搜档网
当前位置:搜档网 › 考虑啮合时变刚度和传递误差的齿轮振动分析

考虑啮合时变刚度和传递误差的齿轮振动分析

考虑啮合时变刚度和传递误差的齿轮振动分析
考虑啮合时变刚度和传递误差的齿轮振动分析

弦振动实验终结报告

“弦振动实验”实验报告 一、实验目的 1、观察弦振动形成的驻波并用实验确定弦振动时共振频率与实验条件的关系。 2、学习用一元线形回归和对数作图法对数据进行处理。 3、学习检查和消除系统误差的方法。 二、实验原理 一根柔软的弦线两端被拉紧时,加以初始打击之后,弦不再受外加激励,将以一定频率进行自由振动,在弦上产生驻波,自由振动的频率称为固有频率。如果对弦外加连学的周期性激励,当外激励频率与弦的固有频率相近的时候,弦上将产生稳定的较大振幅的驻波,说明弦振动系统可以吸收频率相同的外部作用的能量而产生并维持自身的振动,外加激励强迫的振动称为受迫振动。当外激励频率等于固有频率时振幅最大将出现共振,最小的固有频率称为基频。实验还发现,当外激励频率为弦基频的2倍,3倍或者其他整数倍时,弦上将形成不同的驻波,如图1所示,这种能以一系列频率与外部周期激励发生共振的情形,在宏观体系(如机械、桥梁等)和微观体系(如原子、分子)中都存在。弦振动能形成简单而典型的驻波。 弦振动的物理本质是力学的弹性振动,即弦上各质元在弹性力的作用下,沿垂直于弦的方向发生震动,形成驻波。弦振动的驻波可以这样简化分析:看作是两列频率和振幅相同而传播方向相反的行波叠加而成。在弦上,由外激励所产生的振动以波的形式沿弦传播,经固

定点反射后相干叠加形成驻波。固定点处的合位移为零,反射波有半波损失,即其相位与入射波相位相差π,在此处形成波节,如图1中的O和L两个端点所示。距波节处入射波与反射波相位相同,此处合位移最大,即振幅最大,形成波腹。相邻的波节或者波腹之间为半波长。两端固定的弦能以其固有频率的整数倍振动。因此弦振动的波长应满足: 式中L为弦长,N为正整数。因波长与频率之积为波的传播速度v,故弦振动的频率为: 由经验知,弦振动的频率不仅与波长有关,还与弦上的张力T和弦的密度ρ有关,这些关系可以用实验的方法研究。用波动方程可最终推出弦振动公式为: 三、实验装置 本实验使用的XY弦音计是代替电子音叉的新仪器。它带有驱动和接收线圈装置,提供数种不同的弦,改变弦的张力,长度和粗细,调整驱动频率,使弦发生振动,用示波器显示驱动波形和传感器接收的波形,观察波动的弦在节点处的效应,进行定量实验以验证弦上波的振动。

带式输送机二级直齿圆柱齿轮减速器设计之传动方案分析

2.2.1分析和选定传动装置的方案 传动方案通常用机构运动简图的方式表达,根据课程设计任务书中提供的原始参数,分析减速器的工作条件(如运动特点,有无特殊要求等),工作性能(如运输带工作拉力F,运输带工作速度v),再分析比较多种传动方案的特点,考虑总体结构,尺寸以及加工制造方便,使用和维护易于操作进行,成本低廉等因素从中选择出最佳的传动方案。如果设计的是多级传动,对于有几种传动形式的多级传动要充分考虑各种传动方式的传动特点,合理布置传动顺序,下面几点在考虑传动方案时可供参考。 1.带传动乘载能力小,传递同样功率时结构尺寸较大,但带能吸收振动,传动平稳,适宜布置在高速级,通常i≤7。 2.斜齿轮因为是逐渐进入和退出啮合其传动比直齿轮更平稳,故宜布置在高速级。 3.蜗杆传动可得到较大的传动比,适合于用在高速传动中。 总体传动方案的选择可参考附录I示例图。 2.1 拟定传动方案 机器通常由原动机、传动装置和工作机三部分组成。传动装置将原动机的动力和运动传递给工作机,合理拟定传动方案是保证传动装置设计质量的基础。课程设计中,学生应根据设计任务书,拟定传动方案,分析传动方案

图2-1 带式运输机传动方案比较 传动方案应满足工作机的性能要求,适应工作条件,工作可靠,而且要求结构简单,尺寸紧凑,成本低,传动效率高,操作维护方便。 设计时可同时考虑几个方案,通过分析比较最后选择其中较合理的一种。下面为图1中a、b、c、d几种方案的比较。 a方案宽度和长度尺寸较大,带传动不适应繁重的工作条件和恶劣的环境。但若用于链式或板式运输机,有过载保护作用; b方案结构紧凑,若在大功率和长期运转条件下使用,则由于蜗杆传动效率低,功率损耗大,很不经济; c方案宽度尺寸小,适于在恶劣环境下长期连续工作.但圆锥齿轮加工比圆柱齿轮困难; d方案与b方案相比较,宽度尺寸较大,输入轴线与工作机位置是水平位置。宜在恶劣环境下长期工作。 根据传动要求,故选择方案d,同时加上V型带传动。即采用V带传动和二级圆柱齿轮减速器传动。 传动方案 1、设计要求:卷筒直径D=350mm,牵引力F=3200N,运输带速度V=0.5m/s, 连续单向运转,载荷平衡,空载启动,使用年限8年,每年使用350天,每天16小时,运输带的速度误差允许 5%。

