搜档网
当前位置:搜档网 › 四轴飞行器动力学分析_quadcopter

四轴飞行器动力学分析_quadcopter

四轴飞行器动力学分析_quadcopter
四轴飞行器动力学分析_quadcopter

飞行器动力学与控制复习要点new

1. 卫星轨道六要素是哪些P2-7 ),,,,,(p t i e a ωΩ,其中a 半长轴,e 偏心率,i 轨道倾角,Ω升交点赤经,ω近地点幅 角,p t 卫星经过近地点时刻。 2. 卫星发射三要素是什么P17-18 ),,(L t A ?,其中?发射场L 的地心纬度,A 发射方位角,L t 发射时刻。 3. 什么是太阳同步轨道P23 选择轨道半长轴a 和倾角i 的组合使d /)(9856.0?=?Ω,则轨道进动方向和速率,与地球绕太阳周年转动的方向和速率相同(即经过365.24平太阳日,地球完成一次360°的周年运动),此特定设计的轨道称为太阳同步轨道。 4. 什么是临界轨道、冻结轨道P24-25 若远地点始终处在北极上空,即拱线不得转动,轨道倾角满足02sin 5.22 =-i ,即 ?=43.63i 或?=57.116i 。此值的倾角称为临界倾角,此类轨道称为临界轨道。若选择合 适的偏心率及合适的近地幅角,使0==e ω ,近地点幅角ω被保持,或称被冻结在90°。轨道的倾角和高度可以独立选择,此类轨道称作冻结轨道。 5. 回归轨道的回归系数是什么P26 轨道经过N 天回归一次,在回归周期内共转R 圈,每天的轨道圈数(非整数)Q 称为回归系数。R C Q I N N ==±,+表示轨迹东移,-表示轨迹西移。I 为接近一天的轨道圈数, 为正整数。 6. 静止轨道的特点、三要素是什么P28 (1) 轨道的周期与地球自旋周期一致 (2) 轨道的形状为圆形,偏心率0e = (3) 轨道处在地球赤道平面上,倾角0i = 7. 星座轨道的全球覆盖公式 相邻卫星星下点之间的角距为2b ,覆盖带宽度为2c ,

四轴飞行器说明书.doc

4-AXIS AEROCRAFT INSTRUCTION MANUAL 四轴飞行器说明书 ATTENTION:(注意事项) 1、This 4-axis aircraft is suitable for indoor/outdoor flying.but make sure the outdoor wind is not over grade 4. 这款四轴飞行器适用于室内/室外飞行。但要确保室外风力不超过4级。 2、2.4 technology adopted for anti-interference,even more than one quadcopter is flying in the same area they will not interferewith each other. 采用2.4GHZ抗干扰技术, 即使一个以上的飞行器在同一地区飞行,它们也不会彼此干扰。 Beside ,players can let the the aircraft fly up/down/forward/backward,left/right sideward and tuen left/right. 此外,玩家可以让飞机飞上/下/前进/后退,左转/右转和左翻/右翻。 3、Please read this man ual carefull before using,in the mean time ,please well keep the manul for future reference. 请在使用前仔细阅读本手册,同时,请妥善保管说明书备查。 ALL PARETS INCLUDED( 组成结构简介) MAIN MENU:(菜单) Lcd screen液晶屏幕Power light 电源指示灯 Servos舵机Flip key 翻转 Left hand throttle shows左手调节显示Forward and back left and right前,后,左,右Signal display信号指示Direction joystick方向操纵杆 Accelerator and steering 油门和转向Forward/back trimming 前进/后退微调 Left-turn/riggt-turn trimming 左/右转微调Left/right sideways timming左/右侧微调Power switch 电源开关 TRANSMITTER BATTERY INSTALLATION:( 安装发射器电池) Aircraft battery change:( 更换飞机电池) THE RELATED NOTES ABOUT LITHIUM BATTERY’S USAGE: 关于锂电池使用的相关说明 HOW TO CONTROL:(操作说明) 1、Aircraft power switch to the “ON”position.the vehicle-mounted with the flat ground.Motherboard light is blink,don’t turn the fuselage again. 飞行器电源开关拔到“ON”位置。将飞行器平放在地面上,主板上的灯开始闪烁,不要再转动机身。 2、about 6 second,the operation of the throttle stick to the bottom,and then the power switch to the

四轴飞行器知识简介

四轴飞行器知识 什么是四轴飞行器? 四轴飞行器也叫四旋翼飞行器。通俗点说就是拥有四个独立动力旋翼 的飞行器,有四个旋翼来悬停、维持姿态及平飞。四轴飞行器是多轴 飞行器其中的一种,常见的多轴飞行器有两轴,三轴,四轴,六轴, 八轴或者更多轴。 四轴飞行器飞行原理 重心的距离相等, 当对角两个轴产生的升力相同时能够保证力矩的 平衡, 四轴不会向任何一个四轴飞行器有四个电机呈十字形排列, 驱动四片桨旋转产生推力; 四个电机轴距几何中方向倾转; 而四个 电机一对正转,一对反转的方式使得绕竖直轴方向旋转的反扭矩平衡, 保证了四轴航向的稳定. 此飞行控制板规定四轴电机的排布方式相 对应。1,4号电机顺时针方向旋转, 2,3号电机逆时针方向旋转. 四个电机的转速做相应的变化即可实现四轴横向、纵向、竖直方向 和偏航方向上的运动: 当四轴需要向前方运动时, 2,3号电机 保持转速不变, 1号电机转速下降, 4号电机转速上升, 此时4号电 机产生的升力大于1号电机的升力, 四轴就会沿几何中心向前倾转, 桨叶升力沿纵向的分力驱动四轴向前运动. 当四轴要转向左转 向时, 1,4号电机转速上升, 2,3号电机转速下降, 使向左的反扭距 大于向右的反扭矩, 四轴在反扭距的作用下向左旋转.四个桨产生的 推力, 超过或者低于四轴本身重力的时候能够实现竖直方向上升与 下降的运动, 当桨的升力与四轴本身的重力相等的时候即实现悬停。

