2)主程序模块; 包括主函数main(),快速转置函数void FastTransposeMatrix(Matrix a,Matrix *b)和实现矩阵相加函数void AddMatrix(Matrix a,Matrix b,Matrix *c) (三) 详细设计 定义三元组和稀疏矩阵类型: typedef struct { int i,j; int e; }Triple; typedef struct { Triple data[MAXSIZE+1]; int mu,nu,tu; }Matrix; 创建头文件:“Matrix.h” void CreatMatrix(Matrix *m)//矩阵的初始化 { int p=1,a,b,c; printf("请输入矩阵的行数、列数、非零元的个数(数据用空格隔开):"); scanf("%d %d %d",&(*m).mu,&(*m).nu,&(*m).tu);

矩阵特征值实验报告

一、课题名称 Malab矩阵特征值 二、目的和意义 1、求矩阵的部分特征值问题具有重要实际意义,如求矩阵谱半径()Aρ=maxλ,稳定性问题往往归于求矩阵按模最小特征值; 2、进一步掌握冪法、反冪法及原点平移加速法的程序设计技巧; 3、问题中的题(5),反应了利用原点平移的反冪法可求矩阵的任何特征值及其特征向量。 三、实验要求 1、掌握冪法或反冪法求矩阵部分特征值的算法与程序设计; 2、会用原点平移法改进算法,加速收敛;对矩阵B=A-PI取不同的P值,试求其效果; 3、试取不同的初始向量,观察对结果的影响;()0υ 4、对矩阵特征值的其它分布,如如何计算。 四、问题描述 五、实验程序设计 幂法 function [lamdba,v]=power_menthod(a,x,epsilon,maxl)

k=0; y=a*x; while(k> a=[-1 2 1;2 -4 1;1 1 -6]; >> x=[1 1 1]'; >> epsilon=0.00005; >> maxl=20; >> power_menthod(a,x,epsilon,maxl) lambda = 6.4183 v = -0.0484 -0.3706 1.0000 方程组2结果 >> a=[4 -2 7 3 -1 8;-2 5 1 1 4 7;7 1 7 2 3 5;3 1 2 6 5 1;-1 4 3 5 3 2;8 7 5 1 2 4]; >> x=[1 0 1 0 0 1]'; >> epsilon=0.00005; >> maxl=20; >> power_menthod(a,x,epsilon,maxl) lambda = 21.3053 v = 0.8724 0.5401 0.9974 0.5644 0.4972 1.0000 反幂法 function [lambda,v]=INV_shift(a,x,epsilon,max1)

矩阵转置及相加实验报告

一、实验内容和要求 1、稀疏矩阵A,B均采用三元组表示,验证实现矩阵A快速转置算法,设计并验证A,B相 加得到矩阵C的算法。 (1)从键盘输入矩阵的行数和列数,随机生成稀疏矩阵。 (2)设计算法将随机生成的稀疏矩阵转换成三元组顺序表示形式存储。 (3)设计算法将快速转置得到的与相加得到的三元组顺序表分别转换成矩阵形式。 (4)输出随机生成的稀疏矩阵A,B及其三元组顺序表、快速转置得到的与相加得到的三元组顺序表及其矩阵形式。 二、实验过程及结果 一、需求分析 1、将随机生成的数定义为int型(为方便起见设定范围为-20至20(不含0),可 修改),三元组存储的元素分别为非零元的行下标、列下标及该位置的元素值,零元不进行存储。实际上在生成稀疏矩阵时是随机选取一些位置生成非零元然后存入三元组中。 2、从键盘输入矩阵的行数和列数后应能输出三元组顺序表及相应矩阵(按行和列 排列形式输出)。 3、程序能实现的功能包括: ①随机产生稀疏矩阵;②输出阵列形式的矩阵;③输出三元组顺序 表;④将矩阵快速转置;⑤将两个稀疏矩阵相加生成新的矩阵。 二、概要设计 1、稀疏矩阵的抽象数据类型定义: ADT TSMatrix{ 数据对象:D={ aij|i=1,2,…,m,j=1,2,…,n; Ai,j∈ElemSet,m和n分别称为矩阵的行数和列数}数据关系:R={Row,Col} Row={|1≤i≤m, 1≤j≤n-1} Col ={|1≤i≤m-1, 1≤j≤n} 基本操作: CreateTSMatrix(&M) 操作结果:创建矩阵M PrintTSMatrix(M) 初始条件:矩阵M已存在 操作结果:输出矩阵M中三元组形式的非零元素 PrintTSMatrix1(M) 初始条件:矩阵M已存在 操作结果:以阵列形式输出矩阵 UnZore(M, row, col) 初始条件:矩阵M已存在 操作结果:若位置(row,col)处存在非零元素,则返回该元素存储在矩阵中的序号

