搜档网
当前位置:搜档网 › 硬质合金刀具加工的基本知识

硬质合金刀具加工的基本知识

硬质合金刀具加工的基本知识
硬质合金刀具加工的基本知识

在选择刀具的角度时,需要考虑多种因素的影响,如工件材料、刀具材料、加工性质(粗、精加工)等,必须根据具体情况合理选择。通常讲的刀具角度,是指制造和测量用的标注角度在实际工作时,由于刀具的安装位置不同和切削运动方向的改变,实际工作的角度和标注的角度有所不同,但通常相差很小。

制造刀具的材料必须具有很高的高温硬度和耐磨性,必要的抗弯强度、冲击韧性和化学惰性,良好的工艺性(切削加工、锻造和热处理等),并不易变形。

通常当材料硬度高时,耐磨性也高;抗弯强度高时,冲击韧性也高。但材料硬度越高,其抗弯强度和冲击韧性就越低。高速钢因具有很高的抗弯强度和冲击韧性,以及良好的可加工性,现在仍是应用最广的刀具材料,其次是硬质合金。

聚晶立方氮化硼适用于切削高硬度淬硬钢和硬铸铁等;聚晶金刚石适用于切削不含铁的金属,及合金、塑料和玻璃钢等;碳素工具钢和合金工具钢现在只用作锉刀、板牙和丝锥等工具。

硬质合金可转位刀片现在都已用化学气相沉积法涂覆碳化钛、氮化钛、氧化铝硬层或复合硬层。正在发展的物理气相沉积法不仅可用于硬质合金刀具,也可用于高速钢刀具,如钻头、滚刀、丝锥和铣刀等。硬质涂层作为阻碍化学扩散和热传导的障壁,使刀具在切削时的磨损速度减慢,涂层刀片的寿命与不涂层的相比大约提高1~3倍以上。

由于在高温、高压、高速下,和在腐蚀性流体介质中工作的零件,其应用的难加工材料越来越多,切削加工的自动化水平和对加工精度的要求越来越高。为了适应这种情况,刀具的发展方向将是发展和应用新的刀具材料;进一步发展刀具的气相沉积涂层技术,在高韧性高强度的基体上沉积更高硬度的涂层,更好地解决刀具材料硬度与强度间的矛盾;进一步发展可转位刀具的结构;提高刀具的制造精度,减小产品质量的差别,并使刀具的使用实现最佳化。

按切削运动方式和相应的刀刃形状,刀具又可分为三类。通用刀具,如车刀、刨刀、铣刀(不包括成形的车刀、成形刨刀和成形铣刀)、镗刀、钻头、扩孔钻、铰刀和锯等;成形刀具,这类刀具的刀刃具有与被加工工件断面相同或接近相同的形状,如成形车刀、成形刨刀、成形铣刀、拉刀、圆锥铰刀和各种螺纹加工刀具等;展成刀具是用展成法加工齿轮的齿面或类似的工件,如滚刀、插齿刀、剃齿刀、锥齿轮刨刀和锥齿轮铣刀盘等。

各种刀具的结构都由装夹部分和工作部分组成。整体结构刀具的装夹部分和工作部分都做在刀体上;镶齿结构刀具的工作部分(刀齿或刀片)则镶装在刀体上。

刀具的装夹部分有带孔和带柄两类。带孔刀具依靠内孔套装在机床的主轴或心轴上,借助轴向键或端面键传递扭转力矩,如圆柱形铣刀、套式面铣刀等。

带柄的刀具通常有矩形柄、圆柱柄和圆锥柄三种。车刀、刨刀等一般为矩形柄;圆锥柄靠锥度承受轴向推力,并借助摩擦力传递扭矩;圆柱柄一般适用于较小的麻花钻、立铣刀等刀具,切削时借助夹紧时所产生的摩擦力传递扭转力矩。很多带柄的刀具的柄部用低合金钢制成,而工作部分则用高速钢把两部分对焊而成。哪个牌子好有效的平价化妆水排行榜瘦腰晒后如何快速美白丰胸什么牌子晒后修复好眼霜平价润肤乳品牌

刀具的工作部分就是产生和处理切屑的部分,包括刀刃、使切屑断碎或卷拢的结构、排屑或容储切屑的空间、切削液的通道等结构要素。有的刀具的工作部分就是切削部分,如车刀、刨刀、镗刀和铣刀等;有的刀具的工作部分则包含切削部分和校准部分,如钻头、扩孔钻、铰刀、内表面拉刀和丝锥等。切削部分的作用是用刀刃切除切屑,校准部分的作用是修光已切削的加工表面和引导刀具。

刀具工作部分的结构有整体式、焊接式和机械夹固式三种。整体结构是在刀体上做出切削刃;焊接结构是把刀片钎焊到钢的刀体上;机械夹固结构又有两种,一种是把刀片夹固在刀体上,另一种是把钎焊好的刀头夹固在刀体上。硬质合金刀具一般制成焊接结构或机械

夹固结构;瓷刀具都采用机械夹固结构。

刀具切削部分的几何参数对切削效率的高低和加工质量的好坏有很大影响。增大前角,可减小前刀面挤压切削层时的塑性变形,减小切屑流经前面的摩擦阻力,从而减小切削力和切削热。但增大前角,同时会降低切削刃的强度,减小刀头的散热体积。

在选择刀具的角度时,需要考虑多种因素的影响,如工件材料、刀具材料、加工性质(粗、精加工)等,必须根据具体情况合理选择。通常讲的刀具角度,是指制造和测量用的标注角度在实际工作时,由于刀具的安装位置不同和切削运动方向的改变,实际工作的角度和标注的角度有所不同,但通常相差很小。

制造刀具的材料必须具有很高的高温硬度和耐磨性,必要的抗弯强度、冲击韧性和化学惰性,良好的工艺性(切削加工、锻造和热处理等),并不易变形。

通常当材料硬度高时,耐磨性也高;抗弯强度高时,冲击韧性也高。但材料硬度越高,其抗弯强度和冲击韧性就越低。高速钢因具有很高的抗弯强度和冲击韧性,以及良好的可加工性,现代仍是应用最广的刀具材料,其次是硬质合金。

聚晶立方氮化硼适用于切削高硬度淬硬钢和硬铸铁等;聚晶金刚石适用于切削不含铁的金属,及合金、塑料和玻璃钢等;碳素工具钢和合金工具钢现在只用作锉刀、板牙和丝锥等工具。

硬质合金可转位刀片现在都已用化学气相沉积法涂覆碳化钛、氮化钛、氧化铝硬层或复合硬层。正在发展的物理气相沉积法不仅可用于硬质合金刀具,也可用于高速钢刀具,如钻头、滚刀、丝锥和铣刀等。硬质涂层作为阻碍化学扩散和热传导的障壁,使刀具在切削时的磨损速度减慢,涂层刀片的寿命与不涂层的相比大约提高1~3倍以上。

