搜档网
当前位置:搜档网 › ABAQUS应用于土石坝数值计算的技巧总结

ABAQUS应用于土石坝数值计算的技巧总结

ABAQUS应用于土石坝数值计算的技巧总结
ABAQUS应用于土石坝数值计算的技巧总结

ABAQUS应用于土石坝数值计算的技巧总结

作者:dailinghui

ABAQUS软件是国际著名的有限元通用软件,功能非常强大,但是在进行土石坝应力应变计算这一专业而又复杂的问题上,还存在一些局限性。因此,必须对软件和计算问题有深入的了解,才能找到解决办法,突破局限性。为了便于沟通和交流,本文对ABAQUS软件进行土石坝计算时的一些经验技巧加以总结和探讨。共分为初始建模、网格划分、地应力平衡、无限元节点调整、增量步设置、计算过程控制、结果后处理几个部分进行总结。

一、初始建模

1、ABAQUS CAE建模:ABAQUS软件的前处理功能比较强大,可以通过人性化的界面来建立几何模型。但是广大工程人士最为了解和熟悉的画图软件当属AutoCAD。ABAQUS软件有专门的接口,可以将格式为dxf的CAD文件导入进来。在导入的过程中,可以采用以下步骤来进行:(1)首先将原始图形(坝体剖面图)导到Skectch模块;(2)在Part模块中建立Part(坝体)的时候,由于ABAQUS只允许外边框存在,而不能有内部线,因此,可以先把Skectch模块中的坝体剖面图全部添加进来,只保留坝体的外边框,将其余的线条都删去;(3)对Part进行Partition分割操作:把坝体剖面图全部添加进来,只保留分割坝体所需要用到的线条,把其他多余线条全部删去,包括坝体的外边框。建第二个、第三个Part的时候,重复以上操作即可。采用上述方法建模的好处是,整个建模过程用到的所有线条,都是基于原始图形(坝体剖面图)的,因此可以避免线条有交叉、结点不重合等情况的发生。而且在Assembly模块里将各个Part 进行组装的时候,不但不需要再调整各个Part位置,还能保证各个Part之间接触面完全重合,为建立正确的接触关系打下基础。

2、其他前处理软件建模:ABAQUS软件的前处理功能是基于“自上而下”的思路设计的,即先建出模型的整体,然后根据不同部位的要求切出各个小块。而其他有限元软件中还有另外一种建模思路——“自下而上”的思路,即首先按不同部位的要求建出各个小块,然后再组合成整体。专业的前处理软件有很多,

比较知名的有Patran软件、Hypermesh软件等。Patran软件是基于“自下而上”的建模思路设计的,它可以为ABAQUS做专业的前处理,最终生成ABAQUS 的输入文件,即inp文件。用Patran为ABAQUS作前处理时,建议在进行Equivalence操作(即将各个小块组合成整体)之后,对节点和单元进行一次Renumber操作,即对单元和节点重新编号。如果不进行这项操作,也不会对计算和最终结果产生影响,但是在对结果进行后处理时,将会遇到麻烦。例如用Tecplot软件(专业的后处理软件)进行后处理时,由于节点号和单元号不连续,将会导致无法单独挑出关心部位,如心墙。而进行了Renumber操作之后,就能避免这种情况的发生。

二、网格划分

在对沥青混凝土心墙坝划分网格时,由于心墙与整个坝体相比,厚度方向的尺寸显得非常小,但不能据此在心墙厚度方向上只划分一层网格。因为一层网格会导致整个心墙的应力应变全都受到接触面的影响,从而产生较大误差。如果采用其他后处理软件(如Tecplot)对ABAQUS的结果进行后处理时,两种材料交界面上的节点应力值会被强行平均,这种情况下,如果心墙厚度方向上只有一层网格,内部进行插值后,最终得到的整个心墙的应力值就是完全错误的。所以心墙厚度方向上至少应划分2层~4层网格。

三、地应力平衡

有深厚覆盖层存在时,坝基的地应力平衡就是必不可少的。进行地应力平衡时,首先只对坝基施加重力荷载,然后从结果文件中读出坝基各个单元的应力分量,将其保存到一个文本文档里。然后借助Excel软件读取应力文档进行格式调整和处理,将其转换为ABAQUS可以识别的格式。在这个过程需要注意一个问题,即Excel软件读取应力文档之后,默认的科学记数法的小数位数是2位,而ABAQUS的数据是采用6位有效数字的,即用科学记数法表达时,有5位小数。因此,在Excel里需要将小数调成5位,这样在进行地应力平衡时可以减小误差,得到更为精确的结果。

一般情况下,如果坝基的材料采用弹性模型或者摩尔库仑模型时,进行一次

地应力平衡的结果可以使位移降至10-17m的数量级,效果非常好。但是坝基材料采用邓肯张模型时,一次地应力平衡的结果一般只能使位移降至10-4m的数量级,而且位移的最大值可能达到10-3m的数量级。这种情况下,如果对结果要求严格,可重复进行一次或两次地应力平衡,一般能使位移再降低1~2个数量级,而再进行更多次的地应力平衡,就不会有明显的效果了。

四、无限元节点调整

无限元在ABAQUS软件中的实现方法比较简单,虽然无法在ABAQUS CAE 里直接划分,但可以通过在inp文件里面修改关键字来很容易地实现。不过前提是无限元部分必需首先生成一个单元集,这一点可以通过以下方法来实现:在对坝基远场为无限元的计算模型划分网格时,坝体和坝基近场划分为CPE4单元,坝基远场划分为CPE4R单元,即四节点四边形平面应变减缩积分单元。然而这里并不需要用这种单元,而只是将它作为一个中介,与CPE4单元区分开,生成单独的单元集合,而后在inp文件里面,只需要将关键字CPE4R改为CINPE4(四节点四边形平面应变无限单元)即可。

其次,无限元能够最终实现的另外一个重要前提是,节点按逆时针方向编号,并且要确保无限元的第一个面是与有限元交接的面,这一项必须通过手动修改完成。建议将inp文件中无限单元部分的节点号导入Excel软件中进行调整。在土石坝计算中,坝基远场的无限元又可以分为三个小部分,即位坝基下方的无限元、位于坝基左边的无限元和位于坝基右边的无限元。在每个小部分中,单元的节点排列顺序都是一样的,可以在CAE中查询,然后将该部分的节点顺序统一调整为无限元所要求的正确顺序。这样,只需要在Excel软件中对三个小部分分别进行统一调整,而无需一个一个地调整,大大简化了工作量。

五、增量步设置

ABAQUS中每个分析步的增量步是按比例因子将每级荷载逐步施加到模型上的,这一点与增量法的本质相同。因此,在用ABAQUS进行土石坝计算时,除了坝体分层填筑是按增量法的思想计算之外,每个填筑层本身也是按增量法逐步施加荷载的,前者体现在各个分析步上,后者体现在每个分析步的增量步上。