其他方式的运动原理与以上过程类似. 四轴飞行原理虽然简单, 但实现起来还需很多工作要做. 四轴飞行器需要的零件 无刷电机(4个)、电子调速器(简称电调,4个,)、螺旋桨(4个,需要2个正浆,2个反浆)、飞行控制板(常见有瑞伯达、KK等品牌)、电池(11.1v航模动力电池)、遥控器(最低四通道遥控器)、机架(非必选)、充电器(尽量选择平衡充电器) 怎样知道是否能正常起飞? 一切准备完毕,怎么知道可以试飞了呢,我个人建议为了避免匆忙上马,秒炸。先拿手上试飞比较好,但要注意离身体距离。 拿手上通电,加油门,如果一切正常,四轴是不会大幅度的晃动的,而是比较平稳。还可以故意左右晃动一下,会感觉到四轴保持平衡的反力量,只要达到这个效果,就基本达到了试飞的条件。RBD飞控我复位了好几次,只要没有意外,是基本都能成功的。 试飞场地建议选宽阔的地方,建议是草坪,这样的不容甩坏。 马达选择有刷马达,原因很简单,要需要复杂的电调,直接用MOS 管就可以驱动了。而且响应速度又快,价格也便宜。也可以选择减速组配高转速马达。只是成本高了点。而且实际的测试结果是马达里面火化直冒也无法将四轴自身拉离地面。原因就是马达转速和减速组搭配不合理,转速过快但拉力不够。经历过失败后,决定不在冒险,于是选择了大众配置:瑞伯达 2212,1000KV外转子无刷马达,瑞伯达30A电调(好赢兼容的程序),在解决了如何安装的问题后,终于可

飞行器结构动力学-期末考试(大作业)题目及要求

《飞行器结构动力学》 2019年-2020年第二学年度 大作业要求 一、题目: 1.题目一:请围绕一具体动力学结构,给出其完整的动力学研究报告, 具体要求: (1)作业最终上交形式为一个研究报告。 (2)所研究结构应为实际科学发展或生产生活中的真实结构,可对其进行一定程度的简化,但不应过分简化,不可以为单自由度 系统,若为多自由度系统,其自由度应不少于5。 (3)所研究内容应当围绕本学期所讲授的《飞行器结构动力学》课程内容展开,可以包含但不限于:不同研究方法的对比,对结 构动力学响应的参数影响研究,针对结构动力学响应的结构优 化设计,动力学研究方法的改进,结构动力特性影响机理分析 等。 (4)研究报告应至少包含8部分内容:摘要,关键词,引言,问题描述,分析方法,研究结果,结论,参考文献等,正文字号为 小四,1.5倍行距,篇幅不短于3页,字数不少于1500字。 2.题目二:请拟出一份《飞行器结构动力学试卷》并给出正确答案和评 分标准,具体要求: (1)作业最终上交形式为一份考试卷答案及评分标准,具体形式及格式参考附件。 (2)题目应当围绕本学期所讲授的《飞行器结构动力学》课程内容展开,且明确合理无歧义。 (3)卷面总分100分。其中,考察单自由度系统知识点题目应占总分值的30%~40%;考察多自由度系统知识点题目应占总分值的 15%~30%;考察连续弹性体系统知识点题目应占总分值的 15%~30%。考察结构动力学的有限元方法及数值解法占

15%~30%。 (4)试卷可以包含的题目类型为:单选题,填空题,简答题和计算题四类,题目类型应不少于2种,不多于这4种。其中计算题 为必含题目,且分值应不少于40%。 (5)每道题均应给出分值、标准答案和评分标准。 分值的安排应当合理并清晰,需针对每道具体题目给出。 标准答案应当正确无误,且清晰明确,包含整个分析或计算的流程步骤。针对概念或问答等类型题目,应当给出该问题及 答案的来源,并附图以证实。针对计算类型题目,应给出至少 两种不同计算方法及其相应的计算步骤和结果,以证实该结果 的正确性。 评分标准应当合理并清晰地给出标准答案和分值的对应关系,例如:填空题应给出每一空格的分值;简答题应细化给出 题目内所有的关键内容,并给出所有关键内容各自所对应的评 判标准及分值;计算题应依据计算步骤给出每一关键步骤对应 的评判标准及分值。 二、要求 1.大作业题目有两道,请自选其一完成。 2.大作业上交截止时间为2020年6月2日晚12点,逾期则认定为缺考 无成绩。 3.大作业评定分为5个等级,分别为:优(90~100分),良(80~90分), 中等(70~80分),及格(60~70分)和不及格(60分以下)。其中由于 题目难易关系,若无抄袭情况出现,选择题目一的学生可以寻求任课 老师指导,且等级至少为良。 4.抄袭判定:上交作业若出现重复率超过30%情况则判定为抄袭,有7 天时间可以修改,修改后若仍旧为抄袭,则涉及学生均按照不及格处 理。 5.大作业相关参考资料见附件。

