搜档网
当前位置:搜档网 › 基于MATLAB的OFDM系统设计与仿真

基于MATLAB的OFDM系统设计与仿真

基于MATLAB的OFDM系统设计与仿真
基于MATLAB的OFDM系统设计与仿真

基于MATLAB的OFDM系统设计与仿真

摘要:随着通信产业的逐步发展,4G时代已经来临。作为第四代移动通信技术的核心,OFDM得到了前所未有的关注。它具有频谱利用率高、抗干扰能力强等优点。本文首先简要介绍了OFDM的发展状况以及优缺点,然后详细分析了OFDM的工作原理及其相应的各个模块,并介绍了它的关键技术。最后,分别利用M函数和Simulink做了OFDM 系统的设计与仿真,并对误码率进行了分析,得到了BER性能曲线。

关键词:正交频分复用;MATLAB;仿真;BER

Design and Simulation of OFDM System Based on MATLAB

Abstract:With the gradual development of the communication industry, 4G era has come. As the key technology of the fourth generation mobile communications,OFDM has received unprecedented attention. It has a high spectrum utilization, strong ability of anti-interference and so on. This article describes the development of OFDM and it’s advantages and disadvantages briefly, analysis the working principles of OFDM and each module detailed,and describes it’s key tec hnology.At last, design and simulate OFDM system with the M function and Simulink separately, analysis the error rate and obtain BER performance curve .

Keywords: OFDM; MATLAB; Simulation; BER

目录

1 引言 (4)

1.1 OFDM概述 (4)

1.1.1 OFDM技术发展历史 (4)

1.1.2 OFDM技术的优缺点 (5)

2 OFDM基本原理及关键技术 (5)

2.1 OFDM基本原理及系统构成 (5)

2.1.1 OFDM基本原理 (5)

2.1.2 串并转换 (6)

2.1.3 调制与解调 (6)

2.1.4 保护间隔与循环前缀 (8)

2.2 OFDM的关键技术 (10)

2.2.1 信道估计概述 (10)

2.2.2 基于导频的信道估计方法 (10)

2.2.3 信道的插值方法 (11)

3 OFDM的系统设计与仿真 (12)

3.1 MATLAB概述 (12)

3.2 OFDM系统设计与仿真 (12)

3.2.1 随机序列的产生 (12)

3.2.2 串并转换 (14)

3.2.3 QPSK调制 (14)

3.2.4 QPSK调制星座图 (14)

3.2.5 IFFT/FFT运算 (15)

3.2.6 保护间隔和循环前缀 (16)

3.2.7 并串转换 (16)

3.2.8 加入高斯白噪声 (17)

3.2.9 QPSK解调 (17)

3.2.10 接收信号 (18)

3.3 系统误码率的分析 (18)

3.4 基于Simulink的系统仿真 (19)

4 总结 (21)

参考文献 (21)

附录 (22)

1 引言

1.1 OFDM概述

随着移动通信和无线网需求的不断增长,需要越来越高速的无线系统设计,而这其中一个最直接的挑战就是克服无线信道带来的严重的频率选择性衰落。正交频分复用(OFDM)技术可以很好地克服无线信道的频率选择性衰落。由于其简单高效,OFDM已成为实现高速无线通信系统中最核心的技术之一。

OFDM(Orthogonal Frequency Division Multiplexing)是一种特殊的多载波传输方式,由于各子载波之间存在正交性,允许子信道的频谱互相重叠,与常规的频分复用系统相比,OFDM可以最大限度的利用频谱资源,使得频谱利用率提高近一倍。同时它把高速数据通过串并转换,使得每个子载波上的数据符号持续长度相对增加,降低了子信道的信息速率,将频率选择性衰落信道转换为平坦衰落信道,从而具有良好的抗噪声、抗多径干扰的能力,适合在频率选择性衰落信道中进行高速数据的传输。此外,在OFDM 中引入循环前缀,克服了OFDM相邻块之间的干扰(IBI),保持了载波间的正交性,同时循环前缀长度大于信道扩展长度,有效地抑制了码间干扰(ISI)。可以看出,OFDM技术抗多径能力强、频谱利用率高、易于实现的优势,对短波数据通信具有广阔的应用价值,为提高短波通信频谱利用率和传输速率提供了新的解决方案[1]。

1.1.1 OFDM技术发展历史

正交频分复用技术己有近40年的发展历史,其概念最早出现于20世纪50年代中期。20世纪60年代,人们对多载波调制(MCM)技术进行了许多理论上的研究,形成了并行数据传输和频分复用的思想。

20世纪80年代,人们对多载波调制在高速Modem、数字移动通信等领域中的应用进行了较为深入的研究。到了90年代,数字信号处理技术和超大规模集成电路的飞速发展,又为OFDM技术的实现扫除了障碍。此时,OFDM技术终于登上了通信的舞台。

1999年12月,包括Ericsson,Nokia和Wi-LAN在内的7家公司发起了国际OFDM 论坛,致力于策划一个基于OFDM技术的全球性单一标准。现在OFDM论坛的成员已增加到46个会员,其中15个为主要会员。我国的信息产业部也参加了OFDM论坛,可见OFDM在无线通信领域的应用在当时已引起国内通信界的重视[2]。

1.1.2 OFDM技术的优缺点

OFDM技术主要有如下几个优点:

(1)抗衰落能力强

(2)频率利用率高

(3)适合高速数据传输

(4)抗码间干扰能力强

OFDM技术的不足之处包括:

(1)对频偏和相位噪声比较敏感

(2)峰均值比大导致射频放大器功率效率低

2 OFDM基本原理及关键技术

2.1 OFDM基本原理及系统构成

OFDM由大量在频率上等间隔的子载波构成(设共有N个载波),各载波可用同一种数字调制方法,或不同的载波使用不同的调制方法,将高速串行数据分成多路并行的低速数据加以调制,所以OFDM实际上是一种并行调制方案,将符号周期延长N倍,从而提高了抗多径衰落的抵抗能力。在传统的频分复用中,各载波的信号频谱互不重叠,频带利用率较低。在OFDM系统中,各子载波在整个符号周期上是正交的,即加于符号周期上的任何两个载波的乘积等于零,因此各子载波信号频谱可以相互重叠,大大提高了频带利用率。

2.1.1 OFDM基本原理

OFDM技术的基本思想是把一个高速的数据流分解成很多低速的子数据流,以并行的方式在多个子载波上传输,子载波间彼此保持相互正交的关系以消除子载波间数据的干扰,并且每个子载波可以看成一个独立的子信道。由于每个子信道的数据传输速率较低,当信号通过无线频率选择性衰落信道时,虽然整个信号频带内信道是有衰落的,但是每个子信道可以近似看成是平坦的,因此只要通过简单的频域均衡就可以消除频率选择性衰落信道的影响,同时利用IFFT/FFT的周期循环特性,在每个传输符号前加一段循环前缀,可以消除多径信道的影响,防止码间干扰[3]。

2.1.2 串并转换

数据传输的典型形式是串行数据流,符号被连续传输,每一个数据符号的频谱可占据整个可利用的带宽。但在并行数据传输系统中,许多符号被同时传输,减少了那些在串行系统中出现的问题。

在OFDM 系统中,每个传输符号速率的大小大约在几十bps 到几十Kbps 之间,所以必须进行串并变换,将输入串行比特流转换为可以传输的OFDM 符号。由于调制模式可以自适应调节,所以每个子载波的调制模式是可变化的。每个子载波可传输的比特数也是可以变化的,所以串并转换需要分配给每个子载波数据段的长度是不一样的。在接收端执行相反的过程,从各个子载波处来的数据被转换回原始的串行数据。 2.1.3 调制与解调

一个OFDM 符号间之内包含多个经过相移键控(PSK)或者正交幅度调制(QAM)的子载波。其中,N 表示子载波的个数,T 表示OFDM 符号的持续时间(周期),i f 是第i 个