由于在高温、高压、高速下,和在腐蚀性流体介质中工作的零件,其应用的难加工材料越来越多,切削加工的自动化水平和对加工精度的要求越来越高。为了适应这种情况,刀具的发展方向将是发展和应用新的刀具材料;进一步发展刀具的气相沉积涂层技术,在高韧性高强度的基体上沉积更高硬度的涂层,更好地解决刀具材料硬度与强度间的矛盾;进一步发展可转位刀具的结构;提高刀具的制造精度,减小产品质量的差别,并使刀具的使用实现最佳化。

硬质合金刀具基础知识

硬质合金刀具材料基础知识 文章来源:中国刀具信息网添加人:阿刀 硬质合金是使用最广泛的一类高速加工(HSM)刀具材料,此类材料是通过粉末冶金工艺生产的,由硬质碳化物(通常为碳化钨WC)颗粒和质地较软的金属结合剂组成。目前,有数百种不同成分的WC基硬质合金,它们中大部分都采用钴(Co)作为结合剂,镍(Ni)和铬(Cr)也是常用的结合剂元素,另外还可以添加其他一些合金元素。为什么有如此之多的硬质合金牌号?刀具制造商如何为某种特定的切削加工选择正确的刀具材料?为了回答这些问题,首先让我们了解一下使硬质合金成为一种理想刀具材料的各种特性。 硬度与韧性 WC-Co硬质合金在兼具硬度和韧性方面具有独到优势。碳化钨(WC)本身具有很高的硬度(超过刚玉或氧化铝),而且在工作温度升高时其硬度也很少下降。但是,它缺乏足够的韧性,而这对于切削刀具是必不可少的性能。为了利用碳化钨的高硬度,并改善其韧性,人们利用金属结合剂将碳化钨结合在一起,从而使这种材料既具有远远超过高速钢的硬度,同时又能够承受在大多数切削加工中的切削力。此外,它还能承受高速加工所产生的切削高温。 如今,几乎所有的WC-Co刀具和刀片都采用了涂层,因此,基体材料的作用似乎显得不太重要了。但实际上,正是WC-Co材料的高弹性系数(衡量刚度的指标,WC-Co的室温弹性系数约为高速钢的三倍)为涂层提供了不变形的基底。WC-Co基体还能提供所需要的韧性。这些性能都是WC-Co材料的基本特性,但也可以在生产硬质合金粉体时,通过调整材料成分和微观结构而定制材料性能。因此,刀具性能与特定加工的适配性在很大程度上取决于最初的制粉工艺。 制粉工艺 碳化钨粉是通过对钨(W)粉进行渗碳处理而获得的。碳化钨粉的特性(尤其是其粒度)主要取决于原料钨粉的粒度以及渗碳的温度和时间。化学控制也至关重要,碳含量必须保持恒定(接近重量比为6.13%的理论配比值)。为了通过后续工序来控制粉体粒度,可以在渗碳处理之前添加少量的钒和/或铬。不同的下游工艺条件和不同的最终加工用途需要采用特定的碳化钨粒度、碳含量、钒含量和铬含量的组合,通过这些组合的变化,可以产生各种不同的碳化钨粉。例如,碳化钨粉生产商ATI Alldyne公司共生产23种标准牌号的碳化钨粉,而根据用户要求定制的碳化钨粉品种可达标准牌号碳化钨粉的5倍以上。 在将碳化钨粉与金属结合剂一起进行混合碾磨以生产某种牌号硬质合金粉料时,可以采用各种不同的组合方式。最常用的钴含量为3%-25%(重量比),而在需要增强刀具抗腐蚀性的情况下,则需要加入镍和铬。此外,还可以通过添加其他合金成分,进一步改良金属结合剂。例如,在

硬质合金车刀几何角度选择原则

●硬质合金车刀合理前角、后角的参考值 (1)前角的选择 增大前角,可减小切削变形,从而减小切削力、切削热,降低切削功率的消耗,还可以抑制积屑瘤和鳞刺的产生,提高加工质量。但增大前角,会使楔角减小、切削刃与刀头强度降低,容易造成崩刃,还会使刀头的散热面积和容热体积减小,使切削区局部温度上升,易造成刀具的磨损,刀具耐用度下降。 选择合理的前角时,在刀具强度允许的情况下,应尽可能取较大的值,具体选择原则如下: 1)加工塑性材料时,为减小切削变形,降低切削力和和切削温度,应选较大的前角,加工脆性材料时,为增加刃口强度,应取较小的前角。工件的强度低,硬度低,应选较大的前角,反之,应取较小的前角。用硬质合金刀具切削特硬材料或高强度钢时,应取负前角。 2)刀具材料的抗弯强度和冲击韧性较高时,应取较大的前角。如高速钢刀具的前角比硬质合金刀具的前角要大;陶瓷刀具的韧性差,其前角应更小。 3)粗加工、断续切削时,为提高切削刃的强度,应选用较小的前角。精加工时,为使刀具锋利,提高表面加工质量,应选用较大的前角。当机床的功率不足或工艺系统的刚度较低时,应取较大的前角。对于成形刀具和在数控机床、自动线上不宜频繁更换的刀具,为了保证工作的稳定性和刀具耐用度,应选较小的前角或零度前角。 (2)后角的选择 增大后角,可减小刀具后刀面与已加工表面间的摩擦,减小磨损,还可使切削刃钝圆半径减小,提高刃口锋利程度,改善表面加工质量。但后角过大,将削弱切削刃的强度,减小散热体积使散热条件恶化,降低刀具耐用度。实验证明,合理的后角主要取决于切削厚度。其选择原则如下: 1)工件的强度、硬度较高时,为增加切削刃的强度,应选较小后角。工件材料的塑性、韧性较大时,为减小刀具后刀面的摩擦,可取较大的后角。加工脆性材料时,切削力集中在刃口附近,应取较小的后角。 2)粗加工或断续切削时,为了强化切削刃,应选较小的后角。精加工或连续切削时,刀具的磨损主要发生在刀具后刀面,应选用较大的后角。 3)当工艺系统刚性较差,容易出现振动时,应适当减小后角。在一般条件下,为了提高刀具耐用度,可增大后角,但为了降低重磨费用,对重磨刀具可适当减小后角。 为了使制造、刃磨方便,一般副后角等于主后角。下表1给出了硬质合金车刀合理后角的参考值。 表1 硬质合金车刀合理前角、后角的参考值