增量步是人为设置的,如果将其定为1,即填筑层的重力只按一个增量来施加,则最终结果就没有体现分析步内的非线性,而且还有可能导致计算不收敛。通过对比分析,将最大增量步设为0.1,即每个分析步的荷载至少按10个增量步来施加,就能较好地体现分析步内每个填筑层对坝体非线性的影响。

六、计算过程控制

对于同一个具体工程问题而言,二维模型与三维模型相比,网格数量少、计算时间短、结果文件小,在计算中出现问题的可能性也小。但是在三维模型大规模计算中,可能出现以下问题:计算中突然断电或死机,导致计算白费;结果文件过大,导致磁盘空间不足而退出计算,或者即使算完了,打开读取时也非常慢。

鉴于上述两种情况,可以在inp文件里添加关键字进行控制。首先通过*restart, write, frequency=n来设置生成重启动文件,数字n表明在一个分析步中计算多少个增量步后更新一次重启动文件,一般为了减小重启动文件的大小,可以给它一个较大值,如999,这样n值大于分析步中总共的增量步个数,就会只在分析步结束时才更新一次重启动文件。有了重启动文件之后,如果出现突然断电或死机等情况时,可以在电脑恢复运行之后,重新启动接着计算。

其次,通过*Output, field, frequency=n来控制结果文件写入的频率,同样可以给n一个较大值,如999,这样就只将分析步结束时的计算结果写入到odb文件里,从而能够大幅减小结果文件的大小,方便读取和后处理。

七、结果后处理

1、物理量极值的提取:打开结果文件后,如果显示某一物理量的云图,则图例中的上限值和下限值就分别是当前显示区域的该物理量的最大值和最小值。如果需要查看不同部位、不同材料(如堆石体和心墙)的物理量极值,可以通过两种方法来实现:(1)用Display group将关心部分单独显示出来,然后通过图例读取极值;(2)用Report field output将所有区域的各物理量极值都写入到一个文件里,ABAQUS会自动在该文件里把所有区域的各物理量极值都显示出来,

并且还会显示发生位置的节点号。第一种方法比较简洁和直观,第二种方法比较全面和方便。建议根据具体需求选择相应的方法。

2、云图和等值线图的绘制:ABAQUS可以显示彩色云图和彩色等值线图,如果需要画黑白等值线图,建议采用其他后处理软件,如Tecplot软件,该软件可以直接打开ABAQUS的odb结果文件。但是用Tecplot打开odb文件之后,建议不要直接绘制等值线图,原因如下:(1)ABAQUS中的应力表达采用的是弹塑性力学中的规定,而一般的工程报告或论文中常采用土力学中的规定,其对应关系是,ABAQUS中的大主应力对应土力学中的小主应力负值、小主应力对应大主应力负值;(2)等值线图中要求的各物理量的单位与odb文件中的不一定相符,例如等值线图中要求应力的单位为MPa,而odb文件中的应力单位为Pa;(3)odb文件中的某些物理量无法导入到Tecplot软件里,从而致使无法画出统一的等值线图,如应力水平;(4)Tecplot软件无法直接对odb文件进行分组显示,导致不能单独画出某一关心部分的等值线图,如心墙。鉴于以上各种情况,建议采用以下方法和步骤来解决:(1)用Tecplot软件打开odb文件之后,首先用Write data file功能,将某个工况下所关心的所有物理量值以及节点坐标写到一个data文件里;(2)将data文件中的物理量值导入Excel软件中进行符号和单位变换之后,再重新导回data文件中;(3)将odb文件中不能导到Tecplot里的某个物理量先从odb文件里写出来,写入到一个文本文档中,然后再把这些数值复制到data文件中各个物理量数值的后面,再在data文件里给新添加进去的物理量赋予一个名字,即在V ARIABLES的后面写一个名字即可;(4)将data文件中列出的整个有限元模型的所有单元,替换为关心部位的单元,并修改单元总数;(5)对于三维模型要画二维等值线图的特殊情况,采用Tecplot软件中的切片功能即可。通过以上各个步骤的操作,可基本解决ABAQUS软件和Tecplot 软件的对接问题,从而画出准确、明晰、符合要求的等值线图。

本文总结了ABAQUS软件应用于土石坝数值计算的一些经验和技巧,分别从建模、计算和结果处理等各个方面进行了探讨,主要得出以下主要经验:(1)基于一张Skectch草图建立所有的Part,以建出精确的几何模型;(2)心墙厚度方向上至少划分2层~4层网格,以使计算结果趋于真实;(3)在进行地应力平衡时,将导入的应力文件中数值的6位有效数字全部调出,以减小误差;(4)每

个分析步的荷载至少按10个增量步来施加,以较好地体现分析步内每个填筑层对坝体非线性的影响;(5)用过渡单元类型区分无限元与有限元;(6)通过调整inp文件中的关键字来生成重启动文件和减小结果文件的大小,以避免计算机突发事件带来的不利影响;(7)调整结果文件中物理量的符号和单位之后再画等值线图,以符合工程相关要求。以上结论可以方便从事相关计算的人士进行交流和探讨,并为扩大ABAQUS软件在土石坝计算中的应用范围提供了参考和借鉴。

Abaqus中复合材料的累积损伤与失效

纤维增强材料的累积损伤与失效:Abaqus拥有纤维增强材料的各向异性损伤的建模功能(纤维增强材料的损伤与失效概论,19.3.1节)。假设未损伤材料为线弹性材料。因为该材料在损伤的初始阶段没有大量的塑性变形,所以用来预测纤维增强材料的损伤行为。Hashin标准最开始用来预测损伤的产生,而损伤演化规律基于损伤过程和线性材料软化过程中的能量耗散理论。 另外,Abaqus也提供混凝土损伤模型,动态失效模型和在粘着单元以及连接单元中进行损伤与失效建模的专业功能。 本章节给出了累积损伤与失效的概论和损伤产生与演变规律的概念简介,并且仅限于塑性金属材料和纤维增强材料的损伤模型。 损伤与失效模型的通用框架 Abaqus提供材料失效模型的通用建模框架,其中允许同一种的材料应用多种失效机制。材料失效就是由材料刚度的逐渐减弱而引起的材料承担载荷的能力完全丧失。刚度逐渐减弱的过程采用损伤力学建模。 为了更好的了解Abaqus中失效建模的功能,考虑简单拉伸测试中的典型金属样品的变形。如图19.1.1-1中所示,应力应变图显示出明确的划分阶段。材料变形的初始阶段是线弹性变形(a-b段),之后随着应变的加强,材料进入塑性屈服阶段(b-c段)。超过c点后,材料的承载能力显著下降直到断裂(c-d段)。最后阶段的变形仅发生在样品变窄的区域。C点表明材料损伤的开始,也被称为损伤开始的标准。超过这一点之后,应力-应变曲线(c-d)由局部变形区域刚度减弱进展决定。根据损伤力学可知,曲线c-d可以看成曲线c-d‘的衰减,曲线c-d‘是在没有损伤的情况下,材料应该遵循的应力-应变规律曲线。