齿轮的误差及其分析

齿轮误差及其分析 第一节:渐开线圆柱齿轮精度和检测 对于齿轮精度,主要建立了下列几个方面的评定指标: 一.运动精度: 评定齿轮的运动精度,可采用下列指标: 1.切向综合总偏差F i′: 定义:被测齿轮与理想精确的测量齿轮单面啮合时在被测齿轮一转内,(实际转角与公称转角之差的总幅度值)被测齿轮的实际转角与理论转角的最大差值。切向 综合总偏差F i′。 (它反映了齿轮的几何偏心、运动偏心和基节偏差、齿形误差等综合结果。) Δ 2.齿距累积总偏差F p,齿距累积偏差F pk。 定义:齿轮同侧齿面任意弧段(k=1或k=z)内的最大齿距累积偏差。它表现为齿距累积偏差曲线的总幅值。——齿距累积总偏差。 在分度圆上,k个齿距的实际弧长与公称弧长之差的最大绝对值,称k个齿距累积误差ΔF pk。 k为2到小于Z/2的正数。 这两个误差定义虽然都是在分度圆上,但实际测量可在齿高中部进行。这项指标主

要反映齿轮的几何偏心、运动偏心。用ΔF p 评定不如ΔF i′全面。因为ΔF i是在连续切向综合误差曲线上取得的,而ΔF p不是连续的,它是折线。 ΔF i′= ΔF p+ Δf f 测量方法:一般用相对法,在齿轮测量机上测量。 3.齿圈径向跳动ΔF r与公法线长度变动ΔF w: ΔF r定义:在齿轮一转范围内,测头在齿槽内,于齿高中部双面接触,测头相对于齿轮轴线的最大变动量。 它只反映齿轮的几何偏心,不能反映其运动偏心。(用径跳仪测量检测。) 由于齿圈径跳ΔF r 只反映齿轮的几何偏心,不能反映其运动偏心。因此要增加另一项指标。公法线长度变动ΔF w。 ΔF w定义:在齿轮一周范围内,实际公法线长度最大值与最小值之差。 ΔF w=W max-W min 测量公法线长度实际是测量基圆弧长,它反映齿轮的运动偏心。 测量方法:用公法线千分尺测量。 4.径向综合误差ΔF i″和公法线长度变动ΔF w: 齿轮的几何偏心还可以用径向综合误差这一指标来评定。 ΔF i″定义:被测齿轮与理想精确的测量齿轮双面啮合时,在被测齿轮一转内,双啮中心距的最大变动量。 二.工作平稳性的评定指标: 1.齿切向综合误差Δf i′: 定义:被测齿轮与理想精确的测量齿轮单面啮合时,在被测齿轮一齿距角内,实际转角与公称转角之差的最大幅度值。以分度圆弧长计值。它反映出基节偏差 和齿形误差的综合结果。 测量方法:与ΔF i′同时测量出。 2.齿形误差Δf f与基节偏差Δf pb: 齿形误差Δf f 定义:在端截面上,齿形工作部分内(齿顶倒棱部分除外),包容实 际齿形且距离为最小的两条设计支形间的法向距离,称为齿

弦振动实验报告

弦振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系, 并进行测量。 三、 波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程

分别为: Y1=Acos2π(ft-x/ λ) Y2=Acos[2π (ft+x/λ)+ π] 式中A为简谐波的振幅,f为频率,λ为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos[2π(x/ λ)+π/2]Acos2πft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2π(x/ λ)+π/2] |,与时间无关t,只与质点的位置x有关。 由于波节处振幅为零,即:|cos[2π(x/ λ)+π/2] |=0 2π(x/ λ)+π/2=(2k+1) π/ 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=kλ /2 ② 而相邻两波节之间的距离为: x k+1-x k =(k+1)λ/2-kλ / 2=λ / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2π(x/ λ)+π/2] | =1 2π(x/ λ)+π/2 =kπ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)λ/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=nλ/ 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: λ=2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=λf,将⑤式代入可得弦线上横波的

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等) 一. 实验目的 1. 观察弦上形成的驻波 2. 学习用双踪示波器观察弦振动的波形 3. 验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系 二. 实验仪器 XY弦音计、双踪示波器、水平尺 三实验原理 当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。论和实验证明,波在弦上传播的速度可由下式表示: ρ 1 另外一方面,波的传播速度v 和波长λ及频率γ之间的关系是:

v= λ γ -- ② 将②代入①中得 γ =λ1 -- ③ρ 1 又有L=n* λ/2或λ =2*L/n 代入③得γ n=2L --- ④ρ 1 四实验内容和步骤 1. 研究γ和n 的关系 ①选择 5 根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。 ②设置两个弦码间的距离为60.00cm ,置驱动线圈距离一个弦码大约5.00cm 的位置上,将接受线圈放在两弦码中间。将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。 ③将1kg 砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必

