搜档网
当前位置:搜档网 › 基于Ansys Workbench的圆柱销接触分析

基于Ansys Workbench的圆柱销接触分析

基于Ansys Workbench的圆柱销接触分析
基于Ansys Workbench的圆柱销接触分析

前面一篇基于Ansys经典界面的接触分析例子做完以后,不少朋友希望了解该例子在Workbench中是如何完成的。我做了一下,与大家共享,不一定正确。毕竟这种东西,教科书上也没有,我只是按照自己的理解在做,有错误的地方,恳请指正。

1.问题描述

一个钢销插在一个钢块中的光滑销孔中。已知钢销的半径是0.5 units, 长是2.5 units,而钢块的宽是4 Units, 长4 Units,高为1 Units,方块中的销孔半径为0.49 units,是一个通孔。钢块与钢销的弹性模量均为36e6,泊松比为0.3.

由于钢销的直径比销孔的直径要大,所以它们之间是过盈配合。现在要对该问题进行两个载荷步的仿真。

(1)要得到过盈配合的应力。

(2)要求当把钢销从方块中拔出时,应力,接触压力及约束力。

2.问题分析

由于该问题关于两个坐标面对称,因此只需要取出四分之一进行分析即可。

进行该分析,需要两个载荷步:

第一个载荷步,过盈配合。求解没有附加位移约束的问题,钢销由于它的几何尺寸被销孔所约束,由于有过盈配合,因而产生了应力。

第二个载荷步,拔出分析。往外拉动钢销1.7 units,对于耦合节点上使用位移条件。打开自动时间步长以保证求解收敛。在后处理中每10个载荷子步读一个结果。

本篇只谈第一个载荷步的计算。

3.生成几何体

上述问题是ANSYS自带的一个例子。对于几何体,它已经编制了生成几何体的命令流文件。所以,我们首先用经典界面打开该命令流文件,运行之以生成四分之一几何体;然后导出为一个IGS文件,再退出经典界面,接着再到WORKBENCH中,打开该IGS文件进行操作。

(3.1)首先打开ANSYS APDL14.5.

(3.2)然后读入已经做好的几何体。从【工具菜单】-->【File】-->【Read Input From】打开导入文件对话框

找到ANSYS自带的文件

\Program Files\Ansys Inc\V145\ANSYS\data\models\block.inp

【OK】后四分之一几何模型被导入,结果如下图

(3.3)导出几何模型

从【工具菜单】】-->【File】-->【Export】打开导出文件对话框,在该对话框中设置如下

即把数据库中的几何体导出为一个block.igs文件。【OK】以后该文件被导出。

(3.4)退出ANSYS APDL14.5.

选择【OK】退出经典界面。

4.打开Ansys WorkBench,并新建一个静力学分析系统。

结果如下图

导入几何体模型。在Geometry单元格中,选择Import Geometry -->Browse,如下图

找到上一步所生成的block.igs文件。则该静力学系统示意图更新如下。可见,几何单元格后面已经打勾,说明文件已经关联。

5.浏览几何模型

双击Geometry单元格,打开几何体。在弹出的长度单位对话框内,选择米(Meter)的单位。

然后按下工具栏中的Generate按钮如下图

则主窗口中模型如下图

可见,长方形的变长是2m,这与题目中给定的大小是一致的。

然后退出DesignModeler,则又重新回到WorkBench界面中。

6.定义材料属性

双击Engineering Data,则默认材料是钢材。这里直接修改该钢材的属性即可。只有线弹性材料属性:弹性模量36E6和泊松比0.3

然后在工具栏中选择“Return To Project”以返回到WorkBench界面中。

7.创建接触

在主窗口中分别选择目标面,接触面如下

然后对该接触的细节面板设置如下

其中,

(1)说明接触类型是带摩擦的接触,摩擦系数是0.2,是非对称接触

(2)指明法向接触面的刚度因子是0.1.

8.划分网格

双击Model单元格进入到Mechanical中。在mesh下面插入一个method,并设置该方法为Sweep method.在其细节视图中选择Geometry为两个物体。则ANSYS会对这两个物体按照扫描方式划分网格。

在Mesh下面再插入一个尺寸控制,用于控制钢销的两个直角边为3等分。

在Mesh下面再插入另外一个尺寸控制,用于控制钢销的1个圆弧边为4等分。

按下Generate 后,则生成的有限元模型如下图。

9.设置边界条件

设置四个面为对称边界条件

然后还要固定钢块的一个面

此时模型树的结构如下图

10.进行求解设置

进行分析设置

其中,(1)意味着只有一个载荷步,该载荷步也只有一个载荷子步,关闭了自动时间步长,该载荷步结束的时间是100.

