搜档网
当前位置:搜档网 › 《分式方程》典型例题1

《分式方程》典型例题1

《分式方程》典型例题1
《分式方程》典型例题1

《分式方程》典型例题

例1.指出下列方程哪些是整式方程,哪些是分式方程,并说出它们的区别. ①21=+x x ②275-=y y ③2

132-=x x ④a

b x b a x -+=+2(x 是未知数)⑤x x x -=-2212

例2.满足方程2

211-=-x x 的x 的值是 A .1 B .2 C .0 D .没有

例3.解方程

11

4112=---+x x x

例4.解方程 41313

2=-+--++x x x x x

例5.当a 为何值时,关于x 的方程

53221+-=-+a a x x 的解等于零?

例6.为何值时,关于x 的分式方程

5

3221+-=-+a a x x 的解为零?

例7.把以下公式进行变形: (1)已知Ir n

IR E +=

(0≠+rn R ),求I ; (2)已知2021gt t v s -=(0≠t ),求0v .

例8.m 为何值时,关于x 的方程

234222+=-+-x x mx x 会产生增根?

例9.分式方程01

11=+--+-x x x k x x 有增根1=x ,求k 的值.

例10.解方程组???????-=+=-.352,413y

x y x

参考答案

例1.解答 整式方程为:③④

分式方程为:①②⑤

它们的主要区别在于:分式方程的分母中含有未知数. 说明 根据定义,把握分母中是否含有未知数这一特征来判断.

例2.分析 用验证法比用直接法简便. 当1=x 或2=x 时,方程中均有1个分式无意义,所以1=x 与2=x 不是所求的值. 当0=x 时,方程的左右两边相等.

解答 C

说明 考查分式方程的解法.

例3.解答 原方程变形为1)

1)(1(411-+---+x x x x 方程两边都乘)1)(1(+-x x ,约去分母,得

)1)(1(4)1(2+-=-+x x x ,

解这个整式方程,得1=x

检验:当1=x 时,0)1)(1(=+-x x

∴ 1=x 是增根,∴原方程无解.

说明 分式方程一定要注意验根.

例4.分析 去分母时,把12++x x 看做整体处理.

解答 方程两边都乘)1(-x ,约去分母,得

)1(4)3()1)(1(32-=+----+x x x x x x ,(分数线起着扩号的作用) 解这个整式方程,得

0=x

检验:当0=x 时,.01≠-x

∴ 0=x 是原方程的解.

说明 解分式方程的思路一般为:抓形式特点→整体处理→转化为整式方程→解整式方程→检验得解

例5.解答 方程的两边都乘以)2)(5(-+x a ,得)2)(32()5)(1(--=++x a a x ,整理,得.51)8(a x a -=-

当8≠a 时,方程有惟一解a

a x --=

851. 设0851=--a

a ,则051=-a ,故51=a . 综上,当51=a 时,原方程的解等于零. 说明 考查分式方程的解法.

例6.分析一 由方程解的定义,将0=x 代入方程便可求出a 值. 解答一 ∵0=x ,故原方程化为 5

3221+-=-a a 解此分式方程,得 51=

a . 经检验知51=

a 是原方程的解. ∴ 5

1=a 时,方程的解为零. 分析二 解关于x 的分式方程,求出用a 表示x 的关系后,令0=x ,求出0=x ,此法较复杂.

解答二 方程两边都乘以最简公分母)5)(2(+-a x ,约去分母,得

)2)(32()5)(1(--=++x a a x

解关于x 的整式方程得 815--=

a a x ∵ 0=x ,

∴ 08

15=--a a , ∴ 015=-a ,.5

1=a 检验:当5

1=a 时,0)5)(2(≠+-a x ∴ 当5

1=a 时,方程的解为零. 例7.分析 公式变形从实质上看就是解含有字母已知数的分式方程. 它的解法和含数字已知数的分式方程是一样的. 一般情况,公式变形不必检验.

(1)题中,I 是未知数,r n R E ,,,是字母已知数;

(2)题中0v 是未知数,g t s ,,是字母已知数.

解答(1)两边都乘以n ,得

n Ir IR n E ?+=?,

即E n I n r R ?=?+)(,

∵0≠+rn R

∴两边都除以rn R +,得 rn

R nE I += (2)移项,2021gt s t v +

=, ∴ 2022gt s v t +=?,

∵0≠t ,

∴两边都除以t 2,得 t

gt s v 222

0+= 例8.分析 增根是分式方程去掉分母后的整式方程的根,但又使原方程的分母为0.

解答 方程两边都乘以)2)(2(-+x x ,得6342-=++x mx x ,整理,得10)1(-=-x m .

