搜档网
当前位置:搜档网 › 物理中求极值的常用方法精品

物理中求极值的常用方法精品

物理中求极值的常用方法精品
物理中求极值的常用方法精品

物理解题中求极值的常用方法

运用数学工具处理物理问题的能力是高考重点考查的五种能力之一,其中极值的计算在教学中频繁出 现。因为极值问题范围广、习题多,会考、高考又经常考查,应该得到足够重视。另外很多学生数、理结 合能力差,这里正是加强数理结合的“切人点” 。学生求极值,方法较少,教师应该在高考专题复习中提 供多种求极值的方法。求解物理极值问题可以从物理过程的分析着手,也可以从数学方法角度思考,下面 重点对数学方法求解物理极值问题作些说明。

1、利用顶点坐标法求极值 对于典型的一元二次函数 y=ax 2+bx+c,

若 a>0,则当 x=- b 时 ,y 有极小值,为 2a

b 4a

c b 2

a<0,则当 x=-

b

时,y 有极大值,为

y max = 4ac b

2a 4a

2、利用一元二次函数判别式求极

对于二次函数 y=ax 2+bx+c ,用判别式法 利用 Δ = b 2-4ac ≥ 0。 (式中含 y) 若 y ≥A ,则 y min =A 。 若 y ≤A ,则 y max = A 。

3、利用配方法求极值

对于二次函数 y=ax 2+bx+c ,函数解析式经配方可变为 y=(x-A) 2+常数:(1)当 x =A 时,常数为极小值; 或者函数解析式经配方可变为 y = -( x -A )2+常数。(2)当 x =A 时,常数为极大值。

4、利用均值定理法求极值

均值定理可表述为 a b ab ,式中 a 、 b 可以是单个变量,也可以是多项式。

2

当 a = b 时, (a+b) min = 2 ab 。

当 a = b 时, (a+b) max = 。

2

5、利用三角函数求极值

如果所求物理量表达式中含有三角函数,可利用三角函数的极值求解。若所求物理量表达式可化为

1A

y=Asin cos ”的形式,则 y= Asin2 α ,在 =45o 时, y 有极值 。

22 对于复杂的三角函数, 例如 y=asin θ +bcos θ ,要求极值时先需要把不

同名的三角函数

变成同名的三角函数,比如 sin(θ +ф) 。这个工作叫做“化

4ac b 2

y

min =

4a

sin θ 和 cos θ ,

。首先应作辅助角如所示。

V

考虑 asin θ +bcos θ = =

a 2

b 2

图1

(

a

2 b

2 sin a

2 b

2

cos )

(cos ф sin θ +sin фcos θ )

= a 2 b 2 sin(θ +ф)

其最大值为 a 2 b 2 。

6、用图象法求极值

通过分析物理过程遵循的物理规律,找到变量之间的函数关系,作出其图象,由图象可求得极值。

7、用分析法求极值 分析物理过程,根据物理规律确定临界条件求解极值。下面针对上述 7 种方法做举例说明。 例 1 :如图 2 所示的电路中。电源的电动势 ε=12伏,内阻 r =0.5欧,外电阻 R 1=2 欧,R 2=3 欧, 滑动变阻器 R 3=5 欧。求滑动变阻器的滑动头 P 滑到什么位置,电路中的伏特计的示数有最大值 ? 最大值 是多少 ?

R 3

分析:设aP 间电阻

为x ,外电路总电阻为R. 则:

图2

、r

V

(R 1 X )(R 2 R 3 X ) R 1 R 2 R 3 (2

X )(3 5 X) 235

(2 X )(8 X )

10

[方法一 ] 用顶点坐标法求解 抛物线方程可表示为 y =ax 2+bx+c 。

2

考虑

R =

( 2 x)(8 x) = x 2 6x 16 ,

10 = 10

设 y =-x 2+6x+16 ,

b 6

(3)2 6 3 16

x =

= —

3时, R

max (3)

= =2.5Ω。

2a 2( 1) 10

[方法二 ] 用配方法求解

x 2 6x 16 (x 3) 2 25

10 = 10

[方法三 ] 用判别式法求解

Δ=b 2-4ac =36-4(-1)(16-10R) > 0,即: 100-40R ≥ 0,

R ≤2.5Ω ,即 R max

2.5 Ω 。

[方法四 ] 用均值定理法求解

考虑 R = (2 x)(8 x) ,设 a = 2+x ; b = 8-x 。

10

当 a =b 时,即 2+x = 8-x , 即 x =3Ω时, R max(3)

(2 3)(8 3)

2.5

Ω。

10

先求出外电阻的最大值 R max 再求出伏特计示数的最大值

U

max 。

本题的关键是求

面用四种方法求

解R max

考虑 R =

(2 x)(8 x)

10

即 x = 3Ω时, R max

2.5Ω。 10

考虑 R = 2

x 2

6x 16

10

2

,则有 -x 2+6x+16-10R =

(a b)

max R max =

= 10

25

= 2.5Ω。 10

以上用四种方法求出

R max =2.5Ω,下边求伏特计的最大读数。

I min =

12

=4(A)。U max =ε- I min r =12-4 0.5=10(V) 。即变阻器的滑动头 P 滑到 R 3

R max r 2.5 0.5

的中点 2.5Ω处,伏特计有最大值,最大值为 10 伏。

例 2:如图 3 所示。光滑轨道竖直放置, 半圆部分的半径为 R ,在水平轨道上停着一个质量为 M =

0.99kg 的木块,一颗质量为 m =0.01Kg 的子弹,以 V 0=400m/s 的水平速度射入木块中, 然后一起运动到轨道

最高 点水平抛出,试分析:当圆半径 R 多大时,平抛的水平位移是最大 ?且最大值为多少 ?