图19.1.1-1 金属样品典型的轴向应力-应变曲线 因此,在Abaqus中失效机制的详细说明里包括四个明显的部分: ●材料无损伤阶段的定义(如图19.1.1-1中曲线a-b-c-d‘) ●损伤开始的标准(如图19.1.1-1中c点) ●损伤发展演变的规律(如图19.1.1-1中曲线c-d) ●单元的选择性删除,因为一旦材料的刚度完全减退就会有单元从计算中移除(如图19.1.1-1 中的d点)。 关于这几部分的内容,我们会对金属塑性材料(金属塑性材料的损伤与失效概论,19.2.1节)和纤维增强材料(纤维增强符合材料的损伤与失效概论,19.3.1节)进行分开讨论。 网格依赖性 在连续介质力学中,通常是根据应力-应变关系建立材料本构模型。当材料表现出导致应变局部化的应变软化行为时,有限元分析的结果带有强烈的网格依赖性,能量的耗散程度取决于网格的精简程度。在Abaqus中所有可使用损伤演化模型都使用减轻网格依赖性的公式。这是通过在公式中引入特征长度来实现的,特征长度作为一个应力-位移关系可以表达本构关系中软化部分,它与单元尺寸有关系。在此情况下,损伤过程中耗散的能量不是由每个单位体积衡量,而是由每个单位面积衡量。这个能量值作为另外一个材料参数,用来计算材料发生完全损伤时的位移。这是与材料断裂力学中临界能量释放率的概念一致的。此公式确保了合适能量的耗散以及最大程度减轻网格的依赖。

ABAQUS常用技巧归纳(图文并茂).

ABAQUS学习总结 1.ABAQUS中常用的单位制。-(有用到密度的时候要特别注意) 单位制错误会造成分析结果错误,甚至不收敛。 2.ABAQUS中的时间 对于静力分析,时间没有实际意义(静力分析是长期累积的结果)。对于动力分析,时间是有意义的,跟作用的时间相关。 3.更改工作路径 4.对于ABAQUS/Standard分析,增大内存磁盘空间会大大缩短计算 时间;对于ABAQUS/Explicit分析,生成的临时数据大部分是存储在内存中的关键数据,不写入磁盘,加快分析速度的主要方法是提高CPU的速度。 临时文件一般存储在磁盘比较大的盘符下

提高虚拟内存

5.壳单元被赋予厚度后,如何查看是否正确。 梁单元被赋予截面属性后,如休查看是否正确。 可以在VIEW的DISPLAY OPTION里面查看。 6.参考点 对于离散刚体和解析刚体部件,参考点必须在PART模块里面定义。而对于刚体约束,显示休约束,耦合约束可以在PART ,ASSEMBLY,INTERRACTION,LOAD等定义参考点. PART模块里面只能定义一个参考点,而其它的模块里面可以定义很多个参考点。

7.刚体部件(离散刚体和解析刚体),刚体约束,显示体约束 离散刚体:可以是任意的形状,无需定义材料属性,要定义参考点,要划分网格。 解析刚体:只能是简单形状,无需定义材料属性,要定义参考点,不需要划分网格。 刚体约束的部件:要定义材料属性,要定义参考点,要划分网格。显示体约束的部件:要定义材料属性,要定义参考点,不需要要划分网格(ABAQUS/CAE会自动为其要划分网格)。 刚体与变形体比较:刚体最大的优点是计算效率高,因为它在分析作业过程中不参与所在基于单元的计算,此外,在接触分析,如果主面是刚体的话,分析更容易收敛。 刚体约束和显示体约束与刚体部件的比较:刚体约束和显示体约束的优点是去除约束后,就可以立即变为变形体。 刚体约束与显示体约束的比较:刚体约束的部件会参与计算,而显示约束的部件不会参与计算,只是用于显示作用。 8.一般分析步与线性摄动分析步 一般分析步:每个分析步的开始状态都是前一个分析步结束时刻的模型状态; 如果不做修改的话,前一个分析步所施加的载荷,边界条件,约束都会延续到当前的分析步中;所定义的载荷,边界条件以及得到的分析结果都是总量。

abaqus常用技巧总结

a b a q u s常用技巧总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

Abaqus常用技巧总结 本手册是由simwe等论坛上精华帖以及本人下载的其他资料整理,由于很多资料搜集已经很久,而且时间有限,都没有注明原作者,也没有最资料进行分类整理,见谅。如需要,请PM给我。 Shelly31 Python.tzy@https://www.sodocs.net/doc/d1319352.html, 2007.8.1 建议阅读方式:

目录 ABAQUS常用技巧总结 (2) 目录 (3) 1.对TIME INCREMENT的根本理解 (5) 2.ABAQUS 请问 MOMENT的加载 (5) 3.ABAQUS计算时C盘的临时文件太大了,怎么改目录? (6) 4.CAE中如何加预应力 (6) 5.HYPERMESH里面看到ABAQUS分析的结果 (6) 6.X-Y PLOTS (6) 7.把上一次的分析结果作为下一次分析的初始条件该怎么做 (7) 8.材料方向与增量步 (8) 9.多个INP文件如何实现批处理 (9) 10.关于ABAQUS的任务管理 (10) 11.关于数据的输入输出 (12) 12.后处理积分 (12) 13.接触分析激活杀死 (13) 14.利用QUEUE的功能由本地机器向远程UNIX机器提交ABAQUS作业的方法[精华] (14) 15.利用命令进行计算时如何设置调用内存量 (17) 16.清华大学BBS的ABAQUS精华 (17) 17.请问怎么实现双曲线 (55)

18.取消坐标系等的显示 (56) 19.如何在计算中修改材料特性 (57) 20.输出计算过程中的总质量和总刚度矩阵 (60) 21.先张预应力: (61) 22.用户子程序的使用 (61) 23.怎样设定用双CPU机器进行ABAQUS计算 (61) 24.中途停止正在运算的JOB (62) 25.自适应网格技术 (62) 26.ABAQUS计算与内存 (63) 27.质量缩放 (64) 28.ABAQUS多处理器进行并行计算的效果研究 (79) 29.YAHOO讨论组摘录--CONTACT+OVERCLOSURE (81) 30.原创:无限元建立方法,希望得到加分 (95) 31.[分享]ABAQUS 使用问答 (102) 32.[转帖]ABAQUS6.4导入外来模型的几点小经验! (122) 33.ABAQUS的多图层绘图 (125) 34.子结构 (125) 35.如何在不同的分析步改变材料的参数 (126) 36.模型的重启动分析-RESTART (127) 37. ABAQUS的单位心得 (128)