金属加工刀具的基本知识

金属加工刀具的基本知识 刀具是机械制造中用于切削加工的工具,又称切削工具。广义的切削工具既包括刀具,还包括磨具。 绝大多数的刀具是机用的,但也有手用的。由于机械制造中使用的刀具基本上都用于切削金属材料,所以“刀具”一词一般就理解为金属切削刀具。切削木材用的刀具则称为木工刀具。 刀具的发展在人类进步的历史上占有重要的地位。中国早在公元前28~前20世纪,就已出现黄铜锥和紫铜的锥、钻、刀等铜质刀具。战国后期(公元前三世纪),由于掌握了渗碳技术,制成了铜质刀具。当时的钻头和锯,与现代的扁钻和锯已有些相似之处。 然而,刀具的快速发展是在18世纪后期,伴随蒸汽机等机器的发展而来的。1783年,法国的勒内首先制出铣刀。1792年,英国的莫兹利制出丝锥和板牙。有关麻花钻的发明最早的文献记载是在1822年,但直到1864年才作为商品生产。 那时的刀具是用整体高碳工具钢制造的,许用的切削速度约为5米/分。1868年,英国的穆舍特制成含钨的合金工具钢。1898年,美国的泰勒和.怀特发明高速钢。1923年,德国的施勒特尔发明硬质合金。 在采用合金工具钢时,刀具的切削速度提高到约8米/分,采用高速钢时,又提高两倍以上,到采用硬质合金时,又比用高速钢提高两倍以上,切削加工出的工 砻嬷柿亢统叽缇 纫泊蟠筇岣摺? 由于高速钢和硬质合金的价格比较昂贵,刀具出现焊接和机械夹固式结构。1949~1950年间,美国开始在车刀上采用可转位刀片,不久即应用在铣刀和其他刀具上。1938年,德国德古萨公司取得关于陶瓷刀具的专利。1972年,美国通用电气公司生产了聚晶人造金刚石和聚晶立方氮化硼刀片。这些非金属刀具材料可使刀具以更高的速度切削。 1969年,瑞典山特维克钢厂取得用化学气相沉积法,生产碳化钛涂层硬质合金刀片的专利。1972年,美国的邦沙和拉古兰发展了物理气相沉积法,在硬质合金或高速钢刀具表面涂覆碳化钛或氮化钛硬质层。表面涂层方法把基体材料的高强度和韧性,与表层的高硬度和耐磨性结合起来,从而使这种复合材料具有更好的切削性能。 刀具按工件加工表面的形式可分为五类。加工各种外表面的刀具,包括车刀、刨刀、铣刀、外表面拉刀和锉刀等;孔加工刀具,包括钻头、扩孔钻、镗刀、铰刀和内表面拉刀等;螺纹加工工具,包括丝锥、板牙、自动开合螺纹切头、螺纹车刀和螺纹铣刀等;齿轮加工刀具,包括滚刀、插齿刀、剃齿刀、锥齿轮加工刀具等;切断刀具,包括镶齿圆锯片、带锯、弓锯、切断车刀和锯片铣刀等等。此外,还有组合刀具。 按切削运动方式和相应的刀刃形状,刀具又可分为三类。通用刀具,如车刀、刨刀、铣刀(不包括成形的车刀、成形刨刀和成形铣刀)、镗刀、钻头、扩孔钻、铰刀和锯等;成形刀具,这类刀具的刀刃具有与被加工工件断面相同或接近相同的形状,如成形车刀、成形刨刀、成形铣刀、拉刀、圆锥铰刀和各种螺纹加工刀具等;展成刀具是用展成法加工齿轮的齿面或类似的工件,如滚刀、插齿刀、剃齿刀、锥齿轮刨刀和锥齿轮铣刀盘等。 各种刀具的结构都由装夹部分和工作部分组成。整体结构刀具的装夹部分和工作部分都做在刀体上;镶齿结构刀具的工作部分(刀齿或刀片)则镶装在刀体上。

机械加工基本知识

机械加工培训教材 技术篇 机械加工基础知识 2011年8 月 第一部分:机械加工基础知识

一、机床 (一)机床概论 机床是工件加工的工作母机? 一个工件或零件从原始的毛胚状态加工成所需的形状和尺寸,都需在机床上完成. 从加工的对象来分类,机床可以分为: ?金属加工机床 ?木材加工机床 ?石材加工机床等等…. 机械加工的对象大多为金属材料,所以,我们以下涉及的机床只针对金属加工机床. 金属加工机床分类: ?锻压机床---通过压力使工件产生塑形变形,例如:压力机、弯板机、剪板机等等。 ?特种机床---通过特种办法加工工件,例如:电火花机床、线切割机床、激光切割机床、水压切割机床等等。 ?金属切削机床---采用刀具、砂轮等工具,除去工件上多余的材料,将其加工成所需的形状和尺寸的机床,主要包括: 车床:工件与主轴一起旋转,刀具作轴向与径向进给运动.主要用于旋转工件、 盘类零件、轴类零件的加工.车床的分类如下: 根据主轴中心线的方向:卧式车床,立式车床. 根据车床的大小:仪表车床、小型车床、普通车床、大型车床。 根据控制方式:普通(手动)车床、简易数控车床、全功能数控车床 根据控制轴数:普通(手动)车床与数控车床(X、Z轴)、车铣中心(X、Z、C 轴)、复合车铣中心(X、Y、Z、C轴) 根据主轴及刀塔数量:单主轴、双主轴、双刀塔车床。 铣____ 床L刀具旋转,工件与工作台一起作轴向运动。主要用于方型及箱体零件加 工。铣床的分类如下: 根据主轴中心线的方向:卧式铣床,立式铣床. 根据控制方式:普通(手动)铣床、数控铣床 根据控制轴数:普通铣床(X、Y、Z轴)、4轴数控铣床(X、丫、Z、A轴)、5 轴数控铣床(X、丫 Z、A、B轴) 根据主轴数量:双主轴铣床。 镗(铣)床:刀具旋转,工件与工作台一起作轴向运动。主要用于铣削与镗孔。一般为卧式。镗床分类如下: 根据镗床大小:台式镗床、大型落地镗铣床。 根据控制方式:普通(手动)镗床、坐标镗床、数控镗床 根据控制轴数:普通镗床(X、丫Z、B轴)、带W tt的数控镗床(W X、丫、Z、B轴)、带平园盘的数控镗床(W X、丫、Z、B、U轴) 钻床L钻孔用机床。有台式、摇背钻之分,也有数控钻床。 攻丝机床:攻丝用机床。一般钻床也有攻丝功能。 加工中心:带刀库及自动换刀系统的数控铣床或镗床。有钻削中心、立式加工中心、卧式加工中心、卧式镗铣加工中心、龙门加工中心、五面体加工中心、落地镗铣加工中