四旋翼飞行器实验报告

实验报告 课程名称:《机械原理课内实验》 学生姓名:徐学腾 学生学号:1416010122 所在学院:海洋信息工程学院 专业:机械设计制造及其自动化 报导教师:宫文峰 2016年6 月26 日

实验一四旋翼飞行器实验 一、实验目的 1.通过对四旋翼无人机结构的分析,了解四旋翼无人机的基本结构、工作的原理和传动控制系统; 2. 练习采用手机控制终端来控制无人机飞行,并了解无人机飞行大赛的相关内容,及程序开发变为智能飞行无人机。 二、实验设备和工具 1. Parrot公司AR.Drone 2.0四旋翼飞行器一架; 2. 苹果手机一部; 3. 蓝牙数据传输设备一套。 4. 自备铅笔、橡皮、草稿纸。 三、实验内容 1、了解四旋翼无人机的基本结构; 2、了解四旋翼无人机的传动控制路线; 3、掌握四旋翼无人机的飞行控制的基本操作; 4、了解四旋翼无人机翻转动作的机理; 5、能根据指令控制无人机完成特定操作。 四、实验步骤 1、学生自行用IPHONE手机下载并安装AR.FreeFlight四旋翼飞行器控制软件。 2、检查飞行器结构是否完好无损; 3、安装电沲并装好安全罩; 4、连接WIFI,打开手机AR.FreeFlight软件,进入控制界面; 5、软件启动,设备连通,即可飞行。 6、启动和停止由TAKE OFF 控制。 五、注意事项 1.飞行器在同一时间只能由一部手机终端进行控制; 2. 飞行之前,要检查螺旋浆处是否有障碍物干涉; 3. 飞行之后禁止用手去接飞行器,以免螺旋浆损伤手部; 4. 电量不足时,不可强制启动飞行; 5. 翻转特技飞行时,要注意飞行器距地面高度大于4米以上; 6. 飞行器不得触水; 7. 飞行器最大续航时间10分钟。

空间飞行器动力学与控制

Nanjing University of Aeronautics and Astronautics Spacecraft Dynamics and Control Teacher:Han-qing Zhang College of Astronautics

Spacecraft Dynamics and Control Text book: Spacecraft Dynamics and Control:A Practical Engineering Approach https://www.sodocs.net/doc/d81334966.html,/s/1o6BF32U (1) Wertz, J. R. Spacecraft Orbit and Attitude Systems, Springer. 2001 (2) 刘墩.空间飞行器动力学,哈尔滨工业大学出版社,2003. (3) 章仁为.卫星轨道姿态动力学与控制,北京航空航天大学出版社,2006. (4) 基于MATLAB/Simulink的系统仿真技术与应用,清华大学出版社,2002。 2014年4月22日星期二Spacecraft Dynamics and Control

Spacecraft Dynamics and Control 1. Introduction Space technology is relatively young compared to other modern technologies, such as aircraft technology. In only forty years this novel domain has achieved a tremendous level of complexity and sophistication. The reason for this is simply explained: most satellites, once in space, must rely heavily on the quality of their onboard instrumentation and on the design ingenuity of the scientists and engineers. 2014年4月22日星期二Spacecraft Dynamics and Control

四轴飞行器说明书

四轴飞行器 作品名称:四轴飞行器 工作原理:四轴飞行器主机采用了意法半导体公司的STM32F103CBT6处理器,该芯片采用ARM32位Cortex-M3内核。具有128K的Flash与20K的SRAM,内部具有锁相环模块,最高频率可达到72MHZ。板载MPU6050,该芯片整合了3轴陀螺仪与3轴加速器的6轴运动处理组件,与处理器采用I2C通信进行数据传送。主机与遥控之间采用的是NRF24L01+模块,该模块工作在2.4~2.5GHz全球免申请ISM工作频段。支持125个通讯频率。使用增强型的Enhanced ShockBurst传输模式,支持6个数据通道(共用FIFO)。通过SPI与MCU连接,速率0~8Mbps。理论传输距离可达到2KM。 飞行器遥控器亦采用STM32F103CBT6处理器,通过摇杆的X,Y轴输出为两个电位器,再通过AD转换读出扭动角度,从而在程序内部定义其所读取角度信息的动作映射。遥控器具有三组微调旋钮,可以调整到其水平位置。遥控器也使用NRF24L01+芯片与飞行器主机进行数据传输。遥控器板载TP4057芯片,可以直接给电池充电。并且使用蜂鸣器,对主机状态(例如:无法连接,低电压,连接断开等)进行报警。 制作材料: 1.STM32F103CBT6:该芯片由意法半导体生产,采用ARM32位Cortex-M3内核。 具有128K的Flash与20K的SRAM,芯片集成丰富的外设,例如:定时器,CAN,ADC,SPI,I2C,USB,UART,PWM等。内部具有锁相环模块,最高频率可达到72MHZ。 2. MPU6050,全球首例整合性6轴运动处理组件,整合了3轴陀螺仪、3轴加速器, 并含可藉由第二个I2C端口连接其他厂牌的加速器、磁力传感器、或其他传感器的数位运动处理(DMP: Digital Motion Processor)硬件加速引擎,由主要I2C端口以单一数据流的形式,向应用端输出完整的9轴融合演算技术InvenSense的运动处理资料库,可处理运动感测的复杂数据,降低了运动处理运算对操作系统的负荷,并为应用开发提供架构化的API。 3. NRF24L01+:一款新型单片射频收发器件,工作于2.4 GHz~2.5 GHz ISM频段。 内置频率合成器、功率放大器、晶体振荡器、调制器等功能模块,并融合了增强型ShockBurst技术,其中输出功率和通信频道可通过程序进行配置。nRF24L01功耗低,在以-6 dBm的功率发射时,工作电流也只有9 mA;接收时,工作电流只有12.3 mA,

