搜档网
当前位置:搜档网 › 集合 知识讲解

集合 知识讲解

集合 知识讲解
集合 知识讲解

集合及集合的表示

【学习目标】

1.了解集合的含义,会使用符号“∈”“?”表示元素与集合之间的关系.

2.能选择自然语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.

3.理解集合的特征性质,会用集合的特征性质描述一些集合,如常用数集、解集和一些基本图形的集合等. 【要点梳理】

集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上.另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用.

要点一、集合的有关概念

1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体.

2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集. 3.关于集合的元素的特征

(1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则x 或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立.

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.

(3)无序性:集合中的元素的次序无先后之分.如:由1,2,3组成的集合,也可以写成由1,3,2组成一个集合,它们都表示同一个集合.

4.元素与集合的关系:

(1)如果a 是集合A 的元素,就说a 属于(belong to)A ,记作a ∈A

(2)如果a 不是集合A 的元素,就说a 不属于(not belong to)A ,记作a A ? 5.集合的分类

(1)空集:不含有任何元素的集合称为空集(empty set),记作:?. (2)有限集:含有有限个元素的集合叫做有限集. (3)无限集:含有无限个元素的集合叫做无限集. 6.常用数集及其表示

非负整数集(或自然数集),记作N

正整数集,记作N *

或N + 整数集,记作Z 有理数集,记作Q 实数集,记作R

要点二、集合的表示方法

我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合.

1. 自然语言法:用文字叙述的形式描述集合的方法.如:大于等于2且小于等于8的偶数构成的集合.

2. 列举法:把集合中的元素一一列举出来,写在大括号内.如:{1,2,3,4,5},{x 2,3x+2,5y 3-x ,x 2+y 2

},…;3.描述法:把集合中的元素的公共属性描述出来,写在大括号{ }内.具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.

4.图示法:图示法主要包括Venn 图、数轴上的区间等.为了形象直观,我们常常画一条封闭的曲线,用它的

内部来表示一个集合,这种表示集合的方法称为韦恩(Venn )图法. 如下图,就表示集合{}1,2,3,4.

【典型例题】

类型一:集合的概念及元素的性质

例1.下列各组对象哪些能构成一个集合?

(1)著名的数学家;(2)比较小的正整数的全体;(3)某校2011年在校的所有高个子同学;(4)不超过20的非负数;(5)方程2

90x -=在实数范围内的解;(6)2的近似值的全体. 1,2,3,4

答案:(4)、(5)

解析:从集合元素的“确定”、“互异”、“无序”三种特性判断. “著名的数学家”、“比较小的正整数”、“高个子同学”对象不确定,所以(1)、(2)、(3)不是集合,同理(6)也不是集合.(4)、(5)可构成集合,故答案是(4)、(5).

点评:

(1)判断指定的对象能不能构成集合,关键在于能否找到一个明确标准,对于任何一个对象,都能确定它是不是给定集合的元素,同时还要注意集合中元素的互异性、无序性.

(2)“有限集”和“无限集”是通过集合里面元素的个数来定义的,集合里面元素的个数很多,但不一定是无限集.

举一反三:

【变式1】判断下列语句能否确定一个集合?如果能表示一个集合,指出它是有限集还是无限集.

(1)你所在的班,体重超过75kg 的学生的全体;(2)举办2008年奥运会的城市;(3)高一数学课本中的所有难题;(4)在2011年3月11日日本地震海啸中遇难的人的全体;(5)大于0且小于1的所有的实数.

答案:集合:(1)、(2)、(4)、(5);有限集:(1)、(2)、(4)。 解析:紧扣“集合”、“有限集”、“无限集”的定义解决问题.

(1)你所在的班,体重超过75kg 的学生是确定的,不同的,能组成一个集合,且为有限集; (2)举办2008年奥运会的城市也能组成一个集合,为有限集;

(3)不能构成集合.“难题”的概念是模糊的,不确定的,无明确标准,对于一道数学题是否是“难题”无法客观判断.

(4) 在2011年3月11日日本地震海啸中遇难的人是确定的,不同的,因而能构成集合,是有限集. (5) 大于0且小于1的所有的实数也是确定的,互异的,因此这样的实数能构成一个集合,是无限集.

例2.集合A 由形如3(,)m n m Z n Z +∈∈的数构成的,判断1

23

-是不是集合A 中的元素?

答案:是

解析:由分母有理化得,

1

2323

=+-.由题中集合A 可知2,1,m n ==均有,m Z n Z ∈∈,

∴23A +∈,即

1

23

A ∈-.

点评:(1)解答本题首先要理解∈与?的含义,然后要弄清所给集合是由一些怎样的数构成的,1

23

-能否

化成此形式,进而去判断

1

23

-是不是集合A 中的元素.

(2)判断一个元素是不是某个集合的元素,就是判断这个元素是否具有这个集合的元素的共同特征.此类题,主要看能否将所给对象的表达式转化为集合中元素所具有的形式.

举一反三:

【变式1】设S={x|x=m+2n,m,n Z}∈ (1)若a ∈Z ,则是否有a ∈S ?

(2)对S 中任意两个元素x 1,x 2,则x 1+x 2,x 1·x 2,是否属于集合S ? 答案:a ∈S 是

解析:(1)若a ∈Z ,则有a ∈S ,即n=0时,x ∈Z ,∴a ∈S ;

(2)?x 1,x 2∈S ,则1112221122x =m +2n ,x =m +2n (m ,n ,m ,n Z)∈

1212121212()2()(,)x x m m n n S m m Z n n Z ∴+=+++∈+∈+∈ 12112212121221x x =(m +2n )(m +2n )=m m +2n n +2(m n +m n )?? ∵m 1,n 1,m 2,n 2∈Z ,∴m 1m 2+2n 1n 2∈Z ,m 1n 2+m 2n 1∈Z ∴x 1·x 2∈S.

类型二:元素与集合的关系

例3.用符号“∈”或“?”填空.

(1)23_____{|11}32____{|4}x x x x <>, ;

(2)223___{|1}5___{|1}N N x x n n x x n n ++=+∈=+∈,, ,; (3)22(11)___{|}(11)___{()|}.y y x x y y x -=-=,, ,,

解析:给定一个对象a ,它与一个给定的集合A 之间的关系为a A ∈,或者a A ?,二者必居其一.解答这类问题的关键是:弄清a 的结构,弄清A 的特征,然后才能下结论.对于第(1)题,可以通过使用计算器,比较各数值的大小,也可以先将各数值转化成结构一致的数,再比较大小;对于第(2)题,不妨分别令x=3,x=5,解方程;对于第(3)题,要明确各个集合的本质属性.

(1) 23121123{|11}x x =>∴?< ,; 321816432{|4}x x =>=∴∈> ,;

(2)令2

31n =+,则223{|1}N N n x x n n ++=±?∴?=+∈,,;

令2

51n =+,则2225{|1}N N n x x n n ++=±∈∴∈=+∈,其中,,; (3) ∵(-1,1)是一个有序实数对,且符合关系y=x 2

, ∴22(11){|}(11){()|}.y y x x y y x -?=-∈=,, ,,

点评:第(1)题充分体现了“化异为同”的数学思想.另外,“见根号就平方”也是一种常用的解题思路和方法,应注意把握.第(2)题关键是明确集合2{|1}N x x n n +=+∈,这个“口袋”中是装了些x 呢?还是装了些n 呢?要特别注意描述法表示的集合,是由符号“|”左边的元素组成的,符号“|”右边的部分表示x 具有的性质.第(3)题要分清两个集合的区别.集合2{|}y y x =这个“口袋”是由y 构成的,并且是由所有的大于或等于0的实数组成的;而集合2{()|}x y y x =,是由抛物线2

y x =上的所有点构成的,是一个点集.

举一反三:

【变式1】 用符号“∈”或“?”填空

(1)若A=Z ,则1

2

-

A ;-2 A . (2)若{}2

B |210,x x x =--=则12

- B ;-2 B .

答案:

(1)?,∈ (2)∈,?

