搜档网
当前位置:搜档网 › 基于PT100的温度测量系统设计

基于PT100的温度测量系统设计

基于PT100的温度测量系统设计
基于PT100的温度测量系统设计

摘要

本文首先简要介绍了铂电阻PT100的特性以及测温的方法,在此基础上阐述了基于PT100的温度测量系统设计。在本设计中,是以铂电阻PT100作为温度传感器,采用恒流测温的方法,通过单片机进行控制,用放大器、A/D转换器进行温度信号的采集。另外,还设计了时钟电路模块,能实现对温度的实时测量。本设计采用了两线制铂电阻温度测量电路,通过对电路的设计,减小了测量电路及PT100自身的误差,使温控精度在0℃~100℃范围内达到±0.1℃。

本文采用AT89S51单片机,TLC2543 A/D转换器,DS1302时钟芯片,AD620放大器,铂电阻PT100及6位数码管组成系统,编写了相应的软件程序,使其实现温度的实时显示。该系统的特点是:使用简便;测量精确、稳定、可靠;测量范围大;使用对象广。

关键词:

PT100 单片机温度测量DS1302

Abstract

This article briefly describes the characteristics of PT100 platinum resistance and temperature measurement method, on the basis it describes the design of temperature measurement system based on PT100. In this design, it is use a PT100 platinum resistance as temperature sensor, in order to acquisition the temperature signal, it use of constant-current temperature measurement method and use single-chip control, Amplifier, A / D converter. In addition, it designs a clock circuit modules to achieve real-time measurement of temperature.It can still improve the perform used two-wire temperature circuit and reduce the measurement eror. The temperature precision is reached ±0.1℃between 0℃~100℃.

The system contains SCM(AT89S51), analog to digital convert department (TLC2543), DS1302 chip, AD620 amplifier, PT100 platinum, LED Digital tube with six, write the corresponding software program to achieve real-time temperature display. The system is simple , accurate , stable and wide range.

Keywords:

PT100 SCM Temperature Measures DS1302

目录

前言 (1)

第一章方案设计与论证 (2)

第一节传感器的选择 (2)

第二节方案论证 (3)

第三节系统的工作原理 (3)

第四节系统框图 (4)

第二章硬件设计 (5)

第一节PT100传感器特性和测温原理 (5)

第二节信号调理电路 (6)

第三节恒流源电路的设计 (6)

第四节放大电路的设计 (7)

第五节A/D转换器的选择与设计电路 (9)

第六节DS1302时钟电路设计 (12)

第七节单片机控制电路 (14)

第八节按键和显示电路 (14)

第三章软件设计........................................................................ 错误!未定义书签。

第一节系统软件设计说明 (16)

第二节软件的有关算法 (16)

第三节软件的流程图 (17)

第四节部分设计模块 (19)

第四章电路仿真的设计与分析 (24)

第一节Proteus仿真软件介绍 (24)

第二节电路仿真设计 (24)

第三节仿真分析 (26)

结论 (27)

参考文献 (28)

附录A (29)

附录B: (30)

致谢 (31)

前言

随着科技的发展和“信息时代”的到来,作为获取信息的手段——传感器技术得到了显著的进步,其应用领域越来越广泛,对其要求越来越高,需求越来越迫切。因此,了解并掌握各类传感器的基本结构、工作原理及特性是非常重要的。

传感器主要用于测量和控制系统,它的性能好坏直接影响系统的性能。因此,不仅必须掌握各类传感器的结构、原理及其性能指标,还必须懂得传感器经过适当的接口电路调整才能满足信号的处理、显示和控制的要求,而且只有通过对传感器应用实例的原理和智能传感器实例的分析了解,才能将传感器和信息通信与信息处理结合起来,适应传感器的生产、研制、开发和应用。另一方面,传感器的被测信号来自于各个应用领域,每个领域都为了改革生产力、提高工效和时效,各自都在开发研制适合应用的传感器,于是种类繁多的新型传感器及传感器系统不断涌现。温度传感器是其中重要的一类传感器。其发展速度之快,以及其应用之广,并且还有很大潜力。

为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。本文利用单片机结合温度传感器技术而开发设计了这一温度测量系统。文中将传感器理论与单片机实际应用有机结合,详细地讲述了利用热电阻作为温度传感器来测量实时的温度,以及实现热电转换的原理过程。

本设计应用性比较强,设计系统可以作为温度测量显示系统,如果稍微改装可以做热水器温度调节系统、生产温度监控系统等等。本课题主要任务是完成环境温度检测并显示温度和实时的时间。设计后的系统具有操作方便,控制灵活移植性强等优点。

本设计系统包括温度传感器,信号放大电路,A/D转换模块,时钟模块,数据处理与控制模块,温度、时间显示模块六个部分。文中对每个部分功能、实现过程作了详细介绍。整个系统的核心是进行温度测量与显示,完成了课题所有要求。

第一章方案设计与论证

第一节传感器的选择

温度传感器从使用的角度大致可分为接触式和非接触式两大类,前者是让温度传感器直接与待测物体接触,而后者是使温度传感器与待测物体离开一定的距离,检测从待测物体放射出的红外线,达到测温的目的。在接触式和非接触式两大类温度传感器中,相比运用多的是接触式传感器,非接触式传感器一般在比较特殊的场合才使用,目前得到广泛使用的接触式温度传感器主要有热电式传感器,其中将温度变化转换为电阻变化的称为热电阻传感器,将温度变化转换为热电势变化的称为热电偶传感器。

热电阻传感器可分为金属热电阻式和半导体热电阻式两大类,前者简称热电阻,后者简称热敏电阻。常用的热电阻材料有铂、铜、镍、铁等,它具有高温度系数、高电阻率、化学、物理性能稳定、良好的线性输出特性等,常用的热电阻如PT100、PT1000等。近年来各半导体厂商陆续开发了数字式的温度传感器,如DALLAS公司DS18B20,MAXIM公司的MAX6576、MAX6577,ADI公司的AD7416等,这些芯片的显著优点是与单片机的接口简单,如DS18B20该温度传感器为单总线技术,MAXIM公司的2种温度传感器一个为频率输出,一个为周期输出,其本质均为数字输出,而ADI公司的AD7416的数字接口则为近年也比较流行的I2C总线,这些本身都带数字接口的温度传感器芯片给用户带来了极大的方便,但这类器件的最大缺点是测温的范围太窄,一般只有-55~+125℃,而且温度的测量精度都不高,好的才±0.5℃,一般有±2℃左右,因此在高精度的场合不太满足用户的需要。

热电偶是目前接触式测温中应用也十分广泛的热电式传感器,它具有结构简单、制造方便、测温范围宽、热惯性小、准确度高、输出信号便于远传等优点。常用的热电偶材料有铂铑-铂、铱铑-铱、镍铁-镍铜、铜-康铜等,各种不同材料的热电偶使用在不同的测温范围场合。热电偶的使用误差主要来自于分度误差、延伸导线误差、动态误差以及使用的仪表误差等。

非接触式温度传感器主要是被测物体通过热辐射能量来反映物体温度的高低,这种测温方法可避免与高温被测体接触,测温不破坏温度场,测温范围宽,精度高,反应速度快,既可测近距离小目标的温度,又可测远距离大面积目标的温度。目前运用受限的主要原因一是价格相对较贵,二是非接触式温度传感器的输出同样存在非线性的问题,而且其输出受与被测量物体的距离、环境温度等多种其它因素的影响。

由于本设计的任务是要求测量的范围为0℃~100℃,测量的分辨率为±0.1℃,综合价格

以及后续的电路,决定采用线性度相对较好的PT100作为本课题的温度传感器,具体的型号为WZP型铂电阻,该传感器的测温范围从-200℃~+650℃。具体在0℃~100℃的分度特性表见附录A所示。