(完整版)航空知识手册全集3

第三章 - 飞行空气动力学 飞行空气动力学介绍作用于飞机上的力的相互关系和由相关力产生的效应。作用于飞机的力 至少在某些方面,飞行中飞行员做的多好取决于计划和对动力使用的协调以及为改变推力,阻力,升力和重力的飞行控制能力。飞行员必须控制的是这些力之间的平衡。对这些力和控制他们的方法的理解越好,飞行员执行时的技能就更好。 下面定义和平直飞行(未加速的飞行)相关的力。 推力是由发动机或者螺旋桨产生的向前力量。它和阻力相反。作为一个通用规则,纵轴上的力是成对作用的。然而在后面的解释中也不总是这样的情况。 阻力是向后的阻力,由机翼和机身以及其他突出的部分对气流的破坏而产生。阻力和推力相反,和气流相对机身的方向并行。 重力由机身自己的负荷,乘客,燃油,以及货物或者行礼组成。由于地球引力导致重量向下压飞机。和升力相反,它垂直向下地作用于飞机的重心位置。 升力和向下的重力相反,它由作用于机翼的气流动力学效果产生。它垂直向上的作用于机翼的升力中心。 在稳定的飞行中,这些相反作用的力的总和等于零。在稳定直飞中没有不平衡的力(牛顿第三定律)。无论水平飞行还是爬升或者下降这都是对的。也不等于说四个力总是相等的。这仅仅是说成对的反作用力大小相等,因此各自抵消对方的效果。这点经常被忽视,而导致四个力之间的关系经常被错误的解释或阐明。例如,考虑下一页的图3-1。在上一幅图中的推力,阻力,升力和重力四个力矢量大小相等。象下一幅图显示的通常解释说明(不保证推力和阻力就不等于重力和升

力)推力等于阻力,升力等于重力。必须理解这个基本正确的表述,否则可能误解。一定要明白在直线的,水平的,非加速飞行状态中,相反作用的升力和重力是相等的,但是它们也大于相反作用的推力和阻力。简而言之,非加速的飞行状态下是推力和阻力大小相等,而不是说推力和阻力的大小和升力重力相等,基本上重力比推力更大。必须强调的是,这是在稳定飞行中的力平衡关系。总结如下: ?向上力的总和等于向下力的总和 ?向前力的总和等于向后力的总和 对旧的“推力等于阻力,升力等于重力”公式的提炼考虑了这样的事实,在爬升中,推力的一部分方向向上,表现为升力,重力的一部分方向向后,表现为阻力。在滑翔中,重力矢量的一部分方向向前,因此表现为推力。换句话说,在飞机航迹不水平的任何时刻,升力,重力,推力和阻力每一个都会分解为两个分力。如图3-2

西北工业大学2007至2008第二学期飞行器结构动力学期末考试

至学年第二学期飞行器结构动力学期末考试试题2008西北工业大学2007诚信保证 本人知晓我校考场规则和违纪处分条例的有关规定,保证遵守考场本人签字:规则,诚实做人。 编号:成西北工业大学考试试题(卷)绩 学年第二学期2007-2008 飞行器结构动力学学时开课学院航天学院课程 考试日期2008年6月考试时间小时考试形式()()卷 名姓号考生班级学 一、填空题(共20分) 1、振动系统的固有频率,当刚度一定时,随质量的增大而________;当质量一定时,随刚度的增大而________。 2、系统的初始条件和外激励对系统的固有频率________影响。 β_________时隔振才3.对于弹簧阻尼隔振系统,不论阻尼大小,只有当频率比有效果,弹簧阻尼隔振器在低频区(相对系统固有频率)对隔振________;当频率比ββ_________;但在频率比以后,传递率曲线无穷大时,传递率趋于________βζ增大而________。;__________ 当频率比_________时,传递率随阻尼比 二、简答题(共10分) 1、(5分)简述影响结构动力学分析模型的主要因素及有限元模型的常见模型。

2、(5分)简述位移展开定律。 yYωt,,前轮轴上下运动sin=飞机在跑道上降落滑行的简化模型如图三、(10分)1mkc=5880s·,阻尼系数=294kN/m已知质量N/m=2940kg,弹簧刚度,路面的y=10sin30t(激励cm)(位移),求质量上下振动的振幅。 共3页第1页 图 1 四、(15分)如图2所示导弹头部安装带有减振装置的仪器组件。当垂直发 射时,导弹有随时间直线增加的加速度。其中为常数。如果该组件质量,求发射时组件相对弹体支承板的相对位移和组件的绝对加速度时间函数。为 阻尼忽略不计。 1 仪器组件 2 支承座 图2 带有仪器的弹头示意图 五、(20分)三个质量由两根弹性梁对称的连结在一起,可粗略作为飞机的简 化模型(如图3)。设中间的质量为,两端的质量各为,梁的横向刚度为, 梁本身质量可略去不计,,忽略阻尼。只考虑各个质量沿铅垂方向的运动,初 =[1,0,-1],=[0,0,0],求系统的响应,设=。

