搜档网
当前位置:搜档网 › 不可约矩阵与几乎可约矩阵的一些组合性质.

不可约矩阵与几乎可约矩阵的一些组合性质.

不可约矩阵与几乎可约矩阵的一些组合性质.

不可约矩阵与几乎可约矩阵的一些组合性质

摘要非负矩阵是指元素为非负实数的矩阵,同计算数学,经济数学,概率论,物理,化学等有着密切关系。本论文主要研究非负矩阵的那些仅依赖

于矩阵的0元素的位置,而与元素本身数值无关的性质。本论文从非负矩阵的

基础理论出发,结合图论的有关性质,利用图论与矩阵的关系,来研究不可约矩阵与几乎可约矩阵的1些性质。本论文分为3部分,第1

章是引言部分,第2章阐述了不可约矩阵,不可约矩阵的谱半径,完全不可分

矩阵,几乎可约矩阵,几乎可分矩阵的概念,第3章阐述了不可约矩阵,不可

约矩阵的谱半径,完全不可分矩阵,几乎可约矩阵,几乎可分矩阵的重要定

理,性质以及其证明。关键字不可约矩阵;完全不可分矩阵;几乎可约矩阵;几乎可分矩阵;极小强连通图 Abstract Nonnegative Matrices is the matrices whose elements are nonnegative real numbers, and it has

close relationship with computer science, economic mathematics, the theorem of probability, physical. This paper mainly research the matrices’ quality with only depends on zero in matrices, but not its own values. This paper main research Combinational quality of Irreducible Matrices and Nearly Reducible Matrices by basic theory

of Nonnegative Matrices , quality of graph theory ,and the relationship between graph theory and matrices. This paper includes three parts, the first part is introduction, the second one expounds the concept of irreducible matrices, spectral radius of irreducible, fully indecomposable matrices, nearly reducible matrices, and nearly decomposable matrices. The last one expounds important theories, qualities and proof of irreducible matrices, spectral

radius of irreducible, fully indecomposable matrices, nearly

reducible matrices, and nearly decomposable matrices. KeywordIrreducible matrices; Fully indecomposable matrices; Nearly Reducible matrices; Nearly decomposable matrices; Minimally strong diagraph.

矩阵可交换性的应用讲解

2015届学士学位毕业论文矩阵可交换性的应用 学号:11404111 姓名:郭冬冬 班级:数学1101 指导教师:闫慧凰 专业:数学与应用数学 系别:数学系 完成时间:2014年4月

学生诚信承诺书 本人郑重声明:所呈交的论文《矩阵可交换性的应用》是我个人在导师闫慧凰指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得长治学院或其他教育机构的学位或证书所使用过的材料。所有合作者对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 签名:日期: 论文使用授权说明 本人完全了解长治学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 签名:日期: 指导教师声明书 本人声明:该学位论文是本人指导学生完成的研究成果,已经审阅过论文的全部内容,并能够保证题目、关键词、摘要部分中英文内容的一致性和准确性。 指导教师签名:时间

摘要 矩阵在高等数学中是一个极重要且应用广泛的概念,是线性代数的核心。而且在一些重要领域也用到了矩阵的计算,像应用数学、计算数学、经济学、数学物理、卫星通信等等,许多工作人员在大量计算这些矩阵时发现了一些对于特殊矩阵成立的公式和规律,本文将用这些规律来叙述一些特殊矩阵(可交换矩阵)的应用。 关键词:矩阵;可交换

目录 1.绪论 (1) 2.基础知识 (1) 2.1 矩阵相关概念 (1) 2.2 线性变换相关概念 (2) 3.矩阵可交换的应用 (3) 3.1线性变换与矩阵(可交换)之间的联系 (3) 3.2上三角矩阵可交换的应用 (4)