当1≠m 时,1

10--=m x . 如果方程产生增根,那么042=-x ,即2=x 或2-=x

(1)若2=x ,则21

10=--

m ,故4-=m . (2)若2-=x ,则2110-=--m ,故.6=m 例9.分析 这是含有参数字母k 的分式方程,x 是未知数,我们把k 看做“暂时常数”,并考虑增根1=x 的条件解出k 来.

解答 原方程可化为

01

)1()1()1(2=---+++x x x x k x x , 即 01

222=-+-+++x x x k kx x x , ∴ k x k -=+)2(

若02≠+k ,则k k x +-=

2, 当1=x 时,k k +-=

21, ∴ .1-=k

说明 这是一道含有参数字母k 的分式方程. 如果把求出分式方程的增根作为正向思维的话,本题则是已知1=x 是增根,要求求出分式方程中的参数k ,显然具有考察逆向思维的功能. 因而,其求解步骤为:求x →令x 取增根值→解k .

例10.解答 把y x 1,1分别看做一个整体,运用换元法设a x

=1,b y =1, 则原方程可化为:

???-=+=-)

2( 352)1( 43b a b a )2(5)1(+?,得1717=a ,

∴ 1=a ,代入(1)中,得1-=b .

∴???-==11b a 即???????-==.11,11y

x ∴???-==.

1,1y x

经验证?

??-==11y x 是原方程组的解. 说明 换元法是一种重要的数学方法,通过换元不但可使方程组、方程及解答变得简单,还可使解题思路清晰明了. 本题运用了整体思想和换元法,有化难

为易之妙.

微分方程习题及答案

微分方程习题及答案

微分方程习题 §1 基本概念 1. 验证下列各题所给出的隐函数是微分方程的解. (1)y x y y x C y xy x -='-=+-2)2(,22 (2)?'=''=+y 0 222 t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数) (一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.) (1)1) (22=++y C x ; (2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。 (1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。 (2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。 (3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。 §2可分离变量与齐次方程

1.求下列微分方程的通解 (1)2211y y x -='-; (2)0tan sec tan sec 22=?+?xdy y ydx x ; (3)23xy xy dx dy =-; (4)0)22()22(=++-++dy dx y y x x y x . 2.求下列微分方程的特解 (1)0 ,02=='=-x y x y e y ; (2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解 (1))1(ln +='x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解 (1)1 ,022=-==x y y x xy dx dy ; (2)1 ,02)3(022==+-=x y xydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程 (1)2)(y x y +='; (2))ln (ln y x y y y x +=+' (3)11 +-='y x y

第七章 微分方程经典例题

第七章 微分方程 例7 有高为1米的半球形容器,水从它的底部小孔流出,小孔横截面积为1平方厘米. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面的高度h (水面与孔口中心间的距离)随时间t 的变化规律. 解 由力学知识得,水从孔口流出的流量为 62.0dt dV Q ?== 孔口截面面积 重力加速度 ,12cm S = .262.0dt gh dV =∴ ① 设在微小的时间间隔],,[t t t ?+水面的高度由h 降至,h h ?+则,2dh r dV π-= ,200)100(100222h h h r -=--= .)200(2dh h h dV --=∴π ② 比较①和②得: ,262.0)200(2dt gh dh h h =--π 即为未知函数得微分方程. ,)200(262.03dh h h g dt --- =π ,1000==t h ,1015 14 262.05?? = ∴g C π 所求规律为 ).310107(265.45335h h g t +-?= π 例10 求解微分方程 .2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=222 2y xy x xy y dx dy ,1222 ? ?? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得? ? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1 )2ln(23)1ln(C x u u u +=----

初一一元一次方程练习题(一)

初一一元一次方程练习 题(一) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 初一一元一次方程练习题(一) 一、 基础训练: 1、x 比它的一半大6,可列方程为 。 2、 若22172a b b a n m n ++-与 是同类项,则 n = , m =_ 。 3、 若已知方程6521=+-n x 是关于x 的一元一次方程,则 n= 。 4、 方程5x-4=4x-2变形为5x-4x=-2+4的依据是 。 5、 方程-5x=6变形为 x=56-的依据是 。 6、 若253=-a ,则a = ;若y x 124-=,则x = ; 7、 若x%=2.5,则x= 。 8、 日历中同一竖列相邻三个数的和为63,则这三个数分别 为 。 (用逗号隔开) 9、 1,-2,21三个数中,是方程7x +1=10-2x 的解的是 。 10、 某件商品进价100元,售价150元,则其利润是 元,利润率是 。 11、 下列方程中,是一元一次方程的是( ) 。 A. ;342=-x x B. ;0=x C. ;32=+y x D. .11x x =- 10、 方程356+=x x 的解是( ) 。 A. 3-=x B. 2-=x C. 3=x D. 无解