四轴飞行器名词解释

四轴飞行器名词解释 网上找的,自己稍微整理的一下: 1、遥控器篇 什么是通道? 通道就是可以遥控器控制的动作路数,比如遥控器只能控制四轴上下飞,那么就是1个通道。但四轴在控制过程中需要控制的动作路数有:上下、左右、前后、旋转 所以最低得4通道遥控器。如果想以后玩航拍这些就需要更多通道的遥控器了。 什么是日本手、美国手? 遥控器上油门的位置在右边是日本手、在左边是美国手,所谓遥控器油门,在四轴飞行器当中控制供电电流大小,电流大,电动机转得快,飞得高、力量大。反之同理。判断遥控器的油门很简单,遥控器2个摇杆当中,上下板动后不自动回到中间的那个就是油门摇杆。 2、飞行控制板篇 飞控的用途? 四轴飞行器相对于常规航模来说,最最复杂的就是电子部分了。之所以能飞行得很稳定,全靠电子控制部分对四轴飞行状态进行快速调整。在常规固定翼飞机上,陀螺仪并非常用器件,在相对操控难度大点的直机上,如果不做自动稳定系统,也只是锁尾才用到陀螺仪。四轴飞行器与其不同的地方是必须配备陀螺仪,这是最基本要求,不然无法飞行,更谈不上飞稳了。不但要有,还得是3轴向(X、Y、Z)都得有,这是四轴飞行器的机械结构、动力组成特性决定的。在此基础上再辅以3轴加速度传感器,这6个自由度,就组成了飞行姿态稳定的基本部分,也是关键核心部分---惯性导航模块,简称IMU。飞行中的姿态感测全靠这个IMU了,可见它是整架模型的核心部件。 什么是x模式和+模式?说白了就是飞行器正对着你本人的时候是呈现X形状还是+形状,之前有介绍过四轴原理的,前进的时候后面加速前面减速两侧不变那个是针对+模式的,而如果是X模式的话,前进就需要后面两个同时加速,前面两个同时减速了。据说X模式的稳定性比+模式的稳定性要高点。 注意:考虑到飞控板上的陀螺仪安装的是固定的,所以,模式不同的话飞控板的安装方向也是不同的。 3、电调篇 为什么需要电调? 电调的作用就是将飞控板的控制信号,转变为电流的大小,以控制电机的转速。 四轴飞行器四个桨转动时的离心力是分散的。不象直机的桨,只有一个能产生集中的离心力形成陀螺性质的惯性离心力,保持机身不容易很快的侧翻掉。所以通常用到的舵机控制信号更新频率很低。四轴为了能够快速反应,以应对姿态变化引起的飘移,需要高反应速度的电调,常规PPM电调的更新速度只有50Hz左右,满足不了这种控制所需要的速度,且PPM电调MCU内置PID稳速控制,能对常规航模提供顺滑的转速变化特性,用在四轴上就

西北工业大学2005至2006学年第二学期飞行器结构动力学期末考试试题

西北工业大学2005至2006学年第二学期飞行器结构动力学期末考试试题 诚信保证 本人知晓我校考场规则和违纪处分条例的有关规定,保证遵守考场规则,诚实做人。 本人签字: 编号: 西北工业大学考试试题(卷) 2005 -2006 学年第二学期 开课学院 航天学院 课程 飞行器结构动力学 学时 考试日期 2006年6月 考试时间 小时 考试形式()()卷 考生班级 学 号 姓 名 一、填空题(共20分) 1.如图1所示是一简谐振动曲线,该简谐振动的频率为 Hz ,从A 点算起到曲线上 点表示为完成一次全振动。 图 1 2.一弹簧振子,周期是0.5s ,振幅为2cm ,当振子通过平衡位置向右运动时开始计时,那么2秒内振子完成_________次振动,通过路程_________cm 。 3.单自由有阻尼系统的自由振动中,当阻尼因子ζ_____时,系统为衰减的简谐振动;当阻尼因子ζ_____时,系统为振动与否的临界状态,称为_________情况;当阻尼因子ζ_____时,系统__________________,称为_________情况。 教务处印制 共2页 第1页 成绩

二、问答题:(共20分) 1、(10分)简述子空间迭代法的主要步骤和求解特征值的具体作法? 2、(5分)飞行器结构动态固有特性分析的作用与特点? 3、(5分)飞行器结构动态响应分析的时间域方法主要有哪些?选用它们时主要考虑的问题? 三、(20分)求图2所示系统在右支承端有简谐振动的振动微分方程,并求其稳态响应表达式。 图 2 四、(20分)估算导弹轴向频率的简化模型如图3所示,求图示系统的频率和振型(提示半定系统)。 图 3 五、(20分)如图4一端固定一端自由的纵向杆,杆的抗拉刚度为EA,质量 密度为ρ,长度为L,求解: 1、写出杆的纵向振动方程和边界条件; 2、已知杆的单元刚度矩阵为:,用集中质量方法(两 个质点),求杆的纵向振动频率(两阶频率)。 图 4 教务处印制共 2 页第 2 页

四轴飞行器作品说明书

四轴飞行器作品说明书

四轴飞行器在各个领域应用广泛。相比其他类型的飞行器,四轴飞行器硬件结构简单紧凑,而软件复杂。本文介绍四轴飞行器的一个实现方案,软件算法,包括加速度计校正、姿态计算和姿态控制三部分。校正加速度计采用最小二乘法。计算姿态采用姿态插值法、需要对比这三种方法然后选出一种来应用。控制姿态采用欧拉角控制或四元数控制。 关键词:四轴飞行器;姿态;控制