要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则 T=2mg;若砝码挂在第三个槽,则T=3mg??. )④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1 时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5 时的共振频率,做γn 图线,导出γ和n 的关系。 2. 研究γ和T 的关系保持L=60.00cm,ρ 1 保持不变,将1kg 的砝码依次挂在第1、2、3、4、5 槽内,测出n=1 时的各共振频率。计算lg r 和lgT,以lg2 为纵轴,lgT 为横轴作图,由此导出r 和T 的关系。 3. 验证驻波公式 根据上述实验结果写出弦振动的共振频率γ与张力T、线密度ρ关系,验证驻波公式 1、弦长l1 、波腹数n 的 五数据记录及处理

渐开线圆柱齿轮测量误差的分析与修正研究

编订:__________________ 审核:__________________ 单位:__________________ 渐开线圆柱齿轮测量误差的分析与修正研究Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5503-23 渐开线圆柱齿轮测量误差的分析与 修正研究 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 渐开线圆柱齿轮在工业生产中的应用十分广泛,齿轮测量的误差也一直受到人们的关注。通过描述渐开线圆柱齿轮测量误差的来源,分析了齿轮测量中误差的产生过程,并对当前齿轮测量中心误差的修正补偿方法进行了探讨。 渐开线圆柱齿轮是众多齿轮种类中最基本、应用最广泛的齿轮。在工业生产的机械装备中,最主要、最基本的零部件之一就是渐开线齿轮,那么渐开线齿轮的设计水平与加工精度直接影响工业产品的质量,而评价齿轮质量的重要方法就是测量齿轮偏差项。随着齿轮应用的日益广泛,齿轮制造误差对齿轮机构传动性能的影响逐渐显露,人们对于齿轮测量技术及其仪器的研究也愈发深入。

1.齿轮测量误差的来源分析 齿轮由于形状复杂,所以描述齿轮的参数很多,因此在测量中产生误差的原因也很多。不管是对齿轮的加工方法要求如何精确,也不管是对齿轮的加工精度要求如何,造成其仪器测量误差中的系统误差主要来源是测量主机稳定性、运动控制、测球半径和齿轮安装。 1.1.测量主机稳定性 测量主机是测量齿轮的主体,测量主机对齿轮测量误差的影响主要是主机工作台的基圆盘的回转精度对齿轮测量误差的影响。工作台的回转精度不高,就是上下顶尖的直线度和垂直度不好,也就是说运动中心线不稳定,这样基圆盘回转的同时被测齿轮也产生相同的运动。这样就会造成被测齿轮的回转与测球回转不同步,齿轮与测球的接触就不是连续接触,测量得出来的齿形不是刀具加工的渐开线齿形,带有测量误差。工作台基圆盘的回转精度是由仪器的传动部分决定的,它们的制造和装配误差在传递过程中必然要

轴承支承刚度及齿轮啮合刚度计算

4.6设计参数的计算方法 在XXX 的动力学模型中涉及众多的设计参数:如尺寸参数、质量参数,刚度参数等。在本节中介绍其中的刚度参数的计算方法(轴承刚度和齿轮啮合综合刚度)。 1轴承刚度系数的计算方法 一个滚动轴承的径向支承刚度由下式计算 3 21δδδ++= F k 式中: k 一滚动轴承的径向刚度系数 F 一轴承的径向载荷 1δ一轴承的径向弹性位移 2δ一轴承外圈与轴承孔的接触变形 3δ一轴承内圈与轴径的接触变形 (1)轴承的径向弹性位移 轴承的径向弹性位移根据有无予紧按如下两式计算 予紧时: 01βδδ= 轴承中存在游隙时: 2 01g - =βδδ 式中: 0δ一游隙为零时轴承的径向弹性位移,其计算公式见表4一1 g 一轴承的游隙(有游隙时取正号,予紧时取负号) β一系数,根据相对间隙0δg 从图4一7中查出

系数 表4一10δ的计算公式 序号 轴承类型 径向弹性位移计算公式 1 单列深沟轴承 θδd Q 2 3 4 -010 37.4?= 2 向心推力球轴承 θ α δd Q 2 4 -0cos 1037.4?= 3 双列深沟球面球轴承 θ α δd Q 2 3 4 -0cos 1099.6?= 4 向心短圆柱滚子轴承 8.09 .05 -01069.7θ δd Q ?= 5 双列向心短圆柱滚子轴承 815 .0893 .000625.0d F =δ 6 滚道挡边在的上双列向心短圆 柱滚子轴承 8 .0897 .000625.0d F =δ 7 圆锥滚子轴承 8 .09 .05-0cos 1069.7a l Q αδ?= 滚动体上的载荷α cos 5iz F Q =