(2)的意思是打开大变形开关。

11.求解

在右键菜单中选择Solve进行计算。

12.后处理

查看总体的米塞斯应力如下图

可见,最大的应力是0.46Mpa左右,而在经典界面中得到的最大米塞斯应力是0.29Mpa。这主要应该是由于两边的网格划分不一致所导致的。

查看接触处的状态(只考察接触面)

下面是接触处的渗透图

可见,最大渗透量是4.78mm,这与经典界面中的同样有区别。

下图是接触压力

大致为0.26Mpa,同样比经典界面要大。

可见,这里给出的各个应力都要比经典界面大,但是都在一个量级上,一般来说,这应该是网格划分不相同的结果。如果进一步细分网格,无论经典界面还是Workbench均应该收敛到同一个值。

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

ansys模态分析及详细过程

压电变换器的自振频率分析及详细过程 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

ANSYS高级分析-子结构

1 引言 在ANSYS平台上,所谓子结构技术就是将一组单元用矩阵凝聚为一个单元过程的技术,切吧这个单一的矩阵单元称为超单元。在ANSYS分析中,超单元可以象其他单元类型一样使用。唯一的区别就是必须先进行结构生成分析以生成能够利用的超单元。但子结构并非在所有ANSYS模块中都能利用,目前ANSYS子结构技术可以在ANSYS/Mutiphysics,ANSYS/Mechanical和ANSYS/Structural中使用。 在ANSYS平台上,使用子结构的目的主要是为了节省机时,并且允许在比较有限的计算机设备资源的基础上求解超大规模的问题。比如进行非线性分析和带有大量重复几何结构的分析。在非线性分析中,可以将模型线性部分作成子结构,这部分的单元矩阵就不用在非线性迭代过程中重复计算。而在有重复几何结构的模型中(如有四条腿的桌子),可以对于重复的部分生成超单元,然后将它拷贝到不同的位置,这样做可以节省大量的计算时间和计算机资源。 子结构还用于模型有大转动的情况下。对于这些模型,ANSYS假定每个结构都是围绕其质心转动的。在三维情况下,子结构有三个转动自由度和三个平动自由度。在大转动模型中,用户在使用部分之前无须对子结构施加约束,因为每个子结构都是作为一个单元进行处理,是允许刚体位移的。 对于大型三维问题的分析而言,需用磁盘空间相对于一个普通计算机系统来说太庞大了,在这种情况下,用户可以通过子结构将问题分块进行分析,从而使得每一块对于计算机系统来说都是可以计算和承受的。 2 ANSYS子结构使用步骤 ANSYS子结构使用过程分为以下三个步骤: 1)ANSYS子结构生成部分 生成部分就是将普通的有限元单元凝聚为一个超单元。凝聚是通过定义一组主自由度来实现的。主自由度用于定义超单元与模型中其他单元的边界,提取模型的动力学特性。图1是一个板状构件用接触单元分析的示意。由于接触单元需要迭代计算,将板状构件形成子结构将显著地节省机时。本例中,主自由度是板与接触单元相连的自由度。 图1 子结构使用示例 2)ANSYS子结构使用部分 用部分就是将超单元与模型整体相连进行分析的部分。整个模型可以是一个超单元,也可以象上例一样是超单元与非超单元相连的。使用部分的计算只是超单元的凝聚(自由度计算仅限于主自由度)和非超单元的全部计算。