稀疏矩阵的建立与转置

实验2 稀疏矩阵的建立与转置 一、实验目的 掌握特殊矩阵的存储和操作算法。 二、实验内容及问题描述 实现用三元组保存稀疏矩阵并实现矩阵转置的算法。 三、实验步骤 1. 定义稀疏矩阵的三元组形式的存储结构。 2. 实现三元组矩阵的传统转置算法。 3. 实现三元组矩阵的快速转置算法。 4. 输入矩阵非零元素,测试自己完成的算法。 四、程序流程图

五、概要设计 矩阵是很多的科学与工程计算中研究的数学对象。在此,我们感兴趣的是,从数学结构这门学科着眼,如何存储矩阵的元从而使矩阵的各种运算有效的进行。本来,用二维数组存储矩阵,在逻辑上意义是很明确的,也很容易理解,操作也很容易和方便。但是在数值分析中经常出现一些阶数很高的矩阵,同时,在矩阵中又有很多值相同或者都为零的元素,可以对这种矩阵进行压缩存储:对多个值相同的元素只分配一个存储空间;对零元素不分配空间。稀疏矩阵的定义是一个模糊的定义:即非零元个数较零元个数较少的矩阵。例如下图所示的矩阵 为一个稀疏矩阵。为了实现稀疏矩阵的这种存储结构,引入三元组这种数据结构。三元组的线性表顺存储形式如下图: 六、详细设计 sanyuanzu.h 头文件 #define max 100 typedef struct { int row,col; int e; }Triple;//定义三元组 typedef struct { Triple data[max]; int mu,nu,tu; }TSMatrix;///*定义三元组的稀疏矩阵*/ void creat( TSMatrix &M) ; void fasttrans(TSMatrix A,TSMatrix &B);

矩阵键盘设计实验报告

南京林业大学 实验报告 基于AT89C51 单片机4x4矩阵键盘接口电路设计 课程机电一体化设计基础 院系机械电子工程学院 班级 学号 姓名

指导老师杨雨图 2013年9月26日

一、实验目的 1、掌握键盘接口的基本特点,了解独立键盘和矩 阵键盘的应用方法。 2、掌握键盘接口的硬件设计方法,软件程序设计 和贴士排错能力。 3、掌握利用Keil51软件对程序进行编译。 4、用Proteus软件绘制“矩阵键盘扫描”电路,并用测试程序进行仿真。 5、会根据实际功能,正确选择单片机功能接线,编制正确程序。对实验结果 能做出分析和解释,能写出符合规格的实验报告。 二、实验要求 通过实训,学生应达到以下几方面的要求: 素质要求 1.以积极认真的态度对待本次实训,遵章守纪、团结协作。 2.善于发现数字电路中存在的问题、分析问题、解决问题,努力培养独立 工作能力。 能力要求 1.模拟电路的理论知识 2.脉冲与数字电路的理念知识 3.通过模拟、数字电路实验有一定的动手能力 4.能熟练的编写8951单片机汇编程序 5.能够熟练的运用仿真软件进行仿真 三、实验工具 1、软件:Proteus软件、keil51。 2、硬件:PC机,串口线,并口线,单片机开发板 四、实验内容