弦振动的研究

弦振动的实验研究 弦是指一段又细又柔软的弹性长线,比如二胡、吉它等乐器上所用的弦。用薄片拨动或者用弓在张紧的弦上拉动就可以使整个弦的振动,再通过音箱的共鸣,就会发出悦耳的声音。对弦乐器性能的研究与改进,离不开对弦振动的研究,对弦振动研究的意义远不只限于此,在工程技术上也有着极其重要的意义。比如悬于两根高压电杆间的电力线、大跨度的桥梁等,在一定程度上也是一根“弦”,它们的振动所带来的后果可不象乐器上的弦的振动那样使我们们感到愉快。对于弦振动的研究,有助于我们理解这些特殊“弦”的振动特点、机制,从而对其加以控制。同时,弦的振动也提供了一个直观的振动与波的模型,对它的分析、研究是处理其它声与振动问题的基础。欧拉最早提出了弦振动的二阶方程,而后达朗贝尔等人通过对弦振动的研究开创了偏微分方程论。 本实验意在通过对一段两端固定弦振动的研究,了解弦振动的特点和规律。 预备问题 1. 复习DF4320示波器的使用。 2. 什么是驻波?它是如何形成的? 3. 什么是弦振动的模式?共振频率与哪些因素有关? 4. 张力对波速有何影响?试比较以基频和第一谐频共振时弦中的波速。 一、 实验目的: 1、了解驻波形成的条件,观察弦振动时形成的驻波; 2、学会测量弦线上横波传播速度的方法: 3、用作图法验证弦振动频率与弦长、频率与张力的关系。 二、实验原理 一根两端固定并张紧的弦,静止时处于水平平衡位置,当在弦的垂直方向被拉离平衡位置后,弦会有回到平衡位置的趋势,在这种趋势和弦的惯性作用下,弦将在平衡位置附近振动。令弦线长度方向为x 轴,弦被拉动的方向(与x 轴垂直的方向)为y 轴,如图1所示。若设弦的长度为L ,线密度为ρ,弦上的张力为T ,对一小段弦线微元dl 进行受力分析,运用牛顿第二定律定律,可得在y 方向的运动微分方程 ()2222t y dx dx x y T ??=??ρ (1) 若令ρ/2 T v =, 上式可写为 2222 21t y v x y ??=?? (2) x x+dx T T x y dl 图1

齿轮误差分析

1.1 齿圈径向跳动误差(即几何偏心) 齿圈径向跳动是指在齿轮一转范围内,测头在齿槽内或轮齿上,与齿高中部双面接触,测头相对于轮齿轴线的最大变动量。也是轮齿齿圈相对于轴中心线的偏心,这种偏心是由于在安装零件时,零件的两中心孔与工作台的回转中心安装不重合或偏差太大而引起。或因顶尖和顶尖孔制造不良,使定位面接触不好造成偏心,所以齿圈径跳主要应从以上原因分析解决。 1.2公法线长度误差(即运动偏心) 滚齿是用展成法原理加工齿轮的,从刀具到齿坯间的分齿传动链要按一定的传动比关系保持运动的精确性。但是这些传动链是由一系列传动元件组成的。{HotTag}它们的制造和装配误差在传递运动过程中必然要集中反映到传动链的末端零件上,产生相对运动的不均匀性,影响轮齿的加工精度。公法线长度变动是反映齿轮牙齿分布不均匀的最大误差,这个误差主要是滚齿机工作台蜗轮副回转精度不均匀造成的,还有滚齿机工作台圆形导轨磨损、分度蜗轮与工作台圆形导轨不同轴造成,再者分齿挂轮齿面有严重磕碰或挂轮时咬合太松或太紧也会影响公法线变动超差。 1.3齿形误差分析 齿形误差是指在齿形工作部分内,包容实际齿形廓线的两理想齿形(渐开线)廓线间的法向距离。在实际加工过程中不可能获得完全正确的渐开线齿形,总是存在各种误差,从而影响传动的平稳性。齿轮的基圆是决定渐开线齿形的惟一参数,如果在滚齿加工时基圆产生误差,齿形势必也会有误差。基圆半径R= 滚刀移动速度/工作台回转角速度x cos ao (ao为滚刀原始齿形角),在滚齿加工过程中渐开线齿形主要靠滚刀与齿坯之间保持一定速比的分齿来保证,由此可见,齿形误差主要是滚刀齿形误差决定的,滚刀刃磨质量不好很容易出现齿形误差。同时滚刀在安装中产生的径向跳动、轴向窜动(即安装误差)也对齿形误差有影响。常见的齿形误差有不对称、齿形角误差(齿顶变肥或变厚)、产生周期误差等。 1.4齿向误差分析 齿向误差是在分度圆柱面上,全齿宽范围内,包容实际齿向线的两条设计齿向线的端面距离。引起齿向误差的主要原因是机床、刀架的垂直进给方向与零件轴线有偏移,或上尾座顶尖中心与工作台回转中心不一致,还有滚切斜齿轮时,差动挂轮计算误差大,差动传动链齿轮制造和调整误差太大。另外夹具和齿坯制造、安装、调整精度低也会引起齿向误差。 1.5齿面粗糙度分析 齿面粗糙度不好一般有几种现象:发纹、啃齿、鱼磷、撕裂。 引起齿面粗糙度差的主要原因有以下几方面:机床、刀具、工件系统整体刚性不足、间隙大;滚刀和工件相对位置发生变化;滚刀刃磨不当、零件材质不均匀;切削参数选择不合适等。