[解析 ]子弹与木块发生碰撞的过程,动量守恒,设共同速度为 V 1,则: mV 0= (m+M)V 1,

所以:V 1= m V 0 =

0.01

400m/s 4m/s

m M 0 0.01 0.99 设在轨道最高点平抛时物

块的速度为

V 2,

由于轨道光滑,故机械能守恒:

1 2 1 2

(M m)V 12 2(m M)gR (m M )V 22 22 所以: V 2= [(m M)V 12

4(M m)gR] /(m M)

= V 12 4Rg

42 4R 10 16 40R

则平抛后的位移可以表示为:

s =V 2t =V 2 4g R

(16 40R) 140R

= 4 R 0.4R 。

因为 a=-1<0,所以水平位移 S 应该存在最大值。当 R= b 0.4 =0.2m 时,

也可以用上面公

(a+b) max =

[(2 x)(8 x)]2

2 =25,

图3

2a 2 ( 1)

S max=0.8m

例 3 :在一平直较窄的公路上,一辆汽车正以22m/s 的速度匀速行驶,正前方有一辆自行车以4m/s 的

速度同向匀速行驶,汽车刹车的最大加速度为6m/s2,试分析两车不相撞的条件。

[解析]要使二者不相撞,则二者在任一时间内的位移关系应满足

12

V0t- at 2 Vt S (式中S 为汽车刹车时与自行车间距)

2

代入数据整理得:3t2-18t+S>0 ,

显然,当满足=b2-4ac 0,

即=182-4 3S 0 得:S 27m,S min=27m。当汽车刹车时与自行车间距为27 米时是汽车不与自行车相撞的条件。

例 4 :如图 4 所示。一辆四分之一圆弧小车停在不光滑水平地面上,质量为m 的小球从静止开始由车

顶无摩擦滑下,且小车始终保持静止状态,试分析:当小球运动到什么位置时,地面对小车的摩擦力最大? 最大值是多少?

图4

[解析]:设圆弧半径为R,当小球运动到重力mg 与半径夹角为θ时,速度为V,根据机械能守恒定律

和牛顿第二定律有:

2

mV

mgR cos

3

可以看出:当 sin2 θ=1, 即θ =45o 时,地面对小车的静摩擦力最大,其值为:

f max = m

g 。

2

例 5 :如图 5 所示。质量为 m 的物体由力 F 牵引而在地面上匀速直线运动。物体与地面间的滑动摩擦 系数为 μ,求力 F 最小时的牵引角 θ。(F 的方向是随 θ 变化的。 )

图5

G

[解析 ]:因物体匀速直线运动,所以有: Fcos θ -f = 0

f =μ N = μ (mg-Fsin θ )

②代人①得: Fcos θ -μ mg+ μFsin θ = 0 即: F =

mg

。分母为两项不同名的三角函数,需要转化成同名的三角函数,也就是需要“化

cos sin

一”。由前面的“化一”结论得: a sin θ +b cos θ= a 2 b 2 sin(θ + ф ) 考虑本题分母: μ sin θ+cos θ与 a sin θ +b

cos θ用比较法,得: a =μ; b =1。

1 1

2 1

,则 ф=arc tg 。所以, μ sin θ +cos θ= 1 sin(θ +arc tg )。

1

要使 F 最小,则分母 μ s in θ +cos θ需最大,因此, θ +arc tg = 。 2 所以有: θ= -arc tg = -arc ctg μ =arc tg μ 。

解得小球对小车的压力为:

3

N=3mgcos θ ,其水平分量为: N x =3mgsin θ cos θ = mg sin 2 2

V 2

3

根据平衡条件,地面对小车的

静摩擦力水平向右,大小为:

f= N x = 3

mgsin2

N mgcos m

于是 tg ф = b

a

即:θ=arc tg μ时, F 最小。

作为教师,运用“求导数”对本题验算非常简便。F=mg。考虑dF 0,则有μcosθ

cos sin d

-sinθ =0则θ =arc tg μ,即当F最小时,牵引角θ=arc tg μ。

例6:甲、乙两物体同时、同地、同向由静止出发,甲做匀加速直线运动,加速度为 4 米/秒2, 4 秒后改为匀速直线运动;乙做匀加速直线运动,加速度为 2 米/秒2,10 秒后改为匀速直线运动,求乙追上甲之前它们之间的最大距离。

分析:运用物理规律和图形相结合求极值.是常用的一种比较直观的方法。由题意可知, 4 秒后甲做匀速直线运动的速度为:V 甲=a 甲t 甲= 4 4=16(m/s)。

乙10 秒后做匀速运动的速度为:V 乙=a乙t乙=2 10=20(m/s)。

可画出v—t 如上图 6 所示。图线在A(8 ,16)点相交,这表明在t=8 秒时,两物体的速度相等,因此.在t=8 秒时,两者间的距离最大。此时两图线所围观积之差,就是两者间的最大距离。

11

即S max= 4 16 + 4 16 —8 16=32(m)。

22

用分析法求极值在物理计算中较常见。经过对物理状态或过程分析后求极值,不一定要用繁难的数学,关键是确定临界状态和过程的最值。

例7:如图7 所示。AB 、CD 是两条足够长的固定平行金属导轨,两条导轨间的距离为L ,导轨平面与平面的夹角是θ ,在整个导轨平面内部有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B。在导轨的AC 端连接一个阻值为R的电阻,一根垂直于导轨放置的金属棒ab,质量为m,从静止开始沿导轨下滑。已知ab 与导轨间的滑动摩擦系数为μ,导轨和金属棒的电阻不计。求ab 棒的最大速度。

mgsin θ—μmgcos θ— B2L2Vmax =0 ②

R

22

B

2 L

2

综上所述,求解极值习题常用的方法列举了七种、即均值定理法、顶点坐标法、配方法、判别式法、 三角函数中“化一”法、图解法、分析法。针对有些习题所给的条件的“有界性”

要特别注意,求出的极值不能“出界” ,要注意定义域和值域的对应关系。

例 8:如图 8 所示。已知电流表内阻忽略不计。 ε=10V ,r =1Ω,Ro =R =4Ω,其中 R 为滑动变阻 器

的最大值。 当滑动片 P 从最左端滑到最右端的过程中, 电流表的最小 值是多少 ?最大值是多少 ?电流表的示数将怎样变化 ?