子载波的载波频率,矩形函数()2,1T t t rect ≤=,则从s t t =开始的OFDM 符号可以表示

为:

错误!未找到引用源。 (1)

一旦将要传输的比特分配到各个子载波上,某一种调制模式将它们映射为子载波的幅度和相位,通常采用等效基带信号来描述OFDM 的输出信号

错误!未找到引用源。 (2)

式(2)中,s(t)的实部和虚部分别对应于OFDM 符号的同相和正交分量,在实际系统中可以分别与相应子载波的cos 分量和sin 分量相乘,构成最终的子载波信号和合成的OFDM 符号。

根据式(1),每个OFDM 符号在其周期T 内包括多个非零的子载波。因此其频谱可以看作是周期为T 的矩形脉冲的频谱与一组位于各个子载波频率上的δ函数的卷积。矩形脉冲的频谱幅值为sinc(fT)函数,这种函数的零点出现在频率为1/T 整数倍的位置上。

图1 OFDM 系统中子信道符号的频谱

图1中给出了相互覆盖的各个子信道内经过矩形脉冲得到的符号的sinc 函数频谱。在每个子载波频率的最大值处,所有其它子信道的频谱值恰好为0。由于在对OFDM 符号进行解调的过程中,需要计算这些点上所对应的每个子载波频率的最大值,因此可以从多个相互重叠的子信道符号中提取每一个信道符号,而不会受到其它子信道的干扰。从图1可以看出,OFDM 符号频谱实际上可以满足奈奎斯特准则,即多个子信道频谱之间不存在相互干扰。因此这种一个子载波频谱出现最大值而其它子信道频谱为零的特点可以避免载波间干扰(ICI)[4]

。 2.1.4 IDFT/DFT 变换

对于N 比较大的系统来说,式(2)中的OFDM 复等效基带信号可以采用离散傅立叶逆变换来实现。可以令式(2)中的0t =s ,并且忽略矩形函数,对信号s(t)以T/N 的速率进行抽样,即令,0,1,

1t KT N K N ==-可以得到:

()∑-=???

??==1

2exp N i j k N ik j d N KT s s π()1k 0-≤≤N (3)

可以看到,错误!未找到引用源。等效为对错误!未找到引用源。进行IDFT 运算。同样在接收端,为了恢复出原来的数据符号错误!未找到引用源。,可以对错误!未找到引用源。进行逆变换,即DFT 得到:

??? ??

-=∑-=N ik j s N k k i π2exp d 1

(4)

由此可见,OFDM 系统的调制和解调可以分别由IDFT 和DFT 来代替。通过N 点的IDFT 运算,把频域数据符号j d 变换为时域数据符号错误!未找到引用源。,经过射频载波调制之后,发送到无线信道中,其中每个IDFT 输出的数据符号错误!未找到引用源。是由所有子载波信号经过叠加而生成的,即对连续的多个经过调制的子载波的叠加信号进行抽样得到的[5]。 2.1.4 保护间隔与循环前缀

应用OFDM 的一个重要原因在于它可以有效的对抗多径时延扩展。把输入数据流串并变换到N 个并行的子信道中,使得每一个调制子载波的数据周期可以扩大为原始数据符号周期的N 倍,因此,时延扩展与符号周期的数值比也同样降低N 倍。为了最大限度的消除符号间干扰,还可以在每个OFDM 符号间插入保护间隔(GI),而且该保护间隔长度g T 一般要大于无线信道中的最大时延扩展,这样一个符号的多径分量就不会对下一个符号造成干扰。在这段保护间隔内,可以不插入任何信号,即是一段空闲的传输时段。然而在这种情况下,由于多径传播的影响,则会产生载波间干扰(ICI),即子载波之间的正交性遭到破坏。

为了消除由于多径所造成的ICI ,OFDM 符号需要在其保护间隔内填入循环前缀信号。

由此会带来功率和信息速率的的损失,其中功率损失可以定义为:

???

?

??+=1log 1010FFT g guard T T ν (5) 从式(5)可以看出,当保护间隔占到20%时,功率损失也不会超过1dB 。但是带来的信息速率损失却达20%。但由于插入保护间隔可以消除ISI 和多径所造成的ICI 的影响,因此这个代价是值得的。

图2 插入保护间隔之后的OFDM 系统发射机框图

此时OFDM 的符号周期:

s g FFT T T T =+ (6)

保护间隔的离散长度,即采样点个数为:

??

?

???≥s g T N L max τ (7)

这样根据图2,包含保护间隔、功率归一化的OFDM 的抽样序列{}v x 为:

1,,,121

--==

∑-=N L v e

s N

x g N

nv

j N n n v π (8)

接收信号y(t)经过A/D 变换后得到接受序列{}v y ,1,,--=N L v g ,是对y(t)按T/N 的抽样速率得到数字抽样。ISI 只会对接收序列的前g L 个样点形成干扰,因此将前g L 个样点去掉,就可完全消除ISI 的影响。对去掉保护间隔的序列{}v y ,1,,0-=N v 进行DFT 变换,可得到DFT 输出的多载波解调序列{}1,,0,-=N n R n ,得到N 个复数点:

1,,0,121

-==

--=∑N n e

y N

R N

nv

j N v v n π (9)

通过适当选择子载波个数N ,可以使信道响应平坦,插入保护间隔还有助于保持子载波之间的正交性,因此OFDM 有可能完全消除ISI 和多径带来的ICI 的影响,接收信号的频域表达式为:

1,,0,-=+=N n N S H R n n n n

(10)

其中n H 为第n 个子载波的复衰落系数,n N 代表第n 个信道上的加性高斯白噪声(AWGN ),实部与虚部均服从零均值高斯分布,且相互独立。噪声方差为:

{}

1,,0,2

2-=E =N n N n σ (11)

2.2 OFDM 的关键技术 1. 时域和频域同步 2. 信道估计

3. 信道编码和交织. 2.2.1 信道估计概述

无线通信系统的性能受到无线信道的制约。发射机和接收机之间的传播路径非常复杂,从简单的视距传播到各种复杂的地貌如建筑物、山脉和森林等影响的传播。此外,无线信道不像有线信道那样固定并可预见,而且无线信道具有很大的随机性,这导致接收信号的幅度、相位和频率失真难以进行分析。这些问题对接收机的设计提出了很大的挑战,因此在接收机中,信道估计器是一个很重要的部分。OFDM 系统中,信道估计器的设计主要有两个问题:一是导频信息的选择,因为无线信道的时变特性,需要接收机不断对信道进行跟踪,所以导频信息必须不断的传送;二是既有较低的复杂度又有良好的导频跟踪能力的信道估计器设计,在确定导频发送方式和信道估计准则条件下,寻找最佳的信道估计器结构。 2.2.2 基于导频的信道估计方法

基于导频信道的方法是在系统中设置专用导频信道来发送导频信号。由于OFDM 系统具有时频二维结构,所以采用导频符号辅助信道估计更加灵活。所谓基于导频符号的信道估计是指在发送端的信号中的某些位置插入接收端己知的符号或序列,接收端利用这些信号或序列受传输信道衰落影响的程度,再根据某些算法来估计信道的衰落性能,当然也可以用MMSE (最小均方误差)和LS (最小平方)算法,这一技术叫作导频信号辅助(PSAM)。在各种衰落估计技术中,PSAM 是一种有效的技术。在单载波系统中,导频符号或序列只能在时间方向上插入,在接收端提取导频信号估计信道的冲击响应。但是在多载波系统中,导频信号可以在时间和频率两个方向上插入,在接收端可提取导频信号估计信道的传递函数。只要导频信号在时间和频率方向上间隔对于信道带