第二节方案论证

温度测量的方案有很多种,可以采用传统的分立式传感器、模拟集成传感器以及新兴的智能型传感器。

方案一:采用模拟分立元件

如电容、电感或晶体管等非线形元件,该方案设计电路简单易懂,操作简单,且价格便宜,但采用分立元件分散性大,不便于集成数字化,而且测量误差大。

方案二:采用温度传感器

通过温度传感器采集温度信号,经信号放大器放大后,送到A/D转换芯片,将模拟量转化为数字量,传送给单片机控制系统,最后经过LED显示温度。

热电阻也是最常用的一种温度传感器。它的主要特点是测量精度高,性能稳定,使用方便,测量范围为-200℃~650℃,完全满足要求,考虑到铂电阻的测量精确度是最高的,所以我们设计最终选择铂电阻PT100作为传感器。该方案采用热电阻PT100做为温度传感器、AD620作为信号放大器,TLC2543作为A/D转换部件,对于温度信号的采集具有大范围、高精度的特点。相对与方案一,在功能、性能、可操作性等方面都有较大的提升。在这里我选用方案二完成本次设计。

第三节系统的工作原理

测温的模拟电路是把当前PT100热电阻传感器的电阻值,转换为容易测量的电压值,经过放大器放大信号后送给A/D转换器把模拟电压转为数字信号后传给单片机AT89S51,单片机再根据公式换算把测量得的温度传感器的电阻值转换为温度值,并将数据送出到数码管进行显示。另外,外接一个时钟芯片DS1302产生时钟信号送入到单片机中进行处理控制,并将时间显示出来,以实现温度的实时监控。

第四节 系统框图

本设计系统主要包括温度信号采集单元,时间信号采集单元,单片机数据处理单元,时间、温度显示单元。其中温度信号的数据采集单元部分包括温度传感器、温度信号的获取电路(采样)、放大电路、A/D 转换电路。

系统的总结构框图如图1-1所示。

图1-1 系统的总结构框图

信号放大

调理电路

PT100温度传感器 A/D 转换电路

时钟电路

按键控制电路

AT89S51单片机

LED 数码管显示电路

第二章硬件设计

第一节 PT100传感器特性和测温原理

电阻式温度传感器(RTD, Resistance Temperature Detector)是指一种物质材料作成的电阻,它会随温度的改变而改变电阻值。

PT100温度传感器是一种以铂(Pt)做成的电阻式温度传感器,属于正电阻系数,

其电阻阻值与温度的关系可以近似用下式表示:

在0~650℃范围内:

Rt =R0 (1+At+Bt2)

在-200~0℃范围内:

Rt =R0 (1+At+Bt2+C(t-100)t3)

式中A、B、C 为常数,

A=3.96847×10-3;

B=-5.847×10-7;

C=-4.22×10-12;

由于它的电阻—温度关系的线性度非常好,因此在测量较小范围内其电阻和温度变化的关系式如下:R=Ro(1+αT)

其中α=0.00392, Ro为100Ω(在0℃的电阻值),T为华氏温度,因此铂做成的电阻式温度传感器,又称为PT100。

PT100温度传感器的测量范围广:-200℃~+650℃,偏差小,响应时间短,还具有抗振动、稳定性好、准确度高、耐高压等优点,其得到了广泛的应用,本设计即采用PT100作为温度传感器。

主要技术指标:1. 测温范围:-200~650摄氏度;2. 测温精度:0.1摄氏度;

3. 稳定性:0.1摄氏度

Pt100 是电阻式温度传感器,测温的本质其实是测量传感器的电阻,通常是将电阻的变化转换成电压或电流等模拟信号,然后再将模拟信号转换成数字信号,再由处理器换算出相应温度。采用Pt100 测量温度一般有两种方案:

方案一:设计一个恒流源通过Pt100 热电阻,通过检测Pt100 上电压的变化来换算出温度。

方案二:采用惠斯顿电桥,电桥的四个电阻中三个是恒定的,另一个用Pt100 热电阻,当Pt100电阻值变化时,测试端产生一个电势差,由此电势差换算出温度。

两种方案的区别只在于信号获取电路的不同,其原理上基本一致。

第二节信号调理电路

调理电路的作用是将来自于现场传感器的信号变换成前向通道中A/D转换器能识别的信号,作为本系统,由于温度传感器是热电阻PT100,因此调理电路完成的是怎样将与温度有关的电阻信号变换成能被A/D转换器接受的电压信号。

第三节恒流源电路

从上述关于PT100传感器测温原理可知,由PT100构成信号的获取电路常用的方法有2种,一种是构成的十分常见的电桥电路,当然,在本系统中,考虑成本的问题,一般采用单臂桥;还有一种是运用恒流源电路,将恒流源通过温度传感器,温度传感器两端的电压即反映温度的变化。上述两种电路的结构形式见图2-1所示。

A图单臂桥式 B图恒流源式

图2-1 两种信号获取的结构电路

根据测试技术的有关知识,图2-1中的A图的输出与电阻的阻值不是个正比的关系,因而数据处理起来特别麻烦,尤其是用单片机来处理这些非线性的问题;而图B的由于恒流源

的作用,使得电压输出与电阻成良好的线性关系,因此,本系统采用恒流源电路来获取温度信号。

恒流源电路的设计,有用三极管构成的,有用专门的恒流管,也有用价格低廉的器件通过比较巧妙的设计构成的,本系统是采用价格低廉的运放为核心来构成的,恒流效果十分理想,系统设计的恒流源电路见下图2-2所示。

R16 1.5k

1

3

2

7LM336-2.5V 85

3

26

7

4

1

U1

OP-07

VR3

10k R17

500R11PT100

+12V

-12V

VCC

2

3

图2-2 由运放构成的恒流源电路

上图中,由于运放虚地的结果,造成OP-07的反相输入端为0V ,而图中1.5K 电阻的下端由于运用精密的电压源LM336-2.5,外加调整电路,该点电压可调整为2.500V ,而由于运放的输入阻抗极高,输入端可以认为不吸入电流,因此从1.5K 电阻上流过的电流大小固定而且一定等于OP-07输出端流入温度传感器PT100的电流,从而达到恒流的效果,连接PT100两端的压差正好反映温度变化的信号送入后级的放大器。

这里值得注意的是恒流效果的好坏与下面几个因素有关,图示1.5K 电阻的精度及温度稳定性要好,我们采用的是高精度高稳定的电阻;还有是一定要选择输入阻抗高的运放,包括产生虚地处的运放(图中OP-07)和后级的放大器(图中的AD620),否则较大的输入电流也将直接影响恒流的效果;最后一点是参考电压(图中是-2.5V )的稳定性要高,这里的参考电压采用是LM336-2.5V 作为参考电压基准。

第四节 放大电路的设计

放大器的选择好坏对提高测量精度也十分关键,根据查阅的相关资料,在放大器电路精

选中,一般在首级放大器有低噪声、低输入偏置电流、高共模抑制比等要求的大多采用自制的三运放结构,如下图2-3所示,三运放中由A1、A2构成前级对称的同相、反相输入放大

器,后级为差动放大器,在这个结构图中,要保证放大器高的性能,参数的对称性与一致性显得尤为重要,不仅包括外围的电阻元件R1与R2、R3与R4、R5与R6,还包括A1与A2放大器的一致性,因此,要自制高性能的放大器对器件要求相当高。随着微电子技术的发展,市场上出现了专用的高性能的仪用放大器,它的内部核心结构还是三运放,但是,采用微电子来解决刚才的参数匹配问题已不是什么复杂的问题。

+-A1+-

A2+-

A3R2

R1

R7

R6R3

R5

R4

VIN

VOUT

图2-3 三运放结构的高性能放大器原理图

随着近年来微电子技术的发展,市面上出现了不少专用的高性能的芯片,AD620、AD623就是具有上述描述的三运放结构,在本设计中我们根据手中的元器件材料最终选择了AD620作为放大器电路的首级放大。