硬质合金刀具材料的研究现状与发展思路【深度解读】

硬质合金刀具材料的研究现状与发展思路【深度解读】

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500——600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢至今仍是一种常用刀具材料。高速钢是一种加

入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%——1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40——60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷 与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10——20倍,其红硬性比硬质合金高2——6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷材料的缺点是脆性大、横向断裂强度低、承受冲击载荷能力差,这也是近几十年来人们不断对其进行改进的重点。 陶瓷刀具材料可分为三大类:①氧化铝基陶瓷。通常是在Al2O3基体材料中加入TiC、WC、ZiC、TaC、ZrO2等成分,经热压制成复合陶瓷刀具,其硬度可达93——95HRC,

硬质合金基础知识

硬质合金基础知识 1概述 1.1 硬质合金定义 硬质合金是由难熔金属硬质化合物和金属粘结剂经过粉末冶金方法而制成的。其中难熔金属化合物有碳化钨(WC)、碳化钛(TiC)、碳化铌(NbC)、碳化钽(TaC)等。粘结金属有铁(Fe)、钴(Co)、镍(Ni)等。 1.2 硬质合金的性能及用途 硬质合金具有熔点高、硬度高、屈服强度高;良好的耐磨性、导热性、抗腐蚀性、抗氧化性等特殊的优良性能,广泛地应用于切削刀具、耐磨零件、模具材料、矿用齿、石油控制件等方面。 1.3 硬质合金的分类 按照硬质合金的用途,可分为: (1)切削工具:用作各种各样的切削工具。如:焊接刀具、数控刀具、整体硬质合金钻头、PCB等。我国切削工具的硬质合金用量约占整个硬质合金产量的1/3。 (2)矿用工具:主要用于冲击凿岩用钎头,地质勘探用钻头,矿山油田用潜孔钻、牙轮钻以及截煤机截齿,建材工业冲击钻等。我国地矿用硬质合金约占硬质合金生产总量的25%。(3)模具:拉丝模、冷镦模、挤压模、冲压模、拉拔模以及轧辊等。用作各类模具的硬质合金约占硬质合金生产总量的8%, (4)结构零件:如压缩机活塞、车床夹头、磨床心轴、轴承轴颈等。 (5)耐磨零件:如喷嘴、导轨、柱塞、球、轮胎防滑钉、铲雪机板等。 (6)耐高压高温用腔体:顶锤、压缸等制品。 (7)其他用途:如表链、表壳、高级箱包的拉链头、硬质合金商标等。 2. 硬质合金生产流程

3 硬质合金性能与应用 硬质合金性能指标: 包括材质检测和外观尺寸检测。 ?密度D—密度是单位体积重量; ?硬度HRA、HV—表征合金抵抗变形和磨损的能力; ?相对磁饱和Ms%—现代硬质合金生产总碳控制是通过合金的磁饱和来实现的; ?矫顽磁力Hc—主要决定于钴层厚度,同时与钴相分布的均匀性和合金的碳含量有 关; ?抗弯强度TRS—表征合金在弯曲负荷的作用下,试样完全断裂时的极限强度。 ?冲击韧性a k—试样破断时的冲击消耗功与所测试样横截面积之比值。固溶度越大, 冲击韧性越大。 ?金相—微观结构特征和缺陷。微观结构特征包括合金相成份、平均晶粒度和粒度组 成,钴层厚度及其分布。缺陷包括孔隙度,夹杂,聚晶、夹粗、混料、钴池、渗碳、脱碳等。 ?尺寸——主要指合金的尺寸以及形位公差。 ?外观——主要指合金的外观颜色、缺口、掉边、凹坑等等。 如有侵权请联系告知删除,感谢你们的配合!

木工刀具基础知识

木工刀具基础知识 ----------专业最好文档,专业为你服务,急你所急,供你所需------------- 文档下载最佳的地方 木工刀具基础知识 1.用刀具的机器有:四面刨、立轴机、刨花机、万能锯、手工车床、双头剪。 2.直的线条用四面刨,不足400mm 长的都须备长料过四面刨,四面刨加上套圈也可用在立轴机上(右刀或左刀),刀的钨钢片不好订做时,考虑做组合刀具,组合刀具尺寸不可自相予盾,须息息相关,外径同样,轴径一样,过四面刨考虑线条太厚或太薄,分清线型是一开二后四面刨,还是四面刨后一开二,工序流程要分清。 3.一般面板刀型要立轴机,注明材质,以便供应商选择钨钢片的硬度或密度及钢性强度。有弧形的刀具都需用立轴机,弧形是两边有弯弧,需做一正一反共2把刀。一定要注意弧形的部件是否需卧打式或立打式,一定要分清,可以参考#400 大碗碟上柜顶线刀具(组合刀),单立轴为逆转,双立轴有一正转,或一逆转,轴径为φ30mm。 4.公母刀或指接刀需注意配套画图或注明清楚。 5.刀具逆转方向: 四面刨右刀或上刀为逆转,左刀或下刀为顺转,进料0为参照物,只要记住木材进料和刀具转向须相反,刀具方向不可有一致性,单立轴为逆转,刨花机为顺转;四面刨轴径为φ40mm, 立轴机轴径为φ30mm,刨花机轴径为φ12.7mm,万能锯轴径为φ25.4mm,万能锯为顺转。 6.刀具的编码规则: (1)立轴刀流水号表示刀的数量或组合刀A,B,C(其中偶数为顺转,奇数为逆转) (2)四面刨流水号 A表示左刀,B表示右刀,C上刀,D下刀,1表示数量 S

(3)平刀以高度为准,表示100H的平方 (4)槽刀以开槽用的刀叫槽刀 (5)刨花刀,分常规则刨花刀,清底刨花刀,普通刨花刀属易耗品,画图存档 时分成轴承刨花刀,雕刻刀,龙珠刀。 7.四面刨刀: 主要用于四面刨机上,对部件进行纵向无弯曲的备料成形。钢锋刀:主要用于单压刨、双压刨、手压刨等刨光类机器上,对部件表面进行刨光。 (1) 锯片:主要用于双剪机、自动双剪机、立轴机、吊锯、纵锯、平台锯、裁 板机、自动封边机等机器上面,部件进行切齐、开小线、开口、修边、定宽、截头等加工。 (2) 锯条:主要用于带锯、线锯机上,对部件进行精略锯割等加工。 (3) 钻头:主要用于各式打孔机、刻花机上,对部件进行打孔作业。 8.直柄式钻头: 主要用于加工部件的内外牙孔、木榫孔、水平扣孔、层玻孔、& P: 9.刀具的 切削底径: 相对刀切削最小两点间的距离,底径一般为φ100或φ65,也可用φ90或 φ80。用模块打的底径需小于工作物的圆弧R的大小,不可大于 ----------专业最好文档,专业为你服务,急你所急,供你所需------------- 文档下载最佳的地方 此圆角 10.刀具的切削外径: 相对刀切削最大两点间的距离,最大一般为φ150,一般齿数为4T,万能锯为 12T或8T,槽刀齿数为6T或8T,刨花机为2T,平刀为4T,四面刨为4T。