宽足够小,就可以采用二维内插滤波的方法来估计传递函数,当然也可以采用分离的一维估计。

考虑到实现的复杂度,信道估计准则选用LS 估计准则。 2.2.3 信道的插值方法

插值方法有常值内插、线性内插和DFT 插值。常值内插一般用在块状导频结构中,是比较简单的插值方法,本文接下来就来讨论LS 算法下不同插值方式下对信道的估计。

首先线性内插是最简单也是最传统的内插方法之一,它利用两个导频信号来进行内插估计。

时间方向的线性内插的公式为:

∈?+??+??-=+?=k m k H n

m k H n n m k H l k H p P T

p p T T ),1,(),()1()

,(),( (12) 其中10-?≤≤T n , T T m l m ?+≤≤?)1(。同理,可以得到频率方向的一阶线性内插的公式为:

∈??+?+??-

=+?=k l p H q l p H q l q p H l k H T P p

T p p p ),,1(),()1(),(),( (13)

其次是DFT 插值,由于信道冲击响应与信道传输函数是傅氏变换对,内插可以利用DFT 的性质。但是DFT 插值一般用在基于梳状导频的结构中设信道冲击响应为

)0([h h =,)1(h ,…)1(-L h ,0,0…01]?N 。

信道的传输函数为:

∑∑-=∏

--=∏

-=

=

1

21

2)(1

)(1

)(L n mn N

j

N n mn N

j

e n h N

e n h N

m H ,1,......1,0-=N m (14)

取整数L M ≥,且N 是M 的整数倍,对信道传输函数在频率方向以N/M 为间隔进行抽取,得到其中的元素是:

Pn N

j

N n n M

N

P N j

N n e n h N

e

n h N

M N p H ∏

--=∏--=∑∑=

=

21

21

0)(1

)(1)(

∑-=∏

-=10

2)(1

M n pn M

j

e n h N

1,.....1,0-=M p (15)

可以看出,由频率的M个抽样值可以恢复信道冲击响应,再进行N点的DFT就可以得到所有子信道的传输函数值。

至于常值插入比较简单就不再赘述。

3 OFDM的系统设计与仿真

3.1 MATLAB概述

MATLAB是Mathworks公司推出的一套高性能数值计算软件。MATLAB是矩阵实验室(Martix Laboratory)之意。MATLAB除具备卓越的数值计算能力外,它还提供了专业水平的符号计算、文字处理、可视化建模仿真和实时控制等功能。MATLAB的基本数据单位是矩阵,它的指令表达方式与数学、工程中常用的形式十分相似,因此用MATLAB来解决问题要比C、FORTRAN等语言完成相同的事情简捷得多[6]。

MATLAB在数学计算以外的其他科学计算与工程领域的应用也是越来越广,并且有着更广阔的应用前景和无穷无尽的潜能。它可以将使用者从繁琐的底层编程中解放出来,这样无疑会提高工作效率。MATLAB的一大特点是提供了很多专用的工具箱和模块库,例如通信工具箱和模块库、数字信号处理工具箱和模块库、控制工具箱和模块库等。MATLAB在这些工具箱和模块库中提供了很多常用的函数和模块,使得仿真更容易实现。目前,MATLAB的功能越来越强大,不断适应新的要求提出新的解决方法。可以预见,MATLAB在科学计算、自动控制、科学绘图、通信仿真等领域将继续保持其独一无二的地位[7]。

3.2 OFDM系统设计与仿真

3.2.1 随机序列的产生

假设仿真参数为:子载波个数为64,IFFT/FFT的长度为64,调制方式选用QPSK 调制。为了最大限度的减少插入保护间隔带来的信噪比损失,希望OFDM周期长度远远大于保护间隔长度,但是OFDM符号周期越大,系统中包括的子载波数越多,使子载波间隔相应减少,系统的复杂度增加,而且还加大了系统的峰值平均功率比,同时使系统对频率偏差更加敏感。因此在实际应用中,一般选择符号周期长度是保护间隔长度的5倍,这样由于插入保护比特所造成的信噪比损失只有1dB左右。所以保护间隔的长度为有效符号周期的1/4,即为IFFT/FFT长度的1/4,故设循环前缀的长度为16,每帧含有2个OFDM符号,信噪比为10dB。

OFDM 系统的MATLAB 仿真流程如图3。

图3 OFDM 系统仿真框图

设para 表示并行传输的信道个数,Ns 表示每一帧所含有的OFDM 符号个数,ml 为调制电平数。根据系统参数知道para=64,Ns=2。由于QPSK 利用载波四种不同的相位来表征数字信息,而每一种载波相位代表2比特信息,所以ml=2。由此可知64个并行传输信道要传送4个帧的OFDM 符号,而每一帧含有2个OFDM 符号,每个符号又含有2比特的信息量,故总的信息量为三者的乘积。通过式子para*Ns*ml 可以计算得出串行序列的长度为256。

序列的波形如图4。

图4 发送端随机序列

3.2.2 串并转换

串并转换的实现方法很多,在MATLAB里,reshape用来把指定的矩阵改变形状,但是元素个数不变。在本程序中采用reshape函数来实现串并转换。系统参数中,并行信道的个数为64,信息量为256比特。因此将序列转换成64行4列的矩阵,函数设置为reshape(Signal,64,4),Signal表示发送端的串行序列。前64bit的数据变为第一列,随后的64bit变为第二列,以此类推,转换之后得到的并行数据为64行4列的矩阵,用paradata来表示。

3.2.3 QPSK调制

本文中采用的是B方式时的QPSK的调制方式。在进行调制之前,需要将串并转换得来的并行数据信号paradata分成两路,I路和Q路的数据都为32行2列的矩阵。I路和Q路的矩阵通过自定义函数qpskmod()的处理后,数据1保持不变,数据0则变为-1。处理后的矩阵为ich与qch。

2,生成新矩阵ich1和qch1,将矩阵组合起来矩阵ich和qch分别再乘以系数2

将频域数据变为时域数据完成调制。

通过将上述的发送段的并行数据进行调制后得到时域的数据为qpsk_x。调制后的波形如图5所示。

图5 QPSK调制后的波形

3.2.4 QPSK调制星座图

为了能够很好的观察到qpsk的调制,在程序中将qpsk调制的星座图画了出来。

程序运行后得到的图形为图6。

图6 调制后的星座图

3.2.5 IFFT/FFT运算

在MATLAB软件里可以使用函数fft()和ifft()来对数据进行FFT/IFFT运算,可以省去很多复杂的运算。运算后的波形如图7所示。

图7 IFFT变换后的波形

3.2.6 保护间隔和循环前缀

在实际应用中通过引入循环前缀形成保护间隔(GI),从而有效地对抗由于多径时延带来的码间干扰,方法是在时域内把OFDM符号后面部分插入到该符号的开始部分,形成循环前缀。保护间隔的长度应该大于多径时延扩展的最大值。在OFDM符号中加入保护间隔和循环前缀的示意图如图8。

将通过IFFT运算得到的数据结果进行实虚、部分离,得到的结果为ich2与qch2。

图8 加入保护间隔的OFDM符号

在MATLAB里采用一些特殊运算符号和矩阵就可实现将每个符号的后g T时刻的采样点复制到OFDM符号的前面。冒号在MATLAB里是一种特殊的运算符号,ich2(fl-gl+1:fl,:)表示将矩阵ich2中的第(fl-gl+1)行到最后一行输出出来,再将输出的数据加到原来的矩阵上形成新的矩阵ich3,即完成了插入保护间隔和循环前缀的加入,同理虚部的实现也是一样的。

具体实现为:

ich3=[ich2(fl-gl+1:fl,:);ich2];

qch3=[qch2(fl-gl+1:fl,:);qch2];

3.2.7 并串转换

这一过程是串并转换的逆过程,将N个子载波的数据传送到一个载波信道中去,将并行数据转换为串行数据序列进行传输。

并串转换分别对实部和虚部进行,程序中依然采用reshape()函数来进行变换。具体实现为:

ich4=reshape(ich3,1,(fl+gl)*Ns);

qch4=reshape(qch3,1,(fl+gl)*Ns);