1、掌握并理解“矩阵键盘扫描”的原理及制作,了解各元器件的参数及格 元器件的作用。 2、用keil51测试软件编写AT89C51单片机汇编程序 3、用Proteus软件绘制“矩阵键盘扫描”电路原理图。 4、运用仿真软件对电路进行仿真。 五.实验基本步骤 1、用Proteus绘制“矩阵键盘扫描”电路原理图。 2、编写程序使数码管显示当前闭合按键的键值。 3、利用Proteus软件的仿真功能对其进行仿真测试,观察数码管的显示状 态和按键开关的对应关系。 4、用keil51软件编写程序,并生成HEX文件。 5、根据绘制“矩阵键盘扫描”电路原理图,搭建相关硬件电路。 6、用通用编程器或ISP下载HEX程序到MCU。 7、检查验证结果。 六、实验具体内容 使用单片机的P1口与矩阵式键盘连接时,可以将P1口低4位的4条端口线定义为行线,P1口高4位的4条端口线定义为列线,形成4*4键盘,可以配置16个按键,将单片机P2口与七段数码管连接,当按下矩阵键盘任意键时,数码管显示该键所在的键号。 1、电路图

数据结构实验报告稀疏矩阵运算

教学单位计算机科学与技术 学生学号 5 数据结构 课程设计报告书 题目稀疏矩阵运算器 学生豹 专业名称软件工程 指导教师志敏

实验目的:深入研究数组的存储表示和实现技术,熟悉广义表存储结构的特性。 需要分析:稀疏矩阵是指那些多数元素为零的矩阵。利用“稀疏”特点进行存储和计算可以大大节省存储空间,提高计算效率。实现一个能进行稀疏矩阵基本运算的运算器。要求以带“行逻辑信息”的三元组顺序表存储稀疏矩阵,实现两矩阵的相加、相减、相乘等运算。输入以三元组表示,输出以通常的阵列形式列出。 软件平台:Windows 2000,Visual C++ 6.0或WINTC 概要设计:ADT Array { 数据对象: D = {aij | 0≤i≤b1-1, 0 ≤j≤b2-1} 数据关系: R = { ROW, COL } ROW = {| 0≤i≤b1-2, 0≤j≤b2-1} COL = {| 0≤i≤b1-1, 0≤ j≤b2-2} 基本操作: CreateSMatrix(&M); //操作结果:创建稀疏矩阵M. Print SMatrix(M); //初始化条件: 稀疏矩阵M存在. //操作结果:输出稀疏矩阵M. AddSMatrix(M,N,&Q); //初始化条件: 稀疏矩阵M与N的行数和列数对应相等. //操作结果:求稀疏矩阵的和Q=M+N. SubSMatrix(M,N,&Q); //初始化条件: 稀疏矩阵M与N的行数和列数对应相等. //操作结果:求稀疏矩阵的差Q=M-N. MultSMatrix(M,N,&Q); //初始化条件: 稀疏矩阵M的列数等于N的行数. //操作结果:求稀疏矩阵的乘积Q=M*N. } ADT Array

数据结构---三元组顺序表------稀疏矩阵的转置和快速转置

数据结构---三元组顺序表------稀疏矩阵的转置和快速转置 #include<> #include<> #include<> #define TURE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define INEEASLIBE -1 #define OVERFLOW -2 #define maxsize 100 typedef int status; typedef int elemtype; typedef struct { int i,j; elemtype e; }elem; typedef struct { elem data[maxsize+1]; int mu,mn,tu; }matrix; status showmatrix(matrix M) { int i,j,k=1; for(i=1;i<=;i++) { for(j=1;j<=;j++) { if(i==[k].i&&j==[k].j) { printf("%d\t",[k].e); k++; } else printf("0\t");

} printf("\n"); } return OK; } status trans(matrix M,matrix &T) { int i=1,j=1,k=1; =; =; =; while(i<= { for(;k<=;k++) if[k].j==i) { [j].e=[k].e; [j].i=[k].j; [j].j=[k].i; j++; } k=1; i++; } return OK; } status initmatrix(matrix &M) { printf("请输入该矩阵行数mu和列数mn和非零元个数tu\nmu="); scanf("%d",&; getchar(); printf("\nmn="); scanf("%d",&; getchar(); printf("\ntu="); scanf("%d",&; getchar(); if>maxsize) { printf("非零元个数已超过定义的值\n请重新输入tu="); scanf("%d",&; getchar();