硬质合金刀具并使用高效率的切削条件

硬质合金刀具并使用高效率的切削条件 选择合适的硬质合金刀具并使用高效率的切削条件,这就是车削三要素。 1.切削深度(ap) 切削深度指未加工表面与已加工表面的差值,单位毫米。它是工件未加工直径与已加工直径差值的一半。 切削深度应根据工件的加工余量、形状、机床功率、刚性及刀具的刚性来确定。 切削深度变化对硬质合金刀具寿命影响不大。切削深度过小时,会造成刮擦,只切削工件表面的硬化层,缩短刀具寿命。当工件表面具有硬化的氧化层时,应在机床功率允许范围内选择尽可能大的切削深度,以避免硬质合金刀尖只切削工件表面硬化层,造成刀尖的异常磨损甚至破损。 2.进给量(fn) 进给量是指工件每旋转一周,刀具的移动量,单位为毫米/转。 进给量是决定被加工表面质量的关键因素,同事也影响加工时切屑形成的范围和切削的厚度。 在对硬质合金刀具寿命影响方面,进给量过小,后刀面磨损大,刀具寿命大幅度降低;进给量过大,切削温度升高,后刀面磨损也增大,但较之切削速度对硬质合金刀具寿命的影响要小。 3.切削速度(Vc)

工件在车床上旋转,将其每分钟的转数定义为主轴转速(n)。由于工件旋转,在其直径的切削点处产生切削速度,称为线速度,单位米/分钟。通常用线速度来参考切削速度对加工的影响。 切削速度对刀具寿命有非常大的影响。提高切削速度时,切削温度就上升,而使硬质合金刀具寿命大大减短。加工不同种类、硬度的工件,切削速度会有相应的变化。通过大量钨钢刀片切削试验得出: a.在通常情况下,切削速度提高20%,刀具耐用度降低1/2;切削速度提高50%,刀具耐用度降低至原来的1/5。 b.低速(20-40m/min)切削易产生震动,使刀具寿命缩短。

机械加工工艺基础知识点知识讲解

机械加工工艺基础知识点 0总体要求 掌握常用量具的正确使用、维护及保养,了解机械零件几何精度的国家标准,理解极限与配合、形状和位置公差的含义及标注方法;金属切削和刀具的一般知识、常用夹具知识;能正确选用常用金属材料,了解一般机械加工的工艺路线与热处理工序。 一、机械零件的精度 1.了解极限与配合的术语、定义和相关标准。理解配合制、公差等级及配合种类。掌握极限尺寸、偏差、公差的简单计算和配合性质的判断。 1.1基本术语:尺寸、基本尺寸、实际尺寸、极限尺寸、尺寸偏差、上偏差、下偏差、(尺寸)公差、标准公差及等级(20个公差等级,IT01精度最高;IT18最低)、公差带位置(基本偏差,了解孔、轴各28个基本偏差代号)。 1.2配合制: (1)基孔制、基轴制;配合制选用;会区分孔、轴基本偏差代号。 (2)了解配合制的选用方法。 (3)配合类型:间隙、过渡、过盈配合 (4)会根据给定的孔、轴配合制或尺寸公差带,判断配合类型。 1.3公差与配合的标注 (1)零件尺寸标注 (2)配合尺寸标注 2.了解形状、位置公差、表面粗糙度的基本概念。理解形位公差及公差带。 2.1几何公差概念: 1)形状公差:直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度。 2)位置公差:位置度、同心度、同轴度。作用:控制形状、位置、方向误差。3)方向公差:平行度、垂直度、倾斜度、线轮廓度、面轮廓度。 4)跳动公差:圆跳动、全跳动。

2.2几何公差带: 1)几何公差带 2)几何公差形状 3)识读 3.正确选择和熟练使用常用通用量具(如钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺等)及专用量具(如螺纹规、平面样板等),并能对零件进行准确测量。 3.1常用量具: (1)种类:钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺。(2)识读:刻度,示值大小判断。 (3)调整与使用及注意事项:校对零点,测量力控制。 3.2专用量具: (1)种类:螺纹规、平面角度样板。 (2)调整与使用及注意事项 3.3量具的保养 (1)使用前擦拭干净 (2)精密量具不能量毛坯或运动着的工伯 (3)用力适度,不测高温工件 (4)摆放,不能当工具使用 (5)干量具清理 (6)量具使用后,擦洗干净涂清洁防锈油并放入专用的量具盒内。 二、金属材料及热处理 1.理解强度、塑性、硬度的概念。 2.了解工程用金属材料的分类,能正确识读常用金属材料的牌号。 2.1金属材料分类及牌号的识读: 2.1.1黑色金属: (1)定义:通常把以铁及以铁碳为主的合金(钢铁)称为黑色金属。

刀具基础知识及应用考试题-刀父

《刀具基础知识及应用》试题 考试时间:60分钟总分:100分 姓名:部门:得分: 一、填空题(每空1分,共30分) 1.刀具材料的种类很多,常用的金属材有高速钢、;非金属材料 有金刚石、、等。 2.材料的硬度主要有洛氏硬度、、等。 3.金属材料热处理方式有、、、。 4.钻头的钻芯形状有、两种。 5.车削刀具的‘两刃’指的是、。 6.用来作为刀具钝化的材料主要有、。 7.刀具涂层工艺的方法有磁控离子溅射、两种。 8.切削是一个从弹性变形-- --挤裂--切离的过程。 9.硬质合金的主要化学成分是、。 10.高速钢与硬质合金相比,强度高韧性好的是材料,硬度高、 脆性大的是材料。 11.下图1中刀具周刃标注参数中,19 指的是,Φ7.2指的 是,0.4±0.05指的是;下图2中刀具端刃标注参数中, 2 指的是,6 指的是,35 指的是;下图3中刀具 标注参数中,60±1指的是,12 -0.005/-0.015指的是, 2.7 +0.5/-0 指的是。 图1 图2