本人学习abaqus五年的经验总结 让你比做例子快十倍

第二章 ABAQUS 基本使用方法 [2](pp15)快捷键:Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。 ②(pp16)ABAQUS/CAE 不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外 丢失。 [3](pp17)平面应力问题的截面属性类型是Solid(实心体)而不是Shell(壳)。ABAQUS/CAE 推荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几 何模型上。 载荷类型Pressure 的含义是单位面积上的力,正值表示压力,负值表示拉力。 [4](pp22)对于应力集中问题,使用二次单元可以提高应力结果的精度。 [5](pp23)Dismiss 和Cancel 按钮的作用都是关闭当前对话框,其区别在于:前者出现在包含只读数 据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel 按钮可关闭对话框,而不保存 所修改的内容。 [6](pp26)每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的“实体”(instance) 是部件(part)在装配件中的一种映射,一个部件可以对应多个实体。材料和截面属性定义在部件 上,相互作用(interaction)、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上, 对求解过程和输出结果的控制参数定义在整个模型上。 [7](pp26) ABAQUS/CAE 中的部件有两种:几何部件(native part)和网格部件(orphan mesh part)。 创建几何部件有两种方法:(1)使用Part 功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直 接创建几何部件。(2)导入已有的CAD 模型文件,方法是:点击主菜单 File→Import→Part。网 格部件不包含特征,只包含节点、单元、 面、集合的信息。创建网格部件有三种方法:(1)导入 ODB 文件中的网格。(2)导入INP 文件中的网格。(3)把几何部件转化为网格部件,方法是:进 入Mesh 功能模块,点击主菜单Mesh→Create Mesh Part。 [8](pp31)初始分析步只有一个,名称是initial,它不能被编辑、重命名、替换、复制或删除。在初 始分析步之后,需要创建一个或多个后续分析步,主要有两大类:(1)通用分析步(general analysis step)可以用于线性或非线性分析。常用的通用分析步包含以下类型:—Static, General: ABAQUS/Standard 静力分析 —Dynamics, Implicit: ABAQUS/Standard 隐式动力分析 —Dynamics, Explicit: ABAQUS/ Explicit 显式动态分析

最新总结Abaqus操作技巧总结(个人)

Abaqus操作技巧总结 打开abaqus,然后点击file——set work directory,然后选择指定文件夹,开始建模,建模完成后及时保存,在进行运算以前对已经完成的工作保存,然后点击job,修改inp文件的名称进行运算。切记切 记!!!!!! 1、如何显示梁截面(如何显示三维梁模型) 显示梁截面:view->assembly display option->render beam profiles,自己调节系数。 2、建立几何模型草绘sketch的时候,发现画布尺寸太小了 1)这个在create part的时候就有approximate size,你可以定义合适的(比你的定性尺寸大一倍); 2)如果你已经在sketch了,可以在edit菜单--sketch option ——general--grid更改 3、如何更改草图精度 可以在edit菜单--sketch option ——dimensions--display——decimal更改 如果想调整草图网格的疏密,可以在edit菜单--sketch option ——general——grid spacing中可以修改。 4、想输出几何模型 part步,file,outport--part 5、想导入几何模型? part步,file,import--part 6、如何定义局部坐标系 Tool-Create Datum-CSYS--建立坐标系方式--选择直角坐标系or柱坐标系or球坐标 7、如何在局部坐标系定义载荷

laod--Edit load--CSYS-Edit(在BC中同理)选用你定义的局部坐标系 8、怎么知道模型单元数目(一共有多少个单元) 在mesh步,mesh verify可以查到单元类型,数目以及单元质量一目了然,可以在下面的命令行中查看单元数。 Query---element 也可以查询的。 9、想隐藏一些part以便更清楚的看见其他part,edge等 view-Assembly Display Options——instance,打勾 10、想打印或者保存图片 File——print——file——TIFF——OK 11、如何更改CAE界面默认颜色 view->Grahphic options->viewport Background->Solid->choose the wite colour! 然后在file->save options. 12、如何施加静水压力hydrostatic load --> Pressure, 把默认的uniform 改为hydrostatic。这个仅用于standard,显式分析不支持。 13、如何检查壳单元法向 Property module/Assign/normal 14、如何输出单元体积 set步---whole model ----volume/Tickness/Corrdinate-----EVOL 15、如何显示最大、最小应力 在Visualization>Options>contour >Limits中选中Min/Max:Show Location,同样的方法可以知道具体指定值的位置。 16、如何在Visualization中显示边界条件 View——ODB display option——entity display——show boundary conditions 17、后处理有些字符(图例啊,版本号啊,坐标系啊)不想显示, viewport-viewport annotation option ,选择打勾。同样可以修改这些字体大小、位置等等。

ABAQUS中的损伤模型

本周主要是研究了ABAQUS中自带的损伤模型。关于弹塑性力学的内容,感觉再看下去会跑偏,故先回归损伤力学。 主要阅读ABAQUS用户帮助手册及一些用ABAQUS建立损伤模型的相关文献。 [1]Abaqus Analysis User’s Manual [2]婴幼儿摇椅金属底座的破裂分析.2010 Abaqus Taiwan Users’Conference. [3]曹明,ABAQUS损伤塑性模型损伤因子计算方法研究. [4] Failure Modeling of Titanium 6Al-4V and Aluminum 2024-T3 With the Johnson-Cook Material Model 另外,在Abaqus Example Problems Manual中有考虑损伤的模拟薄板铝材在准静态荷载和动力荷载下的累进失效分析的操作范例,还没来得及看。 ABAQUS中包括延性金属损伤、服从Traction-Separation法则的损伤、纤维增强复合物的损伤、弹性体损伤。实际上对于混凝土还有塑性损伤模型,东南大学的曹明[3]对该模型有详尽描述。在此仅讨论金属损伤模型。 对于损伤的主菜单,定义的是损伤的萌发模型,子选项为损伤的演化。先来谈谈损伤的萌发模型。 1、损伤萌发模型 延性金属损伤包括柔性损伤、Johnson-Cook损伤、剪切损伤、FLD损伤、FLSD