、r

[解析 ]:采用分析法要注意抓三个环节,即分析物理过程;确定极值状态;运用物理规律求解。金属

棒 ab 横截面受力如上图 7 所示。

在下滑过程中, ab 受重力 mg , B 2L 2

V

支持力 N = mgcos θ,摩擦力 f = μ mgcos θ ,安培力 F =

。沿

R

导轨平面有:

B

2

L 2

V

mgsin θ -μmgcos θ- =ma

ab 由静止加速下滑会导致:

当 a =0 时, ab 速度到达最大,即: V = V max 所以①式变为

mg(sin cos )

②解式得: V max

,运用求极值的方法时

B

R 0

解:设滑动变阻器滑片 P 左端的电阻为 R 左,通过电流表的电流为 I A ,通过 R o 的电流为 I o ,由并联电 路可知

I 0 I

A

R 左

由欧姆定律得:

I

R

R 总 r

10

I=

R 并 ( R R 左) r

4R 左

4 R 左

1

4 R 左

I=I 0+I A = I A ( R 左

1) ③ R 0

用配方法对④式求极值。

40

(R 左 5)2 26.25 左

2

40

当 R =2.5Ω时, I A 有极小值 I Amin =

1.52(A) 。

26.5

当求电流表的最大值时,就需考虑 R 的取值范围是“有界”的。这时的极值要与“界”的定义域对应,

当 R 左=R =4Ω时,由④式得 I A P 在b =

2

1.67 (A)。

42 5 4 20 由此可得,电流表先从 2A 减小到 1.52A ,然后再增

加到 1.67A 。所以电流表的最大值是 2A ,其变化

是先减小后增大。

把③代入②式整理得 I A =

40

2

R 2左 5R 左 20

40

I A

2

R 2左 5R 左 20

40

不能“出界” 。当 R 左=0 时,即由④式得 I A p 在a = 40 =

2(A) 。 20

40

高中物理中的临界与极值问题

高中物理中的临界与极值问题 宝鸡文理学院附中何治博 一、临界与极值概念所谓物理临界问题是指各种物理变化过程中,随着条件的逐渐变化,数量积累达到一定程度就会引起某种物理现象的发生,即从一种状态变化为另一种状态发生质的变化(如全反射、光电效应、超导现象、线端小球在竖直面内的圆周运动临界速度等),这种物理现象恰好发生(或恰好不发生)的过度转折点即是物理中的临界状态。与之相关的临界状态恰好发生(或恰好不发生)的条件即是临界条件,有关此类条件与结果研究的问题称为临界问题,它是哲学中所讲的量变与质变规律在物理学中的具体反映。极值问题则是指物理变化过程中,随着条件数量连续渐变越过临界位置时或条件数量连续渐变取边界值(也称端点值)时,会使得某物理量达到最大(或最小)的现象,有关此类物理现象及其发生条件研究的问题称为极值问题。临界与极值问题虽是两类不同的问题,但往往互为条件,即临界状态时物理量往往取得极值,反之某物理量取极值时恰好就是物理现象发生转折的临界状态,除非该极值是单调函数的边界值。因此从某种意义上讲,这两类问题的界线又显得非常的模糊,并非泾渭分明。 高中物理中的临界与极值问题,虽然没有在教学大纲或考试说明中明确提出,但近年高考试题中却频频出现。从以往的试题形式来看,有些直接在题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等

词语对临界状态给出了明确的暗示,审题时,要抓住这些特定的词语发掘其内含的物理规律,找出相应的临界条件。也有一些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,周密讨论状态的变化。可用极限法把物理问题或物理过程推向极端,从而将临界状态及临界条件显性化;或用假设的方法,假设出现某种临界状态,分析物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理;也可用数学函数极值法找出临界状态,然后抓住临界状态的特征,找到正确的解题方向。从以往试题的内容来看,对于物理临界问题的考查主要集中在力和运动的关系部分,对于极值问题的考查则主要集中在力学或电学等权重较大的部分。 二、常见临界状态及极值条件解答临界与极值问题的关键是寻找相关条件,为了提高解题速度,可以理解并记住一些常见的重要临界状态及极值条件: 1.雨水从水平长度一定的光滑斜面形屋顶流淌时间最短——屋面倾角 为0 45 2.从长斜面上某点平抛出的物体距离斜面最远——速度与斜面平行时 刻 3.物体以初速度沿固定斜面恰好能匀速下滑(物体冲上固定斜面时恰 好不再滑下)—μ=tgθ。 4.物体刚好滑动——静摩擦力达到最大值。

函数的单调性、极值与最值问题

函数的单调性、极值与最值问题 典例9 (12分)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 审 题 路 线 图 求f ′(x ) ――――――→讨论f ′(x ) 的符号 f (x )单调性―→f (x )最大值―→解f (x )max >2a -2.

评分细则(1)函数求导正确给1分; (2)分类讨论,每种情况给2分,结论1分; (3)求出最大值给2分; (4)构造函数g(a)=ln a+a-1给2分; (5)通过分类讨论得出a的范围,给2分.

跟踪演练9(优质试题·天津)已知函数f(x)=a x,g(x)=log a x,其中a>1. (1)求函数h(x)=f(x)-x ln a的单调区间; (2)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2, g(x2))处的切线平行,证明x1+g(x2)=-2ln ln a ln a; (3)证明当a≥1e e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线. (1)解由已知得h(x)=a x-x ln a, 则h′(x)=a x ln a-ln a. 令h′(x)=0,解得x=0. 由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表: 所以函数h(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞). (2)证明由f′(x)=a x ln a,可得曲线y=f(x)在点(x1,f(x1))处 的切线斜率为1x a ln a.由g′(x)= 1 x ln a,可得曲线y=g(x)在点