AD620是低价格、低功耗仪用放大器,它只需要一只外部电阻就可设置1~1000倍的放大增益,它具有较低的输入偏置电流、较快的建立时间和较高的精度,特别适合于精确的数据采集系统,如称重和传感器接口,也非常适合医疗仪器的应用系统(如ECG 检测和血压监视)、多路转换器及干电池供电的前置放大器使用。

AD620的内部结构是由OP-07组成的三运放结构,性能大大优于自制的三运放IC 电路设计,其基本接法是在1脚与8脚之间外接一RG 电阻,增益由式G=1+49.4KΩ/RG 确定,由于它的外围电路十分简单,所以它在本系统中的应用见下图2-4所示。

由于我们的温度测量范围是0~100℃,而此时的温度传感器的电阻值根据分度表为100欧姆~138.51欧姆,由于我们设计的恒流源为5/3毫安,因此AD620的输入端为166.7毫伏,假设考虑我们的TLC2543的最大输入为5.000V ,我们设计的放大器的增益在尽量保证分辨率的条件下,则为20倍,假设我们只用一个AD620,则AD620的输出为2V ~5V(TLC 只能转换5V),这样12位的A/D 转换器的分辨率则大于题目的要求0.1℃,因此,我们必须将100欧姆以下的值通过偏置的方法将其减掉,然后通过增加放大倍数来尽量提高分辨率,这里我

们设计的偏置电路同样见下图2-4所示。这里设计的首级放大器的倍数是20倍,而后级放大则为4倍,合计的放大倍数为80倍,这样就完全满足设计分辨率的要求。

R910k

R740k

85

3

2

6

7

4

1

U3

AD620

8

532

6

7

4

1

U2

op-07

VR1

2k

R82k VR2

4k

VCC

+12V

-12V +12V

-12V

R1010k

A0

23

增益调整

放大器1

放大器2及偏置电路

传感器信号的输入

图2-4 放大电路

第五节 A/D 转换器的选择与设计电路

在我们所测控的信号中均是连续变化的物理量,通常需要用计算机对这些信号进行处理,则需要将其转换成数字量,A/D 转换器就是为了将连续变化的模拟量转换成计算机能接受的数字量。根据A/D 转换器的工作原理,常用的A/D 转换器可分为两种,双积分式A/D 转换器和逐次逼近式A/D 转换器。

1. 双积分A/D 转换器工作原理

双积分A/D 转换器采用间接测量的方法,它将被测电压转换成时间常数T ,双积分A/D 转换器由电子开关,积分器,比较器,计数器和控制逻辑等部分组成。

所谓双积分就是进行一次A/D 转换需要两次积分。电路先对被测的输入电压Vx 进行固定时间(T0)的正向积分,然后控制逻辑将积分器的输入端通过电子开关接参考电压Vr ,由于参考电压与输入电压反向且参考电压值是恒定的,所以反向积分的斜率是固定的,从反向积分开始到结束,对参考电压进行反向积分的时间T,正比于输入电压。输入电压越大反向积分时间越长,用高频标准脉冲计数测此时间,即可得到相应于输入电压的数字量。特点:可以有效的消除干扰和电源噪声,转换精度高,但是转换速度慢。

2. 逐次逼近型A/D 转换器工作原理

逐次逼近型A/D 转换器由D/A 转换环节,比较环节和控制逻辑等几部分组成。 其转换原理为:A/D 转换器将一待转换的模拟输入电压Ui 与一个预先设定的电压Ui (预定的电压由逐次逼近型A/D 转换器中的D/A 输出获得)电压相比较,根据预设的电压Ui 是大于还是小于待转换成的模拟输入电压Uin 来决定当前转换的数字量是“0” 还是“1”,据此逐位比较,以便使转换结果(相应的数字量)逐渐与模拟输入电压相对应的数字量接近。

在本设计系统中,为了将模拟量温度转换成数字量,采用德州仪器公司生产的12位开关电容型逐次逼近模数转换器TLC2543,它具有三个控制输入端,采用简单的3线SPI 串行接口可方便地与微机进行连接,是12位数据采集系统的最佳选择器件之一。

TLC2543与外围电路的连线简单,三个控制输入端为CS(片选)、输入/输出时钟(I/O CLOCK)以及串行数据输入端(DATA INPUT)。片内的14通道多路器可以选择11个输入中的任何一个或3个内部自测试电压中的一个,采样-保持是自动的,转换结束,EOC 输出变高。

3、TLC2543的主要特性 (1) 11个模拟输入通道; (2) 66ksps 的采样速率;

(3) 最大转换时间为10μs ; (4) SPI 串行接口;

(5) 线性度误差最大为±1LSB; (6) 低供电电流(1mA 典型值); (7) 掉电模式电流为4μA 。 TLC2543的引脚排列如图2-5所示。

A01A12A23A34A45A56A67A78A89GND 10

A911

A1012R-13R+14/CS 15DO 16DI 17CLOK 18EOC 19VCC 20

TLC2543

图2-5 TLC2543的引脚

AIN0~AIN10:模拟输入端,由内部多路器选择。对4.1MHz 的I/O CLOCK ,驱动源阻抗必须小于或等于50Ω。

CS :片选端,CS 由高到低变化将复位内部计数器,并控制和使能DATA OUT 、DATA INPUT 和I/O CLOCK 。CS 由低到高的变化将在一个设置时间内禁止DATA INPUT 和I/O CLOCK 。

DATA INPUT :串行数据输入端,串行数据以MSB 为前导并在I/O CLOCK 的前4个上升沿移入4位地址,用来选择下一个要转换的模拟输入信号或测试电压,之后I/O CLOCK 将余下的几位依次输入。

DATA OUT :A/D 转换结果三态输出端,在CS 为高时,该引脚处于高阻状态;当CS 为低时,该引脚由前一次转换结果的MSB 值置成相应的逻辑电平。

EOC :转换结束端。在最后的I/O CLOCK 下降沿之后,EOC 由高电平变为低电平并保持到转换完成及数据准备传输。 VCC 、GND :电源正端、地。

REF +、REF -:正、负基准电压端。通常REF +接VCC ,REF -接GND 。最大输入电压范围取决于两端电压差。

I/O CLOCK :时钟输入/输出端。

TLC2543每次转换和数据传送使用16个时钟周期,且在每次传送周期之间插入CS 的时序。根据TLC2543时序图可以看出,在TLC2543的CS 变低时开始转换和传送过程,I/O CLOCK 的前8个上升沿将8个输入数据位键入输入数据寄存器,同时它将前一次转换的数据的其余11位移出DATA OUT 端,在I/O CLOCK 下降沿时数据变化。当CS 为高时, I/O CLOCK 和DATA INPUT 被禁止,DATA OUT 为高阻态。

TLC2543与单片机的连接如图2-6所示。

图2-6 TLC2543电路

A0 1

A1 2

A2 3 A3 4 A4 5 A5 6 A6 7 A7 8 A8 9 GND 10

A9 11

A10 12 R- 13 R+ 14 /CS 15 DO 16 DI 17 CLOK 18 EOC 19

VCC 20 TLC2543

VCC

5V CLOK D1 D0

/CS A0

第六节 DS1302时钟电路设计

DS1302是美国DALLAS 公司推出的一种高性能、低功耗、带RAM 的实时时钟电路,它可以对年、月、日、周日、时、分、秒进行计时,具有闰年补偿功能,工作电压为2.5V ~5.5V 。采用三线接口与CPU 进行同步通信,并可采用突发方式一次传送多个字节的时钟信号或RAM 数据。DS1302内部有一个31×8的用于临时性存放数据的RAM 寄存器。DS1302是DS1202的升级产品,与DS1202兼容,但增加了主电源/后背电源双电源引脚,同时提供了对后背电源进行涓细电流充电的能力。本设计中采用DS1302时钟芯片产生时钟信号,通过单片机进行处理控制,并显示出实时的时间,可以用于对温度进行实时的数据采集。