损伤、M-K损伤、MSFLD损伤。 服从Traction-Separation法则的损伤是针对Cohesive Element(黏着单元),应该不适合厚钢板结构,不予考虑。 纤维增强复合物损伤不考虑。 弹性体损伤针对于类似橡胶类物质,不考虑。 对于延性金属损伤,剪切损伤模型用于预测剪切带局部化引起的损伤,FLD、FLSD、MSFLD、M-K损伤都是用于预测金属薄片成型引起的损伤,故现在只剩柔性损伤和Johnson-Cook损伤符合厚钢板结构的损伤研究。 柔性损伤和Johnson-Cook损伤都是一类模型,预测由于延性金属内部空隙成核、成长、集结引起的损伤萌生。模型假定损伤萌生时的等效塑性应变是三轴应力和应变率的函数。该延性准则由MISES、Johnson-Cook、Hill、Drucker-Prager塑性模型整合得到。 柔性损伤需输入的参数是断裂应变(损伤发生时的等效断裂应变)(Equivalent fracture strain at damage initiation)、应力三轴度(η=?p/q,其中p是压应力(pressure stress,也可译为静水压应力),q是MISES等效应力)、应变率(等效塑性应变率ε???pl)。三者关系是,在不同的三轴应力和应变率下,损伤萌生的断裂应变是不同的。三者是以表格的形式输入的,表现了材料的一种性能。所以应用该模型的前提是材料性能已知或已经假定,有点类似ABAQUS中对塑性材料的定义。 Johnson-Cook损伤需要输入五个失效参数D1-D5、熔点θmelt、转变温度

ABAQUS分析步总结

A B A Q U S分析步总结Prepared on 21 November 2021

A B A Q U S分析步总结 作者:管理员发布于:2014-12-15 06:50:08 文字:【】【】【】最近在对ABAQUS的学习中遇到了一些问题,就是在建模过程中Step模块的分析步以及每个分析步下的初始增量步、最大增量步、最小增量步它们的具体含义,该去怎样设定,ABAQUS在求解一个非线性问题时是怎样进行迭代的,如何去判断每个增量步迭代的平衡条件等等。通过查阅资料和ABAQUS帮助文档,我对这些问题也有了深入的理解,现将这些问题以及我自己的一些理解总结如下,希望和大家分享。 ABAQUS/Standard对于非线性问题的求解采用的是Newton-Raphson算法来实现。通过对每一个分析步下的增量步进行多次迭代,来使每个增量步达到收敛,进而得到该分析步下的收敛解。在迭代的过程中,ABAQUS会根据收敛情况,自动地对增量步进行扩大或折减。具体过程如下: 如果一个增量步在16次迭代之内获得了收敛解,则成功结束当前的增量步,并开始求解下一个增量步。如果两个连续的增量步都在5次迭代之内就获得了收敛解,ABAQUS/Standard自动将下一个增量步增大为当前增量步的150%。这个过程叫做增量步的“扩大”。 如果一个增量步经过16次迭代仍没有获得收敛解,或者计算结果是发散的,ABAQUS/Standard会将增量步减小为当前增量步的25%,重新开始迭代尝试,此过程称为“折减”。 当折减次数超过5次,那么就会出现我们经常遇到的错误信息: ***ERROR: TOO MANY ATTEMPTS MADE FOR THIS INCREMENT: ANALYSIS TERMINATED 造成这样的问题往往是因为模型的本身有问题,例如存在刚体位移、过约束、接触或者塑性材料定义不当、网格过于粗糙或过于细化等。 在分析一个非线性问题前,一般都要对最大增量步的数目、初始增量步、最大和最小增量步进行适当的设定,来保证求解的顺利进行。这些参数的具体设置方法如下: 1. 初始增量步:对于很容易收敛的问题,一般设定为1即可;对于难以收敛的非线性问题,需减小初始增量步,如将分析步时间乘以或(这个需根据问题的具体情况决定)。 2. 最小增量步:一般采用默认值(1e-5),对于非常复杂的非线性问题,可以再将其减小1到2个数量级。 3. 最大增量步:一般采用默认值,因为它对模型是否收敛并没有影响。 4.最大增量步数目:默认为100,对于复杂的非线性分析,需要的增量步数往往大于100,所以应当把这些参数设置的尽量大一些。

ABAQUS中的损伤模型

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 本周主要是研究了ABAQUS中自带的损伤模型。关于弹塑性力学的内容,感觉再看下去会跑偏,故先回归损伤力学。 主要阅读ABAQUS用户帮助手册及一些用ABAQUS建立损伤模型的相关文献。 [1]Abaqus Analysis User’s Manual [2]婴幼儿摇椅金属底座的破裂分析.2010 Abaqus Taiwan Users’Conference. [3]曹明,ABAQUS损伤塑性模型损伤因子计算方法研究. [4]Failure Modeling of Titanium 6Al-4V and Aluminum 2024-T3 With the Johnson-Cook Material Model 另外,在Abaqus Example Problems Manual中有考虑损伤的模拟薄板铝材在准静态荷载和动力荷载下的累进失效分析的操作范例,还没来得及看。 ABAQUS中包括延性金属损伤、服从Traction-Separation法则的损伤、纤维增强复合物的损伤、弹性体损伤。实际上对于混凝土还有塑性损伤模型,东南大学的曹明[3]对该模型有详尽描述。在此仅讨论金属损伤模型。 对于损伤的主菜单,定义的是损伤的萌发模型,子选项为损伤的演化。先来谈谈损伤的萌发模型。 1、损伤萌发模型 延性金属损伤包括柔性损伤、Johnson-Cook损伤、剪切损伤、FLD损伤、FLSD损伤、M-K损伤、MSFLD损伤。 服从Traction-Separation法则的损伤是针对Cohesive Element(黏着单元),应该不适合厚钢板结构,不予考虑。 纤维增强复合物损伤不考虑。 弹性体损伤针对于类似橡胶类物质,不考虑。

abaqus损伤准则总结

ABAQUS中有四种初始断裂准则: 在高应变速率下变形时,有shear failure和tensile failure(旋压用不到,不再介绍) 对于断裂延性金属:可以选用A:韧性准则(ductile criteria)和B:剪切准则(shear criteria) 对于缩颈不稳定性可以使用(钣金):C:FLD、FLSD、M-K以及MSFLD 对于铝合金、镁合金以及高强钢在变形过程中会出现不同机制的断裂,可能会将以上准则联合起来进行使用。 损伤的感念如下图所示:

1.韧性断裂准则中提供的韧性断裂准则需要输入的参数为:1.1ABAQUS断裂应变;应力三轴度;应变速率 要测量不同应力三轴度下的断裂应变需要进行大量的实验,这是不可取的。Hooputra et al,2004通过实验和理论推导得到了在定应变速率下,断裂应变和应力三轴度的关系: 公式中::应力三轴度。即平均应力和屈服应力的比值; 为等双轴拉伸时的应力三:等双轴拉伸时,断裂时的等效塑性应变,轴度,其值为2/3;