齿轮振动原理

齿轮的振动机理 一、齿轮的力学模型分析 如图1所示为齿轮副的力学模型,其中齿轮具有一定的质量,轮齿可看作是弹簧,所以若以一对齿轮作为研究对象,则该齿轮副可以看作一个振动系统,其振动方程为 式中x—沿作用线上齿轮的相对位移; c —齿轮啮合阻尼; k(t)—齿轮啮合刚度; T1,T2—作用于齿轮上的扭矩; r2—齿轮的节圆半径; i—齿轮副的传动比; e(t)—由于轮齿变形和误差及故障而造成的个齿轮在作用线方向上的相对位移; m r—换算质量。 图1 齿轮副力学模型 m r=m1m2/(m1+m2)(1-2) 若忽略齿面摩擦力的影响,则(T2-iT1)/r2=0,将e(t)分解为两部分:e(t)=e1+e2(t)(1-3) e1为齿轮受载后的平均静弹性变形;e2(t)为由于齿轮误差和故障造成的两个齿轮间的相对位移,故也可称为故障函数。这样式(1-1)可简化为 (1-4)由式(1-4)可知,齿轮的振动为自激振动。该公式的左侧代表齿轮副本身的振动特征,右侧为激振函数。由激振函数可以看出,齿轮的振动来源于两部分:一部分为k(t)e1,它与齿轮的误差和故障无关,所以称为常规振动;另一部分

为k(t)e2(t) ,它取决于齿轮的综合刚度和故障函数,这一部分可以较好地解释齿轮信号中边频的存在以及与故障的关系。 式(1-4)中的齿轮啮合刚度k(t)为周期性的变量,由此可见齿轮的振动主要是由k(t)的这种周期变化引起的。 k(t)的变化可用两点来说明:一是随着啮合点位置的变化,参加啮合的单一轮齿的刚度发生了变化,二是参加啮合的齿数在变化。例如对于重合系数在1-2之间的渐开线直齿轮,在节点附近是单齿啮合,在节线两侧某部位开始至齿顶、齿根区段为双齿啮合(图2)。显然,在双齿啮合时,整个齿轮的载荷由两个齿分担,故此时齿轮的啮合刚度就较大;同理,单齿啮合时啮合刚度较小。 图2 齿面受载变化图3 啮合刚度变化曲线 从一个轮齿开始进入啮合到下一个轮齿进入啮合,齿轮的啮合刚度就变化一次。由此可计算出齿轮的啮合周期和啮合频率。总的来说,齿轮的啮合刚度变化规律取决于齿轮的重合系数和齿轮的类型。直齿轮的刚度变化较为陡峭,而斜齿轮或人字齿轮刚度变化较为平缓,较接近正弦波(图3)。 若齿轮副主动轮转速为n1、齿数为Z1;从动轮转速为n2、齿数为Z2,则齿轮啮合刚度的变化频率(即啮合频率)为 (1-5)无论齿轮处于正常或异常状态下,这一振动成分总是存在的。但两种状态下振动水平是有差异的。因此,根据齿轮振动信号啮合频率分量进行故障诊断是可行的。但由于齿轮信号比较复杂,故障对振动信号的影响也是多方面的,特别是由于幅值调制和频率调制的作用,齿轮振动频谱上通常总是存在众多的边频带结构,给利用振动信号进行故障诊断带来一定的困难。 二、幅值调制与频率调制

弦振动实验报告

弦 振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L 和弦的张力Τ的关系,并进行测量。 三、波。示。轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点 “O ”,且在X =0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为: Y 1=Acos2(ft -x/ ) Y 2=Acos[2 (ft +x/λ)+ ]式中A 为简谐波的振幅,f 为频率,为波长,X 为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y 1 +Y 2=2Acos[2(x/ )+/2]Acos2ft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2(x/ )+/2] |,与时间无关t ,只与质点的位置x 有关。 由于波节处振幅为零,即:|cos[2(x/ )+/2] |=0

2(x/ )+/2=(2k+1) / 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=k /2 ②而相邻两波节之间的距离为: x k+1-x k =(k+1)/2-k / 2= / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2(x/ )+/2] | =1 2(x/ )+/2 =k ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=n / 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: =2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=f,将⑤式代入可得弦线上横波的传播速度: V=2Lf/n ⑥ 另一方面,根据波动理论,弦线上横波的传播速度为: V=(T/ρ)1/2 ⑦ 式中T为弦线中的张力,ρ为弦线单位长度的质量,即线密度。 再由⑥⑦式可得 f =(T/ρ)1/2(n/2L) 得 T=ρ / (n/2Lf )2 即ρ=T (n/2Lf )2 ( n=1. 2. 3. … ) ⑧ 由⑧式可知,当给定T、ρ、L,频率f只有满足以上公式关系,且积储相应能量时才能在弦线上有驻波形成。 四、实验内容 1、测定弦线的线密度:用米尺测量弦线长度,用电子天平测量弦线质量,记录数据 2、测定11个砝码的质量,记录数据