可交换矩阵

可交换矩阵 目录 1矩阵可交换的几个充分条件和必要条件定理1 1定理2 1定理3 1定理4 1定理5 1定理6 1可交换矩阵的一些性质性质1 1性质2 展开 满足乘法交换律的方阵称为可交换矩阵,即矩阵A,B满足:A·B=B·A。高等代数中可交换矩阵具有一些特殊的性质。下面所说的的矩阵均指n 阶实方阵.。 编辑本段矩阵可交换的几个充分条件和必要条件 定理1 下面是可交换矩阵的充分条件:(1) 设A , B 至少有一个为零矩阵,则A , B 可交换; (2) 设A , B 至少有一个为单位矩阵, 则A , B可交换; (3) 设A , B 至少有一个为数量矩阵, 则A , B可交换; (4) 设A , B 均为对角矩阵,则A , B 可交换; (5) 设A , B 均为准对角矩阵,则A , B 可交换; (6) 设A*是A 的伴随矩阵,则A*与A可交换; (7) 设A可逆,则A 与A 可交换; (8) 设AB = E ,则A , B 可交换. 定理2 (1) 设AB =αA +βB ,其中α,β为非零实数,则A , B 可交换; (2) 设A m +αAB = E ,其中m 为正整数,α为非零实数,则A , B 可交换. 定理3 (1) 设A 可逆,若AB = O 或A = AB或A = BA ,则A , B 可交换; (2) 设A , B 均可逆, 若对任意实数k , 均有A = ( A - k·E) B ,则A , B 可交换. 矩阵可交换的几个充要条件 定理4 下列均是A , B 可交换的充要条件: (1) A - B = ( A + B) ( A - B) =( A - B) ( A

矩阵基本性质

矩阵的基本性质 矩阵的第?第列的元素为。我们?或()表?的单位矩阵。 1.矩阵的加减法 (1),对应元素相加减 (2)矩阵加减法满足的运算法则 a.交换律: b.结合律: c. d. 2.矩阵的数乘 (1),各元素均乘以常数 (2)矩阵数乘满足的运算法则 a.数对矩阵的分配律: b.矩阵对数的分配律: c.结合律: d. 3.矩阵的乘法 (1),左行右列对应元素相乘后求和为C的第行第列的元素(2)矩阵乘法满足的运算法则 a.对于一般矩阵不满足交换律,只有两个方正满足且有 b.分配律: c.结合律: d.数乘结合律: 4.矩阵的转置, (1)矩阵的幂:,,…,

(2)矩阵乘法满足的运算法则 a. b. c. d. 5.对称矩阵:即;反对称矩阵:即 (1)设为(反)对称矩阵,则仍是(反)对称矩阵。 (2)设为对称矩阵,则或仍是对称矩阵的充要条件=。 (3)设为(反)对称矩阵,则,也是(反)对称矩阵。 (4)对任意矩阵,则分别是对称矩阵和反对称矩阵且. (5) 6. Hermite矩阵:即;反Hermite矩阵,即 a. b. c. d. e. f.(当矩阵可逆时) 7.正交矩阵:若,则是正交矩阵 (1) (2)

8.酉矩阵:若,则是酉矩阵 (1) (2) (3), (4) 9.正规矩阵:若,则是正规矩阵;若,则是实正规矩阵 10.矩阵的迹和行列式 (1)为矩阵的迹;或为行列式 (2);注:矩阵乘法不满足交换律 (3) (4),为酉矩阵,则 (5) (6) (7) (8) (9) (10) (11) (12),,则其中为奇异分解值的特征值 11.矩阵的伴随矩阵 (1)设由行列式的代数余子式所构成的矩阵

交换矩阵

可交换矩阵的一些基础知识 来到大学进入数学系学习才第一次知道了矩阵,了解到其实它是数学中极其重要的一个工具.如同我们最了解的数字符号一样,矩阵也有着自己的运算法则.这整个的矩阵理论是建立在矩阵的运算上的.所以对于矩阵运算的研究在矩阵理论中骑着至关重要的作用.这篇论文我着重讨论一下可交换矩阵. 一、可交换矩阵 我们都知道矩阵的乘法是不满足交换律的即一般情况下对于矩阵,A B 是 AB BA ≠。 为什么会会出现这种情况呢,总的来说两个矩阵相乘可能出现以下情况: (1)AB 有意义时候,BA 不一定就有意义; 比如说:1111n s sn a a A a a ?? ?= ? ??? ,1111n m mn b b B b b ?? ? = ? ? ?? 。s p ≠, 所以A B =1111 q s sq c c C c c ?? ? = ? ? ?? 。但是BA 却是无意义的。 (2)AB 与BA 均有意义时候两者阶数不一定相同,自然就不相等了; 比如说有1111n m mn a a A a a ?? ?= ? ??? , 1111 m n nm b b B b b ?? ? = ? ? ?? 。 依此有AB =C =1111m m mm c c c c ?? ? ? ??? ,但是BA =D =1111n n nn d d d d ?? ? ? ??? 。 显然有C D ≠。 (3)AB 与BA 均有意义,且二者阶数也相同但是最后具体的乘积方阵还是不一样。 比如说:矩阵A =2111??????,B =1212?? ?? ?? 。 AB =211236111224?????? =???????????? =C ;

数学期望的性质

知识点4.2 数学期望的性质

1. 随机变量函数的数学期望 定理1设Y 是随机变量X 的函数:Y =g(X)(g 是连续函数). (1)设离散型随机变量X 的分布律为 p k =P{X =x k },k =1,2,?. 若?k=1+∞g x k p k <+∞,则有E Y =E g X =?k=1 +∞g x k p k .