基于谱单元方法的单圆柱绕流特性分析

基于谱单元方法的单圆柱绕流特性分析 基于谱单元方法的单圆柱绕流特性分析 提要: 谱单元方法是一种高效的高精度计算流体动力学数值计算方法,目前被广泛运用于空气动力学的大规模模拟中。本文详细介绍了该数值计算方法好核心思想和编程思路,并实现了其程序开发。最后以单圆柱绕流问题为例验证了其准确性和高效性。模拟结果表明谱单元方法是在科学研究和工程计算中极具发展和应用前景的数值计算工具。 关键词:谱单元、有限元、计算流体动力学、圆柱绕流 中图分类号: O313 文献标识码: A 文章编号: 自从1977年Gottlieb和Orszag[1]系统地从数学方面对谱方法进行了理论的阐述,它与有限差分法及有限元法一起构成了求解偏微分方程的三大方法,被广泛地应用于更多的领域。随着谱方法在各领域的应用和发展,谱方法在理论研究上日趋完善,它开辟了谱方法应用函数分析技术处理复杂问题的道路。1984年,Gottlieb和Hussaini 开始将谱方法向计算流体动力学方面推广[2,3]。到了80年代初期,Patera才结合谱方法的精度和有限元的思想提出所谓的谱单元方法[4],谱单元方法具有谱方法的高精度和收敛特性,并且还可以像有限元法一样具有很好的几何区域的适应性[5]。 本文研究了谱单元方法插值函数的选取和谱单元的离散过程,给出了离散方程的一般形式,并采用时间分裂格式的谱单元法求解Navier-Stokes方程,以不同雷诺数下单圆柱绕流的数值模拟作为基本算例,验证了谱单元法的高精度和计算效率,计算表明结果令人满意。 一、谱单元离散格式 二、单圆柱绕流计算分析

在研究圆柱流场时常用的几个无量纲化系数:CD(阻力系数),CL (升力系数)和 St(斯托罗哈数)定义如下: (12) 其中,FD为阻力,与来流方向一致,主要由流体绕圆柱柱表面摩擦阻力以及圆柱前后压力差造成;FL为升力,与来流方向垂直,主要由涡交替从圆柱上下表面脱落产生上下表面压力脉动造成;St 为涡脱落频率,D为圆柱直径。 2.1 计算域和网格划分 考虑直径为D的圆柱受到未经扰动的均匀来流作用,基于圆柱直径和来流流速的雷诺数取Re=200。所选计算域50D×40D,圆柱位于坐标系原点(0,0)。入口边界和出口边界分别位于圆柱中心上游20D 和下游30D处,流域顶部和底部离圆柱中心20D。相应的边界条件如下:进口处自由来流速度为绕流问题特征速度,即ux=U∞,uy=0.0;上下边界条件与进口边界条件相同;出口边界处纵向和横向速度梯度均为0.0,即∂ux/∂x=0.0,∂uy/∂x=0.0;圆柱表面处为不可滑移边界条件,即ux=0.0,uy=0.0。计算域和边界条件如图1所示。 图1 计算域和边界条件示意图 Fig 1 Schematic diagram of the computational domain and boundary conditions 计算域网格划分采用了四边形非结构化谱单元网格,总共划分了354个单元,如图2(a)所示。在靠近圆柱壁面的地方进行了几层非常细的网格加密,离圆柱壁面最近的一层网格厚度为0.1D,如图2(b)所示。同时,在圆柱尾流区域也进行了加密处理。 图2 (a)谱单元网格划分示意图 (b)圆柱附近网格加密示意图 Fig 2 (a) spectral element mesh, 354 elements (b) zoomed-in view of the mesh around the cylinder

流体力学Fluent报告——圆柱绕流之欧阳家百创编

亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟 欧阳家百(2021.03.07) 摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。 关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数 在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。当流体流过圆柱时 , 由于漩涡脱落,在圆柱体上产生交变作用力。这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。 沈立龙等[1]基于RNG k?ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕

流阻力系数Cd与Strouhal 数随雷诺数的变化规律。姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr 数随Re数的变化趋势。费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。计算均在Re = 200 的非定常条件下进行。计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。 圆柱绕流的一个重要特征是流动形态取决于雷诺数。Lienhard[4]总结了大量的实验研究结果并给出了圆柱体尾流形态随雷诺数变化的规律。当Re<5时,圆柱上下游的流线呈对称分布,流体并不脱离圆柱体,没有旋涡产生。此时与理想流体相似,若改变流向,上下游流形仍相同。当5