1. 引脚功能及结构

DS1302的引脚排列,其中Vcc1为后备电源,VCC2为主电源。在主电源关闭的情况下,也能保持时钟的连续运行。DS1302由Vcc1或Vcc2两者中的较大者供电。当Vcc2大于Vcc1+0.2V 时,Vcc2给DS1302供电。当Vcc2小于Vcc1时,DS1302由Vcc1供电。X1和X2是振荡源,外接32.768kHz 晶振。RST 是复位/片选线,通过把RST 输入驱动置高电平来启动所有的数据传送。RST 输入有两种功能:首先,RST 接通控制逻辑,允许地址/命令序列送入移位寄存器;其次,RST 提供终止单字节或多字节数据的传送手段。当RST 为高电平时,所有的数据传送被初始化,允许对DS1302进行操作。如果在传送过程中RST 置为低电平,则会终止此次数据传送,I/O 引脚变为高阻态。上电运行时,在Vcc≥2.5V 之前,RST 必须保持低电平。只有在SCLK 为低电平时,才能将RST 置为高电平。I/O 为串行数据输入输出端(双向),后面有详细说明。SCLK 始终是输入端。 DS1302的引脚功能图如图2-7所示。

Vcc21X12X23GND 4

RST

5

I/O 6SCLK 7Vcc 8DS1302

图2-7 DS1302引脚图

2. DS1302的控制字节

DS1302 的控制字如图2.8所示。控制字节的最高有效位(位

7)必须是

逻辑1,如果它为0,则不能把数据写入DS1302中,位6如果为逻辑0,则表示存取日历时钟数据,为1表示存取RAM 数据;位5至位1指示操作单元的地址输入或输出。最低有效位(位0)如为0表示要进行写操作,为1表示进行读操 作,控制字节总是从最低位开始输出。

3. 数据输入输出(I/O)

在控制指令字输入后的下一个SCLK 时钟的上升沿时,数据被写入DS1302,数据输入从低位即位0开始。同样,在紧跟8位的控制指令字后的

下一个SCLK 脉冲的下降沿读出DS1302的数据,读出数据时从低位0位到高位7。 4. DS1302的寄存器

DS1302有12个寄存器,其中有7个寄存器与日历、时钟相关,存放的数据位为BCD 码形式,其日历、时间寄存器及其控制字见图2.8所示。

图2.8DS1302的控制字节

此外,DS1302 还有年份寄存器、控制寄存器、充电寄存器、时钟突发寄存器及与RAM 相关的寄存器等。时钟突发寄存器可一次性顺序读写除充电寄存器外的所有寄存器内容。 DS1302与RAM 相关的寄存器分为两类:一类是单个RAM 单元,共31个,每个单元组态为一个8位的字节,其命令控制字为C0H ~FDH ,其中奇数为读操作,偶数为写操作;另一类为突发方式下的RAM 寄存

器,此方式下可一次性读写所有的RAM 的31个字节,命令控制字为 FEH (写)和FFH (读)。

5.DS1302与单片机的连接

DS1302与CPU 的连接需要三条线,即SCLK(7)、I/O(6)、RST(5)。这三条线分别接到CPU 的I/O 线上。

1

RAM

/CK

A4

A3

A2

A1

A0

RD

/WR

第七节 单片机控制电路

本设计是采用AT89S51单片机作为主控电路,其中P1口为A/D 转换器和DS1302时钟芯片的通信端口,P3.0,P3.1,P3.2为按键控制,P0口接数码管的段码,P2口接数码管的片选端,用于对数码管进行片选。如图2-9所示。

EA/VPP 31XTAL119XTAL218RST/VPD 9

P3.7/RD 17P3.6/WR 16P3.2/INT012

P3.3/INT113P3.4/T014P3.5/T115P1.0/T 1P1.1/T 2P1.23P1.34P1.45

P1.56P1.67P1.7

8

P0.039P0.138P0.237P0.336P0.435P0.534P0.633P0.732P2.0

21P2.122P2.223P2.324P2.425P2.526P2.627P2.728PSEN

29ALE/PROG

30P3.1/TXD 11P3.0/RXD 10Vcc 40

Gnd

20

AT89S5X

AT89S51

R20

VCC

a b c d e f g dp 1

23456Y212M

C3

102C12

104

C13

10uF

R15

0.1K

S1

VCC

12345678

161514131211109RP1

VCC

P 3.0P 3.1P 3.2CLOCK

D1D0/CS

SCLK I/O RST

图2-9 单片机控制电路

第八节 按键和显示电路

1. 按键电路

本设计共设计3个按键,用来设置和修改时间。设置键,接单片机的P3.2脚用于申请中断,以执行键盘中断修改设置时间;加键,用于修改时间使时间按增形式调整;减键,用于修改时间使时间按减形式调整。其电路图如下图2-10所示。

PT100温度传感器测量电路

PT100温度传感器测量电路 温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至650℃ 的范围.本电路选择其工作在 -19℃ 至500℃ 范围。 整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分。 前置放大部分原理图如下: 工作原理: 传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式. 按照 PT100 的参数,其在0℃ 到500℃ 的区间内,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:

单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为10.466 。 关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635的结果。实际上,500 个字的理想值是无法靠电路本身自然得到的,自然得到的数字仅仅为 450 个字,因此,公式中的500℃ 在实际计算时的取值是 450 而不是 500 。450/1023*5/(0.33442-0.12438)≈10.47 。其实,计算的方法有多种,关键是要按照传感器的mV/℃ 为依据而不是以被测温度值为依据,我们看看加上非线性校正系数:10.47*1.1117=11.639499 ,这样,热心朋友的计算结果就吻合了。 运算放大器分为两级,后级固定放大 5 倍(原理图中 12K/3K+1=5),前级放大为:10.465922/5=2.0931844 倍,为了防止调整时的元器件及其他偏差,使用了一只精密微调电位器对放大倍数进行细调,可以保证比较准确地调整到所需要的放大倍数(原理图中 10K/(8K2+Rw)+1)。

pt100温度传感器原理

pt100温度传感器原理 PT100是一个温度传感器,是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在-200℃至650℃的范围. 电阻式温度检测器(RTD,Resistance Temperature Detector)是一种物质材料作成的电阻,它会随温度的上升而改变电阻值,如果它随温度的上升而电阻值也跟著上升就称为正电阻係数,如果它随温度的上升而电阻值反而下降就称为负电阻系数。大部分电阻式温度检测器是以金属作成的,其中以白金(Pt)作成的电阻式温度检测器,最为稳定-耐酸碱、不会变质、相当线性...,最受工业界采用。 PT100温度感测器是一种以白金(Pt)作成的电阻式温度检测器,属于正电阻系数,其电阻和温度变化的关系式如下:R=Ro(1+αT)其中α=0.00392,Ro为100Ω(在0℃的电阻值),T为摄氏温度
因此白金作成的电阻式温度检测器,又称为PT100。 1:V o=2.55mA ×100(1+0.00392T)=0.255+T/1000 。 2:量测V o时,不可分出任何电流,否则量测值会不準。电路分析由于一般电源供应较多零件之后,电源是带杂讯的,因此我们使用齐纳二极体作为稳压零件,由于7.2V齐纳二极体的作用,使得1K电阻和5K可变电阻之电压和为6.5V,靠5K可变电阻的调整可决定电晶体的射(集极)极电流,而我们须将集极电流调为 2.55mA,使得量测电压V如箭头所示为0.255+T/1000。其后的非反向放大器,输入电阻几乎无限大,同时又放大10倍,使得运算放大器输出为2.55+T/100。6V齐纳二极体的作用如7.2V 齐纳二极体的作用,我们利用它调出2.55V,因此电压追随器的输出电压V1亦为 2.55V。其后差动放大器之输出为