求极值的若干方法

求极值的若干方法 1 序言 一般来说函数的极值可以分为无条件极值和条件极值两类.无条件极值问题即是函数中的自变 量只受定义域约束的极值问题;而条件极值问题即是函数中的自变量除受定义域约束外还受其它条件限制的极值问题.下面我们给出极值的定义 定义1) 136](1[P 设函数f 在点0P 的某邻域0()U P 内有定义,若对于任何点 0()P U P ∈,成立不等式 0()()f P f P ≤(或0()()f P f P ≥), 则称函数f 在点0P 取得极大(或极小)值,点0P 称为f 的极大(或极小)值点.极大值、极小值统称为极值.极大值点、极小值点统称为极值点. 2 求解一元函数无条件极值的常用方法 2.1 导数法 定理1 ) 142](2[P 设f 在点0x 连续,在某邻域0(;)o U x δ内可导. (i)若当00(,)x x x δ∈-时()0f x '≤,当00(,)x x x δ∈+时()0f x '≥,则f 在点0x 取得极小值. (ii)若当00(,)x x x δ∈-时()0f x '≥,当00(,)x x x δ∈+时()0f x '≤,则f 在点0x 取得极大值. 由此我们可以推出当0(;)o x U x δ∈时,若()f x '的符号保持不变,则()f x 在0x 不取极值. 定理2 ) 142](2[P 设f 在0x 的某邻域0(;)U x δ内一阶可导, 在0x x =处二阶可导,且()0f x '=,()0f x ''≠. (i)若0()0f x ''<,则f 在0x 取得极大值. (ii)若0()0f x ''>,则f 在0x 取得极小值. 对于一般的函数我们既可以利用定理1,也可以利用定理2,但对于有不可导点的函数只能用定理1. 例1 求函数2 ()(1)f x x x =-的极值.

关于初中物理极值题的分析

初中物理关于极值题的分析 育才学校陈玺 现在初中物理考试题中有关极值计算和分析题正在出现,许多学生和教师面对此类题会感到困难、或束手无策;因极值问题必用数学工具,而有些数学工具需高中才学到,若无高中数学知识基础,如何用初中的数学知识来解决呢?则需掌握一些初中数学推导技巧,才能在遇到极值问题时,较好地解决这类问题。现以九年级统考试题出现的极值题为例来讲。 (2019年遵义市第一学期九年级学业水平监测理科综合试题卷)第37.如图 所示电路中,电源电压一定,R 1,R 2 为定值电阻,R为滑动变阻器,已知R 2 =7Ω. 当S、S 2闭合,S 1 断开,滑动变阻器滑片P在b端时,电流表示数为0.4A;当S、 S 1闭合,S 2 断开,滑片P在b端时,电流表示数为0.6A;当S、S 1 闭合,S 2 断开, 滑片P在中点时,电流表的示数为1.0A. (1)当S、S 2闭合,S 1 断开,滑动变阻器滑片P在端时,求电阻R 2 通电1min产 生的热量; (2)求电源电压; (3)在S 1、S 2 不同时闭合的前提下,开关分别于何种状态、滑动变阻器接入电 路的阻值多大时,滑动变阻器消耗的功率最大?此时滑动变阻器消耗的功率是多少? 解:(1)当S、S 2闭合,S 1 断开,滑动变阻器滑片P在b端时, 电流表示数为0.4A,R 2 与串联, Q=I 12R 2 t=(0.4A)2×7Ω×60s= 67.2J (2)当S、S 2 闭合,S1断开,滑动变阻器滑片P在b端时, R 2与串联,I 1 =0.4A 总 Ω·······( 1 ) 当S、S 1闭合,S 2 断开,滑片P在滑动变阻器b端时, R 1与串联,I 2 =0.6A 总 (2) 当S、S 1闭合,S 2 断开,滑片P在中点时R 1 与串联, I 3 =1.0A 总 (3) 解①②③方程组可得 R 1=2Ω, R ab =8Ω, U 总 =6V (3)R 1与串联对比R 2 与串联,当R1与串联时,通过的电流大, 其两端的电压也大,功率也大;滑动变阻器消耗的功率为

高三物理复习中的极值与临界问题专题

极值与临界问题专题 常州二中徐展 临界现象是量变质变规律在物理学上的生动体现。即在一定的条件下,当物质的运动从一种形式或性质转变为另一种形式或性质时,往往存在着一种状态向另一种状态过渡的转折点,这个转折点常称为临界点,这种现象也就称为临界现象.如:静力学中的临界平衡;机车运动中的临界速度;碰撞中的能量临界、速度临界及位移临界;电磁感应中动态问题的临界速度或加速度;光学中的临界角;带电粒子在磁场中运动的边界临界;电路中电学量的临界转折等. 解决临界问题,一般有两种方法,第一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界特殊规律和特殊解;第二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。 所谓极值问题,一般而言,就是在一定条件下求最佳结果所需满足的极值条件.求解极值问题的方法从大的角度可分为物理方法和数学方法。物理方法包括(1)利用临界条件求极值;(2)利用问题的边界条件求极值;(3)利用矢量图求极值。数学方法包括(1)用三角函数关系求极值;(2)用二次方程的判别式求极值;(3)用不等式的性质求极值。一般而言,用物理方法求极值直观、形象,对构建模型及动态分析等方面的能力要求较高,而用数学方法求极值思路严谨,对数学能力要求较高.若将二者予以融合,则将相得亦彰,对增强解题能力大有裨益。 在中学物理问题中,有一类问题具有这样的特点,如果从题中给出的条件出发,需经过较复杂的计算才能得到结果的一般形式,并且条件似乎不足,使得结果难以确定,但若我们采用极限思维的方法,将其变化过程引向极端的情况,就能把比较隐蔽的条件或临界现象暴露出来,从而有助于结论的迅速取得。 在应用牛顿运动定律解决动力学问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词句时,往往会有临界现象。此时要用极限分析法,看物体不同加速度时,会有哪些现象发生,找出临界点,求出临界条件。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。在解决临办极值问题注意以下几点: 1.许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。 2.临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。 3.临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,抓住临界状态的特征,找到正确的解题方向。 4.确定临界点一般用极端分析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。 【典型例题与练习】 运动学中的极值与临界问题: 1.一车处于静止状态,车后相距s0=25m处有一个人,当车开始起动以1m/s2的加速度前进的同时,人以6m/s速度匀速追车,能否追上?若追不上,人车间的最小距离为多少?人不可能追上车 18 m。A、B 两车停在同一点,某时刻A车以2m/s2的加速度匀加速开出,2s后B车同向以3m/s2的加速度开出。问:B车追上A车之前,在启动后多长时间两车相距最远,距离是多少?