(2)设连续型随机变量X 的密度函数为f(x),若 ? ?∞+∞ g(x)f(x)dx <+∞, 则有 E(Y)=E g X =? ?∞+∞g(x)f(x)dx.

定理2设Z 是随机变量X,Y 的函数:Z =g(X,Y)(g 是连续函数). (1) 设离散型随机变量(X,Y)的分布律为 p ij =P(X =x i ,Y =y j ),(i,j =1,2,?), 若?j=1+∞?i=1+∞ g(x i ,y j )p ij <+∞, 则有 E(Z)=E g X,Y =?j=1+∞?i=1 +∞g x i ,y j p ij .

(2) 设连续型随机变量(X,Y)的密度函数为f(x,y), 若 ? ?∞+∞??∞+∞ g(x,y)f(x,y)dxdy <+∞, 则有 E(Z)=E g X,Y =? ?∞+∞??∞+∞ g(x,y)f(x,y)dxdy.

2. 数学期望的性质 (1)设C是常数,则有E(C)=C. (2)设X是一个随机变量, C是常数,则有E(CX)=CE(X).(3)设X,Y是两个随机变量,则有E(X+Y)=E(X)+E(Y).(4)设X,Y是两个相互独立的随机变量,则有E(XY)=E(X)E(Y). 性质3和4可以推广到有限个随机变量的和及积的情况.

第五章 矩阵的特征值与特征向量

第五章 矩阵的特征值与特征向量 5.1矩阵的特征值与特征向量 5.1.1矩阵的特征值与特征向量的概念 设A 是n 阶矩阵,若存在数λ及非零的n 维列向量α,使得:λαα=A (0≠α)成立,则称λ是矩阵A 的特征值,称非零向量α是矩阵A 属于特征值λ的特征向量. 5.1.2矩阵的特征值与特征向量的求法 把定义公式λαα=A 改写为()0=-αλA E ,即α是齐次方程组()0=-x A E λ的非零解.根据齐次方程组有非零解的充分条件可得:0=-A E λ. 所以可以通过0=-A E λ求出所有特征值,然后对每一个特征值i λ,分别求出齐 次方程组()0=-x A E i λ的一个基础解系,进而再求得通解. 【例5.1】求??? ? ? ?????------=324262423A 的特征值和特征向量. 解:根据()()0273 2 4 26 24 23 2 =+-=---= -λλλλλλA E ,可得71=λ,22-=λ. 当7=λ时,??? ? ? ?????? ??? ???????=-0000002124242124247A E , 所以()07=-x A E 的一个基础解系为:()T 0,2,11-=α,()T 1,0,12-=α,则相应的特征向量为2211ααk k +,其中21,k k 是任意常数且()()0,0,21≠k k . 当2-=λ时,???? ? ?????--? ??? ? ??????---=--00012014152428242 52A E ,所以()02=--x A E 的一个基础解系为()T 2,1,23=α,则相应的特征向量为33αk ,其中3k 是任意常数且

矩阵可交换性质

矩阵可交换的条件及其性质 摘要:矩阵在高等数学中是一个极重要且应用广泛的概念,是线性代数的核心。本文通过对可交换矩阵理论的深入研究,对矩阵的可交换做了深入的探讨,归纳总结了矩阵可交换的条件及性质,给出了与已知矩阵可交换的矩阵的求法. 关键词:矩阵;可交换;可交换矩阵 The Conditions For The Commutation Of Matrix and Some Properties Abstract: Matrix in higher mathematics is a very important and widely used concept, is the core of the linear algebra.This article through to exchange matrix theory research, the matrix interchange to do a further study and summarizes the matrix interchangeable condition and properties are given, and the known matrix can exchange the matrix is introduced. Key words:Matrix;Commutation;The Commutation Of Matrix

目录 1 引言........................................................................................................................................ - 1 - 2 可交换矩阵的基本定义........................................................................................................ - 1 - 3 矩阵可交换的条件................................................................................................................ - 1 - 3.2 矩阵可交换的几个充要条件............................................................................................... - 3 - 4 可交换矩阵的性质.................................................................................................................. - 5 - 5 与已知矩阵可交换的矩阵的求法........................................................................................ - 5 - 5.1 定义法.......................................................................................................................... - 5 - 6 结论(结束语).................................................................................................................... - 9 - 7 致谢...................................................................................................................................... - 10 - 参考文献.................................................................................................................................... - 10 -