矩阵乘法的并行化 实验报告

北京科技大学计算机与通信工程学院 实验报告 实验名称: 学生姓名: 专业: 班级: 学号: 指导教师: 实验成绩:________________________________ 实验地点: 实验时间:2015年05月

一、实验目的与实验要求 1、实验目的 1对比矩阵乘法的串行和并行算法,查看运行时间,得出相应的结论;2观察并行算法不同进程数运行结果,分析得出结论; 2、实验要求 1编写矩阵乘法的串行程序,多次运行得到结果汇总; 2编写基于MPI,分别实现矩阵乘法的并行化。对实现的并行程序进行正确性测试和性能测试,并对测试结果进行分析。 二、实验设备(环境)及要求 《VS2013》C++语言 MPICH2 三、实验内容与步骤 实验1,矩阵乘法的串行实验 (1)实验内容 编写串行程序,运行汇总结果。 (2)主要步骤 按照正常的矩阵乘法计算方法,在《VS2013》上编写矩阵乘法的串行程序,编译后多次运行,得到结果汇总。

实验2矩阵乘法的并行化实验 3个总进程

5个总进程 7个总进程

9个进程 16个进程 四:实验结果与分析(一)矩阵乘法并行化

矩阵并行化算法分析: 并行策略:1间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程1:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此O(n)=(n); 2间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程3:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此T(n)=O(n);

数据结构稀疏矩阵基本运算实验报告

课程设计 课程:数据结构 题目:稀疏矩阵4 三元组单链表结构体(行数、列数、头) 矩阵运算重载运算符优 班级: 姓名: 学号: 设计时间:2010年1月17日——2010年5月XX日 成绩: 指导教师:楼建华

一、题目 二、概要设计 1.存储结构 typedef struct{ int row,col;//行,列 datatype v;//非0数值 }Node; typedef struct{ Node data[max];//稀疏矩阵 int m,n,t;//m 行,n 列,t 非0数个数 … … 2.基本操作 ⑴istream& operator >>(istream& input,Matrix *A)//输入 ⑵ostream& operator <<(ostream& output,Matrix *A){//输出 ⑶Matrix operator ~(Matrix a,Matrix b)//转置 ⑷Matrix operator +(Matrix a,Matrix b)//加法 ⑸Matrix operator -(Matrix a,Matrix b)//减法 ⑹Matrix operator *(Matrix a,Matrix b)//乘法 ⑺Matrix operator !(Matrix a,Matrix b)//求逆 三、详细设计 (1)存储要点 position[col]=position[col-1]+num[col-1]; 三元组表(row ,col ,v) 稀疏矩阵((行数m ,列数n ,非零元素个数t ),三元组,...,三元组) 1 2 3 4 max-1

数据结构三元组表存储结构实现稀疏矩阵应用课程方案实验报告

高二《数系的扩充与复数的概念》说课稿 高二《数系的扩充与复数的概念》说稿 《数系的扩充与复数的概念》是北师大版普通高中程标准数学实验教材选修1-2第四第一节的内容,大纲时安排一时。主要包括数系概念的发展简介,数系的扩充,复数相关概念、分类、相等条,代数表示和几何意义。 复数的引入是中学阶段数系的又一次扩充,引入复数以后,这不仅可以使学生对于数的概念有一个初步的、完整的认识,也为进一步学习数学打下了基础。通过本节学习,要使学生在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用。 在学习了这节以后,学生首先能知道数系是怎么扩充的,并且这种扩充是必要的,虚数单位公开《数系的扩充与复数的概念》说稿在数系扩充过程中的作用,而复数就是一个实数加上一个实数乘以公开《数系的扩充与复数的概念》说稿。学生能清楚的知道一个复数什么时候是虚数,什么时候是纯虚数,两个复数相等的充要条是什么。让学生在经历一系列的活动后,完成对知识的探索,变被动地“接受问题”为主动地“发现问题”,加强学生对知识应用的灵活性,深化学生对复数的认识,从而提高分析问题和解决问题的能力。 教学目标为:1.在问题情境中了解数系的扩充过程。体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的