1.引言 (1) 2.飞行器的构成 (1) 2.1.硬件构成 (1) 2.1.1.机械构成 (1) 2.1.2.电气构成 (3) 2.2.软件构成 (3) 2.2.1.上位机 (3) 2.2.2.下位机........... . (4) 3.飞行原理........... ................................ (4) 3.1. 坐标系统 (4) 3.2.姿态的表示 (5) 3.3.动力学原理 (5) 4.姿态测量........... ................................ (6) 4.1.传感器校正 (6) 4.1.1.加速度计和电子罗盘 (6) 5.姿态控制 (6) 5.1.欧拉角控制 (6) 5.2.四元数控制 (7) 6.姿态计算 (7) 7.总结 (8) 参考文献 (9)

1.引言 四轴飞行器最开始是由军方研发的一种新式飞行器。随着MEMS传感器、单片机、电机和电池技术的发展和普及,四轴飞行器成为航模界的新锐力量。到今天,四轴飞行器已经应用到各个领域,如军事打击、公安追捕、灾害搜救、农林业调查、输电线巡查、广告宣传航拍、航模玩具等。 目前应用广泛的飞行器有:固定翼飞行器和单轴的直升机。与固定翼飞行器相比,四轴飞行器机动性好,动作灵活,可以垂直起飞降落和悬停,缺点是续航时间短得多、飞行速度不快;而与单轴直升机比,四轴飞行器的机械简单,无需尾桨抵消反力矩,成本低。 本文就小型电动四轴飞行器,介绍四轴飞行器的一种实现方案,讲解四轴飞行器的原理和用到的算法,并对几种姿态算法进行比较。 2.飞行器的构成 四轴飞行器的实现可以分为硬件和软件两部分。比起其他类型的飞行器,四轴飞行器的硬件比较简单,而把系统的复杂性转移到软件上,所以本文的主要内容是软件的实现。 2.1.硬件构成 飞行器由机架、电机、螺旋桨和控制电路构成。 2.1.1.机械构成 机架呈十字状,是固定其他部件的平台,本项目采用的是碳纤维材料的机架。电机采用无刷直流电机,固定在机架的四个端点上,而螺旋桨固定在电机转子上,迎风面垂直向下。螺旋桨按旋转方向分正桨和反桨,从迎风面看逆时针转的为正桨,四个桨的中心连成的正方形,正桨反桨交错安装。 CA D设计机架如图:

飞行力学部分知识要点

空气动力学及飞行原理课程 飞行力学部分知识要点 第一讲:飞行力学基础 1.坐标系定义的意义 2.刚体飞行器的空间运动可以分为两部分:质心运动和绕质心的转 动。描述任意时刻的空间运动需要六个自由度:三个质心运动和三个角运动 3.地面坐标系, O 地面任意点,OX 水平面任意方向,OZ 垂直地面 指向地心,OXY 水平面(地平面),符合右手规则在一般情况下。 4.机体坐标系, O 飞机质心位置,OX 取飞机设计轴指向机头方向, OZ 处在飞机对称面垂直指向下方,OY 垂直面指向飞机右侧,符合右手规则 5.气流(速度)坐标系, O 飞机质心位置,OX 取飞机速度方向且重 合,OZ 处在飞机对称面垂直指向下方,OY 垂直面指向飞机右侧,符合右手规则 6.航迹坐标系, O取在飞机质心处,坐标系与飞机固连,OX轴与飞 行速度V重合一致,OZ轴在位于包含飞行速度V在内的铅垂面内,与OX轴垂直并指向下方,OY轴垂直于OXZ平面并按右手定则确定 7.姿态角, 飞机的姿态角是由机体坐标系和地面坐标系之间的关系 确定的:

8. 俯仰角—机体轴OX 与地平面OXY 平面的夹角,俯仰角抬头为正; 9. 偏航角—机体轴OX 在地平面OXY 平面的投影与轴OX 的夹角,垂直于地平面,右偏航为正; 10. 滚转角—机体OZ 轴与包含机体OX 轴的垂直平面的夹角,右滚转为正 11. 气流角, 是由飞行速度矢量与机体坐标系之间的关系确定的 12. 迎角—也称攻角,飞机速度矢量在飞机对称面的投影与机体OX 轴的夹角,以速度投影在机体OX 轴下为正; 13. 侧滑角—飞机速度矢量与飞机对称面的夹角 14. 常规飞机的操纵机构主要有三个:驾驶杆、脚蹬、油门杆,常规气动舵面有三个升降舵、副翼、方向舵 15. 作用在飞机上的外力,重力,发动机推力,空气动力 16. 重力,飞机质量随燃油消耗、外挂投放等变化,性能计算中,把飞机质量当作已知的常量 17. 空气动力中,升力,阻力,的计算公式,动压的概念。 18. 随迎角增大,升力曲线非线性,迎角分别经历抖动迎角,失速迎角,临界迎角等过程 19. 喷气发动机工作原理f k p ()P m V V =-, 20. 台架推力Pf ,发动机在试车台上测得的推力 21. 可用推力Pky ,飞行中发动机能够实际供给的用以推动飞机前进的推力 22. 推重比γfd ,耗油量qh ,单位时间消耗的燃油质量