圆柱绕流数值模拟

圆柱绕流的数值模拟研究 摘要:选取直径为D=10mm的圆柱及6D×3D的计算区域,利用GAMBIT进行模型的创建模型,对计算区域采用分块网格划分与结构化网格划分相结合的技术进行网格划分。对0.03m/s~1.0m/s的低流速情况下的圆柱绕流进行模拟研究,结果发现在速度达到0.1m/s前圆柱后侧没有出现明显的漩涡,在速度大于0.1m/s后漩涡开始出现,当速度达到0.5m/s时漩涡的范围最大。最后利用FLUENT的网格自适应技术对入口速度为0.5m/s的情况进行了网格加密,发现网格自动加密可以改进网格分布情况,但对计算结果的影响程度有限。 关键词:网格划分;圆柱绕流;涡量;网格自适应 钝体绕流中尤其以圆柱体的绕流问题最为经典和引起人们的注意。圆柱绕流属于非定常分离流动问题,在工业工程中的应用非常广泛。圆柱绕流同时也是一个经典的流体力学问题,流体绕圆柱体流动时,过流断面收缩,流速沿程增加,压强沿程减小,由于黏性力的存在,就会在柱体周围形成附面层的分离,形成圆柱绕流。而由于圆柱的存在,会在圆柱迎水面产生壅水现象,同时也增加了圆柱的受力,使得圆柱绕流问题变得十分复杂。 研究圆柱绕流问题在工程实际中也具有很重要的意义。如在水流对桥梁、海洋钻井平台支柱、海底输运管线、桩基码头等的作用中,风对塔建筑、化工塔设备、高空电缆等的作用中,都有重要的工程应用背景。因此,对圆柱绕流进行深入研究,了解其流动机理和水动力学规律,不仅具有理论意义,还具有明显的社会经济效益。 1数学模型与计算方法 1.1几何模型 结合本文研究目标,取圆柱直径D=10mm,计算区域为6D×3D的矩形区域,如图1所示。上游尺寸1.5D,下游尺寸4.5D。使用GAMBIT建模软件按照图1所示的计算域建立了二维的计算模型。 图1计算区域 1.2网格划分及边界条件设置 为提高模拟精度,计算区域采用分块网格划分与结构化网格划分相结合的技术。计算区域共分两块,尺寸见图1所示。在圆柱区域采用O型结构化网格(图2),尾流区域采用四边形结构化网格分别划分(图3),使用GAMBIT对两块计算区域进行了网格划分,划分的结果是网格总数为42946个。 对计算区域进行边界条件定义,考虑到流入介质的为空气,同时流速较低,就把介质假定为不可压缩的流体。进而把左侧的入口定义为速度入口即:Velocity-inlet,右侧的出口假定为充分发展的出流,即定义为:Outflow。其余的边界保持默认的壁面边界条件,同时定义为绝热条件,即热流密度为0。

Ansys非线性接触分析和设置

Ansys非线性接触分析和设置 5.4.9 设置实常数和单元关键选项 程序使用20个实常数和数个单元关键选项,来控制面─面接触单元的接触。参见《ANSYS Elements Reference》中对接触单元的描述。 5.4.9.1 实常数 在20个实常数中,两个(R1和R2)用来定义目标面单元的几何形状。剩下的用来控制接触面单元。 R1和R2 定义目标单元几何形状。 FKN 定义法向接触刚度因子。 FTOLN 是基于单元厚度的一个系数,用于计算允许的穿透。 ICONT 定义初始闭合因子。 PINB 定义“Pinball"区域。 PMIN和PMAX 定义初始穿透的容许范围。 TAUMAR 指定最大的接触摩擦。 CNOF 指定施加于接触面的正或负的偏移值。 FKOP 指定在接触分开时施加的刚度系数。 FKT 指定切向接触刚度。 COHE 制定滑动抗力粘聚力。 TCC 指定热接触传导系数。 FHTG 指定摩擦耗散能量的热转换率。 SBCT 指定 Stefan-Boltzman 常数。 RDVF 指定辐射观察系数。 FWGT 指定在接触面和目标面之间热分布的权重系数。

FACT 静摩擦系数和动摩擦系数的比率。 DC 静、动摩擦衰减系数。 命令: R GUI:main menu> preprocessor>real constant 对实常数 FKN, FTOLN, ICONT, PINB, PMAX, PMIN, FKOP 和 FKT,用户既可以定义一个正值,也可以定义一个负值。程序将正值作为比例因子,将负值作为绝对值。程序将下伏单元的厚度作为ICON,FTOLN,PINB,PMAX 和 PMIN 的参考值。例如 ICON = 0.1 表明初始闭合因子是“0.1*下层单元的厚度”。然而,ICON = -0.1 则表示真实调整带是 0.1 单位。如果下伏单元是超单元,则将接触单元的最小长度作为厚度。参见图5-8。 图5-8 下层单元的厚度 在模型中,如果单元尺寸变化很大,而且在实常数如 ICONT, FTOLN, PINB, PMAX, PMIN 中应用比例系数,则可能会出现问题。因为从比例系数得到的实际结果,取决于下层单元的厚度,这就可能引起大、小单元之间的重大变化。如果出现这一问题,请用绝对值代替比例系数。 TCC, FHTG, SBCT, RDVF 和 FWGT 仅用于热接触分析[KEYOPT(1)=1]。 5.4.9.2 单元关键选项 每种接触单元都包括数个关键选项。对大多的接触问题,缺省的关键选项是合适的。而在某些情况下,可能需要改变缺省值。下面是可以控制接触行为的一些关键选项: 自由 度 KEYOPT(1) 接触算法(罚函数+拉格朗日乘子或罚函数) KEYOPT(2) 存在超单元时的应力状态(仅2D) KEYOPT(3)