弦振动地误差分析报告方案设计

弦振动中误差的研究 实验目的: (1)研究弦振动中砝码的重力与绳子拉力之间的关系,测量砝码重力在多大范围内是和绳子张力相等的; (2)研究弦振动中频率的改变对绳子张力和密度的影响,算出它们的误差。 实验原理: 如图(1)实验时在①和⑥间接上弦线(细铜丝),使弦线绕过定滑轮⑩结上砝码盘并接通正弦信号源。在磁场中,通有电流的弦线就会受到磁场力(称为安培力)的作用,若细铜丝上通有正弦交变电流时,则它在磁场中所受的与电流垂直的安培力,也随着正弦变化,移动两劈尖(铜块)即改变弦长,当固定弦长是半波长倍数时,弦线上便会形成驻波。移动磁钢的位置,使弦振动调整到最佳状态(弦振动面与磁场方向完全垂直),使弦线形成明显的驻波。此时我们认为磁 波。

到适合位置.弦线上的波就形成驻波。这时,弦线上的波被分成几段形成波节和波腹。驻波形成如图(2)所示。 设图中的两列波是沿X轴相向方向传播的振幅相等、频率相同振动方向一致的简谐波。向右传播的用细实线表示,向左传播的用细虚线表示,它们的合成 驻波用粗实线表示。由图可见, 这可从波 动方程推导出来。 下面用简谐波表达式对驻波进行定量描述。设沿X轴正方向传播的波为入射波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为: Y1=Acos2 (ft-x/ ) Y2=Acos[2 (ft+x/λ)+ ] 式中A为简谐波的振幅,f为频率, 为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos[2 (x/ )+ /2]Acos2 ft ……………①由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2 (x/ )+ /2] |,与时间无关t,只与质点的位置x 有关。 由于波节处振幅为零,即:|cos[2 (x/ )+ /2] |=0 2 (x/ )+ /2=(2k+1) / 2 ( k=0. 2. 3. …) 可得波节的位置为: x=k /2 ……………②

弦振动实验的研究.

论文题目来源: 国家自然科学基金项目 编号: 四川省自然科学研究项目 编号: 校级自然科学研究项目 编号:

弦振动实验的研究 学生:王彬 指导老师:吴英 摘要:弦振动实验存在着诸多困难,弦的张力会因弦的振动发生变化,弦的线密度会发生微小变化,当波腹数增多时现象不明显,低频信号器共振频率读取不准确等。本研究通过文献综述、理论研究、比较研究等方法,针对上述原因,利用实验室的装置验证弦振动理论采集相应数据并进行结果处理,通过在体验实验过程和数据处理方面的困难,对本实验装置提出切合实际的改进方法,以克服主观和客观方面的困难,使实验现象更加明显。 关键字:弦振动;共振;波腹;张力;线密度

The Research of String Vibration Experiment Undergraduate:Wang Bin Supervisor:Wu Ying Abstract:String vibration experiment is an important experiment of college physics. The experiment is also a deep exploration and application of string vibration knowledge. There are many difficulties in the experiment. For example, string tension will change because of the vibration of the string. And the linear density of the string will inevitably have subtle change. Besides, we can not get precise data of the resonance frequency of low frequency signal generator when the increase of the wave loop is not obvious. As for the above reasons, this research, with the following methods, such as literature review, theoretical research and comparative approach and so on, uses the equipments in the lab to prove the theory of string vibration and collects relevant data and then deal with the data. After knowing the difficulties in the experiment and in dealing with the data, I will propose some practical methods to improve and reform the experiment equipments so that we can overcome subjective and objective difficulties and so that the experimental phenomenon can become more obvious. Key words:string vibration; resonance frequency; wave loop; string tension; linear density.

齿轮传动

齿轮传动 教学目标了解齿轮传动的特点、分类。 掌握齿轮传动的失效形式和设计准则常用的材料及热处理方法。 掌握齿轮材料的计算载荷。 掌握标准直齿圆柱齿轮的计算方法和主要参数的选择方法。 掌握斜齿圆柱齿轮和圆锥齿轮的受力分析和强度计算方法。 .教学重点和难点重点:齿轮传动的失效形式和设计准则受力分析直齿圆柱齿轮传动的设计。 难点:齿轮传动的受力分析如何针对不同条件恰当地确定设计准则如何选用相应的设计数据。 第一节特点、类型及设计基本要求一、传动特点缺点:①制造和安装精度要求较高③不适宜用于两轴间距离较大的传动。 ②低精度齿轮传动时噪声和振动较大③工作可靠性高使用寿命长优点:①传动比恒定②传动效率高④结构紧凑⑤传递功率范围大⑥圆周速度可达%。 可达ms。 可达数万千瓦。 二、传动类型两轴平行的圆柱齿轮传动、两轴相交的圆锥齿轮传动、两轴交错的齿轮传动渐开线齿廓和非渐开线齿廓开式传动、闭式传动和半开式传动(一)按照两轮轴线间的相对位置不同分为:(二)按齿廓曲线分为:(三)按工作条件分为:(四)按使用情况分为:低速传动和高速传动、轻载传动和重载传动、传动平稳保证瞬时传动比