函数极值的几种求法

函数极值的几种求法 ──针对高中生所学知识 摘要:函数是数学教学中一个重要的组成部分,从小学六年级的一元一次方程继而延伸到初中的一次函数,二次函数的初步介绍,再到高中的函数的单调性、周期性、最值、极值,以及指数函数、对数函数、三角函数的学习,这些足以说明函数在数学教学中的地位。极值作为函数的一个重要性质,无论是在历年高考试题中,还是在实际生活运用中都占有不可或缺的地位。本文主要阐述了初高中常见的几种函数,通过函数极值的相关理论给出每种函数极值的求解方法。 关键词:函数;单调性;导数;图像;极值 Abstract: Function is an important part of mathematics teaching. First the learning of linear equation in six grade, secondly the preliminary introduction of linear functions and quadratic functions in junior high school, then the monotonicity, the periodicity, the most value and the extreme value of function, finally the learning of the logarithmic function, exponential function and trigonometric function in high school. These are enough to show the important statue of the function in mathematics teaching. As an important properties of function, extreme value has an indispensable status whether in the calendar year test, or in daily life. This article will mainly expound the methods of solving the extreme value of sever functions in middle school. Key words: function; monotonicity; derivative; image; extreme value “函数”一词最先是由德国的数学家莱布尼茨在17世纪采用的,当时莱布尼茨用“函数”这一词来表示变量x的幂,也就是x的平方x的立方。之后莱布尼茨又将“函数”这一词用来表示曲线上的横坐标、纵坐标、切线的长度、垂线的长度等与曲线上的点有关的变量[]1。就这样“函数”这词逐渐盛行。在中国,清代著名数学家、天文学家、翻译家和教育家,近代科学的先驱者善兰给出的定义是:

高中物理:极值法知识点

高中物理:极值法知识点 数学的极值问题,主要是解决数学函数关系及其定义域的问题,这是由数学条件所制约的。 但是物理极值与数学极值有明显的区别。物理极值,实质是针对某一物理现象的动态范围、发展变化趋势及其极限,这是由物理条件所制约的。物理极值,经常表现为物理约束条件下的最大或最小值,这与数学极值有本质的区别。 就思维表现看,求极值过程是归纳和演绎综合运用过程。在错综复杂的变化条件中,要归纳出一般的状态表现,又要在此基础上,经演绎推理,寻求特殊的极端模型。这也是建立理想化模型,也要理想化。 显然,解极值过程是综合运用几种常规的思维方法的高层次的思维过程。另一方面,解极值过程,需要借助一些初等数学手段,靠扎实的数学基础。从所应用的数学手段来看,求极值可与为下列几种方法: (一)利用分式的性质求极值 [例1] 物体A放在水平面上,作用在A上的推力F与水平方向成30o角,如图示。使A作匀速直线运动。试问,当物体A与水平面之间的摩擦系数μ为多大时,不管F增大到多大,都可以使A在水平面上,作匀速直线运动? 解:A受力如图所示,由已知,A处于平衡状态,有:Fcosα=fFcos30o=μ(G+Fsin30o), 得F=由已知当公式的分母为零,即F→∞的匀速运动时sin30o-μcos30o=0时得μ=tg30o=0.58,则F→∞,此时都可以使A在水平面上作匀速直线运动。

(二)利用一元二次方程求根公式求极值 有些问题,通过分析列关系式,最后整理出关于一个未知量的一元二次方程。它的根就可能是要求的极值。这种方法应用是很普遍的。 (三)利用一元二次方程判别式△=b2-4ac≥O求极值 [例2] 一个质量为M的圆环,用细线悬挂着。将两个质量为m的有孔的小珠套在环上,且可沿环无摩擦滑动,如图(a)所示。今将两小珠从环的顶端由静止开始释放。证明,当m> M时,圆环能升起。 证明:取小球为研究对象,受力如图(a)。由牛顿第二定律,得所mgcosθ+N=由机械能守恒定律,得mgR(1-cosθ)=由此二式得N=2mg-3mgcosθ (1)上式中,N>0,即cosθ<以环为研究对象,受力图如(b),在竖直方向,由牛顿第二定律,有T+2N’cosθ—Mg=Ma当环恰好能上升时,a=0,可得2N’cosθ=Mg (3) 将(1)代入(3)式中,其中N’为(a)图中N的反作用力。有 2(2mg-3mgcosθ)cosθ=Mg即6mcos2θ-4mcosθ+M=0 (4)(4)式是关于cosθ的一元二次方程。cosθ为实数,则△≥0,即(4m)2-4

高中物理中的极值问题

物理中的极值问题 武穴育才高中 刘敬 随着高考新课程改革的深入及素质教育的全面推广,物理极值问题成为中学物理教学的一个重要内容,作为对理解、推理及运算能力都有很高要求的物理学科,如何提高提高学生思维水平,运用数学知识解决物理问题的能力,加强各学科之间的联系,本文筛选出典型范例剖析,从中进行归纳总结。 极值问题常出现如至少、最大、最短、最长等关键词,通常涉及到数学知识有:二次函数配方法,判别式法,不等式法,三角函数法,求导法,几何作图法如点到直线的垂线距离最短,圆的知识等等。 1.配方法:a b ac a b x a c bx ax 44)2(2 22 -++=++ 当a >0时,当2b x a =-时,y min =a b a c 442- 当a <0时当2b x a =-时,y max =a b a c 442- 2.判别式法:二次函数令0≥?,方程有解求极值. 3.利用均值不等式法:ab 2b a ≥+ a=b 时, y min =2ab 4.三角函数法:θθcos sin b a y +==)sin(22θ?++b a 当090=+θ?,22max b a y += 此时,b a arctan =θ 也可用求导法:b a b a y arctan 0sin cos ==-='θθθ,得令 5.求导法:对于数学中的连续函数,我们可以通过求导数的方式求函数的最大值或最小值.由二阶导数判断极值的方法.某点一阶导数为0,二阶导数大于0,说明一阶导数为增函数,判断为最小值;反之,某点一阶导数为0,二阶导数小于0,说明一阶导数为单调减函数,判断此点为最大值. 6.用图象法求极值 通过分析物理过程所遵循的物理规律,找到变量之间的函数关系,作出其图象,由图象求极值。 7.几何作图法 研究复合场中的运动,可将重力和电场力合成后,建立直角坐标系,按等效重力场处理问题。 研究力和运动合成和分解中,可选择合适参考系,将速度及加速度合成,结合矢量三角形处理问题。 例1.木块以速度v 0=12m /s 沿光滑曲面滑行,上升到顶部水平的跳板后飞出,求跳板高度h 多大时, 木块飞行的水平距离s 最大?最大水平距离s 是多少?(g=10 m /s 2)。 解:2202121mv mgh mv =+, vt s =得:22022020)4()4(22)2(g v h g v g h gh v s --=-=