3.2.8 加入高斯白噪声

白噪声是根据噪声的功率谱密度是否均匀来定义的,而高斯噪声则是根据它的概率密度函数呈正态分布来定义的。在通信系统的理论分析中,特别是在分析、计算系统抗噪声性能时,经常假定系统中信道噪声为高斯型白噪声。其原因在于,高斯型白噪声可用具体的数学表达式表述。

在MATLAB软件里产生高斯噪声的函数一般有两个,WGN和AWGN。

本程序正是采用的ReData=awgn(TrData,SNR,’measured’)来给发射数据TrData 加入高斯噪声。加入噪声后波形如图9所示。

图9 加入噪声后的波形

3.2.9 QPSK解调

在进行解调之前,信号要完成去掉保护间隔和进行FFT运算的任务。去掉保护间隔也就可以去掉符号间的干扰。

3.2.10 接收信号

完成解调之后下面就是进行解调信号的判决得到接收信号。程序中将接收端信号的波形输了出来,如图10。通过将图中发送数据和接收到的数据进行对比发现,经过OFDM 系统的传输后,信号的误码率为0,对抗码间干扰和时延扩展有很好的效果。实际OFDM 系统中,子载波的数目较大时,系统的误码率也是非常低的。

图10 接收端信号的波形

3.3 系统误码率的分析

通过比较发送端和接收端的信号是否相同,用bit_error_count来计算错误的个数,total_bits表示总的个数,则误码率bite_error_rate等于两者之比。系统的仿真参数为:64个子载波,IFFT/FFT长度为64,采用QPSK调制,循环前缀的长度为16,每帧含有2个OFDM符号,没有采用前向纠错码,信噪比范围为0~10dB,误码率波形如图11所示。

图11 BER性能曲线

通过仿真可以看出,OFDM在高斯信道具有比较良好的性能,信噪比在比较大的时候,误码率比较低。

3.4 基于Simulink的系统仿真

1998年7月,经过多次修改,IEEE802.11标准组决定选择OFDM作为在无限局域网〔WLAN)上5GHz频段的物理层接入方案(IEEE802.11a),目标是提供6Mb/s到54Mb/s 数据速率,这是OFDM第一次被用于分组业务通信当中。此后,ETSI,BRAN及MMAC 也纷纷采用OFDM作为其物理层标准。

在Simulink中有一个自带的802.11a的演示模型,如图12所示。

开始运行仿真后,可以看到参数的变化,如图13所示。

图13 显示波形

从图13中可以看到未均衡与均衡后的接受信号,Rx信号功率谱,均衡后的功率,

SNR,比特速率以及BER等。

基于matlab实现OFDM的编码.

clc; clear all; close all; fprintf('OFDM系统仿真\n'); carrier_count=input('输入系统仿真的子载波数: \n');%子载波数128,64,32,16 symbols_per_carrier=30;%每子载波含符号数 bits_per_symbol=4;%每符号含比特数,16QAM调制 IFFT_bin_length=1024;%FFT点数 PrefixRatio=1/4;%保护间隔与OFDM数据的比例1/6~1/4 GI=PrefixRatio*IFFT_bin_length ;%每一个OFDM符号添加的循环前缀长度为1/4*IFFT_bin_length ,即256 beta=1/32;%窗函数滚降系数 GIP=beta*(IFFT_bin_length+GI);%循环后缀的长度40 SNR=10; %信噪比dB %================信号产生=================================== baseband_out_length=carrier_count*symbols_per_carrier*bits_per_symbol;%所输入的比特数目 carriers=(1:carrier_count)+(floor(IFFT_bin_length/4)-floor(carrier_count/2));%共轭对称子载波映射复数数据对应的IFFT点坐标 conjugate_carriers = IFFT_bin_length - carriers + 2;%共轭对称子载波映射共轭复数对应的IFFT点坐标 rand( 'twister',0); %每次产生不相同得伪随机序列 baseband_out=round(rand(1,baseband_out_length));%产生待调制的二进制比特流figure(1); stem(baseband_out(1:50)); title('二进制比特流') axis([0, 50, 0, 1]); %==============16QAM调制==================================== complex_carrier_matrix=qam16(baseband_out);%列向量 complex_carrier_matrix=reshape(complex_carrier_matrix',carrier_count,symbols_per

OFDM技术仿真(MATLAB代码)

第一章绪论 1.1简述 OFDM是一种特殊的多载波传输方案,它可以被看作是一种调制技术,也可以被当作一种复用技术。多载波传输把数据流分解成若干子比特流,这样每个子数据流将具有低得多的比特速率,用这样的低比特率形成的低速率多状态符号再去调制相应的子载波,就构成多个低速率符号并行发送的传输系统。正交频分复用是对多载波调制(MCM,Multi-Carrier Modulation)的一种改进。它的特点是各子载波相互正交,所以扩频调制后的频谱可以相互重叠,不但减小了子载波间的干扰,还大大提高了频谱利用率。 符号间干扰是多径衰落信道宽带传输的主要问题,多载波调制技术包括正交频分复用(OFDM)是解决这一难题中最具前景的方法和技术。利用OFDM技术和IFFT方式的数字实现更适宜于多径影响较为显著的环境,如高速WLAN 和数字视频广播DVB等。OFDM作为一种高效传输技术备受关注,并已成为第4代移动通信的核心技术。如果进行OFDM系统的研究,建立一个完整的OFDM 系统是必要的。本文在简要介绍了OFDM 基本原理后,基于MATLAB构建了一个完整的OFDM动态仿真系统。 1.2 OFDM基本原理概述 1.2.1 OFDM的产生和发展 OFDM的思想早在20世纪60年代就已经提出,由于使用模拟滤波器实现起来的系统复杂度较高,所以一直没有发展起来。在20世纪70年代,提出用离散傅里叶变换(DFT)实现多载波调制,为OFDM的实用化奠定了理论基础;从此以后,OFDM在移动通信中的应用得到了迅猛的发展。 OFDM系统收发机的典型框图如图1.1所示,发送端将被传输的数字信号转换成子载波幅度和相位的映射,并进行离散傅里叶变换(IDFT)将数据的频谱表达式变换到时域上。IFFT变换与IDFT变换的作用相同,只是有更高的计算效

OFDM系统设计及其Matlab实现

课程设计 。 课程设计名称:嵌入式系统课程设计 专业班级: 07级电信1-1 学生姓名:__王红__________ 学号:_____107_____ 指导教师:李国平,陈涛,金广峰,韩琳 课程设计时间:— |

1 需求分析 运用模拟角度调制系统的分析进行频分复用通信系统设计。从OFDM系统的实现模型可以看出,输入已经过调制的复信号经过串/并变换后,进行IDFT或IFFT和并/串变换,然后插入保护间隔,再经过数/模变换后形成OFDM调制后的信号s(t)。该信号经过信道后,接收到的信号r(t)经过模/数变换,去掉保护间隔,以恢复子载波之间的正交性,再经过串/并变换和DFT或FFT后,恢复出OFDM的调制信号,再经过并/串变换后还原出输入符号 2 概要设计 1.简述OFDM通信系统的基本原理 2.简述OFDM的调制和解调方法 3.概述OFDM系统的优点和缺点 4.基于MATLAB的OFDM系统的实现代码和波形 : 3 运行环境 硬件:Windows XP 软件:MATLAB 4 详细设计 OFDM基本原理 一个完整的OFDM系统原理如图1所示。OFDM的基本思想是将串行数据,并行地调制在多个正交的子载波上,这样可以降低每个子载波的码元速率,增大码元的符号周期,提高系统的抗衰落和干扰能力,同时由于每个子载波的正交性,大大提高了频谱的利用率,所以非常适合移动场合中的高速传输。

