搜档网
当前位置:搜档网 › 数据挖掘试卷分析

数据挖掘试卷分析

数据挖掘试卷分析
数据挖掘试卷分析

一、简答题

1、什么是数据挖掘?数据挖掘有哪些挖掘任务?请进行简要的解释。

答:数据挖掘是一种技术,将传统的数据分析方法与处理大量数据的复杂算法相结合,从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用信息和知识的过程。简而言之,数据挖掘是从大量数据中挖掘有趣模式和知识的过程。

数据挖掘的任务主要有分类分析、聚类分析、关联分析、序列分析及时间序列。另外,还有孤立点分析、依赖关系分析、概念描述、偏差检测等。

1、分类分析(Classification Analysis)

分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。分类是有制导的学习,它利用训练数据集通过一定的算法而求得分类规则。分类可被用于规则描述和预测,常应用于风险管理、广告投放等商业环境。

2、聚类分析(Clustering Analysis)

聚类又被称为分隔(segmentatio),聚类分析是把数据按照相似性归纳成若干类别,同一类中的数据彼此相似,不同类中的数据相异。聚类分析可以建立宏观的概念,发现数据的分布模式,以及可能的数据属性之间的相互关系。聚类分析是无制导的学习,聚类分析与分类分析不同,它不依赖于没有事先确定的类,也没有已具有类标识的训练集。好的聚类分析算法应该使得所得到的聚簇内的相似性很高,而不同的聚簇间的相似性很低。

3、关联分析 (Association Analysis)

关联规则挖掘是由Rakesh Apwal等人首先提出的。两个或两个以上变量的取值之间存在某种规律性,就称为关联。数据关联是数据库中存在的一类重要的、可被发现的知识。关联分为简单关联、时序关联和因果关联。关联分析的目的是找出数据库中隐藏的关联网。一般用支持度和可信度两个阀值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。最典型的应用是市场中购物篮分析。

4、序列分析及时间序列(Sequence Analysis and Time Sequence)

序列分析及时间序列是指通过序列信息或时间序列搜索出重复发生概率较高的模式。与回归一样,它也是用己知的数据预测未来的值,但这些数据的区别是变量所处的序列或时间的不同。

2、为什么要数据预处理?简要论述数据预处理步骤和每一步骤的任务

答:原始业务数据来自多个数据库或数据仓库,它们的结构和规则可能是不同的,这将导致原始数据非常的杂乱、不可用,即使在同一个数据库中,也可能存在重复的和不完整的数据信息,为了使这些数据能够符合数据挖掘的要求,提高效率和得到清晰的结果,必须进行数据的预处理。为数据挖掘算法提供完整、干净、准确、有针对性的数据,减少算法的计算量,提高挖掘效率和准确程度。

数据预处理步骤包含数据清理、数据集成、数据规约和数据变换。数据清理的任务是通过填充缺失值、光滑噪声并识别离群点、纠正数据中的不一致。将多个数据源中的数据结合起来存放在一个一致的数据存储中,有助于减少结果数据集的冗余和不一致,从而提高其后挖掘过程的准确性和速度。数据规约的任务是指在尽可能保持原始数据完整性的前提下,最大限度地精简数据量(缩小数据的取值范围)。这样,在归约后的数据集上挖掘将更有效,并产生相同(或几乎相同)的分析结果。数据变换的任务是对数据进行变换和统一,主要有规范化、离散化等策略,达到适用于挖掘的目的。

3、数据仓库相关?什么是OLAP?在数据仓库上经常进行哪些OLAP操作?请进行简要解释。

答:

建立数据仓库(特点见书P83)的目的有3个:

一是为了解决企业决策分析中的系统响应问题,数据仓库能提供比传统事务数据库更快的大规模决策

分析的响应速度。

二是解决决策分析对数据的特殊需求问题。决策分析需要全面的、正确的集成数据,这是传统事务数据库不能直接提供的。

三是解决决策分析对数据的特殊操作要求。决策分析是面向专业用户而非一般业务员,需要使用专业的分析工具,对分析结果还要以商业智能的方式进行表现,这是事务数据库不能提供的。

建立数据仓库的方法:可以使用自顶向下方法、自底向上方法或者二者结合的混合方法建立

构造步骤:一般的,数据仓库的设计过程包含如下步骤:①选取待建模的商务处理②选取商务处理的粒度③选取用于每个事实表记录的维④选取事实表中每条记录的度量。

数据仓库与数据库的不同:

数据仓库是面向主题的,集成的,不易更改且随时间变化的数据集合,用来支持管理人员的决策,

数据库由一组内部相关的数据和一组管理和存取数据的软件程序组成,是面向操作型的数据库,是组成数据仓库的源数据.它用表组织数据,采用ER数据模型.它们都为数据挖掘提供了源数据,都是数据的组合