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

目标函数的几种极值求解方法

目标函数极值求解的几种方法 题目:()() 2 22 1 122min -+-x x ,取初始点()() T x 3,11 =,分别用最速下降法, 牛顿法,共轭梯度法编程实现。 一维搜索法: 迭代下降算法大都具有一个共同点,这就是得到点()k x 后需要按某种规则确定一个方向()k d ,再从()k x 出发,沿方向()k d 在直线(或射线)上求目标函数的极小点,从而得到()k x 的后继点()1+k x ,重复以上做法,直至求得问题的解,这里所谓求目标函数在直线上的极小点,称为一维搜索。 一维搜索的方法很多,归纳起来大体可以分为两类,一类是试探法:采用这类方法,需要按某种方式找试探点,通过一系列的试探点来确定极小点。另一类是函数逼近法或插值法:这类方法是用某种较简单的曲线逼近本来的函数曲线,通过求逼近函数的极小点来估计目标函数的极小点。本文采用的是第一类试探法中的黄金分割法。原理书上有详细叙述,在这里介绍一下实现过程: ⑴ 置初始区间[11,b a ]及精度要求L>0,计算试探点1λ和1μ,计算函数值 ()1λf 和()1μf ,计算公式是:()1111382.0a b a -+=λ,()1111618.0a b a -+=μ。令 k=1。 ⑵ 若L a b k k <-则停止计算。否则,当()K f λ>()k f μ时,转步骤⑶;当 ()K f λ≤()k f μ时,转步骤⑷ 。 ⑶ 置k k a λ=+1,k k b b =+1,k k μλ=+1,()1111618.0++++-+=k k k k a b a μ,计算函数值 ()1+k f μ,转⑸。 ⑷ 置k k a a =+1,k k b μ=+1,k k μμ=+1,()1111382.0++++-+=k k k k a b a λ,计算函数值()1+k f λ,转⑸。 ⑸ 置k=k+1返回步骤 ⑵。 1. 最速下降法 实现原理描述:在求目标函数极小值问题时,总希望从一点出发,选择一个目

极值法解决物理问题(优.选)

正确使用极值法解决物理问题 在平时的教学中,常遇到“极值”问题,但多数教师都是通过数学方法进行分析.不仅要求学生具有较好的物理基础,更需具有较高的数学应用能力,如果教师能教给学生灵活运用物理的思想和方法去解决问题,这对提升学生的物理思维和物理素养不无裨益. 一、中考原题 如图1 所示,两个完全相同的量筒里分别盛有质量 相等的水和酒精,A 、B 两点到量筒底部的距离相等,则A 、B 两点受到液体的压强A p 和B p 的大小关系是( ). A. A B p p > B. A B p p < C. A B p p = D.无法比较 学生1(常规法):假设液体的总重力都为G ,液体密度分别为A 和B ,且A B >,量筒的横截面积均为S ,A 、B 两点距量筒底的距离都为h ,图2中,A 、B 两点以上液体的重力,即阴影部分液体的重力分别为A G 和B G ,则 A A A A A A G G F G G gSh G p gh S S S S S ρρ--=====-下① B B B B B G G F G G gSh G p gh S S S S S ρρ--=====-B 下 ② 由①②两式及A B ρρ>得A B p p <. 学生2(极值法): A 、B 两点距底部的距离相同,具有随意性,可假设A 、B 两点在甲容器的液面高度上(如图3),此时0,A p =0B p >,所以A B p p <. 从以上两种方法可以看出,在解决物理问题时,当一个物理量或物理过程发生变化时,运用“极值法”对其变量作合理的延伸,把问题推向极端,往往会使问题化难为易,达到“事

半功倍”的效果.那么如何正确使用极值法呢? 二、极值法正确使用过程分析 如图4所示,甲、乙两个质量相等的均匀实心正方体放在水平地面上,已知铜的密度大于铁的密度,若沿水平方向分别截去体积相等的部分,则剩余部分对水平面的压强p 甲和p 乙的大小关系是( ) A. p p >乙甲 B. p p <乙甲 C. p p =乙甲 D.都有可能 极值法:假设将甲全部消去,则剩余部分对水平面的压强p 甲=0和0p >乙,因此,该题选择B.事实果真如此吗? 假设G G G ==乙甲,边长分别为a 和b ,且a a b <,密度分别为甲和乙,且ρρ>乙甲截去的体积均为V ,则剩余部分对水平面的压强222G gV g G p V a a a ρρ-==-甲甲甲③, 222G gV g G p V b b b ρρ-==-乙乙乙④,由22G G a b >,22g g a b ρρ>乙甲,画出③④两式的压强一截去体积图像如图6所示. 由图6来看,当截去一定的体积时,剩余部分对水平面的压强p 甲和p 乙有可能相同(M 点),即由③④两式相等2222g g G G V V a a b b ρρ-=-乙甲,解得2222 ()G b a V gb ga ρρ-=-乙甲.当截去的体积2222()G b a V gb ga ρρ-<-乙甲时,p p >乙甲.当截去的体积2222()G b a V gb ga ρρ-=-乙甲时,p p =乙甲.当