Pt100 温度传感器参数及电路设计

Pt100 温度传感器参数及电路设计 Pt100 温度传感器为正温度系数热敏电阻传感器. 主要技术参数如下: ?测量范围:-200℃~+850℃; ?允许偏差值△℃:A 级±(0.15+0.002│t│),B 级±(0.30+ 0.005│t│); ?最小置入深度:热电阻的最小置入深度≥200mm; ?允通电流≤ 5mA。 另外,Pt100 温度传感器还具有抗振动、稳定性好、准确度高、耐高压等优点。 铂热电阻的线性较好,在0~100 摄氏度之间变化时,最大非线性偏差小于0.5 摄氏度。 图1 PT100 传感器封装图 应用领域 宽范围、高精度温度测量领域。如: ?轴瓦,缸体,油管,水管,汽管,纺机,空调,热水器等狭小空间工业设备测温和控制。 ?汽车空调、冰箱、冷柜、饮水机、咖啡机,烘干机以及中低温干燥箱、恒温箱等。 ?供热/制冷管道热量计量,中央空调分户热能计量和工业领域测温和控制

常用电路图 R2、R3、R4 和Pt100 组成传感器测量电桥,为了保证电桥输出电压信号的稳定性,电桥的输入电压通过TL431 稳至2.5V。从电桥获取的差分信号通过两级运放放大后输入单片机。电桥的一个桥臂采用可调电阻R3,通过调节R3 可以调整输入到运放的差分电压信号大小,通常用于调整零点。 放大电路采用LM358 集成运算放大器,为了防止单级放大倍数过高带来的非线性误差,放大电路采用两级放大,如图 5.1 所示,前一级约为10 倍,后一级约为3倍。温度在0~100 度变化,当温度上升时,Pt100 阻值变大,输入放大电路的差分信号变大,放大电路的输出电压Av 对应升高。 注意:虽然电桥部分已经经过TL431 稳压,但是整个模块的电压VCC 一定要稳定,否则随着VCC 的波动,运放LM358 的工作电压波动,输出电压Av 随之波动,最后导致A/D 转换的结果波动,测量结果上下跳变。 铂热电阻阻值与温度关系为: 式中,A=0.00390802;B=-0.000000580;C=0.0000000000042735。可见Pt100 在常温0~100摄氏度之间变化时线性度非常好,其阻值表达式可近似简化为:RPt=100(1+At),当温度变化1 摄氏度,Pt100 阻值近似变化0.39 欧。

pt100_测温电路

pt100测温电路:pt100三线制测量电路》是非常优秀的作品,本站提供后大学时代pt100测温电路:pt100三线制测量电路! CPU采用Atmega16,它自带8路10位A/D转换器,转换速度快,精度高,而且不需要外扩任何器件产品特性: 通常使用的铂电阻温度传感器有PT100,电阻温度系数为3.9×10-3/℃,0℃时电阻值为100Ω,电阻变化率为0.3851Ω/℃铂电阻温度传感器精度高,稳定性好,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,不仅广泛应用于工业测温,而且被制成各种标准温度计 按IEC751国际标准,温度系数TCR=0.003851,Pt100(R0=100Ω)、Pt1000(R0=1000Ω)为统一设计型铂电阻 传感器的结构: 两线制: 传感器电阻变化值与连接导线电阻值共同构成传感器的输出值,由于导线电阻带来的附加误差使实际测量值偏高,用于测量精度要求不高的场合,并且导线的长度不宜过长 三线制: 要求引出的三根导线截面积和长度均相同,测量铂电阻的电路一般是不平衡电桥,铂电阻作为电桥的一个桥臂电阻,将导线一根接到电桥的电源端,其余两根分别接到铂电阻所在的桥臂及与其相邻的桥臂上,当桥路平衡时,导线电阻的变化对测量结果没有任何影响,这样就消除了导线线路电阻带来的测量误差,但是必须为全等臂电桥,否则不可能完全消除导线电阻的影响采用三线制会大大减小导线电阻带来的附加误差,工业上一般都采用三线制接法 四线制: 当测量电阻数值很小时,测试线的电阻可能引入明显误差,四线测量用两条附加测试线提供恒定电流,另两条测试线测量未知电阻的电压降,在电压表输入阻抗足够高的条件下,电流几乎不流过电压表,这样就可以精确测量未知电阻上的压降,计算得出电阻值 在桥式电路中,为了减小暖电阻阻值随温度变化对支路电流的影响并限制流过热电阻的电流,组成电桥的两个支路的上电阻通常取暖电阻阻值的几十倍,其值达到10-50K(和桥路供电电压有关),下电阻一般和暖电阻某温度下阻值相同测量时取两者的电位差虽然如此,热电阻阻值随温度变化对支路电流的影响还是会造成输出的非线性,通常需要做一定补偿 如果直接测量阻值,应该采用恒流源给热电阻供电,热电阻阻值变化时支路电流保持恒定,热电阻压降为线性较好的温度函数 放大前应该做滤波处理或者在放大电路中加积分元件 ?怎样判断pt100的好坏,用万用表能测量么? 根据分度表参照当时温度看阻值是否相符 ?通常情况下是这样的,将一个基准电压加在pt100回路上,测量pt100上的电压信号(mv),阻值变化是电压信号自然也变化,再经过运放放大后入入A/D 芯片入行A/D转换,经过程序再将电压信号换算成电阻值,采用查表方式(将电阻值和相对应的温度值做成表格放到芯片rom中)的到温度值 ?一般短距离选用二线制接法,中距离选用三线制接法,要求精度高、近距离选用四线制接法三线制比两线制的好处是可以补偿线路电阻的偏差,和抗干扰不是一个概念三种各自的优缺点有许多说法,不一而足二线制不能消除导线电阻的影响四线制可以消除导线电阻的影响四线制的PT100有两根线是用于测量的,另两根是用于补偿的,四线制的电子物料编码规则PT100有两根线(热电阻两端各一根)是提供电流的,另两根是采集电压的具体用哪种电路应该根据系统要求决定,如果精度要求一般,采用三线是经济、稳定、实用的选择 ?输渗透(3根线)、输出、电源三隔离为四线制,设备在控制室;输入(3根线)、输出、电源三不隔离为三线制,设备在控制室或传感器内;输入(3根线)、(输出、电源共用2根线)三不隔离为二线制,设备在传感器内、为一体化 ?由于微处理器的发展,可对Pt100的非线性进行校正,因此Pt100传感器大都采用四线制测量法(非桥路法),其测量原理 Pt100传感器四线制测量电路 Pt100两端电压U1=ISRtIS为恒流,Rt为Pt100阻值 引线L1、L2存在电阻会影响测量结果,为此,将L1、L2端口处信号输入高输入电阻抗(>1012Ω),差分放大,这样L1、L2中电流≈0,L1、L2电阻可忽略不计,所以有Ui=U1这也消除了引线电阻 ?模拟暖电偶测试 最准的校法就是用电阻箱了,多路也只有一个一个慢慢来暖电偶用毫伏计模拟输出校二次表,毫伏计同样可以测量热电偶这些都不难,难的是建立一个标准的恒定的温场 ?电压和温度的关系一般是非线性的,对于8位单片机还是查表法好 引言 PT100是一种广泛应用的测温元件,在-50℃~600℃范围内具有其他任何温度传感器无可比拟的优势,包括高精度、稳定性好、抗干扰能力强等由于铂热电阻的电阻值与温度成非线性关系,所以本模块需要入行非线性校正,一般的模块采用模拟电路校正,这种校正的精度不高,而且温漂等受干扰的程度也比较大本模块采用