类型三:集合中元素性质的应用

例4.定义集合运算:{}|(),,A B z z xy x y x A y B ==+∈∈ .设集合{}0,1A =,{}2,3B =,则集合A B 的所有元素之和为

A. 0

B. 6

C. 12

D. 18 答案: D

解析:{}|(),,A B z z xy x y x A y B ==+∈∈ ,∴当{}{}0,1,2,3A B ==时, {}0,6,12A B = ,于是

A B 的所有元素之和为0+6+12=18.

点评:这类试题通过给出新的数学概念或新的运算方法,在新的情境下完成某种推理证明是集合命题的一个新方向.常见的有定义新概念、新公式、新运算和新法则等类型.

举一反三:

【变式1】定义集合运算:{}|,,A B z z xy x A y B *==∈∈,设{}1,2A =,{}0,2B =,则集合A B *的所有元素之和为( )

A. 0

B. 2

C. 3

D. 6

答案:D

解析: ,,z xy x A y B =∈∈,且{}1,2A =,{}0,2B =,

∴z 的取值有:0,2,4 故{}0,2,4A B *=,

∴集合A B *的所有元素之和为:0+2+4=6.

例5. 设集合A ={x R ∈|2

210ax x ++=},当集合A 为单元素集时,求实数a 的值.

答案:0,1

解析:由集合A 中只含有一个元素可得,方程ax 2

+2x+1=0有一解,由于本方程并没有注明是一个二次方程,故也可以是一次方程,应分类讨论:

当a=0时,可得是一次方程,故满足题意.

当a ≠0时,则为一个二次方程,所以有一根的含义是该方程有两个相等的根,即为判别式为0时的a 的值,可求得为a=1.故a 的取值为0,1.

例6.已知集合{}

22

2,(1),33A a a a a =++++,若1A ∈,求实数a 的值及集合A .

答案:0a =,{}1,2,3A =. 解析:(1)若21,a +=则1a =-.

所以{}1,0,1A =,与集合中元素的互异性矛盾,则1a =-应舍去. (2)若2(1)1a +=,则0a =或2a =-, 当0a =时,{}2,1,3A =满足题意;

当2a =-时,{}0,1,1A =,与集合中元素的互异性矛盾,则2a =-应舍去.

(3)若2

331a a ++=,则1a =-或2a =-,由上分析知1a =-与2a =-均应舍去. 综上,0a =,集合{}1,2,3A =.

点评:本题中由于1和集合A 中元素的对应关系不明确,故要分类讨论.此类问题在解答时,既要应用元素的确定性、互异性解题,又要利用它们检验解的正确与否,特别是互异性,最容易忽视,必须在学习中引起足够的重视.

举一反三:

【变式1】已知集合{}

2

2,2A a a =++,3A ∈,求实数a 的值

答案: 1a =-

解析:当21a +=,即1a =-时,{}3,3A =,与集合的概念矛盾,故舍去 当2

23,a +=即1a =±时,1a =不满足题意舍去,故1a =-. 类型四:集合的表示方法

例7.试分别用列举法和描述法表示下列集合: (1)方程2

30x -=的所有实数根组成的集合; (2)由大于15小于25的所有整数组成的集合.

答案:(1){33}-,;(2){}16,17,18,19,20,21,22,23,24。 解析:(1)设方程2

30x -=的实数根为x ,并且满足条件2

30x -= 因此,用描述法表示为2

{|30}A x x x =-=∈R ,;

方程2

30x -=有两个实数根33-,

因此,用列举法表示为{33}A =-,.

(2)设大于15小于25的整数为x ,它满足条件Z x ∈,且15

大于15小于25的整数有16,17,18,19,20,21,22,23,24, 因此,用列举法表示为{}16,17,18,19,20,21,22,23,24B =.

点评:(1)列举法表示集合,元素不重复、不计次序、不遗漏,且元素与元素之间用“,”隔开.

(2)列举法适合表示有限集,当集合中元素的个数较少时,用列举法表示集合较为方便,而且一目了然. (3)用描述法表示集合时,要注意代表元素是什么,同时要注意代表元素所具有的性质. 举一反三:

【变式1】用列举法表示集合:

(1)A={x ∈R |(x-1)(x+2)(x 2-1)(x 3

-8)=0} (2)B={(x ,y)|x+y=3, x ∈N , y ∈N } (3)C={y|x+y=3,x ∈N , y ∈N }

(4)??

?

??????????-===x y x y )y ,x (D

(5)?

??

??????-===x y x y x M

(6)P={x|x(x-a)=0, a ∈R }

解析:本题是描述法与列举法的互化,一定要先观察描述法中代表元素是什么. (1)A={1,-2,-1,2}

(2)B={(0,3),(3,0),(1,2),(2,1)} (3)C={0,1,2,3} (4)D={(0,0)} (5)M={0}

(6)当a ≠0时,P={0,a};当a=0时,P={0}. 点评:此例题(2)与(3),(4)与(5)两组都是考察代表元素的,而(6)考察了集合元素的互异性,遇到代数式时,能否意识到字母a ∈R ,需要分类讨论.

【变式2】用适当的方法表示下列集合: (1)比5大3的数;

(2)方程2246130x y x y +-++=的解集;

(3)二次函数2

10y x =-的图象上的所有点组成的集合。

答案:(1){}8;(2){}(2,3)-;(3){}

2

(,)|10x y y x =-

解析:(1)比5大3的数显然是8,故可表示为{}8。

(2)方程2246130x y x y +-++=可化为22(2)(3)0x y -++=,

2,3,

x y =?∴?=-?∴方程的解集为{}(2,3)-。 (3)用描述法表示为{}2

(,)|10x y y x =-。

点评:用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素满足的条件;三要根据集合中元素的个数来选择适当的方法表示集合。

集合的基本关系及运算

【学习目标】

1.理解集合之间包含与相等的含义,能识别一些给定集合的子集.在具体情境中,了解空集和全集的含义.

2.理解两个集合的交集和并集的含义,会求两个简单集合的交集与并集.理解在给定集合中一个子集的补集的含义,会求给定子集的补集. 【要点梳理】

要点一、集合之间的关系

1.集合与集合之间的“包含”关系

集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;

子集:如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset).记作:A B(B A)??或,当集合A 不包含于集合B 时,记作A B ,用Venn 图表示两个集合间的“包含”关系:A B(B A)??或

要点诠释: (1)“A 是B 的子集”的含义是:A 的任何一个元素都是B 的元素,即由任意的x A ∈,能推出x B ∈. (2)当A 不是B 的子集时,我们记作“A ?B (或B ?A )”,读作:“A 不包含于B ”(或“B 不包含A ”). 真子集:若集合A B ?,存在元素x ∈B 且x A ?,则称集合A 是集合B 的真子集(proper subset).记作:A B(或B A)

规定:空集是任何集合的子集,是任何非空集合的真子集. 2.集合与集合之间的“相等”关系

A B B A ??且,则A 与B 中的元素是一样的,因此A=B 要点诠释:

任何一个集合是它本身的子集,记作A A ?.

要点二、集合的运算 1.并集

一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集,记作:A ∪B 读作:“A 并B ”,即:A ∪B={x|x ∈A ,或x ∈B}

Venn 图表示:

要点诠释:

(1)“x ∈A ,或x ∈B ”包含三种情况:“,x A x B ∈?但”;“,x B x A ∈?但”;“,x A x B ∈∈且”.

(2)两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只出现一次). 2.交集

一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集;记作:A ∩B ,读作:“A 交B ”,即A ∩B={x|x ∈A ,且x ∈B};交集的Venn 图表示:

要点诠释:

(1)并不是任何两个集合都有公共元素,当集合A 与B 没有公共元素时,不能说A 与B 没有交集,而是A B =? .

(2)概念中的“所有”两字的含义是,不仅“A ∩B 中的任意元素都是A 与B 的公共元素”,同时“A 与B 的公共元素都属于A ∩B ”.

(3)两个集合求交集,结果还是一个集合,是由集合A 与B 的所有公共元素组成的集合. 3.补集

全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.