3 11、 下列变形正确的是( ) 。 A. 4x – 5 = 3x+2变形得4x –3x = –2+5 B. 32x – 1 = 2 1x+3变形得4x –6 = 3x+18 C. 3(x –1) = 2(x+3) 变形得3x –1 = 2x+6 D. 3x = 2变形得 x =32 12、 已知2是关于 x 的方程 ;03=+a x 的一个解,则a 的值是( ) 。 A. 5- B. 3- C. 4- D. 6- 13、 数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3 分,要得到34分必须答对的题数是( ) 。 A. 6 B. 7 C. 9 D. 8 14、下列判断错误的是( ) A.若a=b,则ac-5=bc-5 B.若a=b,则1122+=+c b c a C.若x=2,则x x 22= D.若ax=bx,则a=b 15、关于x 的方程)()(m x m k x k -=-有唯一解,则k,m 应满足的条件是( ) A.k ≠0,m ≠0 B. k ≠0,m=0 C.k=0,m ≠0 D. k ≠m 二、解下列方程(基础训练) 16、 4485-=+y y 17、 191 =-x

一元二次方程经典测试题(附答案解析)

. . . 一元二次方程测试题 考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育 第Ⅰ卷(选择题) 一.选择题(共12小题,每题3分,共36分) 1.方程x(x﹣2)=3x的解为() A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5 2.下列方程是一元二次方程的是() A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣ 1)2+1=0 3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为() A.﹣1 B.1 C.1或﹣1 D.3 4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是() A.12(1+x)=17 B.17(1﹣x)=12 C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=17 5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是() A.2秒钟B.3秒钟C.4秒钟D.5秒钟 6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为() A.x(x+12)=210 B.x(x﹣12)=210 C.2x+2(x+12)=210 D.2x+2(x﹣12)=210 7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是() A .有两个正根B.有一正根一负根且正根的绝对值大 C.有两个负根D.有一正根一负根且负根的绝对值大 8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为() A.﹣1 B.或﹣1 C.D.﹣或1 9.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是() A.有两个正根B.有两个负根 C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大 10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是() A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根 B.如果方程M有两根符号相同,那么方程N的两根符号也相同 C.如果5是方程M的一个根,那么是方程N的一个根 D.如果方程M和方程N有一个相同的根,那么这个根必是x=1 11.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是() A.7 B.11 C.12 D.16

微分方程复习题(1)

常微分方程复习题 一、填空题 1.微分方程0)(22=+-+x y dx dy dx dy n 的阶数是____________. 答:1 2.形如_ 的方程称为齐次方程. 答: )(x y g dx dy = 3.方程04=+''y y 的基本解组是 . 答:cos 2,sin 2x x . 1. 二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是 . 答:线性无关(或:它们的朗斯基行列式不等于零) 2. 方程02=+'-''y y y 的基本解组是 . 答:x x x e ,e 3. 若()t ?和()t ψ都是()X A t X ''=的基解矩阵,则()t ?和()t ψ具有的关系是 。 4.一阶微分方程0),(),(=+dy y x N dx y x M 是全微分方程的充分必要条件是 。 5. 方程0),(),(=+dy y x N dx y x M 有只含x 的积分因子的充要条件是 。有只含y 的积分因子的充要条件是 。 6. 一曲线经过原点,且曲线上任意一点()y x ,处 的切线斜率为y x +2,则曲线方程为 。 7. 称为n 阶齐线性微分方程。 8. 常系数非齐线性方程()(1)11()n n x n n m y a y a y a y e P x α--'+++=(其中()m P x 是m 次多项式)中,则方程有形如 的特解。 9. 二阶常系数线性微分方程32x y y y e '''-+=有一个形如 的特解。

10. 微分方程4210y y y ''''''+-=的一般解为 。 9. 微分方程4 230xy y y ''''++=的阶数为 。 10. 若()(0,1,2, ,)i x t i n =为齐次线性方程的n 个线性无关解,则这一齐线性方程的 通解可表为 . 11. 设()x t 为非齐次线性方程的一个特解, ()(0,1,2, ,)i x t i n =是其对应的齐次线性 方程的一个基本解组, 则非齐线性方程的所有解可表为 . 12. 若()(0,1,2, ,)i x t i n =是齐次线性方程()(1)11()()()0 n n n n y a x y a x y a x y --'+++=的n 个解,)(t w 为其朗斯基行列式,则)(t w 满足一阶线性方程 。 答:1()0w a x w '+= 13. 函数 是微分方程02=-'-''y y y 的通解. 14. 方程02=+'-''y y y 的基本解组是 . 15. 常系数方程有四个特征根分别为11,0,1λ=-(二重根),那么该方程有基本解组 . 16. ()Y A x Y '=一定存在一个基解矩阵()x Φ,如果()x ψ是()Y A x Y '=的任一解,那么()x ψ= 。 17.若)(t Φ是()X A t X '=的基解矩阵,则向量函数)(t ?= 是 ()()X A t X F t '=+的满足初始条件0)(0=t ?的解;向量函数)(t ?= 是()()X A t X F t '=+的满足初始条件η?=)(0t 的解。 18. 设12(),()X t X t 分别是方程组1()()X A t X F t '=+,2()()X A t X F t '=+的解,则满足方程12()()()X A t X F t F t '=++的一个解可以为 。 19. 设* X 为非齐次线性方程组()()X A t X F t '=+的一个特解, )(t Φ是其对应的齐次线性方程组()X A t X '=的基解矩阵, 则非齐线性方程组()()X A t X F t '=+的所有解可表为 . 20.方程组()X A t X '=的n 个解12(),(), ,()n X t X t X t 线性无关的充要条件