为等双轴压缩时的应:等双轴压缩时,断裂时的等效塑性应变, 力三轴度,其值为-2/3; 因此,为了得到断裂时等效塑性应变和应力三轴度的关系,只需要求出 和参数三个参数即可。根据方程已得到不同应力三轴度下的断、裂应变。 、和在一个应变速率下只需要三组数据,就可以求出方程中的 。帮助文件中的建议:ABAQUS ==2/3方程一(是不是:例如在杯突试验中,应力三轴度为已知量杯突实验和等双轴拉伸的变形时等效的,杯突实验如何在高温下进行,能否用双向拉伸实验代替?) =此时,通过对进行杯突实验的板料印制网格,可以得

总结Abaqus操作技巧总结

打开abaqus,然后点击file——set work directory,然后选择指定文件夹,开始建模,建模完成后及时保存,在进行运算以前对已经完成的工作保存,然后点击job,修改inp文件的名称进行运算。切记切 记!!!!!! 1、如何显示梁截面(如何显示三维梁模型) 显示梁截面:view->assembly display option->render beam profiles,自己调节系数。 2、建立几何模型草绘sketch的时候,发现画布尺寸太小了 1)这个在create part的时候就有approximate size,你可以定义合适的(比你的定性尺寸大一倍); 2)如果你已经在sketch了,可以在edit菜单--sketch option ——general--grid更改 3、如何更改草图精度 可以在edit菜单--sketch option ——dimensions--display——decimal更改 如果想调整草图网格的疏密,可以在edit菜单--sketch option ——general——grid spacing中可以修改。 4、想输出几何模型 part步,file,outport--part 5、想导入几何模型? part步,file,import--part 6、如何定义局部坐标系 Tool-Create Datum-CSYS--建立坐标系方式--选择直角坐标系or柱坐标系or球坐标 7、如何在局部坐标系定义载荷

laod--Edit load--CSYS-Edit(在BC中同理)选用你定义的局部坐标系 8、怎么知道模型单元数目(一共有多少个单元) 在mesh步,mesh verify可以查到单元类型,数目以及单元质量一目了然,可以在下面的命令行中查看单元数。 Query---element 也可以查询的。 9、想隐藏一些part以便更清楚的看见其他part,edge等 view-Assembly Display Options——instance,打勾 10、想打印或者保存图片 File——print——file——TIFF——OK 11、如何更改CAE界面默认颜色 view->Grahphic options->viewport Background->Solid->choose the wite colour! 然后在file->save options. 12、如何施加静水压力hydrostatic load --> Pressure, 把默认的uniform 改为hydrostatic。这个仅用于standard,显式分析不支持。 13、如何检查壳单元法向 Property module/Assign/normal 14、如何输出单元体积 set步---whole model ----volume/Tickness/Corrdinate-----EVOL 15、如何显示最大、最小应力 在Visualization>Options>contour >Limits中选中Min/Max:Show Location,同样的方法可以知道具体指定值的位置。 16、如何在Visualization中显示边界条件 View——ODB display option——entity display——show boundary conditions

Abaqus损伤总结

Abaqus损伤总结 初始损伤 初始损伤对应于材料开始退化,当应力或应变满足于定义的初始临界损伤准则,则此时退化开始。Abaqus 的Damage for traction separation laws 中包括:Quade Damage、Maxe Damage、Quads Damage、Maxs Damage、Maxpe Damage、Maxps Damage 六种初始损伤准则,其中前四种用于一般复合材料分层模拟,后两种主要是在扩展有限元法模拟不连续体(比如crack 问题)问题时使用。前四种对应于界面单元的含义如下:Maxe Damage 最大名义应变准则: Maxs Damage 最大名义应力准则: Quads Damage 二次名义应变准则: Quade Damage 二次名义应力准则: 其中σ1 层间正应力σ2 σ3 层间剪应力对应的分别是有实验测的极限正应力第一二剪应力 ε1 层间正应变ε2 ε3 层间剪应变对应的分别是有实验测的极限正应变第一二剪应变 1、三维空间中任一点应力有6个分量,在ABAQUS中分别对应S11,S22,S33,S12,S13,S23。 2、一般情况下,通过该点的任意截面上有正应力及其剪应力作用。但有一些特殊截面,在这些截面上仅有正应力作用,而无剪应力作用。称这些无剪应力作用的面为主截面,其上的正应力为主应力,主截面的法线叫主轴,主截面为互相正交。主应力分别以表示,按代数

值排列(有正负号)为。其中在ABAQUS中分别对应Max. Principal、Mid. Principal、Min. Principal,这三个量在任何坐标系统下都是不变量。 在ABAQUS中对应变的部分理解 1、E—总应变;Eij—应变分量 2、EP---主应变;EPn----分为Minimum, intermediate, and maximum principal strains (EP1 EP2 EP3) 3、NE----名义应变;NEP---主名义应变; 4、LE----真应变(或对数应变);LEij---真应变分量;LEP---主真应变; 5、EE—弹性应变; 6、IE---非弹性应变分量; 7、PE---塑性应变分量; 8、PEEQ---等效塑性应变---在塑性分析中若该值〉0,表示材料已经屈服;描述整个变形过程中塑性应变的累积结果; 若单调加载则PEEQ=PEMAG ; 9、PEMAG----塑性应变量(幅值Manitude)---描述变形过程中某一时刻的塑性应变,与加载历史无关; 10、THE---热应变分量; 损伤曲线