高考物理复习第二章相互作用微极值问题备考练习题

17 极值问题 [方法点拨] (1)三力平衡下的极值问题,常用图解法,将力的问题转化为三角形问题,求某一边的最短值.(2)多力平衡时求极值一般用解析法,由三角函数、二次函数、不等式求解.1.(2018·姜堰中学月考)如图1所示,用细线相连的质量分别为2m、m的小球A、B在拉力F作用下,处于静止状态,且细线OA与竖直方向的夹角保持θ=30°不变,则拉力F的最小值为( ) 图1 A.33 2 mg B. 23+1 2 mg C.3+2 2 mg D. 3 2 mg 2.如图2所示,质量均为m=10 kg的A、B两物体放在粗糙的水平木板上,中间用劲度系数为k=5×102 N/m的弹簧连接,刚开始时A、B两物体处于平衡状态,弹簧的压缩量为Δx= 5 cm.已知两物体与木板间的动摩擦因数均为μ= 3 2 ,重力加速度g=10 m/s2,设最大静摩 擦力等于滑动摩擦力.现将木板的右端缓慢抬起,木板形成斜面,在木板缓慢抬起过程中,以下说法正确的是( ) 图2 A.A先开始滑动,A刚开始滑动时木板的倾角θ=30° B.A先开始滑动,A刚开始滑动时木板的倾角θ=60° C.B先开始滑动,B刚开始滑动时木板的倾角θ=30° D.B先开始滑动,B刚开始滑动时木板的倾角θ=60° 3.如图3所示,在水平板左端有一固定挡板,挡板上连接一轻质弹簧.紧贴弹簧放一质量为 m的滑块,此时弹簧处于自然长度.已知滑块与水平板的动摩擦因数为 3 3 (最大静摩擦力与 滑动摩擦力视为相等).现将板的右端缓慢抬起使板与水平面间的夹角为θ,最后直到板竖直,此过程中弹簧弹力的大小F随夹角θ的变化关系可能是( )

图3 4.如图4所示,质量为M的滑块a,置于水平地面上,质量为m的滑块b放在a上.二者接触面水平.现将一方向水平向右的力F作用在b上.让F从0缓慢增大,当F增大到某一值时,b相对a滑动,同时a与地面间摩擦力达到最大.已知a、b间的动摩擦因数为μ1,a 与地面之间的动摩擦因数为μ2,且最大静摩擦力等于滑动摩擦力,则μ1与μ2之比为( ) 图4 A.m M B. M m C. m M+m D. M+m m 5.(2018·兴化一中质检)如图5所示,质量均为m的木块A和B,用一个劲度系数为k的竖直轻质弹簧连接,最初系统静止,现在用力缓慢拉A直到B刚好离开地面,则这一过程A上升的高度为( ) 图5 A.mg k B. 2mg k C.3mg k D. 4mg k 6.如图6所示,质量为M的斜劈倾角为θ,在水平面上保持静止,当将一质量为m的木块放在斜面上时正好匀速下滑.如果用与斜面成α角的力F拉着木块沿斜面匀速上滑.

专题导数法-高中物理八大解题方法含解析

高中物理解题方法之导数法 在物理解题中用导数法,首先要把物理问题化归为数学问题。在分析物理状态和物理过程的基础上,找到合适的物理规律,即函数,再求函数的导数,从而求解极值问题或其他问题,然后再把数学问题回归到物理问题,明确其物理意义。 例1、两等量同种电荷在两点电荷连线的中垂线上电场的分布 图1.两等量正点电荷的电场强度在y 坐标轴上的点的合成 以两点电荷的连线的中点为原点,以两点电荷的连线的中垂线为y 轴,则各点的电场强度可表示为: θcos )( 222?+=y l Q k E =2222)(2y l y y l Q k +?+ 因为原点的电场强度00=E ,往上或往下的无穷远处的电场强度也为0,所以,从O 点向上或向下都是先增大后减小,这是定性的分析。那么,在哪儿达到最大呢,需要定量的计算。 方法1.用三角函数法求导数 θcos )( 222?+=y l Q k E 中把θtan l y =代入得θθcos sin 222 ?=l kQ E 。 令=z θθcos sin 2,求导数θθθ32sin cos sin 2'-=z =)sin cos 2sin 22θθθ-(,欲使 0'=z ,需0sin =θ(舍去)或0sin cos 222=-θθ即2tan =θ,此处,2 2l y = ,将其代入得2max 934l kQ E ?= 。

方法2. 用代数法求导数 E =2 22 2 )(2y l y y l Q k +?+,令23 2 2)(-+?=y l y z ,对z 求导数得2 52 222 3 2 2) (3) ('- - +-+=y l y y l z ,令其分子为0,得2 2l y = ,代入得2max 934l kQ E ?= 。 3.图象 用Excel 作图,得到关于等量同种电荷的电场在其中垂线上的分布的图象,图象的横轴y 表示各点到原点的距离(以两点电荷的连线的中点为原点),纵轴表示中垂线上各点的电场强度。 图2.两等量正点电荷的电场强度在y 坐标轴上的分布 此图象也验证了以上所得的结果:图象中令5=l ,则当5.32 5 222=?==l y 处电场强度最大。

求极值与最值的方法

求极值与最值的方法 1 引言 在当前的数学教育中,求初等函数的极值与最值占有比较重要的位置,由于其解法灵活,综合性强,能力要求高,故而解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法。下面我们将要介绍多种求初等函数的极值和最值的方法。 2 求函数极值的方法 极值定义:设函数()f x 在0x 的某邻域内有定义,且对此邻域内任一点 x 0()x x ≠,均有0()()f x f x <,则称0()f x 是函数错误!未找到引用源。的一个极大值;同样如果对此邻域内任一点x 0()x x ≠,均有错误!未找到引用源。,则称0()f x 是函数错误!未找到引用源。的一个极小值。函数的极大值与极小值统称为函数的极值。使函数取得极值的点0x ,称为极值点。 2.1 求导法 判别方法一: 设()f x 在点0x 连续,在点错误!未找到引用源。的某一空心邻域内可导。当 x 由小增大经过错误!未找到引用源。时,如果: (1)'()f x 由正变负,那么0x 是极大值点; (2)错误!未找到引用源。由负变正,那么0x 是极小值点; (3)错误!未找到引用源。不变号,那么0x 不是极值点。 判别方法二: 设()f x 在点0x 处具有二阶导数,且'()0f x =,''()0f x =。 (1)如果''()0f x <,则()f x 在点0x 取得极大值; (2)如果''()0f x >,则()f x 在点0x 取得极小值。