【习题】第二章一阶微分方程的初等解法

第二章 一阶微分方程的初等解法 x 2-1已知f(x) f(t)dt 1, x 0,试求函数f (x)的一般表达式。 0 x 解 对方程f(x) f (t)dt 1,两边关于x 求导得 x f (x) f (t)dt f 2(x) 0, f (X)丄 f(x) f 2(x) 0 , 分离变量,可求得 代入原方程可得 C 0,从而f(x)的一般表达式为f (x) 评注:本题中常数的确定不能直接通过所给积分方程得到, 确定。 解由导数的定义可得 x(t s) x(t) x (t) lim s 0 s 2 |im x(s) x (t)x(s) s 0 [1 x(t)x(s)]s lim 丄辿型 s 01 x(t)x(s) s 显然可得x(0) 0,故 分离变量,再积分可得 x(t) [1 2 x (t)] !i 叫 x(s) x(0) s x (0) [1 x 2(t)] f(x) 、2(x C)' 1 2x 。 而是需将通解代回原方程来 2-2求具有性质x(t S) x(t) x(s) 1 x(t)x(s) 的函数x(t),已知x (0)存在。

x(t) tan[x(O)t C], 再由x(0) 0,知C 0,从而x(t) ta n[x(0)t]。 评注:本题是函数方程的求解问题,利用导数定义建立微分关系,转化为求解常微分方程的初值问题。 2-3 若M(x,y)x N(x,y)y 0,证明齐次方程M (x, y)dx N(x,y)dy 0 有积分因 1 xM(x,y) yN(x, y) 证方法1用凑微分法求积分因子。 我们有恒等式 M (x, y)dx N (x, y)dy 1 dx dv 2 {(M(x,y)x N(x,v)v)U 寺(M(x,v)x 鱼din (xy), x y 空翌din仝, x y y 所以原方程变为 -{( M (x, y)x N (x, y)y)d ln(xy) (M (x, y)x N (x, y)y)d ln —} 0。 2 y 1 1 M (x, y)x N(x, y)y「x -d ln(xy) d in 0, 2 2 M(x,y)x N(x,y)y y 由于M( x ,y) x N(x, y)y 为零次齐次函数,故它可表成仝的某一函数,记为f (上),M (x,y)x N(x, y)y y y I X MX" N(x,y)y % 巧F(in^), M(x,y)x N(x,y)y y y N (x,y)y)(¥3)} y 用(x,y) 1 M(x,y)x 乘上式两边,得 N(x,y)y

解一元一次方程习题及答案

可编辑 解一元一次方程专项训练 1、721231x x -=++ 2、32 2 331=-++x x 3、()()3216325=+--x x 4、3x+3=2x+7 5、()[]153525--++=x x x 6、13 41573--=-x x 7、521321x x -=++ 8、13269-=+--x x x 9、22.15.15 +-=-x x 10、()()13.024.12.153--=+-x x 11、()12321---=-x x 12、4 3 412332-=-x x 13、()()[]2414256-=--+-x x x 14、19.01.02.02.01.0=--x x 15、()()2 7 2315321=-+-x x 16、521=--x x 17、168421x x x x x -+-+= 18、10 8 756232-=++-x x x 19、()()03.534.02.0546.0=++--x x 20、()()11625.0235.0=-++x x 21、3 1 341-=- x x

可编辑 22、8212=--x x 23、()8.01.02.025.0=--x x 24、25 3 6+=-x x 25、 . 26、()()43231652--=+-x x x 27、27 931x x x x - +- = 28、373212+=+x x 29、()[]1784 3 69+-=-x x 30、()()1067234+=+-+x x x 31、()()164 1331 =+--x x 32、()()[]{}11253=+-+--x x x 33、[3(x ﹣)+]=5x ﹣1 34、()[]{}2253671234=-+++x 35、. 36、 37、232151413121=??? ???-??????-??? ??-x 38、432214+=-x x 39、23312+=-x x 40、14126110312-+=+--x x x 41、32635213-=--+x x x 42、325 3 3151231-=??? ??+-x x x