图3 二、判断题:(在题末括号内作记号:“√”表示对,“×”表示错)(每题2分,共20分) 1.刀具寿命的长短、切削效率的高低与刀具材料切削性能的优劣有关()2.积屑瘤的产生在精加工时要设法避免,但对粗加工有一定的好处。()3.刀具的磨钝出现在切削过程中,是刀具在高温高压下与工件及切屑产生强烈摩擦,失去正常切削能力的现象。()4.刀具材料的硬度越高,强度和韧性越低。()5.当粗加工、强力切削或承冲击载荷时,要使刀具寿命延长,必须减少刀具摩擦,所以后角应取大些。() 6.当工件表面有硬皮时,宜采用逆铣方式。() 7.切削加工中使用切削液目的是降低切削温度、润滑、冲洗切屑。() 8.立铣刀刃长越短,刚性越高,在切削过程中不容易发生弯曲和震动,提 高加工的精度。() 9.钻头顶角越大,轴向力越大,但毛刺力矩减少。() 10.一般硬质合金的硬度在92-94HRC。() 三、选择题(将正确答案填在空格内)(每题2分,共20分) 1.切削刃形状复杂的刀具有()材料制造较合适。 A.硬质合金 B、人造金刚石 C、陶瓷 D、高速钢 2.刀具磨损过程的三个阶段中,作为切削加工应用的是( )阶段。 A.初期磨损 B.正常磨损 C.急剧磨损 3.丝锥是用于加工各种( )螺纹的标准刀具。 A.内 B.外 C.内、外 4.加工塑性材料、软材料时刀具前角应________;加工脆性材料、硬材料时

硬质合金刀具采购合同范本

合同合同编号: 项目名称: 需方: 供方: 签订时间:

合同书 合同编号: 1.合同供货名称: 2.名称、规格型号、数量、材质: 3.合同总价:(含税) 4.交货期及交货方式 4.1 交货期: 在签订合同后30天到货。 4.2 交货地点: 4.3 运输方式:货物发到指定地点。 4.4 货物包装须适合多次搬运、防腐、防变形,防挤压磕碰,包装物不回收,不另收费。 4.5 供方负责将所供全部货物安全运抵合同交货地点。 5.到货验收

5.1 货物到货后,供方通知需方,供方必须携带“技术协议”及图纸和有关资料到交货地点与需方一起按合同验货,并在验货报告上签字。 5.2 货物验货缺损问题,按以下原则办理: 5.2.1 在验货之前(包括公路、铁路运输过程中)出现的货物缺、损、丢失件等由供方负责解决(包括索赔事宜),费用由供方承担。 5.2.2 验货过程中出现的缺、损、丢失、质量不合格等,供方须按合同要求补发,费用由供方负责。 6. 质量 6.1 质量验收按本合同“技术协议”及图纸规定执行。 6.2 质保期一年,质保期出现的货物质量问题,供方负责实行“三包”。由于供方原因出现重大质量问题,除质保期顺延外,造成的经济损失,供方还将承担相应的赔偿。由于需方责任造成的货物损坏,供方负责维修,合理收费。 6.3 供方保证所提供的设计、选材、加工制造、检验、验收要符合技术协议规定要求。 6.4 供方在规定的质量保证期负责实行“三包”,应对由于设计、制造、工艺或材料的缺陷所发生的质量问题负责,并免费修理和更换有缺陷的部分。 7. 费用结算方式与支付时间 7.1货物到货验货符合合同和技术协议要求,刀具调试验收合格后20日,支付合同金额的60%,计5.1万元(人民币);刀具试用期

硬质合金刀具牌号

焊接刀、焊接刀片:A1型:A116、A118、A120、A122、A125、A130、A136、A140等 A2型:A216 A220 A225等 A3型:A315 A320 A325 A330 A340等 A4型:A416 A420 A425 A430等 B2型:B214 B216 B220 B225等 C1型:C116 C120 C122 C125等 C3型:C304 C305 C306 C308 C310 C312 C316等 C4型:420 C425 C430 C435等 D2型:D216 D220 D224 D226 D228 D230等 E3型:E325 E330等 F2型:F216 F216A F220 F230 F230A等 机夹刀片主要型号: 3A型:31305A 31605A等 3C型:31303C 31603C等 3D型:31303D 31603D 31903D等 3V型:31305V 31310V 31320V 31605V 31610V 31620V等 C-H型:C1610H6 C1610H6Z C1910H6 C1910H6Z等 T3A型:T31305A T31605A T31905A等 T3F型:T31305F T31605F T31905F等 T3V型:T31305V T31310V T31605V T31610V T31910V等 4A型:41305A 41315A 41605A 41905A等 4F型:41305F 41605F 41905F等 4H型:41305H 41605H 41905H 41910H 42210H8 42510H8等 4V型:41305V 41310V 41605V 41610V 41620V等 铣刀片主要型号: 3-0型:313100 316100等 3-8型:313058 313108等 3-11型:3100511 3130511 3131011等 4-0型:413050 413100 416050 416100 419100 419200等 4-8型413058 416058 416108 416158 419108等 4-11型:4130511 4131011 4160511 4161011 4161511 4191011等 G3-0型:G307050 G310050 G313050 G316050等

金属加工刀具基本知识、金属刀具材料介绍

金属加工刀具基本知识、金属刀具材料介绍 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 在选择刀具的角度时,需要考虑多种因素的影响,如工件材料、刀具材料、加工性质(粗、精加工)等,必须根据具体情况合理选择。通常讲的刀具角度,是指制造和测量用的标注角度在实际工作时,由于刀具的安装位置不同和切削运动方向的改变,实际工作的角度和标注的角度有所不同,但通常相差很小。 制造刀具的材料必须具有很高的高温硬度和耐磨性,必要的抗弯强度、冲击韧性和化学惰性,良好的工艺性(切削加工、锻造和热处理等),并不易变形。 通常当材料硬度高时,耐磨性也高;抗弯强度高时,冲击韧性也高。但材料硬度越高,其抗弯强度和冲击韧性就越低。高速钢因具有很高的抗弯强度和冲击韧性,以及良好的可加工性,现代仍是应用最广的刀具材料,其次是硬质合金。 聚晶立方氮化硼适用于切削高硬度淬硬钢和硬铸铁等;聚晶金刚石适用于切削不含铁的金属,及合金、塑料和玻璃钢等;碳素工具钢和合金工具钢现在只用作锉刀、板牙和丝锥等工具。 硬质合金可转位刀片现在都已用化学气相沉积法涂覆碳化钛、氮化钛、氧化铝硬层或复合硬层。正在发展的物理气相沉积法不仅可用于硬质合金刀具,也可用于高速钢刀具,如钻

头、滚刀、丝锥和铣刀等。硬质涂层作为阻碍化学扩散和热传导的障壁,使刀具在切削时的磨损速度减慢,涂层刀片的寿命与不涂层的相比大约提高1~3倍以上。 由于在高温、高压、高速下,和在腐蚀性流体介质中工作的零件,其应用的难加工材料越来越多,切削加工的自动化水平和对加工精度的要求越来越高。为了适应这种情况,刀具的发展方向将是发展和应用新的刀具材料;进一步发展刀具的气相沉积涂层技术,在高韧性高强度的基体上沉积更高硬度的涂层,更好地解决刀具材料硬度与强度间的矛盾;进一步发展可转位刀具的结构;提高刀具的制造精度,减小产品质量的差别,并使刀具的使用实现最佳化。 内容来源网络,由深圳机械展收集整理! 更多相关内容,就在深圳机械展!