作用,感受人类理性思维的作用以及数与现实世界的联系。. 2.理解复数的有关概念、数系间的关系、和几何表示。 3.掌握复数的分类和复数相等的条。 4体会类比、转化、数形结合思想在数学发现和解决数学问题中的作用。 教学重点为认识i的意义、复数的有关概念以及复数相等的条. 教学难点为复数相关概念的理解和复数的几何意义的理解 复数的概念是整个复数内容的基础,复数的有关概念都是围绕复数的代数表示形式展开的。虚数单位、实部、虚部的命名,复数想等的充要条,以及虚数、纯虚数等概念的理解,都应促进对复数实质的理解,即复数实际上是一有序实数对。类比实数可以用数轴表示,把复数在直角坐标系中表示出,就得到了复数的几何表示,这就把数和形有机的结合了起。 在学习本节的过程中,复数的概念如果单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,采用讲解已学过的数集的扩充的历史,让学生体会到数系的扩充是生产实践的需要,也是数学学科自身发展的需要;介绍数的概念的发展过程,使学生对数的形成、发展的历史和规律,各种数集中之间的关系有着比较清晰、完整的认识从而让学生积极主动地建构虚数的概念、复数的概念、复数的分类。由于学生对数系扩充的知识不熟悉,对了解实数系扩充到复数系的过程有困难,也就是对虚数单位公开《数系的扩充与复数的概念》说稿的引入难以理解。另外虚数单位公开《数系的扩充与复数的概念》说

稀疏矩阵的运算(完美版)

专业课程设计I报告(2011 / 2012 学年第二学期) 题目稀疏矩阵的转换 专业软件工程 学生姓名张鹏宇 班级学号 09003018 指导教师张卫丰 指导单位计算机学院软件工程系 日期 2012年6月18号

指导教师成绩评定表

附件: 稀疏矩阵的转换 一、课题内容和要求 1.问题描述 设计程序用十字链表实现稀疏矩阵的加、减、乘、转置。 2.需求分析 (1)设计函数建立稀疏矩阵,初始化值。 (2)设计函数输出稀疏矩阵的值。 (3)构造函数进行两个稀疏矩阵相加,输出最终的稀疏矩阵。 (4)构造函数进行两个稀疏矩阵相减,输出最终的稀疏矩阵。 (5)构造函数进行两个稀疏矩阵的相乘,输出最终的稀疏矩阵。 (6)构造函数进行稀疏矩阵的转置,并输出结果。 (7)退出系统。 二、设计思路分析 (1)设计函数建立稀疏矩阵,初始化值。 (2)设计函数输出稀疏矩阵的值。 (3)构造函数进行两个稀疏矩阵相加,输出最终的稀疏矩阵。 (4)构造函数进行两个稀疏矩阵相减,输出最终的稀疏矩阵。 (5)构造函数进行两个稀疏矩阵的相乘,输出最终的稀疏矩阵。 (6)构造函数进行稀疏矩阵的转置,并输出结果。 (7)退出系统。 三、概要设计 为了实现以上功能,可以从3个方面着手设计。 1.主界面设计 为了实现对稀疏矩阵的多种算法功能的管理,首先设计一个含有多个菜单项的主

控菜单子程序以链接系统的各项子功能,方便用户交互式使用本系统。本系统主控菜单运行界面如图所示。 2.存储结构设计 本系统采用单链表结构存储稀疏矩阵的具体信息。其中:全部结点的信息用头结点为指针数组的单链表存储。 3.系统功能设计 本系统除了要完成稀疏矩阵的初始化功能外还设置了4个子功能菜单。稀疏矩阵的初始化由函数i typedef int ElemType 实现。建立稀疏矩阵用void Creat()实现,依据读入的行数和列数以及非零元素的个数,分别设定每个非零元素的信息。4个子功能的设计描述如下。 (1)稀疏矩阵的加法: 此功能由函数void Xiangjia( )实现,当用户选择该功能,系统即提示用户初始化要进行加法的两个矩阵的信息。然后进行加法,最后输出结果。 (2)稀疏矩阵的乘法: 此功能由函数void Xiangcheng( )实现。当用户选择该功能,系统提示输