在发送端,输入的高比特流通过调制映射产生调制信号,经过串并转换变成N条并行的低速子数据流,每N个并行数据构成一个OFDM符号。插入导频信号后经快速傅里叶反变换(IFFT)对每个OFDM符号的N个数据进行调制,变成时域信号为: [ 式 式1中:m为频域上的离散点;n为时域上的离散点;N为载波数目。为了在接收端有效抑制码间干扰(InterSymbol Interference,ISI),通常要在每一时域OFDM符号前加上保护间隔(Guard Interval,GI)。加保护间隔后的信号可表示为式,最后信号经并/串变换及D/A转换,由发送天线发送出去。 式 接收端将接收的信号进行处理,完成定时同步和载波同步。经A/D转换,串并转换后的信号可表示为:

用MATLAB实现OFDM仿真分析

3.1 计算机仿真 仿真实验是掌握系统性能的一种手段。它通过对仿真模型的实验结果来确定实际系统的性能。从而为新系统的建立或系统的改进提供可靠的参考。通过仿真,可以降低新系统失败的可能性,消除系统中潜在的瓶颈。优化系统的整体性能,衡量方案的可行性。从中选择最后合理的系统配置和参数配置。然后再应用于实际系统中。因此,仿真是科学研究和工程建设中不可缺少的方法。 3.1.1 仿真平台 ●硬件 CPU:Pentium III 600MHz 内存:128M SDRAM ●软件 操作系统:Microsoft Windows2000 版本5.0 仿真软件:The Math Works Inc. Matlab 版本6.5 包括MATLAB 6.5的M文件仿真系统。 Matlab是一种强大的工程计算软件。目前最新的6.x版本 (windows环境)是一种功能强、效率高、便于进行科学和工程计算的交互式软件包。其工具箱中包括:数值分析、矩阵运算、通信、数字信号处理、建模和系统控制等应用工具程序,并集应用程序和图形于一便于使用的集成环境中。在此环境下所解问题的Matlab语言表述形式和其数学表达形式相同,不需要按传统的方法编程。Matlab的特点是编程效率高,用户使用方便,扩充能力强,语句简单,内涵丰富,高效方便的矩阵和数组运算,方便的绘图功能。 3.1.2 基于MATLAB的OFDM系统仿真链路 根据OFDM 基本原理,本文给出利用MATLAB编写OFDM系统的仿真链路流程。串行数据经串并变换后进行QDPSK数字调制,调制后的复信号通过N点IFFT变换,完成多载波调制,使信号能够在N个子载波上并行传输,中间插入10训练序列符号用于信道估计,加入循环前缀后经并串转换、D /A后进入信道,接收端经过N点FFT变换后进行信道估计,将QDPSK解调后的数据并串变换后得到原始信息比特。 本文采用MATLAB语言编写M文件来实现上述系统。M文件包括脚本M文件和函数M文件,M文件的强大功能为MATLAB的可扩展性提供了基础和保障,使MATLAB能不断完善和壮大,成为一个开放的、功能强大的实用工具。M文件通过input命令可以轻松实现用户和程序的交互,通过循环向量化、数组维数预定义等提高M文件执行速度,优化内存管理,此外,还可以通过类似C++语言的面向对象编程方法等等。

无线通信原理 基于matlab的ofdm系统设计与仿真..

基于matlab的ofdm系统设计与仿真

摘要 OFDM即正交频分复用技术,实际上是多载波调制中的一种。其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到相互正交且重叠的多个子载波上同时传输。该技术的应用大幅度提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和窄带噪声,如此良好的性能从而引起了通信界的广泛关注。 本文设计了一个基于IFFT/FFT算法与802.11a标准的OFDM系统,并在计算机上进行了仿真和结果分析。重点在OFDM系统设计与仿真,在这部分详细介绍了系统各个环节所使用的技术对系统性能的影响。在仿真过程中对OFDM信号使用QPSK调制,并在AWGN信道下传输,最后解调后得出误码率。整个过程都是在MATLAB环境下仿真实现,对ODFM系统的仿真结果及性能进行分析,通过仿真得到信噪比与误码率之间的关系,为该系统的具体实现提供了大量有用数据。

第一章 ODMF 系统基本原理 1.1多载波传输系统 多载波传输通过把数据流分解为若干个子比特流,这样每个子数据流将具有较低的比特速率。用这样的低比特率形成的低速率多状态符号去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。在单载波系统中,一次衰落或者干扰就会导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到衰落或者干扰的影响。图1-1中给出了多载波系统的基本结构示意图。 图1-1多载波系统的基本结构 多载波传输技术有许多种提法,比如正交频分复用(OFDM)、离散多音调制(DMT)和多载波调制(MCM),这3种方法在一般情况下可视为一样,但是在OFDM 中,各子载波必须保持相互正交,而在MCM 则不一定。 1.2正交频分复用 OFDM 就是在FDM 的原理的基础上,子载波集采用两两正交的正弦或余弦函数集。函数集{t n ωcos }, {t m ωsin } (n,m=0,1,2…)的正交性是指在区间(T t t +00,)内有正弦函数同理:)0()()(2/0cos *cos 00===≠?? ???=? +m n m n m n T T tdt m t n T t t ωω 其中ωπ2=T (1-1)

2010年本科毕业设计:基于MATLAB的OFDM系统仿真及分析

2010年本科毕业设计:基于MATLAB的OFDM系统仿真及分 析 MATLABOFDM 正交频分复用(OFDM) 是第四代移动通信的核心技术。该文首先简要介绍了OFDM的发展状况及基本原理, 文章对OFDM 系统调制与解调技术进行了解析,得 到了OFDM 符号的一般表达式,给出了OFDM 系统参数设计公式和加窗技术的原理 及基于IFFT/FFT 实现的OFDM 系统模型,阐述了运用IDFT 和DFT 实现OFDM 系统的根源所在,重点研究了理想同步情况下,保护时隙(CP)、加循环前缀前后和不同的信道内插方法在高斯信道和多径瑞利衰落信道下对OFDM系统性能的影响。在给出OFDM系统模型的基础上,用MATLAB语言实现了传输系统中的计算机仿真并给出 参考设计程序。最后给出在不同的信道条件下,研究保护时隙、循环前缀、信道 采用LS估计方法对OFDM系统误码率影响的比较曲线,得出了较理想的结论。 : 正交频分复用;仿真;循环前缀;信道估计 I Title: MATLAB Simulation and Performance Analysis of OFDM System ABSTRACT OFDM is the key technology of 4G in the field of mobile communication. In this

article OFDM basic principle is briefly introduced. This paper analyzes the modulation and demodulation of OFDM system, obtaining a general expression of OFDM mark, and giving the design formulas of system parameters, principle of windowing technique, OFDM system model based on IFFT/FFT, the origin which achieves the OFDM system by using IDFT and DFT. Then, the influence of CP and different channel estimation on the system performance is emphatically analyzed respectively in Gauss and Rayleigh fading channels in the condition of ideal synchronization. Besides, based on the given system model OFDM system is computer simulated with MATLAB language and the referential design procedure is given. Finally, the BER curves of CP and channel estimation are given and compared. The conclusion is satisfactory. KEYWORDS:OFDM; Simulation; CP; Channel estimation II