矩阵的特征值和特征向量

第五章矩阵的特征值和特征向量 来源:线性代数精品课程组作者:线性代数精品课程组 1.教学目的和要求: (1) 理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. (2) 了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对 角矩阵. (3) 了解实对称矩阵的特征值和特征向量的性质. 2.教学重点: (1) 会求矩阵的特征值与特征向量. (2) 会将矩阵化为相似对角矩阵. 3.教学难点:将矩阵化为相似对角矩阵. 4.教学内容: 本章将介绍矩阵的特征值、特征向量及相似矩阵等概念,在此基础上讨论矩阵的对角化问题. §1矩阵的特征值和特征向量 定义1设是一个阶方阵,是一个数,如果方程 (1) 存在非零解向量,则称为的一个特征值,相应的非零解向量称为属于特征值的特 征向量. (1)式也可写成, (2) 这是个未知数个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式 , (3) 即 上式是以为未知数的一元次方程,称为方阵的特征方程.其左端是的 次多项式,记作,称为方阵的特征多项式.

== = 显然,的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,阶矩阵有个特征值. 设阶矩阵的特征值为由多项式的根与系数之间的关系,不难证明 (ⅰ) (ⅱ) 若为的一个特征值,则一定是方程的根, 因此又称特征根,若为 方程的重根,则称为的重特征根.方程的每一个非 零解向量都是相应于的特征向量,于是我们可以得到求矩阵的全部特征值和特征向量的方法如下: 第一步:计算的特征多项式; 第二步:求出特征方程的全部根,即为的全部特征值; 第三步:对于的每一个特征值,求出齐次线性方程组: 的一个基础解系,则的属于特征值的全部特征向量是 (其中是不全为零的任意实数). 例1 求的特征值和特征向量. 解的特征多项式为 =

数学期望的性质

梁烨 0417

数学期望的性质 . )(,.1c c E c =则有是常数设). ()(,,.2X cE cX E c X =则有是常数是一个随机变量设). ()()(,,.3Y E X E Y X E Y X +=+则是两个随机变量设).()()(,,.4Y E X E XY E Y X =则是相互独立的随机变量设4证明()(,)d d ()()d d X Y E XY xyf x y x y xyf x f y x y +∞+∞+∞+∞-∞-∞-∞-∞== ??????+∞∞-+∞ ∞-==) ()(d )(d )(Y E X E y y yf x x xf Y X Note:性质3和4可推广到n 个随机变量的情形.

例12 (,),,().X N Y aX b E Y μσ=+设~求:解(), E X μ=()()()E Y E aX b aE X b a b μ=+=+=+所以 Note :正态分布r.v 的线性组合的期望为其期望的线性组合.

2例). (),(~X E p n b X ,求设:解引入计数随机变量 11,2,,0i i A X i n i A ?==?????第次试验中事件发生第次试验中事件不发生其中.)(p A P =则且分布为p X E X i i =-)(,)10(故.1∑==n i i X X ) ()(21n X X X E X E +???++=12()()()n E X E X E X np =++???+=Note :该解法具有一般性,引入计数变量可简化计算:将一复杂变量分解成n 个相互独立的服从(0-1)分布的变量之和.

(整理)可交换矩阵成立的条件和性质.

内蒙古财经大学本科学年论文 可交换矩阵成立的条件与性质 作者: 系别: 专业: 年级: 学号: 指导教师: 导师职称:

指导教师评语: 该学生在整个论文书写过程中态度端正,能配合指导教师,指导教师交给的任务基本能在规定时间内的完 成。在开题以后,对论文题目理解正确,在指导下能完 成论文初稿的书写,书写基本符合规范。但对参考书目 及参考文献的依赖性太大,应在论文中添加自己独立的 理解及总结。 成绩:中 指导教师:

内容提要 矩阵是高等数学中一个重要的内容,在数学领域中以及其他科学领域中有着重大的 理论意义.众所周知,矩阵的乘法在一般情况下是不满足交换律的,即在通常情况下, AB BA.但是,在某种特殊情况下,矩阵的乘法也能满足交换律.可交换矩阵有着很多 特殊的性质和重要的作用.本文从可交换矩阵和相关知识的定义出发,探讨了矩阵可交 换的一些条件和可交换矩阵的部分性质,并且介绍了几类特殊的可交换矩阵. 关键字:矩阵可交换条件性质上三角矩阵 Abstract Matrix is an importantcontent inaltitude-mathematics,it has agreattheoretic significanceintheaspectofbothmathematicsandothersciencefields.Asfaraswe haveconcerned,themultiplicationofmatrixcouldnotsatisfytheexchangeruleunder thenormal condition,thatis tosay,normally, AB BA.Whereas, insomecertain conditions, the multiplicatio n of matrix couldsatisfy the exchange rule. The exchangeable matrixhasmanyspecial properties and important effections. This paperdiscussessomeconditionsofthematrixexchangeandpartsofthepropertyof theexchangeablematrix,andalsointroducesseveralkindsofspecificexchangeable matrix.All of thesearediscussed from the conceptof exchangeable matrix and relativeinformation. KeyWords:matrix interchangeable conditions property upper triangularmatrix

矩阵可交换成立的条件与性质

毕业设计(论文) 题目矩阵可交换成立的条件与性质 学院理学院专业数学与应用数学年级2008级班级0814 姓名吴锦娜学号2008530088 指导教师李伟职称副教授

矩阵可交换成立的条件与性质 [摘要] 矩阵是高等数学中一个重要内容,在数学领域以及其他科学领域有着重大的理论意义.众所周知,矩阵的乘法在一般情况下是不满足交换律的,即在通常情况下,AB .但是,在某些特殊情况下,矩阵的乘法也能满足交换律.可交换矩阵有着很BA 多特殊的性质和重要的作用.本文从可交换矩阵和相关知识的定义出发,探讨了矩阵可交换的一些条件和可交换矩阵的部分性质及应用,并且介绍了几类特殊的可交换矩阵. [关键词]矩阵可交换条件性质应用

The Conditions for The Commutation of Matrix and Its Some Properties [Abstract] Matrix, a important content in altitude-mathematics, has a great theoretic significance in the aspect of both mathematics and other science field. As far as we have concerned, the multiplication of matrix could not satisfy the exchange rule under the normal condition, that is to say, normally,AB≠BA. Whereas, in some certain conditions, the multiplication of matrix could satisfy the exchange rule. The exchangeable matrix has many special properties and important effection. This paper discusses some conditions of the matrix exchange and part of the property of the exchangeable matrix , and also introduces several kinds of specific exchangeable matrix. All of these are discussed from the concept of exchangeable matrix and relative information. [Keywords]Matrix Interchangeable Conditions Property Application

可交换矩阵成立的条件和性质.

财经大学本科学年论文 可交换矩阵成立的条件与性质 作者: 系别: 专业: 年级: 学号: 指导教师: 导师职称:

指导教师评语: 该学生在整个论文书写过程中态度端正,能配合指导教师,指导教师交给的任务基本能在规定时间的完成。在开题以后,对论文题目理解正确,在指导下能完成论文初稿的书写,书写基本符合规。但对参考书目及参考文献的依赖性太大,应在论文中添加自己独立的理解及总结。 成绩:中 指导教师:

容提要 矩阵是高等数学中一个重要的容,在数学领域中以及其他科学领域中有着重大的理 论意义.众所周知,矩阵的乘法在一般情况下是不满足交换律的,即在通常情况下,AB≠.但是,在某种特殊情况下,矩阵的乘法也能满足交换律.可交换矩阵有着很多BA 特殊的性质和重要的作用.本文从可交换矩阵和相关知识的定义出发,探讨了矩阵可交换 的一些条件和可交换矩阵的部分性质,并且介绍了几类特殊的可交换矩阵. 关键字:矩阵可交换条件性质上三角矩阵 Abstract Matrix is an important content in altitude-mathematics,it has a great theoretic significance in the aspect of both mathematics and other science fields. As far as we have concerned, the multiplication of matrix could not satisfy the exchange rule under the normal condition, that is to say, normally, AB≠. Whereas, in some certain conditions, the multiplication of matrix BA could satisfy the exchange rule. The exchangeable matrix has many special properties and important effections. This paper discusses some conditions of the matrix exchange and parts of the property of the exchangeable matrix , and also introduces several kinds of specific exchangeable matrix. All of these are discussed from the concept of exchangeable matrix and relative information.