判别方法三: 设()f x 在点0x 有n 阶导数,且0)()()(0)1(00===''='-x f x f x f n 0)(0)(≠x f n ,则: (1)当为偶数时,)(x f 在0x 取极值,有0)(0)(x f n 时,)(x f 在0x 取极小值。 (2)当为奇数时,)(x f 在0x 不取极值。 求极值方法: (1)求一阶导数,找出导数值为0的点(驻点),导数值不存在的点,及端点; (2)判断上述各点是否极值点 例 1 求函数32()69f x x x x =-+的极值。 解法一 : 因为32()69f x x x x =-+的定义域为错误!未找到引用源。, 且'2()31293(1)(3)f x x x x x =-+=--, 令'()0f x =,得驻点11x =, 23x =; 在错误!未找到引用源。内,错误!未找到引用源。,在错误!未找到引用源。内,'()0f x <,(1)4f =为函数()f x 的极大值。 解法二: 因为错误!未找到引用源。的定义域为错误!未找到引用源。, 且错误!未找到引用源。,错误!未找到引用源。。 令错误!未找到引用源。,得驻点错误!未找到引用源。,错误!未找到引用源。。又因为错误!未找到引用源。,所以,错误!未找到引用源。为)(x f 极大值。 错误!未找到引用源。,所以错误!未找到引用源。为)(x f 极小值.

中学物理中极值问题解法种种

中学物理中极值问题解法种种 卢小柱 极值问题是中学物理中一类内容丰富、难度较大和技巧性较强的物理问题.它要求学生的基础知识和基本技能较熟练,并有较强的综合分析问题和解决问题的能力,以及能熟练地运用数学知识解答物理问题.下面对常见的极值问题的解法作一归纳,以供参考. 1.配方法 若题中物理量的变化规律可表示为二次函数y=ax 2+bx+c 的形式,则经配方有 y=a(x+b a 2)2+442ac b a -.若a>0,则当x=-b a 2时,y 有极小值y min =442 ac b a -;若a<0,则当x=- b a 2时,y 有极大值y max =442 ac b a -. 例1 甲、乙两辆汽车同方向行驶,甲在乙前50m 处以速度20m/s 作匀速直线运动, 乙车的初速度为4m/s,加速度为8m/s 2.试问什么时候甲车在前时,两车相距最远?最远距离是多少? 解: 设运动时间为ts,由运动学公式有 甲的位移为s 1=20t, 乙的位移为s 2=4t+4t 2 两车相距?s=s 1+50-s 2=50+20t -4t -4t 2=-4t 2+16t+50=-4(t -2)2+66 当t=2s 时, ?s 有极大值为 ?s max =66m. 例2 如图1所示的电路中,电源内阻为r,电动势为ε,则当变阻器电阻R 为何值时,电源输出功率最大? 解: 电源输出功率为P=I 2R=(εR r +)2R=ε2222R R Rr r ++ 分母配方后得:P= ε2 2 4(/)R r R r -+ 故当R r R =/,即R=r 时,分母最小,P 最大.P max =ε2 4r . 2.判别式法 若物理量的变化关系为二次函数,或者通过巧妙的变换能使物理量出现二次项,则可利用判别式?=b 2-4ac 来求解.当?≥0时有实根,?=0时取极值. 例3 火焰与光屏之间的距离是L,在它们中间放有一个凸透镜,其焦距为f.试证明,要使火焰在光屏上成清晰像,则L 至少要为4f. 证明:设物距为u,像距为v,则u+v=L ……① 由成像公式有:111 u v f += ……② 由①②得:u 2-Lu+Lf=0 故要成实像,则必须?=L 2-4Lf ≥0,解得L 最小为4f. 例4 如图2所示,顶角为2α的光滑圆锥置于磁感应强度为B 、方向竖直向下的匀强磁场中.现有一质量为m 、带电量为+Q 的小球沿圆锥面在水平面内作匀速圆周运动,求小球作圆周运动的最小半径. 解: 小球受力如图,建坐标.由圆周运动知识得

动力学中的临界极值问题的处理讲课教案

动力学中的临界极值问题的处理

动力学中临界极值问题的处理及分析 物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、力学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。 一.解决动力学中临界极值问题的基本思路 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题 注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。○3许多临界问题 常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语 其内含规律就能找到临界条件。○4有时,某些临界问题中并不包含常见的临界 术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀 减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。○5临界问 题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情 景,抓住临界状态的特征,找到正确的解题方向。○6确定临界点一般用极端分 析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。 二.匀变速运动规律中与临界极值相关问题的解读 在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。 【例1】速度大小是5m/s的甲、乙两列火车,在同一直线上相向而行。当它们相隔2000m时,一只鸟以10m/s的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。问: (1)当两车头相遇时,这鸟共飞行多少时间?

高中物理专题复习之弹簧模型中的极值问题

在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。 一、最大、最小拉力 例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经0.5s ,B 物体刚离开地面(设整个加速过程弹簧都处于 弹性限度内,且g =10m/s 2 )。求此过程中所加外力的最大和最小值。 图1 解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量?l m g k m = =025.,0.5s 末B 物 体刚要离开地面,此时弹簧弹力恰等于B 的重力,??l l m '.==025,故对A 物体有2122 ?l at = ,代入数据得a m s =42 /。刚开始时F 为最小且 F m a N N m in ===15460×,B 物体刚要离开地面时,F 为最大且有 F mg mg ma max --=,解得F mg ma N max =+=2360。 二、最大高度 例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。 图2 解析:物块碰撞钢板前作自由落体运动,设v 0表示物块与钢板碰撞时的速度,则:

相关主题