《机械制造技术基础》知识点整理

第一章机械制造系统和制造技术简介 1.制造系统:制造过程及其所涉及的硬件,软件和人员组成的一个将制造资源转变为产品的有机体,称为制造系统。 2.制造系统在运行过程中总是伴随着物料流,信息流和能量流的运动。 3.制造过程由技术准备,毛坯制造,机械加工,热处理,装配,质检,运输,储存等过程组成。 4.制造工艺过程:技术准备,机械加工,热处理,装配等一般称为制造工艺过程。 5.机械加工由若干工序组成。 6.机械加工中每一个工序又可分为安装,工位,工步,走刀等。 7.工序:一个工人在一个工作地点对一个工件连续完成的那一部分工艺过程。 8.安装:在一个工序中,工件在机床或夹具中每定位和加紧一次,称为一个安装。 9.工位:在工件一次安装中,通过分度装置使工件相对于机床床身改变加工位置每占据一个加工位置称为一个工位。 AHA12GAGGAGAGGAFFFFAFAF

10.工步:在一个工序内,加工表面,切削刀具,切削速度和进给量都不变的情况下完成的加工内容称为工步。 11.走刀:切削刀具在加工表面切削一次所完成的加工内容。 12.按生产专业化程度不同可将生产分为三种类型:单件生产,成批生产,大量生产。 13.成批生产分小批生产,中批生产,大批生产。 14.机械加工的方法分为材料成型法,材料去除法,材料累加法。 15.材料成型法是将不定形的原材料转化为所需要形状尺寸的产品的一种工艺方法。 16.材料成型工艺包括铸造,锻造,粉末冶金,连接成型。 17.影响铸件质量关键因素是液态金属流动性和在凝固过程中的收缩性。 18.常用铸造工艺有:普通砂型铸造,熔模铸造,金属型铸造,压力铸造,离心铸造,陶瓷铸造。 19.锻造工艺分自由锻造和模膛锻造。 20.粉末冶金分固相烧结和含液相烧结。 21.连接成型分可拆卸的连接和不可拆卸的连接(如焊 AHA12GAGGAGAGGAFFFFAFAF

金属切削刀具基本知识

技师学院 机械安装与维修系金属切削刀具基本知识郝赫(编)

金属切削刀具基本知识 1 金属切削的基本要素 1.1 机械制造过程概述 机器是由零件、组件、部件等组成的,一台机器的制造过程包含了从零件、部件加工到整机装配的全过程,这一过程可以用图1所示的系统图来表示。 首先,从图中可以看出机器中的组成单元是一个个的零件,它们都是由毛坯经过相应的机械加工工艺过程变为合格零件的,在这一过程中要根据零件的设计信息制订每一个零件的适当加工方法,加工成在形状、尺寸、表面质量等各方面都符合加工使用要求的合格零件。 其次,要根据机器的结构和技术要求,把某些零件装配成部件,部件是由若干组件、套件和零件在一个基准零件上装配而成的,部件在整个机器中能完成一定的、完整的功能,这种把零件和组件、套件装配成部件的过程称为部装过程。部装过程是依据部件装配工艺,应用相应的装配工具和技术完成的,部件装配的质量直接影响整个机器的性能和质量。 最后,在一个基准零部件上把各个部件、零件装配成一个完整的机器,我们把零件和部件装配成最终机械产品的过程称为总装过程,总装过程是依据总装工艺文件进行的,在产品总装后,还要经过检测、试车、喷漆、包装等一系列辅助过程最终形成合格的产品,如一辆汽车就是经过这样的机械制造过程而生产出来的。 图1 机械制造过程的构成

1.2机械加工工艺系统 从机械制造的整个过程来看,机器的最基本组成单元为零件,也就是首先要制造出合格的零件,然后组装成部件,再由零、部件装配成机器,因此,制造出符合要求的各种零件是机械加工的主要目的,而机械加工中绝大部分材料是金属材料,故机械加工主要是对各种金属进行切削加工。 零件的表面通常是几种简单表面如平面、圆柱面、圆锥面、球面、成形表面等的组合,而零件的表面是通过各种切削加工方法得到的,其中在金属切削机床上利用工件和刀具彼此间协调的相对运动切除被加工零件多余的材料,获得在形状、尺寸和表面质量都符合要求的这种加工方法称为金属切削加工。 金属切削加工常作为零件的最终加工方法,它需要用金属切削刀具直接对零件进行加工,它们之间要有确定的相对运动和承受很大的切削力,通常需在金属切削机床上进行加工,零件和刀具需通过机床夹具和刀架与机床进行可靠的联接,带动它们做相对的运动,实现切削加工,这种由金属切削机床、刀具、夹具和工件构成的机械加工封闭系统称为机械加工工艺系统(如图2所示),其中金属切削机床是加工机械零件的工作机械,起支承和提供动力作用;刀具起直接对零件进行切削加工作用;机床夹具用来对零件定位和夹紧,使之有正确的加工位置。本章就围绕机械加工工艺系统四个组成部分进行分析,阐述机械零件加工的整个过程。 图2 机械加工工艺系统的构成 1.3主要切削加工工艺简介

机械加工刀具基础知识(全彩版)

机械加工刀具基础知识
1.1 切削运动及切削要素
一、零件表面的形成 表面加工方法

1.1 切削运动及切削要素
二、切削运动及切削用量
主运动(图中Ⅰ) 切削运动
(cutting motions)
进给运动(图中Ⅱ) 切削速度VC 切削用量
(cutting conditions)
进给量f (或进给速度Vf) 背吃刀量ap 切削用量三要素
切削要素 切削层参数(parameters of undeformed chip)

1.1 切削运动及切削要素
二、切削运动及切削用量 1.主运动和切削速度
主运动(primary motion) 是使刀具和工件之间产生相 对运动,促使刀具接近工件 而实现切削的运动。

1.1 切削运动及切削要素
二、切削运动及切削用量
1.主运动和切削速度 主运动为旋转运动(如车削、铣削等),切削速度一般为其最大线速度
v
pdn c = 1000
m/s或m/min
主运动为往复直线运动(如刨削、插削等),以其平均速度为切削速度
vc =
2 Lnr
1000
m/s或m/min