实现稀疏矩阵(采用三元组表示)的基本运算实验分析报告

实现稀疏矩阵(采用三元组表示)的基本运算实验报告

————————————————————————————————作者:————————————————————————————————日期: 2

实现稀疏矩阵(采用三元组表示)的基本运算实验报告 一实验题目: 实现稀疏矩阵(采用三元组表示)的基本运算二实验要求: (1)生成如下两个稀疏矩阵的三元组 a 和 b;(上机实验指导 P92 )(2)输出 a 转置矩阵的三元组; (3)输出a + b 的三元组; (4)输出 a * b 的三元组; 三实验内容: 3.1 稀疏矩阵的抽象数据类型: ADT SparseMatrix { 数据对象:D={aij| i = 1,2,3,….,m; j =1,2,3,……,n; ai,j∈ElemSet,m和n分别称为矩阵的行数和列数 } 数据关系 : R={ Row , Col } Row ={ | 1≤ i≤m , 1≤ j≤ n-1} Col ={| 1≤i≤m-1,1≤j≤n} 基本操作: CreateSMatrix(&M) 操作结果:创建稀疏矩阵M PrintSMatrix(M) 初始条件:稀疏矩阵M已经存在 操作结果:打印矩阵M DestroySMatrix(&M) 初始条件:稀疏矩阵M已经存在 操作结果:销毁矩阵M CopySMatrix(M, &T) 初始条件:稀疏矩阵M已经存在 操作结果:复制矩阵M到T AddSMatrix(M, N, &Q) 初始条件:稀疏矩阵M、N已经存在 操作结果:求矩阵的和Q=M+N SubSMatrix(M, N, &Q) 3

矩阵连乘实验报告

华北电力大学科技学院 实验报告 实验名称矩阵连乘问题 课程名称计算机算法设计与分析 专业班级:软件12K1 学生姓名:吴旭 学号:121909020124 成绩: 指导老师:刘老师实验日期:2014.11.14

一、实验内容 矩阵连乘问题,给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,3…,n-1。考察这n个矩阵的连乘A1,A2,…,A n。 二、主要思想 由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已经完全加括号,则可依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归的定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号 的矩阵连乘积B和C的乘积并加括号,即A=(BC)。 运用动态规划法解矩阵连乘积的最优计算次序问题。按以下几个步骤进行 1、分析最优解的结构 设计求解具体问题的动态规划算法的第1步是刻画该问题的最优解的结构特征。为方便起见,将矩阵连乘积简记为A[i:j]。考察计算A[1:n]的最优计算次序。设这个计算次序矩阵在A k和A k+1之间将矩阵链断开,1n,则其相应的完全加括号方式为((A1…A k)(A k+1…A n))。依此次序,先计算A[1:k]和A[k+1:n],然后将计

算结果相乘得到A[1:n]。 2、建立递归关系 设计动态规划算法的第二步是递归定义最优值。对于矩阵连乘积的最优计算次序问题,设计算A[i:j],1i n,所需的最少数乘次数为m[i][j],原问题的最优值为m[1][n]。 当i=j时,A[i:j]=A i为单一矩阵,无需计算,因此m[i][i]=0,i=1,2,…n。 当i

稀疏矩阵快速转置

题目:假设稀疏矩阵A采用三元组表表示,编写程序实现该矩阵的快速转置 要求:输入一个稀疏矩阵A,由程序将其转换成三元组表存储;转置后的三元组表,由程序将其转换成矩阵形式后输出。 一、需求分析 1.用户可以根据自己的需求输入任意一个稀疏矩阵,通过程序将其转换成三元组存储方式; 2.并且能够完成矩阵的转置功能,要求需要使用的方法是快速转置的方法。 3.最后要够显示原矩阵和转置后的矩阵让用户能进行比较。 4.程序执行的命令包括: (1)构造稀疏矩阵M (2)求转转矩阵T (3)显示(打印)矩阵 二、概要设计 ⒈为实现上述算法,需要线性表的抽象数据类型: ADT SparseMatrix { 数据对象:D={a ij :|a ij ∈TermSet,i=1…m,m≥0,j=1…n,n≥0 m和n分别成为矩阵的行数和列数 } 数据关系:R={Row,Col} Row ={|1≤i≤m,1≤j≤n-1 } Col ={|1≤i≤m-1,1≤j≤n } 基本操作: CreateSMtrix(& M) 操作结果:创建稀疏矩阵M。 DestroySMaix(&M) 初始条件:稀疏矩阵M已存在。 操作结果:销毁稀疏矩阵M。 PrintSMatrix(L) 初始条件:稀疏矩阵M已经存在。 操作结果:输出稀疏矩阵M。 CopySMatrix(M,&T) 初始条件:稀疏矩阵M已经存在。 操作结果:由稀疏矩阵M复制得到T。 TransposeSMatrix(M,&T) 初始条件:稀疏矩阵M已经存在。 操作结果:求稀疏矩阵M的转转矩阵T。 }ADT SparseMatrix 2. 本程序有三个模块: ⑴主程序模块 main(){ 初始化; { 接受命令; 显示结果; }