基于Matlab的OFDM系统仿真

论文题目: 基于MATLAB的OFDM系统仿真 学院: 专业年级: 学号: 姓名: 指导教师、职称: 2010 年 12 月 10 日

基于Matlab的OFDM系统仿真 摘要:正交频分复用(OFDM)是一种多载波宽带数字调制技术。相比一般的数字通信系统,它具有频带利用率高和抗多径干扰能力强等优点,因而适合于高速率的无线通信系统。正交频分复用OFDM是第四代移动通信的核心技术。论文首先简要介绍了OFDM 基本原理。在给出OFDM系统模型的基础上,用MATLAB语言实现了整个系统的计算机仿真并给出参考设计程序。最后给出在不同的信道条件下,对OFDM系统误码率影响的比较曲线,得出了较理想的结论,通过详细分析了了技术的实现原理,用软件对传输的性能进行了仿真模拟并对结果进行了分析。 介绍了OFDM技术的研究意义和背景及发展趋势,还有其主要技术和对其的仿真?具体如下:首先介绍了OFDM的历史背景?发展现状及趋势?研究意义和研究目的及研究方法和OFDM的基本原理?基本模型?OFDM的基本传输技术及其应用,然后介绍了本课题所用的仿真工具软件MATLAB,并对其将仿真的OFDM各个模块包括信道编码?交织?调制方式?快速傅立叶变换及无线信道进行介绍,最后是对于OFDM的流程框图进行分析和在不影响研究其传输性的前提下进行简化,并且对其仿真出来的数据图形进行分析理解? 关键词:OFDM;MATLAB;仿真 一、OFDM的意义及背景 现代通信的发展是爆炸式的。从电报、电话到今天的移动电话、互联网,人们从中享受了前所未有的便利和高效率。从有线到无线是一个飞跃,从完成单一的话音业务到完成视频、音频、图像和数据相结合的综合业务功能更是一个大的飞跃。在今天,人们获得了各种各样的通信服务,例如,固定电话、室外的移动电话的语音通话服务,有线网络的上百兆bit的信息交互。但是通信服务的内容和质量还远不能令人满意,现有几十Kbps传输能力的无线通信系统在承载多媒体应用和大量的数据通信方面力不从心:现有的通信标准未能全球统一,使得存在着跨区的通信障碍;另一方面,从资源角度看,现在使用的通信系统的频谱利用率较低,急需高效的新一代通信系统的进入应用。 目前,3G的通信系统己经进入商用,但是其传输速率最大只有2Mbps,仍然有多个标准,在与互联网融合方面也考虑不多。这些决定了3G通信系统只是一个对现有移动通信系统速度和能力的提高,而不是一个全球统一的无线宽带多媒体通信系统。因此,在全世界范围内,人们对宽带通信正在进行着更广泛深入的研究。 正交频分复用(OFDM, Orthogonal Frequency Division Multiplexing) 是一种特殊的多载波方案,它可以被看作一种调制技术,也可以被当作是一种复用技术。选择OFDM的一个主要原因在于该系统能够很好地对抗频率选择性衰落或窄带干扰。正交频分复用(OFDM)最早起源于20世纪50年代中期,在60年代就已经形成恶劣使用并行数据传输和频分复用的概念。1970年1月首次公开发表了有关OFDM的专利。 在传统的并行数据传输系统中,整个信号频段被划分为N个相互不重叠的频率子信道。每个子信道传输独立的调制符号,然后再将N个子信道进行频率复用。这种避免信道频谱重叠看起来有利于消除信道间的干扰,但是这样又不能有效利用宝贵频谱资源。为了解决这种低效利用频谱资源的问题,在20世纪60年代提出一种思想,即使用子信道频谱相互覆盖的频域距离也是如此,从而可以避免使用高速均衡,并且可以对抗窄带脉冲噪声和多径衰落,而且还可以充分利用可用的频谱资源。 常规的非重叠多载波技术和重叠多载波技术之间的差别在于,利用重叠多载波调制技术可以几乎节省50%的带宽。为了实现这种相互重叠的多载波技术,必须要考虑如何减少各个子信道之间的干扰,也就是要求各个调制子载波之间保持正交性。 1971年,Weinstein和Ebert把离散傅立叶变换(DFT)应用到并行传输系统中,作为调制和解调过程的一部分。这样就不再利用带通滤波器,同时经过处理就可以实现FDM。而且,这样在完成FDM的过程中,不再要求使用子载波振荡器组以及相关解调器,可以完全依靠执行快速傅立叶变换(FFT)的硬件来实施。

基于MATLAB的OFDM的仿真

一、实习目的 1、熟悉通信相关方面的知识、学习并掌握OFDM技术的原理 2、熟悉MATLAB语言 3、设计并实现OFDM通信系统的建模与仿真 二、实习要求 仿真实现OFDM调制解调,在发射端,经串/并变换和IFFT变换,加上保护间隔(又称“循环前缀”),形成数字信号,通过信道到达接收端,结束端实现反变换,进行误码分析 三、实习内容 1.实习题目 《正交频分复用OFDM系统建模与仿真》 2.原理介绍 OFDM的基本原理就是把高速的数据流通过串并变换,分配到传输速率相对较低的若干个子信道中进行传输。由于每个子信道中的符号周期会相对增加,因此可以减轻由无线信道的多径时延扩展所产生的时间弥散性对系统造成的影响。并且还可以在OFDM符号之间插入保护间隔,令保护间隔大于无线信道的最大时延扩展,这样就可以最大限度地消除由于多径而带来的符号间干扰(ISI)。而且,一般都采用循环前缀作为保护间隔,从而可以避免由多径带来的子载波间干扰((ICI) 。 3.原理框图 交织编码数字 调制 插入 导频 串并 变换 解码解交 织 数字 解调 信道 校正 并串 变换 IFFT FFT 并/串 串/并 插入循 环前缀 和加窗 去除循 环前缀 RF TX DAC RF RX ADC 定时 和频 率同 步图1-1 OFDM 原理框图

4. 功能说明 4.1确定参数 需要确定的参数为:子信道,子载波数,FFT 长度,每次使用的OFDM 符号数,调制度水平,符号速率,比特率,保护间隔长度,信噪比,插入导频数,基本的仿真可以不插入导频,可以为0。 4.2产生数据 使用个随机数产生器产生二进制数据,每次产生的数据个数为carrier_count * symbols_per_carrier * bits_per_symbol 。 4.3编码交织 交织编码可以有效地抗突发干扰。 4.4子载波调制 OFDM 采用BPSK 、QPSK 、16QAM 、64QAM4种调制方式。按照星座图,将每个子信道上的数据,映射到星座图点的复数表示,转换为同相Ich 和正交分量Qch 。 其实这是一种查表的方法,以16QAM 星座为例,bits_per_symbol=4,则每个OFDM 符号的每个子信道上有4个二进制数{d1,d2,d3,d4},共有16种取值,对应星座图上16个点,每个点的实部记为Qch 。为了所有的映射点有相同高的平均功率,输出要进行归一化,所以对应BPSK,PQSK,16QAM,64QAM ,分别乘以归一化系数系数1,21, 101, 421.输出的复数序列即为映射后的调制结果。 4.5串并转换。 将一路高速数据转换成多路低速数据 4.6 IFFT 。 对上一步得到的相同分量和正交分量按照(Ich+Qch*i )进行IFFT 运算。并将得到的复数的实部作为新的Ich ,虚部作为新的Qch 。 在实际运用中, 信号的产生和解调都是采用数字信号处理的方法来实现的, 此时要对信号进行抽样, 形成离散时间信号。 由于OFDM 信号的带宽为B=N ·Δf , 信号必须以Δt=1/B=1/(N ·Δf)的时间间隔进行采样。 采样后的信号用sn,i 表示, i = 0, 1, …, N-1,则有 ∑-== 1 /2j ,,e 1N k N ik k n i n S N s π 从该式可以看出,它是一个严格的离散反傅立叶变换(IDFT )的表达式。IDFT 可以采用快速反傅立叶变换(IFFT)来实现 4.7加入保护间隔。 由IFFT 运算后的每个符号的同相分量和正交分量分别转换为串行数据,并将符号尾部G 长度的数据加到头部,构成循环前缀。如果加入空的间隔,在多径传播的影响下,会造成载波间干扰ICI 。保护见个的长度G 应该大于多径时的扩张的最大值。