一元二次方程典型例题解析

龙文教育学科辅导学案 教师: 学生: 年级: 日期:2013. 星期: 时段: 学情分析 课 题 一元二次方程章节复习及典型例题解析 学习目标与 考点分析 学习目标:1、通过对典型例题、自身错题的整理,抓住本章的重点、突破学习的难点; 2、通过灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法; 3、通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决 问题中的作用 考点分析:1一元二次方程的定义 、解法、及根与系数的关系 学习重点 理解并掌握一元二次方程的概念及解法 学习方法 讲练说相结合 学习内容与过程 一 回顾梳理旧的知识点(这些知识点必须牢牢掌握) 一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元一次方程练习题(提高)

一元一次方程练习题(提高) 一、 解下列方程 (1)12(31)6x --= (2)43(20)67(11)y y y y --=-- (3)215436x x -+= (4)()112 2(1)1223 x x x x ??---=-???? (5)()22462133x x ?? --=+???? (6)432.4 2.55x x --= (7)12225y y y -+-=- (8)2123 134 x x ---= (9)21101211364x x x --+-=- (10)0.10.2130.020.5 x x -+-=

二、 思考?运用 (11)代数式1322 y y +-的值与1互为相反数,试求y 的值。 (12)当3x =时,代数式()54x a +的值比()4x a -的值的2倍多1,求a 的值。 (13)若6x =是关于x 的方程2()136 ax x a -=-的解,求代数式221a a ++的值。 三、 列一元一次方程解决应用问题 (14)某校七年级共有65名同学在植树节活动中担任运土工作,现有45根扁担,请你安排一下有多少人抬土,多少人运土,可使扁担和人数恰好相配 (15)某课外活动小组的女学生人数占全组人数的一半,如果再增加6个女学生,那么女生人数就占全组人数的2 3 ,求这个课外活动小组的人数。

(16)食堂有煤若干,原来每天烧煤3t,用去15t后,改进设备,耗煤量为原来的一半,结果多烧了10天,求原来存煤量。 (17)徐程的舅舅来看他,徐程问舅舅多少岁,舅舅说:“我像你这么大时,你才3岁;等你到了我这么大时,我就36岁了。”问徐程和舅舅现在各几岁 (18)一个邮递员骑自行车在规定时间内把特快专递送到单位,他每小时行15千米,可以早到24分钟,如果每小时行12千米,就要迟到15分钟。求原来的时间是多少 (19)用火车运送一批货物,如果每节车厢装34吨,还有18吨装不下;如果每节多装4吨,那么还可以多装26吨,问共有几节火车车厢 (20)体育馆入场券3元一张,若降价后观众增加一半,收入增加1 4 ,那么每张入场券降 价多少元

一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 如果 a x =2那么 a x ±= 注意;x 可以是多项式 一、用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22 =--x 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 配方法解一元二次方程的步骤: 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) (1)当b 2-4ac>0时,=1x ,=2x 。 (2)当b 2-4ac=0时,==21x x 。 (3)当b 2-4ac<0时,方程根的情况为 。 二、用公式解法解下列方程。 1、0822=--x x 2、22314y y -= 3、y y 32132=+ 4、01522=+-x x 5、1842-=--x x 6、02322=--x x 7.x 2+4x -3=0 8. .03232=--x x 方法四:因式分解法 因式分解的方法: (1)提公因式法: (2)公式法:平方差: 完全平方: (3)十字相乘法: 一、 用因式分解法解下列一元二次方程。 1、x x 22= 2、0)32()1(22=--+x x 3、0862=+-x x 4、22)2(25)3(4-=+x x 5、0)21()21(2=--+x x 6、0)23()32(2=-+-x x

一阶微分方程典型例题

一阶微分方程典型例题 例1 在某一人群中推广新技术是通过其中掌握新技术的人进行的.设该人群的总人数为N ,在0=t 时刻已掌握新技术的人数为0x ,在任意时刻t 已掌握新技术的人数为)(t x (将)(t x 视为连续可微变量),其变化率与已掌握新技术的人数和未掌握新技术人数之积成正比,比例常数0>k ,求)(t x . 解 由题设知未掌握新技术人数为)(t x N ?,且有 )(x N kx dt dx ?=,00x x t == 变量分离后,有 kdt x N x dx =?)(,积分之,kNt kNt ce cNe x +=1,由00x x t ==,求得 0 0x N x c ?= 例2 求2 sin 2sin y x y x y ?=++′的通解. 解:利用三角公式将方程改写为2sin 2cos 2y x y ?=′.当02 sin ≠y 时,用它除方程的两端,得变量分离方程dx x y dy 2cos 22 sin ?=, 积分之,得通积分 2 sin 44tan ln x c y ?=. 对应于02 sin =x ,再加特解 ),2,1,0(2"±±==n n y π. 在变量分离时,这里假设02sin ≠y ,故所求通解中可能会失去使 02 sin =y 的解.因此,如果它们不能含于通解之中的话,还要外加上这种形式的特解. 例3 求微分方程 x xe y y x =+′ 满足条件11==x y 的特解.