MATLAB矩阵实验报告

MATLAB 程序设计实验 班级:电信1104班 姓名:龙刚 学号:1404110427 实验内容:了解MA TLAB 基本使用方法和矩阵的操作 一.实验目的 1.了解MA TLAB 的基本使用方法。 2.掌握MA TLAB 数据对象的特点和运算规则。 3.掌握MA TLAB 中建立矩阵的方法和矩阵的处理方法。 二.实验内容 1. 浏览MATLAB 的start 菜单,了解所安装的模块和功能。 2. 建立自己的工作目录,使用MA TLAB 将其设置为当前工作目录。使用path 命令和工作区浏览两种方法。 3. 使用Help 帮助功能,查询inv 、plot 、max 、round 等函数的用法和功能。使用help 命令和help 菜单。 4. 建立一组变量,如x=0:pi/10:2*pi ,y=sin(x),在命令窗口显示这些变量;在变量窗口打开这些变量,观察其值并使用绘图菜单绘制y 。 5. 分多行输入一个MA TLAB 命令。 6. 求表达式的值 ()6210.3424510w -=+? ()22tan b c a e abc x b c a ππ++ -+=++,a=3.5,b=5,c=-9.8 ()220.5ln 1t z e t t =++,21350.65i t -??=??-?? 7.已知 1540783617A --????=??????,831253320B -????=????-?? 求 A+6B ,A 2-B+I A*B ,A.*B ,B*A A/B ,B/A [A,B],[A([1,3], :); B^2]

8.已知 23100.7780414565532503269.5454 3.14A -????-??=????-?? 输出A 在[10,25]范围内的全部元素 取出A 的前三行构成矩阵B ,前两列构成矩阵C ,右下角3x2子矩阵构成矩阵D ,B 与C 的乘积构成矩阵E 分别求表达式E

稀疏矩阵(实验报告)

《数据结构课程设计》实验报告 一、实验目的: 理解稀疏矩阵的加法运算,掌握稀疏矩阵的存储方法,即顺序存储的方式,利用顺序存储的特点——每一个元素都有一个直接前驱和一个直接后继,完成相关的操作。 二、内容与设计思想: 1、设计思想 1)主界面的设计 定义两个矩阵a= 0 0 3 0 0 0 0 0 b= 0 2 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 定义两个数组A和B,用于存储矩阵a和矩阵b的值;定义一个数组C,用于存放数组A 和数组B相加后的结果。 2)实现方式 稀疏矩阵的存储比较浪费空间,所以我们可以定义两个数组A、B,采用压缩存储的方式来对上面的两个矩阵进行存储。具体的方法是,将非零元素的值和它所在的行号、列号作为一个结点存放在一起,这就唯一确定一个非零元素的三元组(i、j、v)。将表示稀疏矩阵的非零元素的三元组按行优先的顺序排列,则得到一个其结点均为三元组的线性表。即:以一维数组顺序存放非零元素的行号、列号和数值,行号-1作为结束标志。例如,上面的矩阵a,利用数组A存储后内容为: A[0]=0,A[1]=2, A[2]=3, A[3]=1, A[4]=6, A[5]=5, A[6]=3, A[7]=4, A[8]=7, A[9]=5, A[10]=1, A[11]=9, A[12]=-1 同理,用数组B存储矩阵b的值。 2、主要数据结构 稀疏矩阵的转存算法: void CreateMatrix(int A[m][n],int B[50]) { int i,j,k=0; for(i=0;i

相关主题