OLAP是联机分析处理的简称,OLAP是一种软件技术,它使分析人员能够迅速、一致、交互地从各个方面观察信息,以达到深入理解数据的目的。

OLAP的特性:

OLAP是在OLTP的基础上发展起来的,以数据仓库为基础的数据分析处理,是共享多维信息的快速分析,是被专门设计用于支持复杂的分析操作,侧重对分析人员和高层管理人员的决策支持。

(1)快速性。用户对OLAP的快速反应能力有很高的要求。要求系统能在几秒钟内对用户的多数分析要求做出反应。

(2)可分析性。OLAP系统应能处理与应用有关的任何逻辑分析和统计分析。尽管系统可以事先编程,但并不意味着系统定义了所有的应用。

(3)多维性。多维性是OLAP的关键属性。系统能够提供对数据分析的多维视图和分析,包括对层次维和多重层次维的支持。事实上,多维分析是分析企业数据最有效的方法,是OLAP的灵魂。

(4)信息性。不论数据量有多大,也不管数据存储在何处,OLAP系统应能及时获得信息,并且管理大容量信息。

(5)共享性。共享性是在大量用户间实现潜在地共享秘密数据所必须的安全需求。

OLAP的操作:

(1) 上卷:上卷操作通过沿一个维的概念分层向上攀升或者通过维规约,对数据立方体进行聚集;

(2) 下钻:下钻是上卷的逆操作,它由不太详细的数据到更详细的数据。下钻可以通过沿维的概念分层向下或引入附加的维来实现;

(3) 切片和切块:切片操作对给定立方体的一个维进行选择,导致一个子立方体。切块操作通过对两个或多个维执行选择,定义子立方体;

(4) 转轴(旋转):转轴是一种可视化操作,它转动数据的视角,提供数据的替代表示;

(5) 其他OLAP操作:钻过执行涉及多个事实表的查询;钻透操作使用关系SQL机制,钻透数据立方体的底层,到后段关系表。

OLTP和OLAP的区别:

用户和系统的面向性:OLTP面向顾客,而OLAP面向市场;

数据内容:OLTP系统管理当前数据,而OLAP管理历史的数据;

数据库设计:OLTP系统采用实体-联系(ER)模型和面向应用的数据库设计,而OLAP系统通常采用星形和雪花模型;

视图:OLTP系统主要关注一个企业或部门内部的当前数据,而OLAP 系统主要关注汇总的统一的数据;

访问模式:OLTP访问主要有短的原子事务组成,而OLAP系统的访问大部分是只读操作,尽管许多可能是复杂的查询。

集中常用数据模型

星形模型:最常见的模型范例是星形模式,其中数据仓库包括(1)一个大的包含大批数据并且不含冗余的中心表(事实表);(2)一组小的附属表(维表),每维一个。中间是事实表,连接一组维表雪花模式:雪花模式是星型模式的变种,其中某些维表是规范化的,而数据进一步分解到附加的维表中,它的图形类似于雪花的形状

事实星座型:多个事实表共享维表,这种模式可以看作星型模式及,因此称为星系模式或事实星座

4、简述什么是cluster samples,什么是stratified sample;,二者有何区别?

答:如果D中的元组被分组,放入M个互不相交的簇,则可以得到s个簇的简单随机抽样,这样的抽样称为簇抽样;如果D被划分为互不相交的部分,称为层,则通过对每一层的简单随机抽样就能得到D的分层抽样。不同之处:①划分的依据不同;②抽样的方法不同;③适用范围不同。簇抽样需要抽取若干个簇,而分层抽样则是对每个层抽取一个子样本。分层抽样适用于界质分明的群体,而簇抽样适用于界质不清的总体。

5、简要论述bagging方法的基本思想,并举例说明

答:Bagging即套袋法,其算法过程如下:

从原始样本集中抽取训练集。每轮从原始样本集中使用有放回抽样的方法抽取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中)。共进行k轮抽取,得到k个训练集。(k个训练集之间是相互独立的)

每次使用一个训练集得到一个模型,k个训练集共得到k个模型。(注:这里并没有具体的分类算法或回归方法,我们可以根据具体问题采用不同的分类或回归方法,如决策树、感知器等)对分类问题:将上步得到的k个模型采用投票的方式得到分类结果;对回归问题,计算上述模型的均值作为最后的结果。(所有模型的重要性相同)

6、监督、无监督、半监督、强化学习

答:Supervised Learning的数据是有特征(feature)和标签(label)的。机器可以寻找到标签和特征之间的联系,当面对只有特征而没有标签的数据时,可以判断出标签。

与Supervised Learning(监督学习)相对的是Unsupervised Learning(无监督学习)。Supervised的数据只有特征(feature),没有标签(label)。这种问题在机器学习领域中就被称作聚类(Clustering)。在只有特征没有标签的训练数据集中,通过数据之间的内在联系和相似性将他们分成若干类。