解法1 把原方程改写为x e y x y =+′1,它是一阶线性方程,其通解为 ()11()()1()1dx dx p x dx p x dx x x x x y e q x e c e e e dx c x e c x ????∫∫??∫∫??=+=?+=?+?????????? ∫∫ 用1,1==y x 代入,得 1=c ,所以特解为x e x x y x 11+?=. 解法2 原方程等价于x xe xy dx d =)(,积分后,得c e x xy x +?=)1(. 当 1,1==y x 时, 1=c 故所求特解为x e x x y x 11+?=. 例4 求方程 0)cos 2()1(2=?+?dx x xy dy x 满足初始条件 10 ==x y 之特解. 解 将原方程改写为1 cos 1222?=?+x x y x x dx dy . 于是,通解为 ????????+∫?∫=∫??? c dx e x x e y dx x x dx x x 12212221cos 即 1sin 2?+=x c x y , 由01x y ==,得1c =?,故特解为2sin 11 x y x ?=?. 例5 求方程 4y x y dx dy +=的通解. 解 将原方程改写成以 为未知函数的方程 31y x y dx dy =?. 于是,由一阶线性方程的通解公式,得 ?? ????+=????????+∫∫=∫?c y y c dy e y e x dy y dy y 313131 在判断方程的类型时,不能只考虑以y 为因变量的情况.因有些方程在以 x 为因变量时方能为线性方程或伯努利方程,解题时必须全面分析.

微分方程例题选解

微分方程例题选解 1. 求解微分方程3ln (ln )0,|2 x e x xdy y x dx y =+-==。 解:原方程化为 x y x x dx dy 1ln 1=+, 通解为 ?+? ?=-]1[ln 1ln 1C dx e x e y dx x x dx x x ?+=]ln [ln 1C dx x x x ]ln 21[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11 ln ln 2 y x x = +。 2. 求解微分方程22'0x y xy y -+=。 解:令ux y =,u x u y '+=',原方程化为 2 u u u x u -='+, 分离变量得 dx x u du 1 2 =-, 积分得 C x u +=ln 1 , 原方程的通解为 ln x y x C = +。 3. 求解微分方程dy y y x dx xy x )()(3223+=-。 解:此题为全微分方程。下面利用“凑微分”的方法求解。 原方程化为 03 2 2 3 =---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3 2 2 3 --- 42222441 )(2141dy dy x dx y dx -+-= )2(41 4224y y x x d --=, 得 0)2(4 224=--y y x x d , 原方程的通解为 C y y x x =--4 2 2 4 2。 注:此题也为齐次方程。 4. 求解微分方程2''1(')y y =+。 解:设y p '=,则dx dp y ='',原方程化为 21p dx dp +=, 分离变量得 dx p dp =+2 1,积分得 1arctan C x p +=, 于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。 5. 求解微分方程''2'20y y y -+=。 解:特征方程为 0222 =--r r ,特征根为 i r ±=1, 通解为12(cos sin )x y e C x C x =+。

一元一次方程练习题

一元一次方程练习题 基本题型: 一、选择题: 1、下列各式中是一元一次方程的是( ) A. y x -=-5 4121 B. 835-=-- C. 3+x D. 1465 34+=-+x x x 2、方程x x 23 1=+-的解是( ) A. 31- B. 3 1 C. 1 D. -1 3、若关于x 的方程m x 342=-的解满足方程m x =+2,则m 的值为( ) A. 10 B. 8 C. 10- D. 8- 4、下列根据等式的性质正确的是( ) A. 由y x 3 231=- ,得y x 2= B. 由2223+=-x x ,得4=x C. 由x x 332=-,得3=x D. 由753=-x ,得573-=x 5、解方程16 110312=+-+x x 时,去分母后,正确结果是( ) A. 111014=+-+x x B. 111024=--+x x C. 611024=--+x x C. 611024=+-+x x 6、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( ) A. 0.81a 元 B. 1.21a 元 C. 21 .1a 元 D. 81.0a 元 8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( ) A .不赚不亏 B .赚8元 C .亏8元 D . 赚8元 9、下列方程中,是一元一次方程的是( ) (A );342=-x x (B );0=x (C );12=+y x (D ).11x x =- 10、方程212= -x 的解是( ) (A );41-=x (B );4-=x (C );4 1=x (D ).4-=x 11、已知等式523+=b a ,则下列等式中不一定... 成立的是( ) (A );253b a =- (B );6213+=+b a (C );523+=bc ac (D ).3 532+=b a 12、方程042=-+a x 的解是2-=x ,则a 等于( ) (A );8- (B );0 (C );2 (D ).8