流体力学Fluent报告——圆柱绕流

流体力学Fluent报告——圆柱绕流

亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟 摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。 关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数 在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。当流体流过圆柱时 , 由于漩涡脱落,在圆柱体上产生交变作用力。这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。 沈立龙等[1]基于RNG k?ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数C 与 Strouhal 数 d 随雷诺数的变化规律。姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr数随Re数的变化趋势。费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。计算均在 Re = 200 的非定常条件下进行。计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。 圆柱绕流的一个重要特征是流动形态取决于雷诺数。Lienhard[4]总结了大量

ansys接触定义

1概述 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。 一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触。 (1)刚-柔接触 在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触。 (2)柔-柔接触 柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 2ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSYS使用的接触单元和使用它们的过程,下面分类详述。 2.1点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─面的接触问题的典型例子。

ANSYS—接触单元说明

参考ANSYS的中文帮助文件 接触问题(参考ANSYS的中文帮助文件) 当两个分离的表面互相碰触并共切时,就称它们牌接触状态。在一般的物理意义中,牌接触状态的表面有下列特点: 1、不互相渗透; 2、能够互相传递法向压力和切向摩擦力; 3、通常不传递法向拉力。 接触分类:刚性体-柔性体、柔性体-柔性体 实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。 ――罚函数法。接触刚度 ――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。 三种接触单元:节点对节点、节点对面、面对面。 接触单元的实常数和单元选项设臵: FKN:法向接触刚度。这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。 FTOLN:最大穿透容差。穿透超过此值将尝试新的迭代。这是一个与接触单元下面的实体单元深度(h)相乘的比例系数,缺省为0.1。此值太小,会引起收敛困难。 ICONT:初始接触调整带。它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03= PINB:指定近区域接触范围(球形区)。当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的)PMIN和PMAX:初始容许穿透容差。这两个参数指定初始穿透范围,ANSYS把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。 TAUMAX:接触面的最大等效剪应力。给出这个参数在于,不管接触压力值多大,只要等效剪应力达到最大值TAUMAX,就会发生滑动。该剪应力极限值通常用于接触压力会变得非常大的情况。 CNOF:指定接触面偏移。+CNOF增加过盈、-CNOF减少过盈或产生间隙、CNOF能与几何穿透组合应用。 FKOP:接触张开弹簧刚度。针对不分离或绑定接触模型,需要设臵实常数FKOP,该常数为张开接触提供了一个刚度值。FKOP阻止接触面的分离;FKOP默认为1.0,用于建立粘结模型,用一个较小值(1e-5)去建立软弹簧模型。 FKT:切向接触刚度。作为初值,可以采用-FKT=0.01*FKN,这是大多数ANSYS 接触单元的缺省值。 COHE:粘滞力。即没有法向压力时开始滑动的摩擦应力值。 FACT,DC:定义摩擦系数变化规律

流体力学Fluent报告——圆柱绕流

亚临界雷诺数下串列双圆柱与方柱绕 流的数值模拟 令狐采学 摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。 关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。当流体流过圆柱时, 由于漩涡脱落,在圆柱体上产生交变作用力。这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。 沈立龙等[1]基于RNG k?ε模型,采用有限体积法研究了

亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数Cd与Strouhal 数随雷诺数的变化规律。姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr数随Re数的变化趋势。费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。计算均在Re = 200 的非定常条件下进行。计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。 圆柱绕流的一个重要特征是流动形态取决于雷诺数。Lienhard[4]总结了大量的实验研究结果并给出了圆柱体尾流形态随雷诺数变化的规律。当Re<5时,圆柱上下游的流线呈对称分布,流体并不脱离圆柱体,没有旋涡产生。此时与理想流体相似,若改变流向,上下游流形仍相同。当5