学习abaqus五年的经验总结,

第二章ABAQUS基本使用方法 [2](pp15)快捷键:Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。 ②(pp16)ABAQUS/CAE不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外丢失。 [3](pp17)平面应力问题的截面属性类型是Solid (实心体)而不是Shell (壳)。 ABAQUS/CAE推荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几何模型上。载荷类型Pressure 的含义是单位面积上的力,正值表示压力,负值表示拉力。 [4](pp22) 对于应力集中问题,使用二次单元可以提高应力结果的精度。 [5](pp23)Dismiss 和Cancel 按钮的作用都是关闭当前对话框,其区别在于:前者出现在包含只读数 据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel 按钮可关闭对话框,而不保存 所修改的内容。 [6](pp26) 每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的“实体”( instance) 是部件(part )在装配件中的一种映射,一个部件可以对应多个实体。材料和截面属性定义在部件上,相互作用 ( interaction )、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上,对求解过程和输出结果的控制 参数定义在整个模型上。 [7](pp26) ABAQUS/CAE 中的部件有两种:几何部件( native part)和网格部件(orphan mesh part )。 创建几何部件有两种方法: ( 1)使用Part 功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直 接创建几何部件。(2)导入已有的CAD模型文件,方法是:点击主菜单File宀Import宀Part。网格部件不包含特征,只包含节点、单元、面、集合的信息。创建网格部件有三种方法: (1)导入ODB 文件中的网格。( 2)导入INP 文件中的网格。 (3)把几何部件转化为网格部件,方法是:进入Mesh 功能模块,点击主菜单Mesh T Create Mesh Part。 [8](pp31)初始分析步只有一个,名称是initial,它不能被编辑、重命名、替换、复制或删除。在初始分析步 之后,需要创建一个或多个后续分析步,主要有两大类:(1)通用分析步(general analysis step)可以用于 线性或非线性分析。常用的通用分析步包含以下类型: —Static, General: ABAQUS/Standard 静力分析 —Dynamics, Implicit: ABAQUS/Standard 隐式动力分析 —Dynamics, Explicit: ABAQUS/ Explicit 显式动态分析 (2)线性摄动分析步( linear perturbation step )只能用来分析线性问题。在ABAQUS/Explicit 中不能使用线性摄 动分析步。在ABAQUS/Standard 中以下分析类型总是采用线性摄动分析步。 —Buckle: 线性特征值屈曲。 —Frequency: 频率提取分析。 —Modal dynamics: 瞬时模态动态分析。 —Random response: 随机响应分析。 —Response spectrum: 反应谱分析。 —Steady-state dynamics: 稳态动态分析。 [9]( pp33)在静态分析中,如果模型中不含阻尼或与速率相关的材料性质,“时间”就没有实际的物 理意义。为方便起见,一般都把分析步时间设为默认的 1。每创建一个分析步,ABAQUS/CAE就会自动生成一个该分析步的输出要求。 [10]( pp34)自适应网格主要用于ABAQUS/Explicit以及ABAQUS/Standard中的表面磨损过程 模拟。在一般的ABAQUS/Standard 分析中,尽管也可设定自适应网格,但不会起到明显的作用。 Step 功能模块中,主菜单Other t Adaptive Mesh Domain 和Other t Adaptive Mesh Controls 分别设置划分区域和参数。 [11](pp37)使用主菜单Field可以定义场变量(包括初始速度场和温度场变量) 。有些场变量与分析步有关,也有些仅仅作用于分析的开始阶段。使用主菜单Load Case可以定义载荷状况。载荷状况由一系列的 载荷和边界条件组成,用于静力摄动分析和稳态动力分析。 [12]( pp42)独立实体是对部件的复制,可以直接对独立实体划分网格,而不能对相应的部件划分网格。非独立实体

ABAQUS混凝土塑性损伤模型

4.5.2 混凝土和其它准脆性材料的塑性损伤模型 这部分介绍的是ABAQUS提供分析混凝土和其它准脆性材料的混凝土塑性损伤模型。ABAQUS 材料库中也包括分析混凝的其它模型如基于弥散裂纹方法的土本构模型。他们分别是在ABAQUS/Standard “An inelastic constitutive model for concrete,” Section 4.5.1, 中的弥散裂纹模型和在ABAQUS/Explicit, “A cracking model for concrete and other brittle materials,” Section 4.5.3中的脆性开裂模型。 混凝土塑性损伤模型主要是用来为分析混凝土结构在循环和动力荷载作用下的提供一个普遍分析模型。该模型也适用于其它准脆性材料如岩石、砂浆和陶瓷的分析;本节将以混凝土的力学行为来演示本模型的一些特点。在较低的围压下混凝土表现出脆性性质,主要的失效机制是拉力作用下的开裂失效和压力作用下的压碎。当围压足够大能够阻止裂纹开裂时脆性就不太明显了。这种情况下混凝土失效主要表现为微孔洞结构的聚集和坍塌,从而导致混凝土的宏观力学性质表现得像具有强化性质的延性材料那样。 本节介绍的塑性损伤模型并不能有效模拟混凝土在高围压作用下的力学行为。而只能模拟混凝土和其它脆性材料在与中等围压条件(围压通常小于单轴抗压强度的四分之一或五分之一)下不可逆损伤有关的一些特性。这些特性在宏观上表现如下: ?单拉和单压强度不同,单压强度是单拉强度的10倍甚至更多; ?受拉软化,而受压在软化前存在强化; ?在循环荷载(压)下存在刚度恢复; ?率敏感性,尤其是强度随应变率增加而有较大的提高。 概论 混凝土非粘性塑性损伤模型的基本要点介绍如下: 应变率分解 对率无关的模型附加假定应变率是可以如下分解的: 是总应变率,是应变率的弹性部分,是应变率的塑性部分。 应力应变关系 应力应变关系为下列弹性标量损伤关系: 其中是材料的初始(无损)刚度,是有损刚度,是刚度退化变量其值在0(无损)到1(完全失效)之间变化,与失效机制(开裂和压碎)相关的损伤导致了弹性刚度的退化。在标量损伤理论框架内,刚度退化是各向同性的,它可由单个标量d来描述。按照传统连续介质力学观点,有效应力可定义如下:

19.Abaqus累积损伤与失效解析

总结 本章主要讲解累积损伤与失效的概论、塑性金属材料的累积损伤与失效和纤维增强复合材料的累积损伤与失效。其中重点内容有: ●塑性金属材料损伤萌生准则,包括有:塑性准则、Johnson-Cook准则、剪切 准则、成形极限图准则、成形极限应力图准则、M-K准则和M-S成形极限图准则,其中M-K准则较难理解。 ●塑性金属材料的演化规律,包括有:基于有效塑性位移的损伤演化规律和基 于能量耗散理论的损伤演化规律。 ●塑性金属材料失效后网格中单元的移除,其中壳单元的移除较难理解。 ●纤维增强复合材料损伤萌生准则,包括有:纤维拉伸断裂、纤维压缩屈曲和 扭结、基体拉伸断裂和基体压缩破碎。 ●纤维增强复合材料损伤的演化,四种失效模式(纤维拉伸失效、纤维压缩失 效、基体拉伸断裂失效和基体压缩破碎失效)均基于能量耗散理论,并对应不同的损伤变量,其中损伤变量的求解比较繁琐。

目录 19 累积损伤与失效分析 (3) 19.1累积损伤与失效概述 (3) 19.1.1 累积损伤与失效 (3) 19.2 金属塑性材料的损伤与失效 (6) 19.2.1 金属塑性材料损伤与失效概论 (6) 19.2.2 金属塑性材料损伤初始阶段 (8) 19.2.3 塑性金属材料的损伤演化与单元的移除 (24) 19.3 纤维增强复合材料的损伤与失效 (35) 19.3.1纤维增强复合材料的损伤与失效:概论 (35) 19.3.2 纤维增强复合材料的损伤初始产生 (38) 19.3.3 损伤演化与纤维增强复合材料的单元去除 (41)