本科毕业设计:基于MATLAB的OFDM系统仿真及分析

摘要 正交频分复用(OFDM) 是第四代移动通信的核心技术。该文首先简要介绍了OFDM的发展状况及基本原理, 文章对OFDM 系统调制与解调技术进行了解析,得到了OFDM 符号的一般表达式,给出了OFDM 系统参数设计公式和加窗技术的原理及基于IFFT/FFT 实现的OFDM 系统模型,阐述了运用IDFT 和DFT 实现OFDM 系统的根源所在,重点研究了理想同步情况下,保护时隙(CP)、加循环前缀前后和不同的信道内插方法在高斯信道和多径瑞利衰落信道下对OFDM系统性能的影响。在给出OFDM系统模型的基础上,用MATLAB语言实现了传输系统中的计算机仿真并给出参考设计程序。最后给出在不同的信道条件下,研究保护时隙、循环前缀、信道采用LS估计方法对OFDM系统误码率影响的比较曲线,得出了较理想的结论。 关键词: 正交频分复用;仿真;循环前缀;信道估计

Title: MATLAB Simulation and Performance Analysis of OFDM System ABSTRACT OFDM is the key technology of 4G in the field of mobile communication. In this article OFDM basic principle is briefly introduced.This paper analyzes the modulation and demodulation of OFDM system, obtaining a general expression of OFDM mark, and giving the design formulas of system parameters, principle of windowing technique, OFDM system model based on IFFT/FFT, the origin which achieves the OFDM system by using IDFT and DFT. Then, the influence of CP and different channel estimation on the system performance is emphatically analyzed respectively in Gauss and Rayleigh fading channels in the condition of ideal synchronization. Besides, based on the given system model OFDM system is computer simulated with MATLAB language and the referential design procedure is given. Finally, the BER curves of CP and channel estimation are given and compared. The conclusion is satisfactory. KEYWORDS:OFDM; Simulation; CP; Channel estimation

移动通信系统OFDM系统仿真与实现基于MATLAB

OFDM系统仿真与实现 1、OFDM的应用意义 在近几年以内,无线通信技术正在以前所未有的速度向前发展。由于用户对各种实时多媒体业务需求的增加与互联网技术的迅猛发展,未来的无线通信及技术将会有更高的信息传输速率,为用户提供更大的便利,其网络结构也将发生根本的变化。随着人们对通信数据化、个人化与移动化的需求,OFDM技术在无线接入领域得到了广泛的应用。OFDM就是一种特殊的多载波传输方案,它将数字调制、数字信号处理、多载波传输技术结合在一起,就是目前已知的频谱利用率最高的一种通信系统,具有传输速率快、抗多径干扰能力强的优点。目前,OFDM技术在数字音频广播(DAB)、地面数字视频广播(DVB-T)、无线局域网等领域得到广泛应用。它将就是4G移动通信的核心技术之一。 OFDM广泛用于各种数字传输与通信中,如移动无线FM信道,高比特率数字用户线系统(HDSL),不对称数字用户线系统(ADSL),甚高比特率数字用户线系统HDSL,数字音频广播(DAB)系统,数字视频广播(DVB)与HDTV地面传播系统。1999年,IEEE802.11a通过了一个SGHz的无线局域网标准,其中OFDM调制技术被采用为物理层标准,使得传输速率可以达54MbPs。这样,可提供25MbPs的无线ATM接口与10MbPs的以太网无线帧结构接口,并支持语音、数据、图像业务。这样的速率完全能满足室内、室外的各种应用场合。 OFDM由于技术的成熟性,被选用为下行标准很快就达成了共识。而在上行技术的选择上,由于OFDM的高峰均比(PAPR)使得一些设备商认为会增加终端的功放成本与功率消耗,限制终端的使用时间,一些则认为可以通过滤波,削峰等方法限制峰均比。不过,经过讨论后,最后上行还就是采用了SC-FDMA方式。拥有我国自主知识产权的3G标准一一TD-SCDMA在LTE演进计划中也提出了TD-CDM-OFDM 的方案B3G/4G就是ITU提出的目标,并希望在2010年予以实现。B3G/4G的目标就是在高速移动环境下支持高达100Mb/S的下行数据传输速率,在室内与静止环境下支持高达IGb/S的下行数据传输速率。而OFDM技术也将扮演重要的角色。 2、OFDM的原理研究与分析 2、1OFDM的关键技术 (1) 时域与频域同步 OFDM系统对定时与频率偏移敏感,特别就是实际应用中与FDMA、TDMA与CDMA 等多址方式结合使用时,时域与频率同步显得尤为重要。 (2) 信道估计

基于MATLAB的MIMO-OFDMA系统的设计与仿真

基于MATLAB的MIMO-OFDMA系统的设计与仿真 摘要 在信息时代的快速发展形势下,产生了越来越多的业务需求,用户对通信系统的性能提出了更高的要求。基于正交频分复用( Orthogonal Frequency Division Multiplexing,OFDM )技术和多输入多输出(Multiple Input Multiple Output,MIMO )技术的无线通信系统在增加系统容量、提高频谱利用率以及对抗频率选择性衰落等方面具备优越的性能,是未来通信领域中的关键技术。 本文首先阐述了MIMO技术和OFDM技术的国内外研究概况,然后通过分析MIMO技术和OFDM技术的基本原理和系统结构,设计出简单的MIMO-OFDM系统。基于MATLAB软件对所建立的MIMO系统的信道容量进行了仿真,并对SISO-OFDM系统和MIMO-OFDM系统的性能进行了比较,仿真结果表明,本文所提出的MIMO-OFDM系统方案能够在不增加误比特率的情况下增加信道容量,最后结合空时分组码(Space Time Block Coding,STBC)对MIMO-OFDM系统进行了完善并采用MATLAB对其性能进行了仿真,结果显示,相较于未完善的系统完善后的系统的误比特率指标明显降低,传输可靠性得到了极大的提高。 关键词:无线通信;MIMO;OFDM;误比特率

Performance Evaluation of MIMO-OFDMA System using Matlab Abstract As the rapid development of information technology has resulted in more influences on people’s daily lives and businesses. Higher requirements should be provided by communication system to meet people’s needs. The communication system which based on the technology of Orthogonal Frequency Division Multiplexing (OFDM) and Multiple Input Multiple Output (MIMO) enables to not only increase the system capacity, but improve the spectrum utilization, and moreover to effectively against frequency selective fading, has become the key technologies in the field of communication in the future. This paper first gives an in-detailed survey on MIMO and OFDM technologies in academic society. After that, we designed a simple MIMO-OFDM system by means of the analysis of the basic concepts and the architecture of MIMO and OFDM technology. Followed by performance evaluation via Matlab to compare SISO-OFDM and MIMO-OFDM systems in term of channel capacity and Bit Error Rate (BER) to validate the proposed MIMO-OFDM system outperforms SISO-OFDM. Finally, we further integrated space-time block codes into the proposed MIMO-OFDM system, through simulation results, we can observe that BER can be significant reduced compared to its counterpart which without implements space-time block codes. Keywords:Wireless communication,MIMO, OFDM, Bit Error Rate (BER)

基于matlab的ofdm系统设计与仿真

基于matlab的ofdm系统设计与仿真 OFDM即正交频分复用技术,实际上是多载波调制中的一种。其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到相互正交且重叠的多个子载波上同时传输。该技术的应用大幅度提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和窄带噪声,如此良好的性能从而引起了通信界的广泛关注。 本文设计了一个基于IFFT/FFT算法与802.11a标准的OFDM系统,并在计算机上进行了仿真和结果分析。重点在OFDM系统设计与仿真,在这部分详细介绍了系统各个环节所使用的技术对系统性能的影响。在仿真过程中对OFDM信号使用QPSK调制,并在AWGN信道下传输,最后解调后得出误码率。整个过程都是在MATLAB环境下仿真实现,对ODFM系统的仿真结果及性能进行分析,通过仿真得到信噪比与误码率之间的关系,为该系统的具体实现提供了大量有用数据。