飞行器结构力学理论基础讲义

飞行器结构力学理论基础讲义 第一章绪论 1.1 结构力学在力学中的地位 结构力学是飞行器结构计算的理论基础。它研究飞行器在外载荷作用下,结构最合理的组成及计算方法。所谓最合理的结构是指:在满足设计中关于强度与刚度的基本要求下,同时在结构空间允许的情况下,具有最轻的重量。 为了达到以上的目的,对从事结构设计者来说,必须较熟练地掌握结构力学的基本原理与方法。对于本专业的学生来说,结构力学是飞行器强度与刚度计算的基础课程,并且为学习飞行器部件设计及传力分析打下必要的理论基础。 结构力学具体来说由以下四部分组成: (1)研究结构组成是否合理。主要指结构在外力作用下是否几何不变,同时内力与变形又不至于过大。 (2)结构在外载荷作用下,结构内力的计算方法。 (3)结构在外载荷作用下,结构刚度的计算方法。 (4)研究结构中某些元件及组合件的弯曲及稳定性。 1.2 结构力学的研究内容 不同的结构有其不同的结构力学,例如在建筑结构中主要涉及杆系,因此杆系所需的力学知识构成建筑结构力学。船舶结构的设计和制造中,主要涉及开口薄壁杆件,因此开口薄壁杆件的弯曲和扭转便构成船舶结构力学的主要内容。对于航天领域,飞行器结构大多是薄壁结构,薄壁结构力学构成飞行器结构力学的主要内容。 1.3 结构力学的计算模型 工程结构,尤其是飞行器结构往往是很复杂的,要考虑所有的因素来分析其内力和变形

几乎是不可能的,也是没有必要的。为了适应实际计算,首先需要将真实的结构加以简化,保留起主要作用的因素,略去次要因素,用理想化的受力系统代替实际结构,以得到所需要的计算模型。 计算模型选取的原则是: (1)反映实际结构的主要受力和变形特征; (2)便于结构的力学分析。 计算模型的简化大致可分成以下5个方面的内容。 1.外载荷的简化 (1)略去对强度和刚度影响不大的外载荷,着重考虑起主要作用的外载荷。 (2)将作用面积很小的分布载荷简化成集中载荷。 (3)将载荷集度变化不大的分布载荷简化成均布载荷。 (4)将动力效应不大的动力载荷简化成静力载荷。 2.几何形状的简化 飞行器的外形大多由曲线或曲面所构成,计算模型可以简化成用折线代替曲线,用若干平面代替曲面。 3.受力系统的简化 (1)略去结构中不受力或受力不大的元件。 (2)对元件的受力规律或受力类型作某些假设,抽象为理想元件。 4.连接关系的简化 将实际结构中所采用的铆接、螺接或焊接等连接方式,按照其受力及构造特点,可以简化为没有摩擦的铰接或刚接。杆件的汇交点称为结点,其可以简化为图1.1所示的三种形式。 (a)(b)(c) 图1.1 铰结点(见图1.1(a)),特征是被连接的杆件在连接处不能相对移动,但可绕该结点自由转动。铰结点可以传递力,但不能传递力矩。 刚结点(见图1.1(b)),特征是被连接的杆件不能相对移动,且不能相对转动。刚结点既可传递力,也可传递力矩。

四轴飞行器的基本相关知识

四轴飞行器的基本相关知识: 四轴,顾名思义就是有四根轴的飞行器,它可以垂直起降,但与直升机又大不相同,是这几年来迅速兴起的一种飞行器 本教程制作的是轴距550mm的1kg级别四轴飞行器,可以满足航拍(平民级别)等一系列需求,载重余量较大,扩展性也高。 组成部分: 无刷电机*4 无刷电调*4 飞控板*1 电池 遥控器 四轴机架 名词解释: 无刷电机: 指航模用的三相交流无刷电机,低端品牌有新西达,好一点的有朗宇等; 在这里我们选择2212级别kv850-1050之间的无刷电机 (想知道具体是什么样的电机?TB一下“2212 kv1000”)

很多人会问为什么不用直流电机? 第一马力不够;第二自重太大;第三寿命太短;第四转速太高;第五效率低下;第六实践证明直流电机不适合做四轴动力。 不要和我说空心杯,那是玩具四轴用的。 无刷电调: 即输出三相交变电流的电子调速器因为我们用电池供电,输出的是直流,需要经电子调速器(简称电调)转换成三相交流电。同时电子调速器可以接受遥控信号从而调整电机转速。 这里我们选用20A ~30A 的电调,同样也有低端电调比如新西达,建议入门的话采用好盈20A电调。(想了解更多有关电调?TB一下“无刷电调20A”) 继续刚才的名词解释: 飞控板:即飞行控制板,是飞行器的灵魂!! 飞控板的基本功能就是协调四个电机的转速,比如要悬停,它就不停修正各个电机转速达到悬停,此时你不需要手动修正就可以问问地悬停了(我们称为自稳模式);要前进,则四轴后方的电机转速增加,四轴被“顶”向前;后退,左移,右移同理;要旋转,则通过调整对角两个电机转速实现,这个以后再说。