补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set),简称为集合A 的补集,记作:U U A A={x|x U x A}∈?;即且;痧补集的Venn 图表示:

要点诠释:

(1)理解补集概念时,应注意补集U A e是对给定的集合A 和()U A U ?相对而言的一个概念,一个确定的集合A ,对于不同的集合U ,补集不同.

(2)全集是相对于研究的问题而言的,如我们只在整数范围内研究问题,则Z 为全集;而当问题扩展到实数集时,则R 为全集,这时Z 就不是全集.

(3)U A e表示U 为全集时A 的补集,如果全集换成其他集合(如R )时,则记号中“U ”也必须换成相应的集合(即R A e).

4.集合基本运算的一些结论:

A B A A B B A A=A A =A B=B A ??????????,,,,

A A

B B A B A A=A A =A A B=B A ?????????,,,, U U (A)A=U (A)A=???,

痧 若A ∩B=A ,则A B ?,反之也成立 若A ∪B=B ,则A B ?,反之也成立 若x ∈(A ∩B),则x ∈A 且x ∈B 若x ∈(A ∪B),则x ∈A ,或x ∈B

求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法. 【典型例题】

类型一:集合间的关系

例1. 请判断①0{0} ;②{}R R ∈;③{}?∈?;④?{}?;⑤{}0?=;⑥{}0∈?;⑦{}0?∈;

⑧?

{}0,正确的有哪些?

【答案】②③④⑧

【解析】①错误,因为0是集合{}0中的元素,应是{}00∈;②③中都是元素与集合的关系,正确;④⑧正确,因为?是任何集合的子集,是任何非空集合的真子集,而④中的{}?为非空集合;⑤⑥⑦错误,?是没有任何元素的集合.

【总结升华】集合的符号语言十分简洁,因而被广泛用于现代数学之中,但往往容易混淆,其障碍在于这些符号与具体意义之间没有直接的联系,突破方法是熟练地掌握这些符号的具体含义.

举一反三:

【变式1】用适当的符号填空:

(1) {x||x|≤1} {x|x 2

≤1};

(2){y|y=2x 2} {y|y=3x 2

-1}; (3){x||x|>1} {x|x>1};

(4){(x ,y)|-2≤x ≤2} {(x ,y)|-1

【总结升华】区分元素与集合间的关系 ,集合与集合间的关系. 例2. 写出集合{a ,b ,c}的所有不同的子集.

【解析】不含任何元素子集为?,只含1个元素的子集为{a},{b},{c},含有2个元素的子集有{a ,b},

{a ,c},{b ,c},含有3个元素的子集为{a ,b ,c},即含有3个元素的集合共有23

=8个不同的子集.如果集合增加第4个元素d ,则以上8个子集仍是新集合的子集,再将第4个元素d 放入这8个子集中,会得到新的8个

子集,即含有4个元素的集合共有24=16个不同子集,由此可推测,含有n 个元素的集合共有2n

个不同的子集.

【总结升华】要写出一个集合的所有子集,我们可以按子集的元素个数的多少来分别写出.当元素个数相同时,应依次将每个元素考虑完后,再写剩下的子集.如本例中要写出2个元素的子集时,先从a 起,a 与每个元素搭配有{a ,b},{a ,c},然后不看a ,再看b 可与哪些元素搭配即可.同时还要注意两个特殊的子集:?和它本身.

举一反三:

【变式1】已知{},a b A ?{},,,,a b c d e ,则这样的集合A 有 个.

【答案】7个

【变式2】同时满足:①{}1,2,3,4,5M ?;②a M ∈,则6a M -∈的非空集合M 有( )

A. 16个

B. 15个

C. 7个

D. 6个 【答案】C

【解析】3a =时,63a -=;1a =时,65a -=;2a =时,64a -=;4a =时,62a -=;5a =时,

61a -=;∴非空集合M 可能是:{}{}{}{}{}{}3,1,5,2,4,1,3,5,2,3,4,1,2,4,5,{}1,2,3,4,5共7个.故选C.

【变式3】已知集合A={1,3,a}, B={a 2

},并且B 是A 的真子集,求实数a 的取值. 【答案】 a=-1, a=3±或a=0

【解析】∵, ∴a 2

∈A , 则有:

(1)a 2

=1?a=±1,当a=1时与元素的互异性不符,∴a=-1; (2)a 2

=3?a=3±

(3)a 2

=a ?a=0, a=1,舍去a=1,则a=0

综上:a=-1, a=3±或a=0.

注意:根据集合元素的互异性,需分类讨论.

例3. 设M={x|x=a 2+1,a ∈N +},N={x|x=b 2

-4b+5,b ∈N +},则M 与N 满足( )

A. M=N

B. M N

C. N M

D. M ∩N=? 【答案】B

【解析】当a ∈N +时,元素x=a 2+1,表示正整数的平方加1对应的整数,而当b ∈N +时,元素x=b 2-4b+5=(b-2)2

+1,其中b-2可以是0,所以集合N 中元素是自然数的平方加1对应的整数,即M 中元素都在N 中,但N 中至少有一个元素x=1不在M 中,即M N ,故选B.

例4.已知},,,0{},,,{y x N y x xy x M =-=若M =N ,则+++2

()(x y x )()1

01

02

y x

y +++ = .

A .-200

B .200

C .-100

D .0

【思路点拨】解答本题应从集合元素的三大特征入手,本题应侧重考虑集合中元素的互异性. 【答案】D

【解析】由M=N ,知M ,N 所含元素相同.由0∈{0,|x|,y}可知0∈{x,xy,x-y} 若x=0,则xy=0,即x 与xy 是相同元素,破坏了M 中元素互异性,所以x ≠0.

若x ·y=0,则x=0或y=0,其中x=0以上讨论不成立,所以y=0,即N 中元素0,y 是相同元素,破坏了N 中元素的互异性,故xy ≠0

若0x-y=,则x=y ,M ,N 可写为

M={x ,x 2

,0},N={0,|x|,x}

由M=N 可知必有x 2=|x|,即|x|2

=|x| ∴|x|=0或|x|=1

若|x|=0即x=0,以上讨论知不成立 若|x|=1即x=±1

当x=1时,M 中元素|x|与x 相同,破坏了M 中元素互异性,故 x ≠1 当x=-1时,M={-1,1,0},N={0,1,-1}符合题意,综上可知,x=y=-1

∴+++2()(x y x )()1001002y x y +++ =-2+2-2+2+…+2=0

【总结升华】解答本题易忽视集合的元素具有的“互异性”这一特征,而找不到题目的突破口.因此,集合元素的特征是分析解决某些集合问题的切入点.

举一反三:

【变式1】设a ,b ∈R ,集合b

{1,a+b,a}={0,

,b}a

,则b-a=( ) 【答案】2

【解析】由元素的三要素及两集合相等的特征:

b

1{0,,b},0{1,a+b,a}a 0a b=0a

∈∈≠∴+ ,又,

∴当b=1时,a=-1,b

{0,b}={0,-1,1}a

∴,

当b

=1a

时,∴b=a 且a+b=0,∴a=b=0(舍) ∴综上:a=-1,b=1,∴b-a=2. 类型二:集合的运算

例5. (1)已知集合M={y|y=x 2-4x+3,x ∈R },N={y|y=-x 2

+2x+8,x ∈R },则M ∩N 等于( ).

A. ?

B. R

C. {-1,9}

D. {y|-1≤y ≤9}

(2)设集合M={3,a},N={x|x 2

-2x<0,x ∈Z},M ∩N={1},则M ∪N 为( ). A. {1,2,a} B. {1,2,3,a} C. {1,2,3} D. {1,3} 【思路点拨】(1)先把集合M 、N 进行化简,在利用数轴进行相应的集合运算.(2)先把集合N 化简,然后再利用集合中元素的互异性解题.

【答案】(1)D (2)D 【解析】(1)集合M 、N 均表示构成相关函数的因变量取值范围,故可知:M={y|y ≥-1},N={y|y ≤9},所以M ∩N={y|-1≤y ≤9},选D.