pt100温度传感器原理

ptioo温度传感器原理 PT100是一个温度传感器,是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在-200C至650 C的范围. 电阻式温度检测器(RTD,Resistanee Temperature Detector)是一种物质材料作成的电阻,它会随温度的上升而改变电阻值,如果它随温度的上升而电阻值也跟著上升就称为正电阻係数,如果它随温度的上升而电阻值反而下降就称为负电阻系数。大部分电阻式温度检测器是以金属作成的,其中以白金(Pt)作成的电阻式温度检测器,最为稳定—耐酸碱、不会变质、相当线性…,最受工业界采用。 PT100温度感测器是一种以白金(Pt)作成的电阻式温度检测器,属于正电阻系数,其电阻和温度变化的关系式如下:R=Ro(1+a T)其中a =0.00392,R(为100 Q在0C的电阻值),T为摄氏温度<br>因此白金作成的电阻式温度检测器,又称为PT100。 1: Vo=2.55mA Xl00(1+0.00392T)=0.255+T/1000。 2:量测Vo时,不可分出任何电流,否则量测值会不準。电路分析由于一般电源供应较多零件之后,电源是带杂讯的,因此我们使用齐纳二极体作为稳压零件,由于7.2V齐纳二极体的作用,使得1K电阻和5K可变电阻之电压和为6.5V靠5K可变电阻的调整可决定电晶体的射(集极)极电流,而我们须将集极电流调为 2.55mA,使得量测电压V如箭头所示为0.255+T/1000。其后的非反向放大器,输入电阻几乎无限大,同时又放大10倍,使得运算放大器输出为2.55+T/100°6V齐纳二极体的作用如7.2V 齐纳二极体的作用,我们利用它调出2.55V,因此电压追随器的输出电压 V1 亦为2.55V。其后差动放大器之输出为

PT100测温设计

传感与检测技术 题目 学院 专业 班级 姓名 指导教师 年月日

目录 1、设计任务与要求 (1) 2、方案设计 (2) 3、温度传感器的选择 (3) 4、PT100热电阻工作原理介绍 (4) 5、单元电路与参数计算 (6) 5.1 PT100电压产生电路 (6) 5.2仪表放大器 (7) 5.3模数转换器 (9) 5.4 LCD1602液晶显示 (10) 5.5 AT89C52单片机电路 (13) 6、软件设计 (14) 6.1 程序流程图 (14) 6.2 控制程序 (14) 7、总的原理图 (20) 8、感想与体会 (21)

1、设计任务与要求 《传感与检测技术》大作业的基本要求 1.设计一个测温系统,要求测温范围200~500℃,分辨率为1℃。2.画出系统结构框图,说明各电路的作用,系统实现的功能 3.选择一种合适的温度传感器,说明选择理由。 3.说明该温度传感器的工作原理,推导输入输出关系式。 4.设计模拟信号调理电路,推导温度输入和调理电路输出的表达式;5.选择A/D转换器,计算放大器的放大倍数; 6.设计人机接口电路,(参数如何设置?数据如何显示?)7.绘制基于单片机的温度测量系统的硬件电路图 8.所采用测量数据的基本处理算法的流程图以及程序设计。 9.证明所设计的系统能够达到测温范围和分辨率的要求。

2、方案设计 总的设计方案叙述如下: 不同的温度使PT100产生不同电阻值,接上恒流源产生电压值,经过运算放大器组成的仪表放大器电路,输出与放大倍数有关的相应0到2.8V 的压降,再由TLC1543模数转换器采集并送给AT89C52单片机处理数据并显示相应的温度值到LCD1602液晶屏上。 不同的温度产生不同的电阻值,且基本上呈线性规律。所以可以直接把该电阻通过直流源产生的电压经放大后送到单片机进行处理并显示。 设计框图如下: 图1 系统设计框图

推荐使用的热电阻Pt100测温电路

铂电阻温度传感器是利用其电阻和温度成一定函数关系而制成的温度传感器,由于其测量准确度高、测量范围大、复现性和稳定性好等,被广泛用于中温(-200℃~650℃)范围的温度测量中。 PT100是一种广泛应用的测温元件,在-50~600℃℃范围内具有其他任何温度传感器无可比拟的优势,包括高精度、稳定性好、抗干扰能力强等。由于铂电阻的电阻值与温度成非线性关系,所以需要进行非线性校正。校正分为模拟电路校正和微处理器数字化校正,模拟校正有很多现成的电路,其精度不高且易受温漂等干扰因素影响,数字化校正则需要在微处理系统中使用,将Pt电阻的电阻值和温度对应起来后存入EEPROM中,根据电路中实测的AD值以查表方式计算相应温度值。 常用的Pt电阻接法有三线制和两线制,其中三线制接法的优点是将PT100的两侧相等的的导线长度分别加在两侧的桥臂上,使得导线电阻得以消除。常用的采样电路有两种:一为桥式测温电路,一为恒流源式测温电路。其中图1为三线制桥式测温电路,图2为两线制桥式测温电路,图3为恒流源式测温电路。下面分别对桥式电路和恒流源式电路的原理在设计过程中应注意事项进行说明(注:这两个电路本人均有采用及试验,证明可行) 一、桥式测温电路 桥式测温的典型应用电路如图1所示(图1和图2均为桥式电路,分别画出来是为了说明两线制接法和三线制接法的区别)。 测温原理:电路采用TL431和电位器VR1调节产生4.096V的参考电源;采用R1、R2、VR2、Pt100构成测量电桥(其中R1=R2,VR2为100Ω

精密电阻),当Pt100的电阻值和VR2的电阻值不相等时,电桥输出一个mV级的压差信号,这个压差信号经过运放LM324放大后输出期望大小的电压信号,该信号可直接连AD转换芯片。差动放大电路中R3=R4、R5=R6、放大倍数=R5/R3,运放采用单一5V供电。 设计及调试注意点: 1. 同幅度调整R1和R2的电阻值可以改变电桥输出的压差大小; 2. 改变R5/R3的比值即可改变电压信号的放大倍数,以便满足设计者对温度范围的要求 3. 放大电路必须接成负反馈方式,否则放大电路不能正常工作 4. VR2也可为电位器,调节电位器阻值大小可以改变温度的零点设定,例如Pt100的零点温度为0℃,即0℃时电阻为100Ω,当电位器阻值调至109.885Ω时,温度的零点就被设定在了25℃。测量电位器的阻值时须在没有接入电路时调节,这是因为接入电路后测量的电阻值发生了改变。 5. 理论上,运放输出的电压为输入压差信号×放大倍数,但实际在电路工作时测量输出电压与输入压差信号并非这样的关系,压差信号比理论值小很多,实际输出信号为 4.096*(RPt100/(R1+RPt100)- RVR2/(R1+RVR2)) (1) 式中电阻值以电路工作时量取的为准。 6. 电桥的正电源必须接稳定的参考基准,因为如果直接VCC的话,当网压波动造成VCC发生波动时,运放输出的信号也会发生改变,此时再到以VCC未发生波动时建立的温度-电阻表中去查表求值时就不正确

pt100测温电路设计报告

《单片机原理与接口技术》课程设计 学 院: 电气信息学院 题 目: PT100热电阻测温显示 年级专业: 14级测控1班 学 号: 1404200223 学生姓名: 孙鑫 指导教师: 李国平、杨帆

前 言 传感器是能感受规定的被测量并按一定规律转换成可用输出信号的器件或装置,主要用于检测机电一体化系统自身与操作对象、作业环境状态,为有效控制机电一体化系统的运作提供必须的相关信息。随着人类探知领域和空间的拓展,电子信息种类日益繁多,信息传递速度日益加快,信息处理能力日益增强,相应的信息采集——传感技术也将日益发展,传感器也将无所不在。 从20世纪80年代起,逐步在世界范围内掀起一股“传感器热”,各先进工业国都极为重视传感技术和传感器研究、开发和生产。传感技术已成为重要的现代科技领域,传感器及其系统生产已成为重要的新兴行业。 温度是自然界中和人类打交道最多的物理参数之一,无论是在生产实验场所,还是在居住休闲场所,温度的采集或控制都十分频繁和重要,而且,网络化远程采集温度并报警是现代科技发展的一个必然趋势。由于温度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温传感器就会相应产生随着现代电子技术的发展,对温度的测控技术提出了更高的要求。PT100铂热电阻温度传感器具有精度高,稳定性好等优点,测温范围为-200~650℃,使用非常方便,广泛用于电力、石油、化工、建材等行业的过程监控系统中,而且被制成各种标准温度计。