一元二次方程典型例题整理版

一元二次方程 专题一:一元二次方程的定义 典例分析: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132 +=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 2、若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( ) A .2±=m B .m=2 C .2-≠m D .2±≠m 3、关于x 的一元二次方程(a -1)x 2+x+a 2-l=0的一个根是0。则a 的值为( ) A 、 1 B 、-l C 、 1 或-1 D 、 1 2 4、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。 5、关于x 的方程0)2(2 2=++-+b ax x a a 是一元二次方程的条件是( ) A 、a ≠1 B 、a ≠-2 C 、a ≠1且a ≠-2 D 、a ≠1或a ≠-2 专题二:一元二次方程的解 典例分析: 1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 2、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 3、已知a 是0132=+-x x 的根,则=-a a 622 。

4、若方程ax 2+bx+c=0(a ≠0)中,a,b,c 满足a+b+c=0和a-b+c=0,则方程的根是_______。 5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a - 课堂练习: 1、已知一元二次方程x 2+3x+m=0的一个根为-1,则另一个根为 2、已知x=1是一元二次方程x 2+bx+5=0的一个解,求b 的值及方程的另一个根. 3、已知322-+y y 的值为2,则1242++y y 的值为 。 4、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 专题三:一元二次方程的求解方法 典例分析: 一、直接开平方法 ();0912=--x 二、配方法 . 难度训练: 1、如果二次三项式16)122++-x m x ( 是一个完全平方式,那么m 的值是_______________.

一元一次方程知识点及经典例题

精心整理一、知识要点梳理 知识点一:方程和方程的解 1.方程:含有_____________的______叫方程 注意:a.必须是等式b.必须含有未知数。 易错点:(1).方程式等式,但等式不一定是方程;(2).方程中的未知数可以用x表示,也可以用其他字母表示;(3).方程中可以含多个未知数。 考法:判断是不是方程: 例:下列式子:(1).8-7=1+0(2). 1、一元一次方程: 一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。 要点诠释: 一元一次方程须满足下列三个条件: (1)只含有一个未知数; (2)未知数的次数是1次; (3)整式方程. 2、方程的解: 判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法 1、方程的同解原理(也叫等式的基本性质) 等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。 如果,那么;(c为一个数或一个式子)。 等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。 如果,那么;如果,那么 要点诠释: 分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0) 特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6。方程的右边没有变化,这要与“去分母”区别开。 2、解一元一次方程的一般步骤: 解一元一次方程的一般步骤 变 形 步 骤 具体方法变形根据注意事项 去分母方程两边都乘以 各个分母的最小 公倍数 等式性质 2 1.不能漏乘不含分母的项; 2.分数线起到括号作用,去 掉分母后,如果分子是多项 式,则要加括号 去括号先去小括号,再 去中括号,最后 去大括号 乘法分配 律、去括 号法则 1.分配律应满足分配到每一 项 2.注意符号,特别是去掉括 号 移项把含有未知数的 项移到方程的一 边,不含有未知 数的项移到另一 边 等式性质 1 1.移项要变号; 2.一般把含有未知数的项移 到方程左边,其余项移到右 边 合并同类项把方程中的同类 项分别合并,化 成“b ax=”的形 式(0 ≠ a) 合并同类 项法则 合并同类项时,把同类项的 系数相加,字母与字母的指 数不变 未知数的系方程两边同除以 未知数的系数a, 得 a b x= 等式性质 2 分子、分母不能颠倒

一元二次方程经典考题难题

一元二次方程经典考题难题 用适当的方法解下列方程 16)5(42=-x 0)12(532=++x x 04222=-+x x 22)3(4)12(+=-x x 9)32(4)32(122++=+x x 11.02.02=+x x 0)2(2)2)(1(3)1(222=---+++x x x x 6)53)(43(22=++++x x x x x x x 9)1(22=- 20)7)(5)(3)(1(=++++x x x x

1、若t 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac 4b 2 -=△和完全平方式2)2(b at M +=的关系式() A △=M B △>M C △<M D 大小关系不能确定 2、若关于x 的一元二次方程02=++c bx ax 中a,b,c 满足9a-3b+c=0,则该方程有一根是______ 3、已知关于x 的一元二次方程02=++c bx x 的两根为2,121=-=x x ,则c bx x ++2分解因式的结果是______ 4、在实数范围内因式分解:=--742x x __________________ 5、已知03442=+--x x ,则=-+31232x x __________________ 6、m mx x ++24是一个完全平方式,则m=________________________ 7、已知,)2 1(822m x a x ax ++=++则a 和m 的值分别是__________________ 8、当k=_________时,方程012)3(2=++--k x x k 是关于x 的一元二次方程? 9、关于x 的方程032)4()16(2 2=++++-m x m x m 当m______时,是一元一次方程:当m______时,是一元一次方程。 10、已知012=--x x ,则2009223++-x x 的值为__________ 11、已知012)()(22222=-+++y x y x ,则22y x +=_______ 12、试证明关于x 的方程012)208(22=+++-ax x a a ,无论a 取何值,该方程都是一元二次方程