19 累积损伤与失效分析 19.1累积损伤与失效概述 19.1.1 累积损伤与失效 Abaqus提供了以下材料模型来预测累积损伤与失效: 1)塑性金属材料的累积损伤与失效:Abaqus/Explicit拥有建立塑性金属材料的累积损伤与失效模型的功能。此功能可以与the Mises, Johnson-Cook, Hill, 和Drucker-Prager等塑性材料本构模型一起使用(塑性材料的损伤与失效概论,19.2.1节)。模型中提供多个损伤萌生的参数标准,其中包括塑性准则、剪切准则、成形极限图(FLD)、成形极限压力图(FLSD),MSFLD和M-K等标准。根据以往的损伤规律可知,损伤开始形成后,材料的强度会越来越弱。累积损伤模型对于材料刚度的平滑减弱是允许的,这在准静态和动态环境中都允许,这也是优于动态失效模型的有利条件(动态失效建模,18.2.8节)。 2)纤维增强材料的累积损伤与失效:Abaqus拥有纤维增强材料的各向异性损伤的建模功能(纤维增强材料的损伤与失效概论,19.3.1节)。假设未损伤材料为线弹性材料。因为该材料在损伤的初始阶段没有大量的塑性变形,所以用来预测纤维增强材料的损伤行为。Hashin标准最开始用来预测损伤的产生,而损伤演化规律基于损伤过程和线性材料软化过程中的能量耗散理论。 另外,Abaqus也提供混凝土损伤模型,动态失效模型和在粘着单元以及连接单元中进行损伤与失效建模的专业功能。 本章节给出了累积损伤与失效的概论和损伤产生与演变规律的概念简介,并且仅限于塑性金属材料和纤维增强材料的损伤模型。 损伤与失效模型的通用框架 Abaqus提供材料失效模型的通用建模框架,其中允许同一种的材料应用多种失效机制。材料失效就是由材料刚度的逐渐减弱而引起的材料承担载荷的能力完全丧失。刚度逐渐减弱的过程采用损伤力学建模。 为了更好的了解Abaqus中失效建模的功能,考虑简单拉伸测试中的典型金

Abaqus常用技巧总结

Abaqus常用技巧总结建议阅读方式:

目录 ABAQUS常用技巧总结 (1) 目录 (2) 1.对TIME INCREMENT的根本理解 (4) 2.ABAQUS 请问MOMENT的加载 (4) 3.ABAQUS计算时C盘的临时文件太大了,怎么改目录? (5) 4.CAE中如何加预应力 (5) 5.HYPERMESH里面看到ABAQUS分析的结果 (5) 6.X-Y PLOTS (5) 7.把上一次的分析结果作为下一次分析的初始条件该怎么做 (6) 8.材料方向与增量步 (7) 9.多个INP文件如何实现批处理 (7) 10.关于ABAQUS的任务管理 (8) 11.关于数据的输入输出 (9) 12.后处理积分 (10) 13.接触分析激活杀死 (10) 14.利用QUEUE的功能由本地机器向远程UNIX机器提交ABAQUS作业的方法[精华] (10) 15.利用命令进行计算时如何设置调用内存量 (13) 16.清华大学BBS的ABAQUS精华 (13) 17.请问怎么实现双曲线 (36)

18.取消坐标系等的显示 (37) 19.如何在计算中修改材料特性 (37) 20.输出计算过程中的总质量和总刚度矩阵 (40) 21.先张预应力: (40) 22.用户子程序的使用 (41) 23.怎样设定用双CPU机器进行ABAQUS计算 (41) 24.中途停止正在运算的JOB (42) 25.自适应网格技术 (42) 26.ABAQUS计算与内存 (42) 27.质量缩放 (43) 28.ABAQUS多处理器进行并行计算的效果研究 (54) 29.YAHOO讨论组摘录--CONTACT+OVERCLOSURE (55) 30.原创:无限元建立方法,希望得到加分 (70) 31.[分享]ABAQUS 使用问答 (76) 32.[转帖]ABAQUS6.4导入外来模型的几点小经验! (87) 33.ABAQUS的多图层绘图 (88) 34.子结构 (89) 35.如何在不同的分析步改变材料的参数 (89) 36.模型的重启动分析-RESTART (91) 37. ABAQUS的单位心得 (92)

ABAQUS中的损伤模型精选文档

A B A Q U S中的损伤模 型精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

本周主要是研究了ABAQUS中自带的损伤模型。关于弹塑性力学的内容,感觉再看下去会跑偏,故先回归损伤力学。 主要阅读ABAQUS用户帮助手册及一些用ABAQUS建立损伤模型的相关文献。 [1]Abaqus Analysis User’s Manual [2]婴幼儿摇椅金属底座的破裂分析.2010 Abaqus Taiwan Users’Conference. [3]曹明,ABAQUS损伤塑性模型损伤因子计算方法研究. [4] Failure Modeling of Titanium 6Al-4V and Aluminum 2024-T3 With the Johnson-Cook Material Model 另外,在Abaqus Example Problems Manual中有考虑损伤的模拟薄板铝材在准静态荷载和动力荷载下的累进失效分析的操作范例,还没来得及看。 ABAQUS中包括延性金属损伤、服从Traction-Separation法则的损伤、纤维增强复合物的损伤、弹性体损伤。实际上对于混凝土还有塑性损伤模型,东南大学的曹明[3]对该模型有详尽描述。在此仅讨论金属损伤模型。 对于损伤的主菜单,定义的是损伤的萌发模型,子选项为损伤的演化。先来谈谈损伤的萌发模型。 1、损伤萌发模型

延性金属损伤包括柔性损伤、Johnson-Cook损伤、剪切损伤、FLD损伤、FLSD 损伤、M-K损伤、MSFLD损伤。 服从Traction-Separation法则的损伤是针对Cohesive Element(黏着单元),应该不适合厚钢板结构,不予考虑。 纤维增强复合物损伤不考虑。 弹性体损伤针对于类似橡胶类物质,不考虑。 对于延性金属损伤,剪切损伤模型用于预测剪切带局部化引起的损伤,FLD、FLSD、MSFLD、M-K损伤都是用于预测金属薄片成型引起的损伤,故现在只剩柔性损伤和Johnson-Cook损伤符合厚钢板结构的损伤研究。 柔性损伤和Johnson-Cook损伤都是一类模型,预测由于延性金属内部空隙成核、成长、集结引起的损伤萌生。模型假定损伤萌生时的等效塑性应变是三轴应力和应变率的函数。该延性准则由MISES、Johnson-Cook、Hill、Drucker-Prager塑性模型整合得到。 柔性损伤需输入的参数是断裂应变(损伤发生时的等效断裂应变)(Equivalent fracture strain at damage initiation)、应力三轴度(η= ?p/q,其中p是压应力(pressure stress,也可译为静水压应力),q是MISES 等效应力)、应变率(等效塑性应变率ε???pl)。三者关系是,在不同的三轴应力和应变率下,损伤萌生的断裂应变是不同的。三者是以表格的形式输入的,表现了材料的一种性能。所以应用该模型的前提是材料性能已知或已经假定,有点类似ABAQUS中对塑性材料的定义。

相关主题