(2)由N={x|x 2

-2x<0,x ∈Z}可得:N={x|0

【变式1】设A 、B 分别是一元二次方程2x 2

+px+q=0与6x 2

+(2-p)x+5+q=0的解集,且A ∩B={

2

1

},求A ∪B. 【答案】{

2

1

, 31,-4}

【解析】∵A ∩B={2

1

},

∴2

1是方程2x 2

+px+q=0的解,则有: 0q p 2

1)21(22=++(1),同理有:6(21)2+(2-p)·21

+5+q=0(2)

联立方程(1)(2)得到:???-==.

4q ,

7p

∴方程(1)为2x 2

+7x-4=0,

∴方程的解为:x 1=

21, x 2=-4, ∴ }4,2

1

{A -=, 由方程(2) 6x 2

-5x+1=0,解得:x 3=2

1, x 4=31,

∴B={21, 31},则A ∪B={2

1

, 31,-4}.

【变式2】设集合A={2,a 2

-2a ,6},B={2,2a 2

,3a-6},若A ∩B={2,3},求A ∪B.

【答案】 {2,3,6,18}

【解析】由A ∩B={2,3},知元素2,3是A ,B 两个集合中所有的公共元素,所以3∈{2,a 2

-2a ,6},则必有a 2-2a=3,解方程a 2

-2a-3=0得a=3或a=-1

当a=3时,A={2,3,6},B={2,18,3}

∴A ∪B={2,3,6}∪{2,18,3}={2,3,6,18} 当a=-1时,A={2,3,6},B={2,2,-9}

这既不满足条件A ∩B={2,3},也不满足B 中元素具有互异性,故a=-1不合题意,应舍去. 综上A ∪B={2,3,6,18}.

例6. 设全集U={x ∈N +|x ≤8},若A ∩(C u B)={1,8},(C u A)∩B={2,6},(C u A)∩(C u B)={4,7},求集合A ,B. 【答案】A={1,3,5,8},B={2,3,5,6} 【解析】全集U={1,2,3,4,5,6,7,8}

由A ∩(C u B)={1,8}知,在A 中且不在B 中的元素有1,8;由(C u A)∩B={2,6},知不在A 中且在B 中的元素有2,6;由(C u A)∩(C u B)={4,7},知不在A 中且不在B 中的元素有4,7,则元素3,5必在A ∩B 中.

由集合的图示可得

A={1,3,5,8},B={2,3,5,6}. 类型三:集合运算综合应用

例7.已知全集A={x|-2≤x ≤4}, B={x|x>a}. (1)若A ∩B ≠?,求实数 a 的取值范围; (2)若A ∩B ≠A ,求实数a 的取值范围;

(3)若A ∩B ≠?且A ∩B ≠A ,求实数a 的取值范围. 【思路点拨】(1)画数轴;(2)注意是否包含端点. 【答案】(1)a<4 (2)a ≥-2 (3)-2≤a<4 【解析】

(1)∵A={x|-2≤x ≤4}, B={x|x>a},又A ∩B ≠?,如图,a<4; (2)画数轴同理可得:a ≥-2;

(3)画数轴同理可得:如图,-2≤a<4.

【总结升华】此问题从表面上看是集合的运算,但其本质是一个定区间,和一个动区间的问题.思路是,使动区间沿定区间滑动,数形结合解决问题.

举一反三:

【变式1】已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是( ) A .(-∞, -1] B .[1, +∞) C .[-1,1] D .(-∞,-1] ∪[1,+∞) 【答案】C

【解析】P ={x ︱11x -≤≤}又 P M P = , ∴M P ?,∴ 11a -≤≤ 故选C .

例8. 设集合{}{}

222

|40,|2(1)10,A x x x B x x a x a a R =+==+++-=∈.

(1)若A B B = ,求a 的值; (2)若A B B = ,求a 的值.

【思路点拨】明确A B 、A B 的含义,根据的需要,将其转化为等价的关系式B A ?和A B ?,是解决本题的关键.同时,在包含关系式B A ?中,不要漏掉B =?的情况.

【答案】(1)1a =或1a ≤-;(2)1a =.

【解析】 首先化简集合A ,得{}4,0A =-.

(1)由A B B = ,则有B A ?,可知集合B 为?,或为{}0、{}4-,或为{}0,4-. ①若B =?时,22

4(1)4(1)0a a ?=+--<,解得1a <-. ②若0B ∈,代入得2

1011a a a -=?==-或.

当1a =时,{}

{}2

|400,4,B x x x A =+==-=符合题意; 当1a =-时,{}

{}2

|00,B x x A ===?也符合题意.

③若4B -∈,代入得2

870a a -+=,解得7a =或1a =. 当1a =时,已讨论,符合题意;

当7a =时,{}

{}2

|1648012,4B x x x =++==--,不符合题意.

由①②③,得1a =或1a ≤-.

(2),A B B A B =∴? .又{}4,0A =-,而B 至多只有两个根,因此应有A B =,由(1)知1a =. 【总结升华】两个等价转化:,A B B A B A B B B A =??=?? 非常重要,注意应用.另外,在解决有条件A B ?的集合问题时,不要忽视A ≠?的情况.

举一反三:

【变式1】已知集合{}{}

22

2,|120A B x x ax a =-=++-=,若A B B = ,求实数a 的取值范围.

【答案】4,a ≥或4a <- 【解析】A B B = ,B A ∴?.

①当B =?时,此时方程2

2

120x ax a ++-=无解,由0?<,解得4,a >或4a <-. ②当B ≠?时,此时方程2

2

120x ax a ++-=有且仅有一个实数解-2,

0∴?=,且22(2)2120a a --+-=,解得4a =. 综上,实数a 的取值范围是4,a ≥或4a <-.

集合-基础知识点汇总与练习-复习版

集合知识点总结 一、集合的概念 教学目标:理解集合、子集的概念,能利用集合中元素的性质解决问 题,掌握集合问题的常规处理方法. 教学重点:集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用.: 一)主要知识: 1.集合、子集、空集的概念; 2.集合中元素的3个性质,集合的3 种表示方法; 3. 若有限集A有n个元素,则A的子集有2n个,真子集有2n 1,非空子集有2n 1个,非空真子集有2n 2个. 二、集合的运算 教学目标:理解交集、并集、全集、补集的概念,掌握集合的运算性 质,能利用数轴或文氏图进行集合的运算,进一步掌握 集合问题的常规处理方法. 教学重点:交集、并集、补集的求法,集合语言、集合思想的运用. 一)主要知识: 1. 交集、并集、全集、补集的概念; 2. AI B A A B,AUB A A B; 3. C U AI C U B C U (AUB),C U AUC U B C U(AI B). 二)主要方法: 1. 求交集、并集、补集,要充分发挥数轴或文氏图的作用;

2.含参数的问题,要有讨论的意识,分类讨论时要防止在空集上出 问题; 3.集合的化简是实施运算的前提,等价转化常是顺利解题的关键. 考点要点总结与归纳 一、集合有关概念 1. 集合的概念:能够确切指定的一些对象的全体。 2. 集合是由元素组成的 集合通常用大写字母A、B、C,…表示,元素常用小写字母a b、c, …表示。 3. 集合中元素的性质:确定性,互异性,无序性。 (1)确定性:一个元素要么属于这个集合,要么不属于这个集 合,绝无模棱两可的情况。如:世界上最高的山 (2)互异性:集合中的元素是互不相同的个体,相同的元素只能 出现一次。如:由HAPPY 的字母组成的集合{H,A,P,Y} ( 3)无 序性:集合中的元素在描述时没有固定的先后顺序。 女口:{a,b,c}和{a,c,b}是表示同一个集合 4. 元素与集合的关系 (1)元素a是集合A中的元素,记做a€ A,读作“ a属于集合A”; (2)元素a不是集合A中的元素,记做a?A,读作“a不属于集合A”。 5. 集合的表示方法:自然语言法, 列举法,描述法,图示法。 ( 1)自然语言法:用文字叙述的形式描述集合。如大于等于2 且小于等于8 的偶数