微分方程习题及答案

微分方程习题 §1 基本概念 1. 验证下列各题所给出的隐函数是微分方程的解. (1)y x y y x C y xy x -='-=+-2)2(,22 (2)?'=''=+y 0 222t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数) (一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.) (1)1)(22=++y C x ; (2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。 (1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。 (2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。 (3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。 §2可分离变量与齐次方程 1.求下列微分方程的通解 (1)2211y y x -='-; (2)0tan sec tan sec 22=?+?xdy y ydx x ; (3) 23xy xy dx dy =-; (4)0)22()22 (=++-++dy dx y y x x y x . 2.求下列微分方程的特解 (1)0 ,02=='=-x y x y e y ; (2)2 1 ,12= =+'=x y y y y x

3. 求下列微分方程的通解 (1))1(ln +='x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解 (1) 1 ,0 22=-==x y y x xy dx dy ; (2)1 ,02)3(0 22==+-=x y xydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程 (1)2)(y x y +='; (2))ln (ln y x y y y x +=+' (3)11 +-= 'y x y (4)0)1()1(22=++++dy y x xy x dx xy y 6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a . 7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系. 8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了0.3g 染色,30分钟后剩下0.1g ,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常? 9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?

初一元一次方程习题

初中代数一元一次方程练习题 一、填空题(每空2分,共32分) 1、已知98489=--+m x 是关于x 的一元一次方程,则m m 52+=。 2、比1053 1 的数是小的x ,列出的方程为, 这个方程的解为=x 。 3、计算:3-=-();若m m 则,0<=。 4、如果:106=-x ,试猜测:x =。 5、叫做方程的解。 6、若==+-=k k x x 那么的解是方程,5)(21。 7、经过去分母、去括号、移项、化简可把一元一次方程化为标准形式,这个标准形式为。 8、当=x 时,2x x 4)1(--与+1的和等于0。 9、当=x 时, 2 3 +x 的值是0。 10、一年定期存款的利率为2.25%,利息税为20%,某人存入10000元,一年后能取元钱。 11、一条环城公路长18千米,甲沿公路骑自行车,每分钟行550米,乙沿公路跑步,每分钟跑250米,两人同时从同一起点向相反的方向出发,经x 小时两人又相遇,列出方程为。 12、某商品的进价为250元,按标价的9折销售时,利润率为15.2%,商品的标价是元。 13、若2=y 是方程-102=+b y 的解,则=b 。 14、若7.0:2 5 3:4= x ,则=x 。 二、选择题(每题3分共24分) 1、下列方程中是一元一次方程的是() A 、 055=+x B 、93 52=-x C 、652 =-y y D 、798=-y x 2、一列长150米的火车,以每秒15米的速度通过600 米的隧道,从火车进入隧道口算起,这列火车完全通过隧道所需时间是()秒。 A 、60B 、50 C 、40D 、30 3、某工程,甲独做需a 小时完成,乙独做需b 小时完成,两人合做可比乙独做提前的时间为() A 、b a ab + B 、b a b +2 C 、b a a +2 D 、b a b a +- 4、m 人a 天可以完成一项工作,如果增加n 人,那么完成这项工作需要的时间为() A 、n a +B 、n a -C 、 n m ma +D 、n m a + 5、方程m y y 253+=-的解为3=y ,则m 的值为 ()A 、 21B 、-2 1 C 、3 D 、-3 6、方程12=+y n 和1213+=-y y 是同解方程,则 n 的值为() A 、0 B 、1 C 、-2 D 、- 2 1 7、三角形三边之比是7:5:4,最短边的长为8㎝,则这个三角形三边的长分别为()㎝ A 、4、5、7B 、8、10、14 C 、10、12、17D 、以上都不对 8、某厂原计划每天生产a 个零件,实际每天多生产b 个零件,那么生产m 个零件可以提前的天数为() A 、 b m a m -B 、b a m +C 、a m b a m -+D 、b a m a m +- 三、解下列方程(每题3分共24分) ① 1121 =-x ②0)12(5)53(2=--+x x ③31)12(21++x 1)1(=-x ④1562=+x ⑤213121--=+x x ⑥1432365=--+x x ⑦6 .0323.021.0x x x += -- ⑧)3(2)1(-≠-=+m x n x m 四、关于x 的方程 x m x m 4 7 4653-=+与方程 x x 3519)73(4-=-有相同的的解,求m 的值。

相关主题