微型飞行器空气动力学研究

2005年9月系统工程理论与实践第9期 文章编号:100026788(2005)0920137205 微型飞行器空气动力学研究 李占科,宋笔锋,张亚锋 (西北工业大学航空学院,陕西西安710072) 摘要: 围绕与微型飞行器相关的低雷诺数空气动力学问题,进行了低雷诺数翼型气动特性的数值分析 研究、低马赫数低雷诺数流场数值计算方法研究、考虑扑翼结构弹性变形的气动特性估算方法研究、微 型飞行器气动特性估算的非定常涡格法研究和微型飞行器的风洞试验研究,取得的研究成果对微型飞 行器的发展具有重要的参考价值和指导意义. 关键词: 微型飞行器;雷诺数;扑翼;风洞试验 中图分类号: V27912 文献标识码: A Aerodynamics Research on M icro Air Vehicles LI Zhan2ke,S ONG Bi2feng,ZHANG Y a2feng (School of Aeronautics,N orthwestern P olytechnical University,X i’an710072,China) Abstract: In the paper,Based on the low Reynolds number aerodynamics of the micro air vehicles(M AVs),s ome researches were done.such as aerodynamics characteristic numerical analysis research on the air foil at low Reynolds numbers,numerical calculation method of low Mach low Reynolds numbers fluid field,estimation method research on aerodynamic characteristic of the aeroelastic flapping wing,unsteady v ortex method of aerodynamics characteristic estimation and wind tunnel test of M AVs.The results of this paper have im portant reference value and instructive meaning to the development of M AVs. K ey w ords: micro air vehicles(M AVs);Reynolds number;flapping wing;wind tunnel test 1 引言 近年来,微型飞行器作为一种新型的航空飞行器,在国内外形成了新的研究热潮.低速和小尺寸共同决定了微型飞行器的飞行雷诺数很低(105左右),这远低于传统飞行器(包括普通的无人驾驶飞机)的飞行雷诺数范围(106~108以上).微型飞行器必须在低雷诺数条件下仍能保持良好的气动性能,而这方面的研究目前尚处在探索阶段.本文主要围绕与微型飞行器有关的低雷诺数空气动力学问题,进行了数值计算和风洞试验等方面的研究,取得了具有一定参考价值的研究成果. 2 微型飞行器空气动力学研究 211 低雷诺数翼型气动特性的数值分析研究 微型飞行器外形尺寸小,速度低,基于微型飞行器尺寸的雷诺数也比较小,粘性效应相对强烈,流动易分离,准确求解这种低雷诺数的流场对湍流模型乃至整个数学模型都是一个极大的挑战.本研究针对低雷诺数问题,利用求解雷诺平均的NS方程,数值模拟了绕翼型的低雷诺数流动,分析了与低雷诺数流动有关的不稳定性.研究表明,分离流动都是不稳定的,会产生周期性的脱出涡.结合绕翼型的低雷诺数流动,对采用的计算模型进行了以下研究: 1)FNS方程与T LNS方程数值准确性的对比研究 分别采用FNS方程和T LNS方程计算了在条件:Ma=012,雷诺数Re=110×105,攻角α=1°时绕 收稿日期:2003207207 资助项目:总装气动预研项目(413130401)及国防基础科研项目(J1500C001)联合资助 作者简介:李占科(1973-),男,陕西岐山人,西北工业大学飞机系博士,主要从事与微型飞行器有关的研究.

无人机小知识

一、什么是无人机? 无人机是一种由无线电遥控设备或自身程序控制装置操纵的无人驾驶飞行器。 二、我们与其他培训机构毕业的学员比有什么优势? 丰富的理论课以及多元化的特色实操练**对于将来从事无人机行业的你技高一筹。 三、AOPA是什么? 航空器拥有者与驾驶员协会。 四、什么是多旋翼无人机? 拥有三个及三个以上旋翼的飞行器。 五、什么是直升机无人机? 由一个或两个具有动力的旋翼提供升力,并进行姿态操作的飞行器。 六、什么是固定翼无人机? 由固定在机身上具有翼型的机翼,通过与来流的空气发生相对运动产生升力的飞行器

七、旋翼机的优点? 多旋翼无人机优点:(1)体积小、重量轻、噪音小、隐蔽性好,适合多平台,多空间使用;(2)可以垂直起降,不需要弹射器、发射架进行发射;(3)飞行高度低,具有很强的机动性,执行特种任务能力强;(4)结构简单控制灵活,成本低,螺旋桨小,安全性好,拆卸方便,且易于维护。 八、多旋翼运用领域: 城市管理、农业、地质、气象、电力、电力巡检、抢险救灾、视频拍摄等行业。 九、直升机运用领域: 城市管理、农业、地质、气象、电力、电力巡检、抢险救灾、视频拍摄等行业。 十、多旋翼运用领域: 城市管理、农业、地质、气象、电力、电力巡检、抢险救灾、视频拍摄等行业。 十一、通过培训后,能用无人机进行什么样的工作? 农业植保、遥感测绘、影视航拍等行业。 十二、通过学**薪酬待遇如何? 通常飞手实**在3000+转正后上不封顶。

十三、理论课都讲什么? 1.无人机概述与系统组成;2.民航法规与术语;3.空域的飞行与申报;4.航空气象与飞行环境;5.无人机分类及主流布局形式;6.无人机构造;7.飞行原理与性能;8.通信链路与任务规划;9.所使用的无人机系统特性;10.无人机飞行手册及其他文档。 十四、实操课都讲什么? 1.模拟飞行;2.飞机拆装、维护、维修和保养;3.地面站设置与飞行前准备;4.起飞与降落训练;5.紧急情况下的操纵和指挥。 十五、驾驶员、机长、教员、三者的区别 驾驶员:视距内飞行(无人机驾驶员或无人机观测员与无人机保持直接目视视觉接触的操作方式,航空器处于驾驶员或观测员目视视距内半径500米,相对高度低于120米的区域内)。机长:除视距内还可通过操作地面站进行对无人机在目视视距以外的运行。 教员:了解教学法等可进行对驾驶员及机长的培训。 十六、飞手的工作范围都有哪些? 对飞机的组装与维护,飞行前的检查及飞行中对飞机的安全负责。 十七、无人机应用在哪些领域?

相关主题