(完整)菱形(提高)知识讲解

菱形 【要点梳理】 要点一、菱形的定义 有一组邻边相等的平行四边形叫做菱形. 要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件. 要点二、菱形的性质 菱形除了具有平行四边形的一切性质外,还有一些特殊性质: 1.菱形的四条边都相等; 2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角. 3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称 中心. 要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分. (2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高; 另一种是两条对角线乘积的一半(即四个小直角三角形面积之和). 实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘 积的一半. (3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题. 要点三、菱形的判定 菱形的判定方法有三种: 1.定义:有一组邻边相等的平行四边形是菱形. 2.对角线互相垂直的平行四边形是菱形. 3.四条边相等的四边形是菱形. 要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等. 【典型例题】 类型一、菱形的性质 1、如图所示,菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE =18°.求∠CEF的度数. 【思路点拨】由已知∠B=60°,∠BAE=18°,则∠AEC=78°.欲求∠CEF的度数,只要求出∠AEF的度数即可,由∠EAF=60°,结合已知条件易证△AEF为等边三角形,从而∠AEF=60°. 【答案与解析】

集合知识点归纳

集合的基础知识 一、重点知识归纳及讲解 1.集合的有关概念 一组对象的全体形成一个集合,集合里的各个对象叫做集合的元素 ⑴集合中的元素具有以下的特性 ①确定性:任给一元素可确定其归属.即给定一个集合,任何一个对象是不是这个集合的元素也就确定了. 例如,给出集合{1,2,3,4},它只有1、2、3、4四个元素,其他对象都不是它的元素; 而“所有的好人”、“视力比较差的全体学生”、“我国的所有小河流”就不能视为集合,因为组成它们的对象是不能确定的. ②互异性:集合中的任何两个元素都是不同的对象,也就是说,集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个.例如,不能有{1,1,2},而必须写成{1,2}. ③无序性:集合中的元素间是无次序关系的.例如,{1,2,3}与{3,2,1}表示同一个集合. (2)集合的元素 某些指定的对象集在一起就成为一个集合,集合中的每个对象叫做这个集合的元素.若a 是集合A的元素,就说a属于集合A,记作a∈A.不含任何元素的集合叫做空集,记作φ. (3)集合的分类:有限集与无限集. (4)集合的表示法:列举法、描述法和图示法. 列举法:将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开,常用于表示有限集. 描述法:将所给集合中全部元素的共同特性和性质用文字或符号语言描述出来.常用于表示无限集. 使用描述法时,应注意六点: ①写清集合中元素的代号;②说明该集合中元素的性质; ③不能出现未被说明的字母;④多层描述时,应当准确使用“且”,“或”; ⑤所有描述的容都要写在大括号;⑥用于描述的语句力求简明、确切. 图示法:画一条封闭的曲线,用它的部来表示一个集合,常用于表示又需给具体元素的抽象集合,对已给出了具体元素的集合当然也可用图示法来表示.

压强(提高)知识讲解

压强(提高) 责编:武霞 【学习目标】 1、了解压力,通过实验探究,知道影响压力作用效果的因素; 2、理解压强的定义、公式及单位,能运用压强公式进行简单计算; 3、知道增大压强和减小压强的方法。 【要点梳理】 要点一、压力 垂直作用在物体表面上的力叫做压力。 要点诠释: 1、产生的条件:相互接触的两个物体相互挤压。例如:静止在地上的篮球和地面间有相互挤压的作用,篮球对地面有压力;静止在竖直墙壁旁的篮球与墙壁之间没有相互挤压,所以没有压力。 2、方向:与受力物体的受力面垂直,并指向受力面,由于受力物体的受力面可能是水平面,也可能是竖直面,还可能是角度不同的倾斜面,因此压力的方向没有固定指向,它可能指向任何方向,但始终和受力物体的受力面相垂直。 3、单位:牛顿,符号:N 4 压力重力 施力物体物体地球 受力物体支持物物体 大小决定于相互挤压所发生形变大小G=mg 方向垂直于受力物体表面,并指向受力面竖直向下 作用点在支持面上物体重心 力的性质接触的物体间相互挤压而发生形变产 生的,属于弹力 来源于万有引力,是非接 触力 受力示意图 要点二、压强(高清课堂《压强》388900) 表示压力作用效果的物理量。 要点诠释: 1、压力的作用效果与压力和受力面积有关。 探究实验 提出问题:压力的作用效果跟什么因素有关。 猜想和假设:跟压力的大小有关,跟受力面积的大小有关。 进行实验: ①照图甲那样,把小桌腿朝下放在泡沫塑料上;观察泡沫塑料被压下的深度; ②再照图乙那样,在桌面上放一个砝码观察泡沫塑料被压下的深度; ③再把小桌翻过来,如图丙,观察泡沫塑料被压下的深度。

实验步骤①、②是受力面积一定,改变压力的大小,步骤②、③是压力一定,改变受力面积。 实验结果:泡沫塑料被压下的深度与压力的大小和受力面积的大小有关。压力越大,效果越明显,受力面积越小效果越明显。 2、定义:物体所受压力的大小与受力面积之比叫做压强。 3、计算公式及单位 ①公式:(定义公式) ②单位:国际单位为帕斯卡(Pa),简称帕。 1Pa=1N/m2。表示1m2面积上所受的压力是1N,Pa是一个很小的单位,一张报纸平放时对桌面的压强约1Pa。实际应用中常用千帕(kPa) 兆帕(MPa)作单位,气象学中常用百帕(hPa)作单位,换算 =,,。 4、注意:压强大小是由压力和受力面积共同决定的,不仅仅决定于压力大小。压力F和受力面积S 之间不存在因果关系,但压强p和F、S之间有着密切联系,在S一定时,p与F成正比,在F一定时,p与S成反比。 要点三、增大和减小压强的方法(高清课堂《压强》388900) 在生活中我们常常会遇到要增大或减小压强的问题,根据影响压强大的两个因素,可以从两个方面来增大或减小压强。 要点诠释: 1、增大压强的方法 2、减小压强的方法 【典型例题】 类型一、基础知识

集合知识点归纳定稿版

集合知识点归纳精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

集合的基础知识 一、重点知识归纳及讲解 1.集合的有关概念 一组对象的全体形成一个集合,集合里的各个对象叫做集合的元素 ⑴集合中的元素具有以下的特性 ①确定性:任给一元素可确定其归属.即给定一个集合,任何一个对象是不是这个集合的元素也就确定了. 例如,给出集合{1,2,3,4},它只有1、2、3、4四个元素,其他对象都不是它的元素; 而“所有的好人”、“视力比较差的全体学生”、“我国的所有小河流”就不能视为集合,因为组成它们的对象是不能确定的. ②互异性:集合中的任何两个元素都是不同的对象,也就是说,集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个.例如,不能有{1,1,2},而必须写成{1,2}. ③无序性:集合中的元素间是无次序关系的.例如,{1,2,3}与{3,2,1}表示同一个集合. (2)集合的元素 某些指定的对象集在一起就成为一个集合,集合中的每个对象叫做这个集合的元素.若a是集合A的元素,就说a属于集合A,记作a∈A.不含任何元素的集合叫做空集,记作φ. (3)集合的分类:有限集与无限集. (4)集合的表示法:列举法、描述法和图示法.

列举法:将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开,常用于表示有限集. 描述法:将所给集合中全部元素的共同特性和性质用文字或符号语言描述出来.常用于表示无限集. 使用描述法时,应注意六点: ①写清集合中元素的代号;②说明该集合中元素的性质; ③不能出现未被说明的字母;④多层描述时,应当准确使用“且”,“或”; ⑤所有描述的内容都要写在大括号内;⑥用于描述的语句力求简明、确切. 图示法:画一条封闭的曲线,用它的内部来表示一个集合,常用于表示又需给具体元 素的抽象集合,对已给出了具体元素的集合当然也可用图示法来表示. 如:A={1,2,3,4} 例1、设集合A={a,a+b, a+2b},B={a,ac,ac2} ,且A=B,求实数c值. 分析: 欲求c值,可列关于c的方程或方程组,根据两集合相等的意义及集合元素的互异性,有下面两种情况:(1)a+b=ac且a+2b= ac2,(2)a+b= ac2且a+2b=ac两种情况. 解析: (1)a+b=ac且a+2b= ac2,消去b得:a+ ac2-2ac=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴c2-2c+1=0,即c=1,但 c=1时,B中的三个元素也相同,舍去c=1,此时无解.