矩阵的特征值与特征向量习题

第五章 矩阵的特征值与特征向量 习题 1 试用施密特法把下列向量组正交化 (1)?? ? ? ? ??=931421111) , ,(321a a a (2)???? ?? ? ??---=011101110111) , ,(321a a a 2 设x 为n 维列向量 x T x 1 令H E 2xx T 证明H 是对称的正交 阵 3 求下列矩阵的特征值和特征向量: (1)??? ?? ??----20133 521 2; (2)??? ? ? ??633312321. 4 设A 为n 阶矩阵 证明A T 与A 的特征值相同 5 设 0是m 阶矩阵A m n B n m 的特征值 证明 也是n 阶矩阵BA 的特 征值. 6 已知3阶矩阵A 的特征值为1 2 3 求|A 35A 2 7A | 7 已知3阶矩阵A 的特征值为1 2 3 求|A * 3A 2E | 8 设矩阵??? ? ? ??=50413102x A 可相似对角化 求x

9 已知p (1 1 1)T 是矩阵???? ? ??---=2135212b a A 的一个特征向量 (1)求参数a b 及特征向量p 所对应的特征值 (2)问A 能不能相似对角化?并说明理由 10 试求一个正交的相似变换矩阵, 将对称阵??? ? ? ??----020212022化为对角 阵. 11 设矩阵????? ??------=12422421x A 与??? ? ? ? ?-=Λy 45 相似 求x y 并 求一个正交阵P 使P 1AP 12 设3阶方阵A 的特征值为1 2 2 2 3 1 对应的特征 向量依次为p 1 (0 1 1)T p 2(1 1 1)T p 3(1 1 0)T 求A . 13 设3阶对称矩阵A 的特征值 1 6 2 3 3 3 与特征值 1 6对应的特征向量为p 1 (1 1 1)T 求A . 14 设?? ? ? ? ??-=340430241A 求A 100

可交换矩阵的几个充要条件及其性质

可交换矩阵的几个充要条件及其性质 在高等代数中,矩阵是一个重要的内容.由矩阵的理论可知,矩阵的乘法不同于数的乘法,矩阵的乘法不满足交换律,即当矩AB 有意义时,矩阵BA 未必有意义,即使AB ,BA 都有意义时它们也不一定相等.但是当A ,B 满足一定条件是,就有BA AB =,此时也称A 与B 是可交换的,可交换矩阵有许多良好的性质,本文主要研究矩阵可交换的几个条件及其常见的性质.本文矩阵均指n 阶实方阵. §1 矩阵可交换成立的几个充分条件 定理1.1(1)设A ,B 至少有一个为零矩阵,则A ,B 可交换; (2)设A ,B 至少有一个为单位矩阵,则A ,B 可交换; (3)设A ,B 至少有一个为数量矩阵,则A ,B 可交换; (4)设A ,B 均为对角矩阵,则A ,B 可交换; (5)设A ,B 均为准对角矩阵,则A ,B 可交换; (6)设*A 是A 的伴随矩阵,则A 与*A 可交换; (7)设A 可逆,则A 与1-A 可交换; (8)设E AB =,则A ,B 可交换. 证 (1)对任意矩阵A ,均有OA AO =,O 表示零距阵,所以A ,B 至少有一个为零矩阵时,A ,B 可交换; (2)对任意矩阵A ,均有EA AE =,E 表示单位矩阵,所以A ,B 至少有一个为单位矩阵时,A ,B 可交换; (3)对任意矩阵A ,均有A kE kE A )()(=,k 为任意实数,则)(kE 为数量矩阵,所以A ,B 至少有一个为数量矩阵时,A ,B 可交换; (4),(5)显然成立; (6)A A E A AA **==,所以矩阵A 与其伴随矩阵可交换; (7)A A E AA 11--==,所以矩阵A 与其逆矩阵可交换; (8)当E AB =时,A ,B 均可逆,且互为逆矩阵,所以根据(7)可知A ,B 可交换. 定理1.2(1)设B A AB βα+=,其中α,β为非零实数, 则A ,B 可交换, (2)设E AB A m =+α,其中m 为正整数,α为非零实数,则A ,B 可交换.