第一章 ODMF 系统基本原理 1.1多载波传输系统 多载波传输通过把数据流分解为若干个子比特流,这样每个子数据流将具有较低的比特速率。用这样的低比特率形成的低速率多状态符号去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。在单载波系统中,一次衰落或者干扰就会导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到衰落或者干扰的影响。图1-1中给出了多载波系统的基本结构示意图。 图1-1多载波系统的基本结构 多载波传输技术有许多种提法,比如正交频分复用(OFDM)、离散多音调制(DMT)和多载波调制(MCM),这3种方法在一般情况下可视为一样,但是在OFDM 中,各子载波必须保持相互正交,而在MCM 则不一定。 1.2正交频分复用 OFDM 就是在FDM 的原理的基础上,子载波集采用两两正交的正弦或余弦函数集。函数集{t n ωcos }, {t m ωsin } (n,m=0,1,2…)的正交性是指在区间(T t t +00,)内有正弦函数同理:)0()()(2/0cos *cos 00===≠?????=? +m n m n m n T T tdt m t n T t t ωω 其中ω π 2=T (1-1) 根据上述理论,令N 个子信道载波频率为)(1t f ,)(2t f ,……,)(t f N ,并使其

无线通信原理基于matlab的ofdm系统设计与仿真

无线通信原理:基于matlab的ofdm系统设计与仿真 OFDM即正交频分复用技术,实际上是多载波调制中的一种。其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到相互正交且重叠的多个子载波上同时传输。该技术的应用大幅度提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和窄带噪声,如此良好的性能从而引起了通信界的广泛关注。 本文设计了一个基于IFFT/FFT算法与802.11a标准的OFDM系统,并在计算机上进行了仿真和结果分析。重点在OFDM系统设计与仿真,在这部分详细介绍了系统各个环节所使用的技术对系统性能的影响。在仿真过程中对OFDM信号使用QPSK调制,并在AWGN信道下传输,最后解调后得出误码率。整个过程都是在MATLAB环境下仿真实现,对ODFM系统的仿真结果及性能进行分析,通过仿真得到信噪比与误码率之间的关系,为该系统的具体实现提供了大量有用数据。 第一章ODMF系统基本原理 1.1多载波传输系统 多载波传输通过把数据流分解为若干个子比特流,这样每个子数据流将具有较低的比特速率。用这样的低比特率形成的低速率多状态符号去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。在单载波系统中,一次衰落或者干扰就会导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到衰落或者干扰的影响。图1-1中给出了多载波系统的基本结构示意图。 图1-1多载波系统的基本结构

多载波传输技术有许多种提法,比如正交频分复用(OFDM)、离散多音调制(DMT)和多载波调制(MCM),这3种方法在一般情况下可视为一样,但是在OFDM 中,各子载波必须保持相互正交,而在MCM 则不一定。 1.2正交频分复用 OFDM 就是在FDM 的原理的基础上,子载波集采用两两正交的正弦或余弦函数集。函数集{t n ωcos }, {t m ωsin } (n,m=0,1,2…)的正交性是指在区间(T t t +00,)内有正弦函数同理:)0()()(2/0cos *cos 00===≠?????=? +m n m n m n T T tdt m t n T t t ωω 其中ω π 2=T (1-1) 根据上述理论,令N 个子信道载波频率为)(1t f ,)(2t f ,……,)(t f N ,并使其满足下面的关系:),1(,/0N k T k f f N k ?=+=,其中N T 为单元码持续时间。单个子载波信号为: ? ??<≤=others T t t f t f N k k 00)2cos()(π (1-2) 由正交性可知:????≠==n m n m T dt t f t f N m n 0)(*)( (1-3) 由式(1-3)可知,子载波信号是两两正交的。这样只要信号严格同步,调制出的信号严格正交,理论上接收端就可以利用正交性进行解调。OFDM 信号表达式与FDM 的一样,区别在于信号的频谱。OFDM 信号的频谱与FDM 频谱情况对比如图1-2所示。由图1-2可以看出,由于采用的原理不一样,FDM 中接收端需要频率分割,因而需要较宽的保护间隔。OFDM 系统的接收端利用正交性解调,相邻子信道频谱在一定程度上是可以重叠的。 图1-2 FDM 与OFDM 的频谱

基于MATLAB的OFDM系统设计与仿真

基于MATLAB的OFDM系统设计与仿真 摘要:随着通信产业的逐步发展,4G时代已经来临。作为第四代移动通信技术的核心,OFDM得到了前所未有的关注。它具有频谱利用率高、抗干扰能力强等优点。本文首先简要介绍了OFDM的发展状况以及优缺点,然后详细分析了OFDM的工作原理及其相应的各个模块,并介绍了它的关键技术。最后,分别利用M函数和Simulink做了OFDM 系统的设计与仿真,并对误码率进行了分析,得到了BER性能曲线。 关键词:正交频分复用;MATLAB;仿真;BER Design and Simulation of OFDM System Based on MATLAB Abstract:With the gradual development of the communication industry, 4G era has come. As the key technology of the fourth generation mobile communications,OFDM has received unprecedented attention. It has a high spectrum utilization, strong ability of anti-interference and so on. This article describes the development of OFDM and it’s advantages and disadvantages briefly, analysis the working principles of OFDM and each module detailed,and describes it’s key tec hnology.At last, design and simulate OFDM system with the M function and Simulink separately, analysis the error rate and obtain BER performance curve . Keywords: OFDM; MATLAB; Simulation; BER

基于matlab的OFDM系统仿真毕业设计论文

毕业设计论文 基于Matlab的OFDM系统仿真及分析 Simulation and Performance Analysis of OFDM System Based on Matlab

毕业论文任务书

毕业设计开题报告

摘要 在无线通信系统中,存在着各种严重的衰落,例如频率选择性衰落、快衰落和慢衰落,以及由于各种物体对传输信号的反射引起的多径传播,而由此引起的符号间干扰是无线通信系统设计中必须考虑的问题,特别是在高速传输的环境中。而正交频分复用(OFDM)正是为了解决这些问题提出的,它是第四代移动通信的核心技术之一。 OFDM是一种特殊的多载波传输方案,它将数字调制、数字信号处理、多载波传输等技术有机结合在一起,是目前已知的频谱利用率最高的一种通信系统,具有传输速度快、抗多径干扰能力强的优点。目前,OFDM技术在数字音频广播、地面数字视频广播、无线局域网等领域得到广泛应用。 本文论述了OFDM的基本原理以及信号调制技术,给出了OFDM系统模型,并从频域的角度分析OFDM信号的性质及DFT实现,最后用MATLAB语言实现了整个系统的计算机仿真并给出参考设计程序,对OFDM调制系统中主要传输技术、基本参数的选择、同步及关键技术和仿真实现进行了相关的讨论。 关键词:OFDM多载波系统仿真MATLAB

Abstract There are some severe problems in wireless communication systems, such as frequency selective fading, fast fading and slow fading, and various objects of reflection led to the transmitted signal multipath propagation. The resulting inter-symbol interference (ISI) is a wireless communication system design issues that must be considered, especially in the high-speed transmission environment. Orthogonal frequency division multiplexing (OFDM) is proposed to solve these problems, it is the core technology of the fourth generation mobile communication. OFDM is a special multi-carrier transmission scheme, it combines some technologies such as figure modulation, digital signal processing, multi-carrier transmission. It is the maximum utilization of the spectrum communication system, with the advantages of faster transfer rates, anti-multipath interference. Currently known at present, OFDM technology is widely used in the digital audio broadcasting, terrestrial digital video broadcasting and wireless LAN. This paper introduce the orthogonal frequency division multiplexing basic principle and discusses signal modulation technology, then, given OFDM system model, and analysis the nature and DFT realization of OFDM signals from the point of view of frequency domain. Finally, based on the given system model, OFDM system is computer simulated with MATLAB language and the referential design procedure is given. Discussing in the system of OFDM modulation transmission technology, basic parameter selection, system of synchronous, key technology and OFDM system simulation. Key words:OFDM Multi-carrier System Simulation MATLAB

相关主题