不变要求不同程度的工作平稳性指标使齿轮传动中产生的振动、噪声在允许的范围内保证机器的正常工作、承载能力高即要求齿轮尺寸小、重量轻能传递较大的力有较长的使用寿命。 也就是在工作过程中不折齿、齿面不点蚀不产生严重磨损而失效。 在齿轮设计、科研中有关齿廓曲线、齿轮强度、制造精度、加工方法以及热处理工艺等基本上都是围绕这两个基本要求进行的。 三、设计基本要求第二节齿轮传动的失效形式和设计准则齿面疲劳点蚀(pitting).轮齿折断(breakage).齿面磨损(abrasivewear)齿面胶合(gluing)齿面塑形变形(ridging)齿轮传动的失效主要是指齿轮轮齿的破坏。 分为种:一、失效形式(Failure)(一)轮齿折断全齿折断常发生于齿宽较小的直齿轮局部折断常发生于齿宽较大的直齿轮和斜齿轮、损伤原因★疲劳折断★过载折断()轮齿就好象一个悬臂梁在受外载作用时在其轮齿根部产生的弯曲应力最大。 ()在齿根过渡部位尺寸发生急剧变化以及加工时沿齿宽方向留下加工刀痕而造成应力集中的作用。 ()由于轮齿材料对拉应力敏感。 、损伤部位疲劳裂纹往往从齿根受拉一侧开始发生。 、措施()减小应力集中增大齿根圆角半径,消除加工刀痕()提高表面硬度如喷丸、碾压处理()提高内部材料的韧性如采用合适的热处理()增大齿根厚度如采用正变位齿轮()保持接触线上的受力均匀性增加轴和轴承的刚度。

齿轮传动链误差分析

齿轮传动链误差分析 一传动误差的来源与分类 机床内联系传动链产生传动误差后, 将引起执行环节的角速度和线位移误差, 就不能保持精确、恒定的传动比, 而影响传动的准确性和均匀性。对于刀具和工件间要求有准确的传动比关系的机床应减小传动误差,提高传动精度, 如螺丝车床、螺纹磨床、滚齿机床等。 传动误差主要来源于四个方面。第一是传动件的布置误差。在设计传动链时, 由于传动件的位置不合理, 而使传动误差逐级扩大。第二是传动件的制造误差。如齿轮、蜗轮的齿形误差、周节偏差、切向一齿综合误差, 蜗杆、丝杠的导程误差以及导程累积误差等。第三是传动件的装配误差。如齿轮、蜗轮、蜗杆及丝杠因装配而产生的径向跳动和轴向窜动。第四是机床的热变形及传动件受交变的切削力、摩擦力和惯性力作用产生的传动误差。 传动误差按其性质分为原发性误差和再生性误差两类。原发性误差是指传动件布置误差、传动件制造误差、传 传动件装配误差。它是常位性误差, 机床一经制造好就存在着, 如果不人为地设置误差抵消或补偿装置, 此误差是不会消除的。再生性误差是指机床在动态(工作状态)过程中, 受力、受热后产生的误差。它是偶然性误差, 如果机床停止工作, 此误差逐渐消除。相比之下,往往原发性传动误差对内联系传动链的传动精度影响更大。本文着重讨论原发性误差。

二、传动误差的分析方法 通常分析传动误差大小的方法有动态多因素综合测试法和单因素分析法两种。动态多因素综合测试法是在机床动态下, 通过仪器实测出某些选定参数的大小,然后进行综合分析处理, 得到传动误差的定 量位。单因素分析法可以在静态或设计机床传动系统时对传动件布置误差、传动件制造误差, 进行定量的分析, 比较不同传动件如齿轮副、蜗轮副、螺母、丝杠等、传动件处于不同位置或传动件不同精度等级时传动误差的大小, 进而合理、正确的设计传动链, 以减少原发性误差位, 提高内联系传动链的精度。 三、单因素分析法的基本原理 (1)分析对象 由于在内联系传动链中,其主要传动件为齿轮副, 常选择齿轮副的布置制造误差为分析的对象。 (2)分析思路 首先应考虑到由传动件布置误差、制造误差引起的原发性误差最终将反映到执行环节上, 而误差经过转换, 以不同的传递比影响着执行环节, 传递比可能大于、小于或等于。其次传动件中的齿轮副对传动链精度影响较大的制造误差是齿轮切向一齿综合误差, 故应计算出各个齿轮的切向一齿综合误差。 (3)计算公式 第一,根据给定的齿轮精度等级, 查表确定齿轮周节极限偏差值