线性代数:可交换整理

下面是可交换矩阵的充分条件: (1) 设A , B 至少有一个为零矩阵,则A , B 可交换; (2) 设A , B 至少有一个为单位矩阵, 则A , B可交换; (3) 设A , B 至少有一个为数量矩阵, 则A , B可交换; (4) 设A , B 均为对角矩阵,则A , B 可交换; (5) 设A , B 均为准对角矩阵(准对角矩阵是分块矩阵概念下的一种矩阵。即除去主对角线上分块矩阵不为零矩阵外,其余分块矩阵均为零矩阵),且对角线上的子块均可交换,则A , B 可交换; (6) 设A*是A 的伴随矩阵,则A*与A可交换; (7) 设A可逆,则A 与其逆矩阵可交换; 注:A的逆矩阵经过数乘变换所得到的矩阵也可以与A进行交换。 (8) (n=0,1..., )可与(m=0,1..., )交换.这一点由矩阵乘法的结合律证明。 定理2 (1) 设AB =αA +βB ,其中α,β为非零实数,则A , B 可交换; (2) 设A m +αAB = E ,其中m 为正整数,α为非零实数,则A , B 可交换. 定理3 (1) 设A 可逆,若AB = O 或A = AB或A = BA ,则A , B 可交换; (2) 设A , B 均可逆, 若对任意实数k , 均有A = ( A - k·E) B ,则A , B 可交换. 定理4 下列均是A , B 可交换的充要条件: (1) A2 - B2 = ( A + B) ( A - B) =( A - B) ( A + B) (2) ( A ±B) 2 = A 2 ±2 AB + B2 ; (3) ( AB)T= ATBT; (4) ( AB)*= A*B* 定理5 可逆矩阵A , B 可交换的充要条件是: (AB) = A ·B . 定理6 (1) 设A , B 均为(反) 对称矩阵, 则A , B 可交换的充要条件是AB 为对称矩阵; (2) 设A , B 有一为对称矩阵,另一为反对称矩阵,则A , B 可交换的充要条件是AB 为反对称性质1 设A , B 可交换,则有: (1) A·B = B ·A , ( AB) = A B, 其中m , k 都是正整数; (2) A f ( B) = f ( B ) A ,其中f ( B ) 是B 的多项式,即A 与B 的多项式可交换; (3) A - B = ( A - B ) ( A + A B …+B ) = ( A + A B + …+ B) ( A - B) (4) ( A + B )^m = (矩阵二项式定理) 性质2 设A , B 可交换, (1) 若A , B 均为对合矩阵,则AB 也为对合矩阵; (2) 若A , B 均为幂等矩阵, 则AB , A + B -AB 也为幂等矩阵; (3) 若A , B 均为幂幺矩阵,则AB 也为幂幺矩阵; (4) 若A , B 均为幂零矩阵,则AB , A + B 均为幂零矩阵.

数学期望的计算方法及其应用概要

数学期望的计算方法及其应用 摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。 关键词:离散型随机变量 连续型随机变量 数学期望 计算方法 ABSTRACT : 第一节 离散型随机变量数学期望的计算方法及应用 1.1 利用数学期望的定义,即定义法[1] 则随机变量X的数学期望E(X)= )(1 i n i i x p x ∑=

学期望不存在 [] 2 例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。试问推销人在用船运送货物时,每箱期望得到多少? 按数学期望定义,该推销人每箱期望可得 =)(X E 10×0.6+8×0.2+5×0.1-6×0.1=7.5元 1.2 公式法 对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松分布,超几何分布等),则我们就可以直接利用典型分布的数学期望公式来求此随机变量的期望。 (1) 二点分布:X ~??? ? ??-p p 101 ,则()p X E = (2) 二项分布:),(~p n B X ,10 p ,则np X E =)( (3) 几何分布:)(~p G X ,则有p X E 1 )(= (4) 泊松分布:) (~λP X ,有λ=)(X E (5) 超几何分布: ),,(~M N n h X ,有N M n X E =)( 例2 一个实验竞赛考试方式为:参赛者从6道题中一次性随机抽取3道题,按要求独立完成题目.竞赛规定:至少正确完成其中2题者方可通过,已知6道备选题中参赛者甲有4题能正确分别求出甲、乙两参赛者正确完成题数的数学期望. 解 设参赛者甲正确完成的题数为X ,则X 服从超几何分布,其中 6,4,3N M n ===, 设参赛者乙正确完成的题数为Y ,则 )32,3(~B Y ,23 2 3)(=?==np Y E 1.3 性质法

矩阵可交换的条件及其性质

中文摘要 特殊矩阵在矩阵分析和矩阵计算中占有十分重要的地位,它们在计算数学、应用数学、经济学、物理学等方面都有着广泛的应用,对特殊矩阵的研究取得的实质性的进展,都将会对计算数学的发展起着重要的推动作用.随着矩阵应用程度的不断加深,矩阵的可交换性越来越被学者和技术人员所重视.矩阵的可交换性不仅在矩阵计算中起着重要作用,而且在卫星通讯等等许多领域也有着直接的应用. 关键词:矩阵交换矩阵可交换特殊矩阵上三角矩阵数量矩阵

ABSTRACT Special matrices play an important role in matrix analysis and matrix computation and have wide applications in computational mathematics, economics,physics,biology,applied mathematics and etc.Great progress obtained in the researchers on special matrices will give improvements in computational mathematics.With the applications of matrices are more and more abroad,the commutativity of matrix is more and more recognition by scholar and technology worker.The commutativity of matrix not only plays an important part in the matrix computation,but also in the secondary planet, communication and other fields. Keywords:the commutant of matrix,mathematics,exchangeable,special matrices,upper triangle matrices,scalar matrices