三角形的内角和(提高)知识讲解

三角形的内角和(提高)知识讲解 【学习目标】 1.理解三角形内角和定理的证明方法; 2.掌握三角形内角和定理及三角形的外角性质; 3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题. 【要点梳理】 要点一、三角形的内角和 三角形内角和定理:三角形的内角和为180°. 要点诠释:应用三角形内角和定理可以解决以下三类问题: ①在三角形中已知任意两个角的度数可以求出第三个角的度数; ②已知三角形三个内角的关系,可以求出其内角的度数; ③求一个三角形中各角之间的关系. 要点二、三角形的外角 1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角. 要点诠释: (1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线. (2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角. 2.性质: (1)三角形的一个外角等于与它不相邻的两个内角的和. (2)三角形的一个外角大于任意一个与它不相邻的内角.

要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质. 3.三角形的外角和: 三角形的外角和等于360°. 要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°. 【典型例题】 类型一、三角形的内角和 1.在△ABC中,若∠A=1 2 ∠B= 1 3 ∠C,试判断该三角形的形状. 【思路点拨】由∠A=1 2 ∠B= 1 3 ∠C,以及∠A+∠B+∠C=180°,可求出∠A、∠B和 ∠C的度数,从而判断三角形的形状. 【答案与解析】 解:设∠A=x,则∠B=2x,∠C=3x. 由于∠A+∠B+∠C=180°,即有x+2x+3x=180°. 解得x=30°.故∠A=30°.∠B=60°,∠C=90°. 故△ABC是直角三角形. 【总结升华】本题利用设未知数的方法求出三角形三个内角的度数,解法较为巧妙. 举一反三: 【变式1】三角形中至少有一个角不小于________度. 【答案】60 【变式2】如图,AC⊥BC,CD⊥AB,图中有对互余的角有对相等的锐角 【答案】3,2. 2.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数是多少

电压(提高)知识讲解

电压(提高) 撰稿:肖锋编稿:雒文丽 【学习目标】 1.认识电压,知道电压的单位,并会进行单位换算; 2.理解电压的作用,了解在一段电路中产生电流,它的两端就要有电压; 3.了解常用电源的电压值; 4.知道电压表的符号、使用规则、读数。 【要点梳理】 要点一、电压的作用 1.电源是提供电压的装置。 2.电压是形成电流的原因,电压使电路中的自由电荷定向移动形成了电流。 3.电路中获得持续电流的条件:①电路中有电源(或电路两端有电压);②电路是连通的。 4.电压的单位:国际单位伏特,简称伏,符号:V 常用单位:千伏(kV)、毫伏(mV)、微伏(μV)换算关系: 1kV=1000V 1V=1000mV 1mV=1000μV 5.记住一些电压值:一节干电池的电压1.5V,一节蓄电池的电压2V,家庭电路的电压220V。 要点诠释: 1.说电压时,要说“用电器”两端的电压,或“某两点”间的电压。 2.电源的作用是使导体的两端产生电压,电压的作用是使自由电荷定向移动形成电流。电源将其它形 式的能转化成电能时,使电源的正极聚集正电荷,负极聚集负电荷。 要点二、电压的测量——电压表 1.仪器:电压表,符号: 2.读数时,看清接线柱上标的量程,每大格、每小格电压值。 3.使用规则:“两要;一不” ①电压表要并联在电路中。 ②应该使标有“—”号的接线柱靠近电源的负极,另一个接线柱靠近电源的正极。 ③被测电压不要超过电压表的最大量程。 危害:被测电压超过电压表的最大量程时,不仅测不出电压值,电压表的指针还会被打弯甚至烧坏电压表。 选择量程:实验室用电压表有两个量程, 0~3V和0~15V。测量时,先选大量程试触,若被测电压在3V~15V之间,可用15V的量程进行测量;若被测电压小于3V,则换用小的量程。 要点诠释: 1.电流表和电压表的相同点和不同点: 异 项目电流表电压表同 异符号 连接串联并联 直接连接电源不能能 量程0.6A,3A3V,15V 每大格0.2A,1A1V,5V 每小格0.02A,0.1A0.1V,0.5V 内阻很小,几乎为零,相当于短路。很大,相当于开路。

集合知识点归纳

高中数学第一章-集合 考试内容: 集合、子集、补集、交集、并集. 考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. 集合知识要点 一、知识结构: 本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分: 二、知识回顾: (一)集合 1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2.集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质: ①任何一个集合是它本身的子集,记为A A?; ②空集是任何集合的子集,记为A φ; ? ③空集是任何非空集合的真子集; 如果B B?,那么A = B. A?,同时A 如果C ? A? ,. ?,那么 A B C B [注]:①Z= {整数}(√)Z ={全体整数} (×) ②已知集合S中A的补集是一个有限集,则集合A也是有限集.(×)(例:S=N;A=+ N,则C s A= {0}) ③空集的补集是全集. ④若集合A=集合B,则C B A=?,C A B =?C S(C A B)=D(注:C A B =?). 3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集. ②{(x,y)|xy<0,x∈R,y∈R}二、四象限的点集. ③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集. 高中数学高考总复习高三数学总复习一—集合— 1 —

高中数学高考总复习 高三数学总复习一—集合 — 2 — [注]:①对方程组解的集合应是点集. 例: ?? ?=-=+1 323y x y x 解的集合{(2,1)}. ②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =?) 4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个. 5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题. 解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ② 且21≠≠y x 3≠+y . 解:逆否:x + y =3 x = 1或y = 2. 2 1≠≠∴y x 且3≠+y x ,故3≠+y x 是2 1≠≠y x 且的既不是充分,又不是必要条件. ⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,?. 4. 集合运算:交、并、补. 【并集】 在集合论和数学的其他分支中,一组集合的并集是这些集合的所有元素构成的集合,而不包含其他元素。 基本定义 : 若 A 和 B 是集合,则 A 和 B 并集是有所有 A 的元素和所有 B 的元素,而没有其他元素的集合。 A 和 B 的并集通常写作 "A ∪B"。 形式上:x 是 A ∪B 的元素,当且仅当 x 是 A 的元素,或 x 是 B 的元素。 举例:集合 {1, 2, 3} 和 {2, 3, 4} 的并集是 {1, 2, 3, 4}。数字 9 不 属于素数集合 {2, 3, 5, 7, 11, …} 和偶数集合 {2, 4, 6, 8, 10, …} 的并集,因为 9 既不是素数,也不是偶数。 更通常的,多个集合的并集可以这样定义:例如,A , B 和 C 的并集含有所有 A 的元素,所有 B 的元素和所有 C 的元素,而没有其他元素。 形式上:x 是 A ∪B ∪C 的元素,当且仅当 x 属于 A 或 x 属于 B 或 x 属于 C 。 代数性质: 二元并集(两个集合的并集)是一种结合运算,即 A ∪(B ∪C) = (A ∪B) ∪C 。事实上,A ∪B ∪C 也等于这两个集合,因此圆括号在仅进行并集运算的时候可以省略。 相似的,并集运算满足交换率,即集合的顺序任意。 空集是并集运算的单位元。即 {} ∪A = A ,对任意集合 A 。可以将空集当作零个集合的并集。 结合交集和补集运算,并集运算使任意幂集成为布尔代数。例如,并集和交集相互满足分配律,而且这三种运算满足德·摩根律。若将并集运算换成对称差运算,可以获得相应的布尔环。 【交集】 数学上,两个集合 A 和 B 的交集是含有所有既属于 A 又属于 B 的元素,而没有其他元素的集合。 A 和 B 的交集写作 "A ∩B"。形式上: x 属于 A ∩B 当且仅当 x 属于 A 且 x 属于 B 。 例如:集合 {1, 2, 3} 和 {2, 3, 4} 的交集为 {2, 3}。数字 9 不属于素数集合 {2, 3, 5, 7, 11} 和奇数集合 {1, 3, 5, 7, 9, 11}的交集。 若两个集合 A 和 B 的交集为空,就是说他们没有公共元素,则他们不相交。 更一般的,交集运算可以对多个集合同时进行。例如,集合 A ,B ,C 和 D 的交集为 A ∩B ∩C ∩D =A ∩(B ∩(C ∩D))。交集运算满足结合律,即 A ∩(B ∩C)=(A ∩B) ∩C 。