目 录 前言 (2) 第一章绪论 (4) 1.1温度传感器 (4) 1.2 PT100的简介 (5) 1.3 STC12C5410AD的简介 (6) 1.4 HEF4051BT的简介 (8) 1.4 AT24C64的简介 (9) 第二章设计内容 (10) 2.1 制作PCB原理图 (10) 2.3制作电路板 (11) 第三章程序设计 (12) 第四章 调试电路板 (12) 第五章 心得体会 (13) 参考文献 (14)

pt100温度测量电路图(电子发烧友)

PT100与热敏电阻相反,热敏电阻温度越高电阻值越小 pt100温度测量电路,温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至650℃ 的范围.本电路选择其工作在 -19℃ 至500℃ 范围. 整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分. 前置放大部分原理图如下: 工作原理: 传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式. 按照 PT100 的参数,其在0℃ 到500℃ 的区间内,电阻值为 100 至 280.9Ω,我们按照其串联分压的揭发,使用公式: Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:

单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到 PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为 10.466 。 关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635 的结果。实际上,500 个字的理想值是无法靠电路本身自然得到的,自然得到的数字仅仅为 450 个字,因此,公式中的500℃ 在实际计算时的取值是 450 而不是 500 。450/1023*5/(0.33442-0.12438)≈10.47 。其实,计算的方法有多种,关键是要按照传感器的mV/℃ 为依据而不是以被测温度值为依据,我们看看加上非线性校正系数:10.47*1.1117=11.639499 ,这样,热心朋友的计算结果就吻合了。 运算放大器分为两级,后级固定放大 5 倍(原理图中 12K/3K+1=5),前级放大为:10.465922/5=2.0931844 倍,为了防止调整时的元器件及其他偏差,使用了一只精密微调电位器对放大倍数进行细调,可以保证比较准确地调整到所需要的放大倍数(原理图中 10K/(8K2+Rw)+1)。 通常,在温度测量电路里,都会有一个“调零”和另一个“调满度”电位器,以方便调整传感器在“零度”及“满度”时的正确显示问题。本电路没有采用两只电位器是因为只要“零度”调整准确了,就可以保证整个工作范围的正确显示,当然也包括满度时的最大显示问题了。 那么,电路中对“零度”是如何处理的呢?它是由单片机程序中把这个“零度”数字直接减掉就是了,在整个工作范围内,程序都会自动减掉“零度”值之后再作为有效数值来使用。 当供电电压发生偏差后,是否会引起传感器输入的变化进而影响准确度呢?供电变化后,必然引起流过传感器的电流发生变化,也就会使传感器输出电压发生变化。可是,以此同时,单片机的供电也是在同步地接受到这种供电变化的,当单片机的 A/D 基准使用供电电压时,就意味着测量基准也在同步同方向发生变化,因此,只要参数选择得当,系统供电的变化在 20% 之内时,就不会影响测量的准确度。(通常单片机系统并不允许供电有过大的变化,这不仅仅是在温度测量电路中的要求。)

PT100温度传感器测温详解

一种精密的热电阻测温方法 摘要: 本文介绍了一种采用恒压分压法精密测量三线制热电阻阻值的方法,对于Pt100热电阻,检测分辨率可以达到0.005W。同时采用计算的方法,能够使获得的温度准确度达到0.05℃。 关键词: 恒压;三线制;热电阻;精度 引言 温度参数是目前工业生产中最常用的生产过程参数之一,对温度的测量虽然有许多不同的方法,但热电阻凭借其优良的特性成为目前工业上温度测量中应用最广泛普遍的传感元件之一。由于金属铂优良的物理特性,使它成为制造热电阻的首选材料。它能够制造成体积微小的薄膜形式,或者缠绕在陶瓷和云母基板上制造出高稳定性的温度传感器,能够适应各种复杂的测温场合。一般在-200℃至+400℃的温度范围内,Pt100热电阻温度传感器是首选测温元件。 目前在各种检验设备中,如各种检验用恒温槽,都要求设备能够提供高精度的温度指示,这就要求作到对温度的高精度测量。又如,在配置Pt100热电阻传感器的智能型二线制一体化温度变送器中,也要求对温度有高精度的测量,这样才能够保证变送器在全量程范围内的高精度。为了消除导线电阻对测量的影响,在实验室和工业应用中,都是采用三线制引线接法来消除导线电阻影响的。本文介绍的就是一种精密测量三线制热电阻阻值的方案,同时提供了高精度的温度转换方法。 三线制热电阻阻值检测电路 图1是一个采用恒压分压法精密测量三线制热电阻阻值的检测电路,实际是一个高精度温度变送器的检测部分。它采用AD7705作为模数转换器,系统控制CPU采用P87LPC764,整体系统是一个低功耗系统。 图1中,电阻体RT接成了三线制,RL为三根导线电阻,一般每根导线电阻在5W之内。电阻体与测量电路以A、B、C三点连接,实际上是与电阻R 构成了对电压VREF的分压电路。一般情况下,为避免驱动电流导致电阻体发热引起测量误差,电流应该小于3mA,这里笔者通过选择VREF和R,使驱动热电阻的电流约为0.6 mA左右。当在VREF和R是已知的前提下,

基于某PT100的温度测量系统

前言 传感器技术在信息采集、信息传输和信息处理中,属于前沿尖端产品,尤其是温度传感器技术,在各个领域广泛应用,比如在工农业生产中需要实时测量温度等等。因此研究温度的测量方法和装置具有重要的意义。 为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。本文利用单片机结合温度传感器技术而开发设计了这一温度测量系统。文中将传感器理论与单片机实际应用有机结合,详细地讲述了利用热电阻作为温度传感器来测量实时的温度,以及实现热电转换的原理过程。 本设计应用性比较强,设计系统可以作为温度测量显示系统,如果稍微改装可以做热水器温度调节系统、生产温度监控系统等等。本课题主要任务是完成环境性强等优点。 课程设计任务 本设计系统包括温度传感器,信号放大电路,A/D转换模块,时钟模块,数据处理与控制模块,温度、时间显示模块六个部分。文中对每个部分功能、实现过程作了详细介绍。整个系统的核心是进行温度测量与显示,完成了课题所有要求。 摘要:

本文采用AT89S51单片机,TLC2543 A/D转换器,DS1302时钟芯片,AD620放大器,铂电阻PT100及8位数码管组成系统,编写了相应的软件程序,使其实现温度的实时显示。该系统的特点是:使用简便;测量精确、稳定、可靠;测量围大;使用对象广。 关键词:PT100 单片机温度测量DS1302 Abstract: The system contains SCM(AT89S51), analog to digital convert department (TLC2543), DS1302 chip, AD620 amplifier, PT100 platinum, LED Digital tube with six, write the corresponding software program to achieve real-time temperature display. The system is simple , accurate , stable and wide range. Keywords: PT100 SCM Temperature Measures DS1302 一方案设计与论证 1.1 传感器的选择 由于本设计的任务是要求测量的围为0℃~100℃,测量的分辨率为±0.1℃,综合价格以及后续的电路,决定采用线性度相对较好的PT100作为本课题的温度传感器,具体的型号为WZP型铂电阻,该传感器的测温围从-200℃~+650

pt100测温程序

下载后可显示仿真图片,网上观看可能不支持图片 #include"at89X52.h" sbit LCD_RS =P2^0; sbit LCD_RW =P2^1; sbit LCD_E =P2^2; sbit ADC_CS =P2^3; sbit ADC_WR =P3^6; sbit ADC_RD =P3^7; #define LCD_DATA P0 unsigned char LcdBuf1[10]=""; unsigned char code Bmp001[][8]= { {0x06,0x09,0x09,0x06,0x00,0x00,0x00,0x00}, {0x06,0x09,0x10,0x10,0x10,0x09,0x06,0x00} }; void dellay(unsigned int h) { while(h--); //0.01MS } void WriteDataLcd(unsigned char wdata) { LCD_DATA=wdata; LCD_RS=1; LCD_RW=0; LCD_E=0; dellay(1000); LCD_E=1; }

void WriteCommandLcd(unsigned char wdata) { LCD_DATA=wdata; LCD_RS=0; LCD_RW=0; LCD_E=0; dellay(1000); LCD_E=1; } void lcd_init(void) { LCD_DATA=0; WriteCommandLcd(0x38); dellay(1000); WriteCommandLcd(0x38); dellay(1000); WriteCommandLcd(0x01); WriteCommandLcd(0x0c); } void display_xy(unsigned char x,unsigned char y) { if(y==1) x+=0x40; x+=0x80; WriteCommandLcd(x); } void display_string(unsigned char x,unsigned char y,unsigned char *s) { display_xy(x,y); while(*s) { WriteDataLcd(*s); s++; } } void Write_CGRAM(unsigned char add,unsigned char *char_num)