矩阵的特征值与特征向量的求法

摘要:首先给出了求解矩阵特征值和特征向量的另外两种求法,然后运用特征值的性质讨论了矩阵合同、相似的充要条件,以及逆矩阵的求解等相关问题. 关键词:矩阵的特征多项式,特征值,特征向量,对角矩阵,逆矩阵

Abstract:Firstly,it is given matrix eigenvalues and eigenvectors of two other methods, then with the properties of eigenvalue the contract of matrix discussed,we deeply discuss the sufficient and necessary conditions for the similar matrix contract, and the inverse matrix of the related problem solving. Keywords:matrix characteristic polynomial, eigenvalue, eigenvector, diagonal matrices, inverse matrix

目录 1 前言 (4) 2 矩阵的特征值和特征向量的求法 (4) 2.1 矩阵的初等变换法 (4) 2.2 矩阵的行列互逆变换法 (6) 3 矩阵特征值的一些性质及应用 (7) 3.1 矩阵之间的关系 (7) 3.1.1 矩阵的相似 (7) 3.1.2 矩阵的合同 (7) 3.2 逆矩阵的求解 (8) 3.3 矩阵相似于对角矩阵的充要条件 (8) 3.4 矩阵的求解 (9) 3.5 矩阵特征值的简单应用 (10) 结论 (11) 参考文献 (12) 致谢 (13)

矩阵特征值和特征向量解法的研究

矩阵特征值和特征向量解法的研究 周雪娇 (德州学院数学系,山东德州 253023) 摘 要:对矩阵特征值和特征向量的一些方法进行了系统的归纳和总结.在比较中能够 更容易发现最好的方法,并提高问题的解题效率. 关键词: 矩阵; 特征值; 特征向量; 解法 引言 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具.矩阵计算问题是很多科学问题的核心.在很多工程计算中,常常会遇到特征值和特征向量的计算问题,如:机械、结构或电磁振动中的固有值问题;物理学中的各种临界值等,这些特征值的计算往往意义重大.很多科学问题都要归结为矩阵计算的问题,在这里主要研究矩阵计算中三大问题之——特征值问题. 1 矩阵特征值与特征向量的概念及性质 1.1 矩阵特征值与特征向量的定义 设A 是n 阶方阵,如果存在数λ和n 维非零向量x ,使得x Ax λ=成立,则称 λ为A 的特征值,x 为A 的对应于特征值λ的特征向量. 1.2 矩阵特征值与特征向量的性质 矩阵特征值与特征向量的性质包括: (1)若i i r A 的是λ重特征值,则i i s A 有对应特征值λ个线性无关的特征向量,其中i i r s ≤. (2)若线性无关的向量21,x x 都是矩阵A 的对应于特征值0λ的特征向量,则当21,k k 不全为零时,2211x k x k +仍是A 的对应于特征值0λ的特征向量. (3)若A n 是矩阵λλλ,,,21 的互不相同的特征值,其对应的特征向量分别是 n x x x ,,,21 ,则这组特征向量线性无关.

(4)若矩阵()n n ij a A ?=的特征值分别为n λλλ,,,21 ,则 nn n a a a +++=+++ 221121λλλ,A n =λλλ 21. (5)实对称矩阵A 的特征值都是实数,且对应不同特征值的特征向量正交. (6)若i λ是实对称矩阵A 的i r 重特征值,则对应特征值i λ恰有i r 个线性无关的特征向量. (7)设λ为矩阵A 的特征值,()x P 为多项式函数,则()λP 为矩阵多项式()A P 的特征值.[]1 2 普通矩阵特征值与特征向量的求法 2.1 传统方法 确定矩阵A 的特征值和特征向量的传统方法可以分为以下几步: (1)求出矩阵A 特征多项式()A E f -=λλ的全部特征根; (2)把所求得的特征根()n i i ,,2,1 =λ逐个代入线性方程组()0=-X A E i λ, 对于每一个特征值,解方程组()0=-X A E i λ,求出一组基础解系,这样,我们也就求出了对应于每个特征值的全部线性无关的特征向量.[]2 例1 已知矩阵 ???? ? ?????-=11 111 110 A 求矩阵A 的特征值和特征向量. 解 A E -λ = 1 1 1 1 1 11 ------λλλ = ()21-λλ 所以,由()012=-λλ知A 的特征根1,0321===λλλ.

相关主题