弦振动实验报告

弦振动实验报告

一. 实验目的 1. 观察弦振动形成的驻波并用实验确定弦振动时共振频率与实验参数的关 系; 2. 学习用一元线性回归和对数作图法处理数据; 3. 学习检查和消除系统误差的方法。 二. 实验原理 一根柔软均匀的弦线两端被拉紧时,加以初始激励(如打击)之后,弦不再受外加激励,将以一定的频率自由振动,在弦上将产生驻波。自由振动的频率称为固有频率。如果对弦外加连续周期性激励,当外激励频率与弦的固有频率相近时,弦上将产生稳定的较大振幅的驻波,说明该振动系统可以吸收频率相同的外部作用的能量而产生并维持自身的振动,外加激励强迫的振动称为受迫振动。当外激励频率等于固有频率时振幅最大将出现共振,共振是受迫振动中激励频率任何微小变化都会使响应(振幅)减小的情形。最小的固有频率称为基频率。实验还发现:当外激励频率为弦基频的2倍、3倍或其他整数倍时,弦上将形成不同的驻波。这种能以一系列频率与外部周期激励发生共振的情形,在宏观体系(如机械、桥梁、天体)和微观体系(如原子、分子)中都存在。弦振动能形成简单而且典型的共振。 弦振动的物理本质是力学的弹性振动,即弦上各质元在弹性力作用下,沿垂直于弦的方向振动,形成驻波。(驻波的一般定义是:同频率的同类自由行波相互干涉形成的空间分布固定的周期波,其特征是它的波节、半波节或波腹在空间的位置固定不变)。弦振动的驻波可以这样简化分析,看作是两列频率和振幅相同而传播方向相反的行波叠加而成。在弦上,由外激励所产生振动以波的形式沿弦传播,经固定点反射后相干叠加而形成驻波。固定点处的合位移为零,反射波有半波损失,即其相位与入射波的相位之差为π,在此处形成波节。在距波节λ/4处,入射波与反射波相位相同,此处合位移最大,即振幅最大,形成波腹。相邻的波节或波腹之间的距离为半个波长。两关固定的弦能以其固有频率的整数倍振动,因此弦振动的波长应满足: ()...3,2,1 2== N N L λ

三自由度齿轮传动系统的非线性振动分析

收稿日期:20030710 基金项目:航空科学基金项目(02C53019)资助 作者简介:刘晓宁(1976-),男(汉),山东, 博士研究生 刘晓宁 文章编号:100328728(2004)1021191203 三自由度齿轮传动系统的非线性振动分析 刘晓宁,王三民,沈允文 (西北工业大学,西安 710072) 摘 要:在建立三自由度齿轮间隙非线性动力学模型的基础上,利用增量谐波平衡法获得了受到参数激励和外部谐波激励的三自由度齿轮传动系统模型的周期响应,包括稳定和不稳定的周期轨道,并利用Floquet 理论研究其稳定性、分岔类型,对系统的参数变化进行分析,研究了系统通向混沌的倍周期分岔道路和拟周期分岔道路,绘制了系统周期解分岔图。关 键 词:齿轮转子轴承传动系统;增量谐波平衡法;Floquet 理论中图分类号:TH13 文献标识码:A N onlinear Vibrations of 32DOF G eared R otor 2B earing System LI U X iao 2ning ,W ANG San 2min ,SHE N Y un 2wen (N orthwestern P olytechnical University ,X i ′an 710072) Abstract :The incremental harm onic balance (IH B )method is used to obtain periodic m otions of a 32DOF non 2linear m odel of a geared rotor system subjected to parametric and external harm onic excitations.The stability of the periodic m otions is investigated by the Floquet theory ,the bifurcation behavior is traced.Parametric studies are performed to understand the effect of system parameters such as excitation frequency on the nonlinear dy 2namic behaviors. K ey w ords :G eared rotor bearing system ;Incremental harm onic balance (IH B )method ;Floquet theory 齿轮传动是应用最为广泛的一种机械传动形式。在齿轮传动系统中,由于齿侧间隙、支承间隙、时变刚度等因素的存在,导致系统产生强非线性振动,这种振动往往表现为系统的分叉、混沌振动现象,会对机械传动系统的工作性能和可靠性产生很大影响。因此,齿轮传动非线性系统的非线性振动研究引起了广泛的关注[2~5]。 从齿轮传动系统间隙非线性动力学研究来说,大部分的研究都是借助数值方法探讨系统分叉、混沌等现象的存在。增量谐波平衡法(IH B )作为求解非线性微分方程周期解的解析方法,具有精度高,适用于求解周期激励问题的特点,尤为重要的是能够求解出混沌吸引子内部的不稳定周期轨道,这也恰恰是实现混沌控制的目标稳定轨道。 本文综合利用增量谐波平衡法和数值方法研究三自由度齿轮传动系统的动态特性,考察系统参数对动态性能的影响,并结合应用Floquet 理论探讨了通向混沌的倍周期和拟周期分叉道路。 1  三自由度齿轮转子轴承系统的间隙非线性模型及方程 图1 三自由度非线性齿轮传动系统模型 如图1所示的三自由度非线性齿轮传动系统模型,齿轮部分包括齿轮惯量I g 1和I g 2,齿轮质量m g 1和m g 2,基圆直径d g 1和d g 2。齿轮啮合由非线性位移函数f h 和时变刚度 k h (t - ),线性粘性阻尼c h 描述。轴承和支撑轴的模型则由 等效的阻尼元件和非线性刚度元件表述。阻尼元件具有线 第23卷 第10期 机械科学与技术 V ol.23 N o.10  2004年 10月 MECH ANIC A L SCIE NCE AND TECH NO LOGY October 2004

相关主题