PT100温度变送器的设计

课程设计 课程名称测控电路 题目名称 Pt100温度变送器设计 学生学院物理与信息工程学院 专业班级测控技术与仪器 班号 B08072021 学生组员张文焱胡聪罗成 指导教师范志顺 2011-1-5

课 程 设 计报告 一、实验要求: 设计一个用热电阻Pt100制作的温度变送器,要求其温度变化范围为0℃-400℃,输出为0.3V-1.5V,精度为5%,在此基础上构成一个输出为4mA-20mA 的电流源。 二、实验原理: 1.同相放大及差分放大部分: Uo 2.电压跟随器: ) 21 (9) 49(21214 99 112212R R R R R R Uo R R R Uo R R R +?+?? =+? =+?则:对同相放大器有: 11 101222 11R R R Uo +? =-对电压跟随器有:) 21(6 8 6 8578577 16 57712Uo Uo R R Uo R R R R R Uo R R R Uo R R R R Uo Uo -?==-+?=+?-则:因对差分放大电路有: Uo

3.电流源电路: Uo 16 100)1317(171412) 100(1214 12100R i R R R R R i Uo R Uo R R i Uo i -++-- + +-= 三、元件清单: 四、资料准备: 热电阻的测温原理与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 Rt=Rt0[1+α(t-t0)] 。式中,Rt 为温度t 时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为 Rt=AeB/t 。式中Rt 为温度为t 时的阻值;A 、B 取决于半导体材料的结构的常数。相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上 ),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。工业上常用金属热电阻从电阻随温度的变化来看,大部分金属导体都有这个性质,但并不是都能用作测温热电阻,作为热电阻的金属材料一般要求:尽可能大而且稳定的温度系数、电阻率要大(在同样灵敏度下减小传感器

PT100温度测量电路

电阻温度检测器(RTD) 除了用于测量温度的热电偶,仪器仪表工程师经常使用电阻温度检测器或RTD。这些设备的直流电阻变化(几乎)作为线性温度的函数。或许其中最常见的是PT100,铂为基础的传感器,其电阻在0℃,正是100欧姆,(见表1)。由于传感器的温度升高其电阻也是如此,在一个合理的线性方式。表1显示了一个PT100传感器的电阻随温度的变化。而温度系数略有不同在一个很宽的温度范围内,(通常为0.0036至0.0042欧姆/ o C),它可以被认为是合理恒定在50或100 o C范围内。普遍接受的平均温度系数为0.00385欧姆每oC。据此,PT100往往可以在不超过这个范围线性化使用提供相应的系数进行评估。这个装置也能承受的温度范围很广,从-200到800 o C的能力,以及一些应用中的温度系数的变化可以容忍的。此外,PT100提供了稳定和可重复的温度特性。 对于给定的基极电阻R O,一个RTD电阻在T o C为: 或 α α o o R T R T T T T R T R - = - - + = ) ( )) ( 1( ) ( ... (1) 其中R O是基极电阻对应到T O ,(在0 o C 100欧姆)和是温度系数(每o C 0.00385Ohms)。因此,R(100℃)= 138.5欧姆。这种近似提供了相当良好的温度估计高达约300℃,如图1所示,在此之后,非线性就不言而喻了。 图1。RTD线性模型与实际特性 方程(1)假设,在RTD的非线性特性可以忽略不计,即该设备完全是线性的,而许多应用这种近似是可以接受的,这里需要一个更精确的非线性模型,必须使用,如公式概述 ( 2)。 ) ) 100 ( 1( ) (3 2T T C BT AT R T R o - + + + =(2) 其中:A = 3.908E - 3,B = - 5.775E - 7和C = - 4.183E - 12 T <0,C =为T 0> 0。

传感器课程设计(基于labview的pt100温度测量系统)重点

目录 第一章方案设计与论证 ............................................................................................ 2第一节传感器的选择 (2) 第二节方案论证 ........................................................................................................ 3第三节系统的工作原理 ............................................................................................ 3第四节系统框图 ........................................................................................................ 4第二章硬件设计 .......................................................................................................... 4第一节PT100传感器特性和测温原理 . ................................................................... 5第二节信号调理电路 ................................................................................................ 6第三节恒流源电路的设计 ........................................................................................ 6第四节 TL431简介 .................................................................................................... 8第三章软件设 计 ........................................................................................................... 9 第一节软件的流程图 ................................................................................................ 9第二节部分设计模块 ...............................................................................................10总 结 ..................................................................................................................................11参考文献 . (11) 第一章方案设计与论证 第一节传感器的选择 温度传感器从使用的角度大致可分为接触式和非接触式两大类, 前者是让温度传感器直接与待测物体接触, 而后者是使温度传感器与待测物体离开一定的距离, 检测从待测物体放射出的红外线, 达到测温的目的。在接触式和非接触式两大类温度传感器中, 相比运用多的是接触式传感器, 非接触式传感器一般在比较特殊的场合才使用,目前得到广泛使用的接触式温度传感器主要有热电式传感器, 其中将温度变化转换为电阻变化的称为热电阻传感器, 将温度变化转换为热电势变化的称为热电偶传感器。

Pt100热电阻的测温电路

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ Pt100热电阻的测温电路 [摘要] 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。 温度测量系统应用广泛,涉及到各行各业的各个方面,在各种不同的领域中都占有重要的位置。从降低开放成本扩大适用范围、系统运行的稳定性、可靠性出发,设计一种以Pt100铂热电阻为温度信号采集元件的传感器温度测量系统。才测量系统不但可以测量室内的温度,还可以测量液体等的温度,在实际应用中,该系统运行稳定、可靠,电路设计简单实用。 [关键字] 传感器 Pt100热电阻温度测量

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ Pt100 RTD temperature measurement circuit [Abstract] RTD temperature measurement is based on the value of the metal conductor resistance increases with temperature for this feature temperature measurement. Most of the thermal resistance of pure metallic material, is currently the most widely used platinum and copper, in addition, have now begun using nickel, manganese and rhodium and other material thermal resistance. Mainly by using thermal resistance sensor resistance changes with temperature to measure the temperature and the characteristics and temperature-related parameters. Accuracy in the detection of relatively high temperature of the occasion, the sensor for comparison. Present a more extensive material for the thermal resistance of platinum, copper, nickel, etc., they have the resistance temperature coefficient, linearity, and stable performance, wide temperature range, easy to process and so on. Used to measure -200 ℃ ~ 500 ℃ temperature range. Temperature measurement system is widely used, involving all aspects of all walks of life, in a variety of different fields have an important position. Extend from the lower cost of open range, the system stability, reliability starting to design a Pt100 platinum resistance temperature sensor signal collection device temperature measurement system. Measuring system can measure not only until the indoor temperature, but also can measure the temperature of the liquid, etc., in practice, this system is stable, reliable, simple and practical circuit design. [Keywords] Sensors Pt100 RTD Temperature measuremen t 目录

相关主题