1.1 切削运动及切削要素
二、切削运动及切削用量 2.进给运动和进给量
进给运动(feed movement) 使刀具与工件之间产生附加的 相对运动,加上主运动,即可 连续地切除余量。 刀具在进给运动方向上相 对工件的位移量称为进给量 (feed rate)。

硬质合金刀具材料的研究现状与发展思路【深度解读】

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500——600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢至今仍是一种常用刀具材料。高速钢是一种加入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%——1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40——60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷

硬质合金刀具的型号、分类、用途

硬质合金刀具的型号、分类、用途 型号 1、整体硬质合金刀具类,包含麻花钻,铣刀,铰刀,镗刀,铣刀片,球头铣刀,锯片铣刀,锥度铣刀,光面塞规,圆棒及阶梯钻。 2、镶合金刀具类,包含铰刀、螺旋立铣刀,钻扩成型刀,汽车轮毂刀,三面刃,T型铣刀和各种成型刀。 3、可转位刀具类,包括硬质合金可转位立铣刀,可转位面铣刀,可转位燕尾铣刀和可 转位三面刃。 4、高速钢刀具类,包括高速钢成型铣刀,左旋钻,球面铣刀,钴高速钢刀具及各种非标成型高速钢刀具。 5、行业专用刀具类,包含汽车行业专用刀、动员机行业专用刀、缝纫机行业专用刀、模具行业专用刀、纺机业专用刀和印制线路板行业专用刀。 硬质合金分类与用途- 硬质合金分类及用途,直到国家标准正式发布之前,国内相关书本、杂志、资料中表 述没有严格规范,通常按合金成份进行分类,用途表述则比较分散。 分类 碳化钨基硬质合金:包括WC—Co、WC—TaC—Co、WC—TiC—Co、WC—TiC—TaC —Co、WC—Ti—TaC—NbC—Co等合金,这些合金均以碳化钨为主成份。 碳化钛基或碳氮化钛基硬质合金:通常以TiC或Ti(C、N)为基础成份,以Ni—Mo 作粘结剂而组成的一种硬质合金。这类硬质合金近几年又有许多新的进展,如含Ta、W等重金属元素的多元复式碳化物固溶体加入研制高性能Ti(C、N)基金属陶瓷等。 碳化铬基硬质合金:以Cr3C2为基,以Ni或Ni—W等作粘结剂而组成的硬质合金, 通常用来作耐磨耐腐蚀零件,近几年还大量用于装饰品部件如表链等。 钢结硬质合金:以TiC或 WC为基,钢作粘结剂而组成的一种硬质合金,是一种可进 行机加工和热处理的合金,是介于传统硬质合金与合金钢之间的一种工程材料。 涂层硬质合金:通常指在韧性的碳化钨基硬质合金基体上通过化学气相沉积或物理涂 层方法,涂上几微米厚的TiC、TiN、Ti(C、N)、Al2O3之类的硬质化合物而生产的。 用途

硬质合金刀具基础知识

硬质合金刀具材料基础知识 浏览: 文章来源:中国刀具信息网添加人:阿刀添加时间:2011-01-31 硬质合金是使用最广泛的一类高速加工(HSM)刀具材料,此类材料是通过粉末冶金工艺生产的,由硬质碳化物(通常为碳化钨WC)颗粒和质地较软的金属结合剂组成。目前,有数百种不同成分的WC基硬质合金,它们中大部分都采用钴(Co)作为结合剂,镍(Ni)和铬(Cr)也是常用的结合剂元素,另外还可以添加其他一些合金元素。为什么有如此之多的硬质合金牌号?刀具制造商如何为某种特定的切削加工选择正确的刀具材料?为了回答这些问题,首先让我们了解一下使硬质合金成为一种理想刀具材料的各种特性。 硬度与韧性 WC-Co硬质合金在兼具硬度和韧性方面具有独到优势。碳化钨(WC)本身具有很高的硬度(超过刚玉或氧化铝),而且在工作温度升高时其硬度也很少下降。但是,它缺乏足够的韧性,而这对于切削刀具是必不可少的性能。为了利用碳化钨的高硬度,并改善其韧性,人们利用金属结合剂将碳化钨结合在一起,从而使这种材料既具有远远超过高速钢的硬度,同时又能够承受在大多数切削加工中的切削力。此外,它还能承受高速加工所产生的切削高温。如今,几乎所有的WC-Co刀具和刀片都采用了涂层,因此,基体材料的作用似乎显得不太重要了。但实际上,正是WC-Co材料的高弹性系数(衡量刚度的指标,WC-Co的室温弹性系数约为高速钢的三倍)为涂层提供了不变形的基底。WC-Co基体还能提供所需要的韧性。这些性能都是WC-Co材料的基本特性,但也可以在生产硬质合金粉体时,通过调整材料成分和微观结构而定制材料性能。因此,刀具性能与特定加工的适配性在很大程度上取决于最初的制粉工艺。 制粉工艺 碳化钨粉是通过对钨(W)粉进行渗碳处理而获得的。碳化钨粉的特性(尤其是其粒度)主要取决于原料钨粉的粒度以及渗碳的温度和时间。化学控制也至关重要,碳含量必须保持恒定(接近重量比为6.13%的理论配比值)。为了通过后续工序来控制粉体粒度,可以在渗碳处理之前添加少量的钒和/或铬。不同的下游工艺条件和不同的最终加工用途需要采用特定的碳化钨粒度、碳含量、钒含量和铬含量的组合,通过这些组合的变化,可以产生各种不同的碳化钨粉。例如,碳化钨粉生产商ATI Alldyne公司共生产23种标准牌号的碳化钨粉,而根据用户要求定制的碳化钨粉品种可达标准牌号碳化钨粉的5倍以上。 在将碳化钨粉与金属结合剂一起进行混合碾磨以生产某种牌号硬质合金粉料时,可以采用各种不同的组合方式。最常用的钴含量为3%-25%(重量比),而在需要增强刀具抗腐蚀性的情况下,则需要加入镍和铬。此外,还可以通过添加其他合金成分,进一步改良金属结合剂。例如,在WC-Co硬质合金中添加钌,可在不降低其硬度的前提下显著提高其韧性。增加结合剂的含量也可以提高硬质合金的韧性,但却会降低其硬度。 减小碳化钨颗粒的尺寸可以提高材料的硬度,但在烧结工艺中,碳化钨的粒度必须保持不变。烧结时,碳化钨颗粒通过溶解再析出的过程结合和长大。在实际烧结过程中,为了形成

相关主题