ANSYS中文翻译官方手册_接触分析

一般的接触分类 (2) ANSYS接触能力 (2) 点─点接触单元 (2) 点─面接触单元 (2) 面─面的接触单元 (3) 执行接触分析 (4) 面─面的接触分析 (4) 接触分析的步骤: (4) 步骤1:建立模型,并划分网格 (4) 步骤二:识别接触对 (4) 步骤三:定义刚性目标面 (5) 步骤4:定义柔性体的接触面 (8) 步骤5:设置实常数和单元关键字 (10) 步骤六: (21) 步骤7:给变形体单元加必要的边界条件 (21) 步骤8:定义求解和载步选项 (22) 第十步:检查结果 (23) 点─面接触分析 (25) 点─面接触分析的步骤 (26) 点-点的接触 (35) 接触分析实例(GUI方法) (38) 非线性静态实例分析(命令流方式) (42) 接触分析 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。

一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。 点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。

ansys面与面接触分析实例

面与面接触实例:插销拨拉问题分析 定义单元类型 Element/add/edit/delete 定义材料属性 Material Props/Material Models Structural/Linear/Elastic/Isotropic 定义材料的摩擦系数 … 建立几何模型 Modeling/Create/Volumes/Block/By Dimensions X1=Y1=0,X2=Y2=2,Z1=,Z2=

Modeling/Create/Volumes/Cylinder/By Dimensions Modeling/Operate/Booleans/Subtract/Volumes 先拾取长方体,再拾取圆柱体。 Modeling/Create/Volumes/Cylinder/By Dimensions 、 划分掠扫网格 Meshing/Size Cntrls/ManualSize/Lines/Picked Lines 拾取插销前端的水平和垂直直线,输入NDIV=3再拾取插座前端的曲线,输入NDIV=4

PlotCtrls/Style/Size and Shape,在Facets/element edge列表中选择2 facets/edge 建立接触单元 : Modeling/Create/Contact pair,弹出Contact Manager对话框,如图所示。 单击最左边的按钮,启动Contact Wizard(接触向导),如图所示。

单击Pick Target,选择目标面。 选择接触面 定义位移约束 施加对称约束,Define Loads/Apply/Structural/Displacement/Symmetric On Areas,选择对称面。 再固定插座的左侧面。 ) 设置求解选项 Analysis Type/Sol’s Control

ANSYS接触分析_学习手记

◆前提: ◇有限元模型。 ◇已识别接触面及目标面。(*可应用自由度耦合来替代接触。) 选择目标面和接触面的准则: 1.凸面和凹面或平面接触是,选平面或凹面为目标面。2、接触的两个面网格划分有粗细的话,选粗网格所在面为目标面。3两个面刚度不同时,选择刚度大的面为目标面4如果两个面为一个高阶单元,一个为低阶单元,选低阶单元为目标面 5.如果一个面比另一个面大选大的面为目标面。 2. ◆定义接触单元及实常数

◇(刚性)目标单元—— TARGE169 TARGE170 ; ◇(柔性)接触单元—— CONTA171~CONTA172。 ***Commands*** ET,K,169 !K - 指定的单元编号 ET,K+1,172 *** **** ◇实常数——一个接触对对应同一个实常数号。 TARGE单元的实常数包括:R1、R2 —定义目标单元几何形状 CONTA单元的实常数包括: No. Name Description 1 R1 Target circle radius(刚性环半径) 2 R2 Superelement thickness(单元厚度) *3 FKN Normal penalty stiffness factor(法向接触刚度因子) *4 FTOLN Penetration tolerance factor(最大允许的穿透) *5 ICONT Initial contact closure(初始闭合因子) 6 PINB Pinball region(“Pinball”区域) *7 PMAX Upper limit of initial allowable penetration(初始穿透的最大值)*8 PMIN Lower limit of initial allowable penetration(初始穿透的最小值)*9 TAUMAX Maximum friction stress(最大的接触摩擦) *10 CNOF Contact surface offset(施加于接触面的正或负的偏移值) 11 FKOP Contact opening stiffness or contact damping *12 FKT Tangent penalty stiffness factor(切向接触刚度) 13 COHE Contact cohesion(滑动抗力粘聚力) 14 TCC Thermal contact conductance(热接触传导系数) 15 FHTG Frictional heating factor(摩擦耗散能量的热转换率) 16 SBCT Stefan-Boltzmann constant 17 RDVF Radiation view factor 18 FWGT Heat distribution weighing factor 19 ECC Electric contact conductance 20 FHEG Joule dissipation weight factor 21 FACT Static/dynamic ratio(静摩擦系数和动摩擦系数的比率) 22 DC Exponential decay coefficient(摩擦衰减系数) 23 SLTO Allowable elastic slip 24 TNOP Maximum allowable tensile contact pressure 25 TOLS Target edge extension factor 附注: +值作为比例因子,-值作为绝对值; 带*号的实常数比较重要,关乎接触分析的收敛; 一般实常数可为缺省值。