压强(提高)知识讲解

压强(提高) 【学习目标】 1、了解压力,通过实验探究,知道影响压力作用效果的因素; 2、理解压强的定义、公式及单位,能运用压强公式进行简单计算; 3、知道增大压强和减小压强的方法。 【要点梳理】 要点一、压力 垂直作用在物体表面上的力叫做压力。 要点诠释: 1、产生的条件:相互接触的两个物体相互挤压。例如:静止在地上的篮球和地面间有相互挤压的作用,篮球对地面有压力;静止在竖直墙壁旁的篮球与墙壁之间没有相互挤压,所以没有压力。 2、方向:与受力物体的受力面垂直,并指向受力面,由于受力物体的受力面可能是水平面,也可能是竖直面,还可能是角度不同的倾斜面,因此压力的方向没有固定指向,它可能指向任何方向,但始终和受力物体的受力面相垂直。 3、单位:牛顿,符号:N 4 要点二、压强 表示压力作用效果的物理量。 要点诠释: 1、压力的作用效果与压力和受力面积有关。 探究实验 提出问题:压力的作用效果跟什么因素有关。 猜想和假设:跟压力的大小有关,跟受力面积的大小有关。 进行实验: ①照图甲那样,把小桌腿朝下放在泡沫塑料上;观察泡沫塑料被压下的深度; ②再照图乙那样,在桌面上放一个砝码观察泡沫塑料被压下的深度; ③再把小桌翻过来,如图丙,观察泡沫塑料被压下的深度。 实验步骤①、②是受力面积一定,改变压力的大小,步骤②、③是压力一定,改变受力面积。

实验结果:泡沫塑料被压下的深度与压力的大小和受力面积的大小有关。压力越大,效果越明显,受力面积越小效果越明显。 2、定义:物体所受压力的大小与受力面积之比叫做压强。 3、计算公式及单位 ①公式:(定义公式) ②单位:国际单位为帕斯卡(Pa),简称帕。 1Pa=1N/m2。表示1m2面积上所受的压力是1N,Pa是一个很小的单位,一张报纸平放时对桌面的压强约1Pa。实际应用中常用千帕(kPa) 兆帕(MPa)作单位,气象学中常用百帕(hPa)作单位,换算 =,,。 4、注意:压强大小是由压力和受力面积共同决定的,不仅仅决定于压力大小。压力F和受力面积S 之间不存在因果关系,但压强p和F、S之间有着密切联系,在S一定时,p与F成正比,在F一定时,p与S成反比。 要点三、增大和减小压强的方法 在生活中我们常常会遇到要增大或减小压强的问题,根据影响压强大的两个因素,可以从两个方面来增大或减小压强。 要点诠释: 1、增大压强的方法 2、减小压强的方法 【典型例题】 类型一、基础知识 1、如图甲所示,将一块质地均匀的长木板平放在水平桌面上,用水平力F向右缓慢推动木板,

集合知识点总结

集合知识点总结 Prepared on 22 November 2020

辅导讲义:集合与常用逻辑用语 1、集合:一定范围内某些确定的、不同的对象的全体构成一个集合。集合中的每一个对象称为该集合的元素。 集合的常用表示法:列举法、描述法。 集合元素的特征:确定性、互异性、无序性。 2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为 A ? B ,或B ?A ,读作“集合A 包含于集合B ”或“集合B 包含集合A ”。 即:若A a ∈则B a ∈,那么称集合A 称为集合B 的子集 注:空集是任何集合的子集。 3、真子集:如果A ?B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ?B 或B ?A ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,?。 4、补集:设A ?S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ?∈且,|。 5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。通常全集记作 U 。 6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作 B A ?(读作“A 交B ”),即:B A ?=}{B x A x x ∈∈且,|。 B A ?=A B ?,B A ?B B A A ???,。 7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作 B A ?(读作“A 并B ”),即:B A ?=}{B x A x x ∈∈或,|。 B A ?=A B ?,?A B A ?,?B B A ?。 8、元素与集合的关系:有属于和不属于两种,集合与集合间的关系,用包含、真包含

角(提高)知识讲解

角(提高) 责编:康红梅 【学习目标】 1掌握角的概念及角的表示方法,并能进行角度的换算及运算; 2. 掌握借助三角尺或量角器画角的方法,并熟悉角大小的比较方法; 3. 掌握角的和、差、倍、分关系,并会进行有关计算; 5.掌握余角、补角及对顶角的概念及性质,会用其性质进行有关计算; 6?了解方位角、钟表上有关角,并能解决一些实际问题. 【要点梳理】 要点一、角的概念及表示 1 ?角的定义: (1) 定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两 条射线是角的两条边?如图 图1 图2 (2 )定义二:角也可以看成是一条射线绕着它的端点旋转到另一个位置所成的图形,射线 旋转时经过的平面部分是角的内部. 如图2所示,射线0A 绕它的端点0旋转到0B 的位置 时,形成的图形叫做角,起始位置 0A 是角的始边,终止位置 0B 是角的终边. 要点诠释: (1) 两条射线有公共端点,即角的顶点; 角的边是射线; 角的大小与角的两边的长短无关. (2) 平角与周角:如图1所示射线0A 绕点0旋转,当终止位置 0B 和起始位置0A 成一 条直线时,所形成的角叫做平角,如图 2所示继续旋转,0B 和0A 重合时,所形成的角叫 做周角. 平角 图I 2. 角的表示法:角的几何符号用"/”表示,角的表示法通常有以下 四种: 周角 图2

?示方法 图示 记法 '适范围 (1)用三个丸 垢字母表示 裁 A BOA 任柯情况都适 用,表示顶点的 字母写在中间 (2}用一个大 写字母表示, / O AO 以某一点为顶点 的甬只有一个 时,可以用顶点 表示角 (各)用阿拉 伯數字表示 £1 任何情况那适用 (4)用希腊字 / /.a 任何情况都适用 1°的—为1分,记作“ 1 ‘” 1 ‘的—为1秒,记作“ 1 〃” .这种以度、分、秒为单位 60 60 的角的度量制,叫做角度制. 1 周角=360° , 1 平角=180°, 1°= 60’,1 '= 60〃. 要点诠释: 在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除 的要借位,从高一位借的单位要化为低位的单位后再进行运算, 在相乘或相加时,当低位得 数大于60时要向高一位进位. 2. 角的比较:角的大小比较与线段的大小比较相类似,方法有两种. 方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小. 方法2 :叠合比较法?把其中的一个角移到另一个角上作比较. 如比较/ AOB 和/A ‘ O ‘ B '的大小: 如下图,由图(1)可得/ AOB / A ‘ 0’ B ’. 3. 角的和、差关系 要点诠释: 在表示角时,要在靠近角的顶点处加上弧线,再注上相应数字或字母. 3.角的画法 (1) 用三角板可以画出 30 °、45 °、60 °、90°等特殊角. (2) 用量角器可以画出任意给定度数的角. (3) 利用尺规作图可以画一个角等于已知角. 要点二、角的比较与运算 1. 角度制及其换算 角的度量单位是度、分、秒,把一个周角平均分成 1 1 360等份,每一份就是1°的角,

数学集合知识点总结

数学集合知识点总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: ①.元素的确定性;②.元素的互异性;③.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:{x|x2=-5}

4、集合的表示:{…}如{我校的篮球队员},{太平洋大西洋印度洋北冰洋} 1.用拉丁字母表示集合:A={我校的篮球队员}B={12345} 2.集合的表示方法:列举法与描述法。 注意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+整数集Z有理数集Q实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作aA 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2}

平方根(提高)知识讲解

平方根(提高) 【学习目标】 1.了解平方根、算术平方根的概念,会用根号表示数的平方根. 2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方 根. 【要点梳理】 要点一、平方根和算术平方根的概念 1.算术平方根的定义 如果一个正数x 的平方等于a ,即2 x a =,那么这个正数x 叫做a 的算术平方根(规定 0的算术平方根还是0);a a 的算术平方根”,a 叫做被开方数. 要点诠释: a 0,a ≥0. 2.平方根的定义 如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0) 的平方根的符号表达为0)a ≥, 是a 的算术平方根. 要点二、平方根和算术平方根的区别与联系 1.区别:(1)定义不同;(2 )结果不同: 2.联系:(1)平方根包含算术平方根; (2)被开方数都是非负数; (3)0的平方根和算术平方根均为0. 要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方 根;负数没有平方根. (2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的 另一个平方根.因此,我们可以利用算术平方根来研究平方根. 要点三、平方根的性质 (0)||0 (0)(0) a a a a a a >??===??-

【典型例题】 类型一、平方根和算术平方根的概念 1、若2m -4与3m -1是同一个正数的两个平方根,求m 的值. 【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2m -4=-(3m - 1),解方程即可求解. 【答案与解析】 解:依题意得 2m -4=-(3m -1), 解得m =1; ∴m 的值为1. 【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数. 举一反三: 【变式】已知2a -1与-a +2是m 的平方根,求m 的值. 【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2相等或互为相反数. 解:①当2a -1=-a +2时,a =1,所以m =()()22 212111a -=?-= ②当2a -1+(-a +2)=0时,a =-1, 所以m =()()22221[2(1)1]39a -=?--=-= 2、x 为何值时,下列各式有意义? 2x 4x -11x x +-1x -. 【答案与解析】 解:(1)因为20x ≥,所以当x 2x (2)由题意可知:40x -≥,所以4x ≥4x - (3)由题意可知:1010x x +≥?? -≥?解得:11x -≤≤.所以11x -≤≤11x x +-义. (4)由题意可知:1030 x x -≥??-≠?,解得1x ≥且3x ≠. 所以当1x ≥且3x ≠1x -有意义. 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义. 举一反三:

(完整版)集合知识点点总结

集合概念 一:集合有关概念 1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西, 并且能判断一个给定的东西是否属于这个整体。 2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。 3.集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。 例:世界上最高的山、中国古代四大美女、教室里面所有的人…… (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。 例:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 例:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 1)列举法:将集合中的元素一一列举出来 {a,b,c……} 2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 {x∈R| x-3>2} ,{x| x-3>2} ①语言描述法:例:{不是直角三角形的三角形} 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合例:{x|x2=-5} 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:a∈A (2)元素不在集合里,则元素不属于集合,即:a A 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 二、集合间的基本关系 1.“包含”关系—子集 (1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有 A?(或B?A) 包含关系,称集合A是集合B的子集。记作:B A?有两种可能(1)A是B的一部分,; 注意:B (2)A与B是同一集合。 ?/B或B?/A 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A) 或若集合A?B,存在x∈B且x A,则称集合A是集合B的真子集。 ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

梯形(提高)知识讲解

梯形(提高) 【学习目标】 1.理解梯形的有关概念,理解直角梯形和等腰梯形的概念. 2.掌握等腰梯形的性质和判定. 3.初步掌握研究梯形问题时添加辅助线的方法,使问题进行转化. 4. 熟练运用所学的知识解决梯形问题. 5. 掌握三角形,梯形的中位线定理. 【要点梳理】 知识点一、梯形的概念 一组对边平行,另一组对边不平行的四边形叫梯形. 在梯形中,平行的两边叫做梯形的底,较短的底叫做上底,较长的底叫做下底,不平行的两边叫做梯形的腰,夹在两底之间的垂线段叫做梯形的高,一腰和底的夹角叫做底角. 要点诠释:(1)定义需要满足三个条件:①四边形;②一组对边平行;③另一组对边不平行. (2)有一组对边平行的四边形有可能是平行四边形或梯形,关键在于另一组对边的位置或者数量关系的不同.梯形只有一组对边平行,而平行四边 形两组对边都平行;平行四边形中平行的边必相等,梯形中平行的一组 对边必不相等. (3)在识别梯形的两底时,不能仅由两底所处的位置决定,而是由两底的长度来决定梯形的上、下底. 知识点二、等腰梯形的定义及性质 1.定义:两腰相等的梯形叫等腰梯形. 2.性质:(1)等腰梯形同一个底上的两个内角相等. (2)等腰梯形的两条对角线相等. 要点诠释:(1)等腰梯形是特殊的梯形,它具有梯形的所有性质. (2)由等腰梯形的定义可知:等腰相等,两底平行. (3)等腰梯形同一底上的两个角相等,这是等腰梯形的重要性质,不仅是“下底角”相等,两个“上底角”也是相等的. 知识点三、等腰梯形的判定 1.用定义判定:两腰相等的梯形是等腰梯形. 2.判定定理:(1)同一底边上两个内角相等的梯形是等腰梯形. (2)对角线相等的梯形是等腰梯形. 知识点四、辅助线 梯形问题常常是通过作辅助线转化为特殊的平行四边形及三角形问题加以研究,一些常用的辅助线做法是: 方法作法图形目的 平移平移一腰 过一顶点作一腰的平行线 分解成一个平行四边形和一个 三角形 过一腰中点作另一腰的平 行线 构造出一个平行四边形和一对 全等的三角形

高一集合知识点总结

高一集合知识点总结 高一集合知识点总结【1】 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1) 元素的确定性如:世界上最高的山 (2) 元素的互异性如:集合中的任意两个元素都是不同的 (3) 元素的无序性: 集合中的元素之间是没有顺序的。如:{a,b,c} 和{a,c,b}是表示同一个集合 3.集合的表示方法:列举法与描述法。 注意:常用数集及其记法: 非负整数集(即自然数集) 记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 1) 列举法:将集合中的元素一一列举出来{a,b,c……} 2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR| x-32} ,{x| x-32} 3) 语言描述法:例:{不是直角三角形的三角形} 4) Venn图: 4、集合的分类: (1) 有限集含有有限个元素的集合 (2) 无限集含有无限个元素的集合 (3) 空集不含任何元素的集合例:{x|x2=-5}

二、集合间的基本关系 属于:;包含于:; 属于与包含于的区别: 属于是元素与集合之间的关系,例如:元素a属于集合A{a,b} 包含于是集合与集合之间的关系。例如:集合A{a}包含于集合B {a,c} 1.“包含”关系—子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。AA ②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A) ③如果AB, BC ,那么AC ④如果AB 同时BA 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真

集合章节知识点

集合 一、基本知识点 1、集合的概念 集合 元素及表示 元素与集合的关系——从属关系(∈与?必有其一) 集合的分类——按元素个数多少分:有限集、无限集、空集; 按元素本质特点分:数集、点集、形集、物集等 常用数集符号——N 、N ﹡或N +、Z 、Q 、R 集合的表示——字母表示法、花括号法(列举法、描述法)、图示法 特殊集合——空集=φ={ }=x {︳}01<

10、) ( ) ( ) ( ), ( ) ( ) (C A B A C B A C A B A C B A? ? ? = ? ? ? ? ? = ? ? C U = ?) (B A C U ? A C U B,C U ) (B A?=C U ? A C U B 11、B A B A B A B B A B A A B A? ? ? ? ? ? ? ? ? ? ?, , 12、B B A B A A B A= ? ? ? ? = ? 13、一元方程(组)、一元不等式(组)的解集是数集; 二元方程(组)、二元不等式(组)的解集是点集。 三、题型与方法 1、题型 考查集合概念 考查集合运算 以集合为载体考查其它数学知识,如不等式、方程等。 2、方法 分析、化简集合是处理集合问题的不变法则; 定义结合数形结合、等价转化、分类讨论是处理集合问题的常用方法。 3、举例 用元素三性解题:先用确定性、无序性列解方程,再用互异性检验。 条件A?B与有限集结合命题:依定义找列子集,分类讨论、等价转化 解答。 条件A?B与无限集结合命题:依定义画图分析,分类讨论、等价转化 解答。

相关主题