圆柱绕流的数值模拟解析

圆柱绕流的数值模拟 张玉静 20070360204 过控(2)班化工与能源学院 摘要:使用计算流体力学软件FLUENT,模拟均匀来流绕固定圆柱的流动,模拟雷诺数为5,20,40,100时的绕流流动,得到流场的流函数等值线图和速度矢量图。计算结果表明:当雷诺数增加时,流动表现出一系列不同的构造。当Re=5时,流动不发生分离,其后未形成旋涡,当Re=20,40,100时,流体发生分离,其后形成旋涡,且旋涡随着Re的增大而增大。利用计算流体力学软件FLUENT可以成功地模拟圆柱绕流问题,反映出流动特性。 关键词:圆柱绕流;FLUENT;雷诺数 Abstract:Uniform flow around a mounting cylinder is simulated with the application of FLUENT software while Reynolds number is 5,20,40,100. Stream function and velocity vector distributions are indicated. The results show that a series of construction appears as Reynolds number increases. When Re is 5, Flow separation does not occur, and it does not form vortex . When Re is 20,40,100, Flow separation occurs, and it forms vortex. V ortex increases with the increase of Re. Using computational fluid dynamics software FLUENT can successfully simulate flow around cylindrical, reflect the flow characteristic. Key words:Flow around a circular cylinder;FLUENT;Reynolds number 1 圆柱绕流理论分析研究的状况 一个世纪以来,圆柱绕流一直是众多理论分析、实验研究及数值模拟对象。但迄今对该流动现象物理本质的理解仍是不完整的。圆柱绕流中,起决定作用的是雷诺数,但还受到许多因素,如阻塞比,来流湍流度,下游边界条件等的影响。随着雷诺数的增加,粘性不可压缩流体绕圆柱的流动会呈现各种不同的流动状态,在小雷诺数时,流动是定常的,随着雷诺数的增加,圆柱后会出现一对尾涡。当雷诺数较大时,尾流首先失稳,出现周期性的振荡。而后附着涡交替脱落,泻入尾流形成Karman涡街,随着雷诺数的增加,流动变得越来越复杂,最后发展为湍流。White认为圆柱涡流具有经典性的重要意义。 一般认为圆柱绕流有2种定常的流动图案:雷诺数为较小时,圆柱后无尾涡;当雷诺数为较大时,圆柱后有一对对称的尾涡。关于定常流失稳以及出现湍流的

基于FLUENT的并列双圆柱绕流二维数值模拟分析

-46-科学技术创新2019.02 基于FLUENT的并列双圆柱绕流二维数值模拟分析 胡锦鹏罗森 (重庆科技学院建筑工程学院,重庆401331) 摘要:为研究双圆柱在不同距径比(L/D)工况下的绕流,运用FIUENT软件模拟低雷诺数下的双圆柱绕流中表面压力系数的分布和升力系数、阻力系数的变化规律。通过数值模拟分析表明:双圆柱表面随着L/D的增大两圆柱柱后涡街将由耦合涡街逐步转化为单圆柱绕流时的卡门涡街,两柱对绕流的影响减弱;随着UD的增加,两柱之间的相互作用减小,升力系数和阻力系数都逐渐降低。通过对不同I7D工况下的对比分析,为圆墩抑制双圆柱绕流的设计提供一定意义的参考。 关键词:fluent;双圆柱;绕流;数值模拟 中图分类号:035文献标识码:A文章编号:2096-4390(2019)02-0046-02 多柱绕流问题在海洋工程、跨江跨河桥墩、以及涉水建筑物基础等领域有广泛的应用。水流经过多圆柱会产生旋涡,旋涡的脱落使各个圆柱之间有相互干扰作用,其流场特征与圆柱的受力与单圆柱绕流有明显不同叫因此研究多圆柱绕流的流场特征分析与圆柱受力状态研究对于涉水工程应用具有重要的意义。 多柱与之单柱绕流相比,多柱绕流受墩柱数量、排列方式、柱间距离、流体速度等因素影响,其流场特性、涡街形态更加复杂,加之在波、浪、流等耦合作用下极易发生相互干扰造成桩柱严重损伤及破坏。基于此,采用FLUENT有限元软件,建立双圆柱绕流模型研究其在不同距径比(两圆柱中心距与圆柱直径之比)下分析圆柱绕流的阻力系数、升力系数、分离点位置及流场变化规律,为后续涉水基础中的双圆柱绕流问题的研究提供理论依据。 1绕流相关参数 绕流的相关参数主要有雷洛数Re、斯托罗哈数St、升力系数G和阻力系数C“下面给出各个参数的计算公式和物理意义。 1.1雷洛数Re 圆柱绕流的状态和雷诺数有很大关系,雷诺数代表惯性力和粘性力之比:Re=四=巴 “u(1)式中:P为流体的密度;U为自由来流的平均速度;L为结构的特征尺寸(圆柱取直径D)屮为流体粘性系数;”=上为流体的运动学粘性系数。121P 1.2斯托罗哈数St Strouhal指出圆柱绕流后在圆柱后面可以出现交替脱落的旋涡,旋涡脱落频率、流速、圆柱直径之间存在一个关系: st=— U(2)式中:St为斯托罗哈数,取决于结构的形状断面;f,为旋涡脱落频率;D为结构的特征尺寸(圆柱取直径D);U为来(转下页) 能够使小鼠的血脂下降,从而起到防止AS的作用。同时发现枸杞色素可以使低密度脂蛋白胆固醇(LDL-C)、血清甘油三酯(TG)及总胆固醇(TC)的含量减少,因此枸杞中色素能够拮抗高血脂症患者的血脂上升和脂质的不易还原。 同时枸杞色素具有血管内皮细胞的保护作用,研究发现,受损伤的细胞的G0/G1比率和凋亡率可以通过枸杞中的花色昔来下降,升高其G2/M的比率和S期的细胞比率,发现被过度氧化且低密度的脂蛋白所损伤的人体静脉的内皮细胞可以被存在于枸杞中的花色苛所保护和修复叫 枸杞色素不但能明显地增强机体的特异性免疫的作用,并且能够提高非特异性免疫的作用。经实践证实枸杞色素能够明显地提高T、B淋巴细胞的数量、红细胞的免疫黏附作用及其雏鸡血清的HI抗体能力,说明了枸杞色素对于雏鸡的特异性免疫及体液免疫的疗效有明显的加强能力冋。枸杞色素还具有抗疲劳、抗肿瘤、提高视力及生殖能力等作用。 2.3多酚类。多酚类是植物中一组含有多个酚羟基团的化学元素的总称。多酚类物质可以起到很好的还原作用。富含酚羟基的物质在世界上也被称为“第七种营养物质”。此中主要活性物质为多酚类物质,多酚类物质为植物成分的分子的结构式中含有多个酚轻基团统称,主要是单宁类、黄酮类、花色昔类以及酚酸类等成分,均是可以保证健康的一类化合物。枸杞叶子中主要黄酮类物质是芦丁,同样芦丁含量最丰富的部位也是枸杞叶子。尽管芦丁存在于野生或者栽培的枸杞果实中的含量少之又少,然而黄酮类化合物的总含量相比于野生枸杞叶,栽培的枸杞叶子总含量高出很多。 2.4其他化合物。枸杞中主要的含氮物质是氨基酸和蛋白质,此外还含有多种氨基酸、Mg、Mn、Se、Zn多种金属离子、粗脂肪、脂肪酸等,同时还含有多种小分子物质,例如P-香豆酸、各种维生素和脑昔等。其他成分包括菜油;胆苗烷醇;天门冬素、當醇、胆當-7-烯醇;2,4-乙基胆苗-5烯-3(3醇等。 参考文献 [1]张仲景(汉).金匮要略方论[M].北京:人民卫生出版社,1972:21-22. [2]王玲,张才军,李维波,等.枸杞多糖对2型糖尿病患者T淋巴细胞亚群和细胞因子的调节作用[J].河北中医,2013,23(12):888-890. [3]李宁宁.类胡萝卜素的研究进展[J].中国现代实用医学杂志, 2014,3⑵:51-53. [4]袁宝财,达海莉,李晓瑞.宁夏枸杞的生物学特性及开发利用前景[J].河北林果研究,2014,12(4):52-53. [5]朱采平.枸杞多糖的结构分析及生物活性评价[D].武汉:华中农业大学,2009,6(3):46-47. [6]林丽,李进,呂海英,等.黑果枸杞花色昔对小鼠动脉粥样硬化的影响[J].中国中药杂志,2012,37(10):1460-1466.

相关主题