处在监督学习和无监督学习之间的是半监督学习。Semi-Supervised Learning中使用的数据,有一部分是标记过的,而大部分是没有标记的。因此和监督学习相比,半监督学习的成本较低,但是又能达到较高的准确度。

强化学习也是使用未标记的数据,但是可以通过某种方法知道你是离正确答案越来越近还是越来越远(即奖惩函数)。可以把奖惩函数想象成正确答案的一个延迟的、稀疏的形式。在监督学习中,能直接得到每个输入的对应的输出。强化学习中,训练一段时间后,你才能得到一个延迟的反馈,并且只有一点提示说明你是离答案越来越远还是越来越近。

二、画出一列数据的盒图

极差是最大值与最小值之差,四分位数是三个数据点,把数据分布划分成4个相等的部分(Q1、Q2、Q3),四分位数极差(IQR )则是Q3-Q1的值。识别可以的离群点的通常规则是,挑选落在第三个四分位数之上或第一个四分位数之下至少1.5XIQR 处的值。

分布的五数概括由中位数、四分位数Q1和Q3、最小和最大观测值组成,按照次序写出。而盒图就是典型的直观表示,盒的端点一般在四分位数上,使得盒的长度是四分位数极差IQR ,中位数用盒内的线标记,盒外两条线(称作胡须)延伸到最小和最大观测值。

基本统计的图形显示包括分位数图、分位数-分位数图、直方图、散点图。

三、使用min-max 与z-score 方法实现归一化

最小最大规范化对原始数据进行线性变换,假设minA 和maxA 是属性的最小值和最大值,则公式为:A A A A A A i i new new new v v min _)min _max _(min max min '+---=,把A 的值vi 映射到

[new_min,new_max]区间中。

z 分数规范化,属性A 拔的值基于A 的均值和标准差规范化,由下式计算:

A i i A

v v σ-='

四、数据库中包含9个事务,设最小支持度阈值min_sup=30%,请使用apriori 算法或者FP-GROWTH 算法或者垂直数据格式方法找出所有的频繁项集。

Apriori 算法的基本操作步骤P160

Apriori 使用一种称作逐层搜索的迭代方法,K 项集用于探索K+1项集。

该方法是基于候选的策略,降低候选数

Apriori 剪枝原则:若任何项集是非频繁的,则其超集必然是非频繁的(不用产生和测试超集)

令 k=1

产生长度为1的频繁项集 循环,直到无新的频繁项集产生

? 从长度为k 的频繁项集产生长度为k+1的候选频繁项集

?连接步:项集的各项排序,前k-1个项相同

?若候选频繁子集包含长度为k的非频繁子集,则剪枝

?剪枝步:利用支持度属性原则

?扫描数据库,计算每个候选频繁集的支持度

?删除非频繁项, 保留频繁项

该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递归的方法。

apriori算法基本过程,不足之处:Apriori算法的缺点:(1)由频繁k-1项集进行自连接生成的候选频繁k项集数量巨大。(2)在验证候选频繁k项集的时候需要对整个数据库进行扫描,非常耗时。

五、根据直观划分离散化

3-4-5规则可以用来将数值数据分割成相对一致、看上去自然的区间。一般,该规则根据最高有效位的取值范围,递归逐层地将给定的数据区域划分为3、4或5个相对等宽的区间。我们将用一个例子解释这个规则的用法。规则如下:

如果一个区间在最高有效位包含3, 6, 7或9个不同的值,则将该区间划分成3个区间(对于3, 6和9,划分成3个等宽的区间;而对于7,按2-3-2分组,划分成3个区间)。

如果它在最高有效位包含2, 4或8个不同的值,则将区间划分成4个等宽的区间。

如果它在最高有效位包含1, 5或10个不同的值,则将区间划分成5个等宽的区间。该规则可以递归地用于每个区间,为给定的数值属性创建概念分层。

概念分层的产生

使用数据离散化技术,通过把值映射到区间或概念标号变换数值数据,这种方法可以用来自动的产生数据的概念分层,概念分层允许在多个粒度层挖掘。对于标称数据,概念分层可以基于模式定义以及每个属性的不同值个数产生。

六、决策树(ID3算法)

决策树是一种类似流程图的树结构,其中,每个内部结点(非树叶结点)表示在一个属性上的测试,每个分枝代表该测试的一个输出,而每个树叶结点(终端结点)存放一个类标号。树的最顶层结点是根结点。内部结点用矩形表示,外部结点用椭圆表示。

“如何使用决策树分类?”给定一个类标号未知的元组X,在决策树上测试该元组的属性值。跟踪一条由根到叶结点的路径,该叶结点就存放着该元组的类预测(即通过决策树对新样本属性值的测试,从树的根结点开始,按照样本属性的取值,逐渐沿着决策树向下,直到树的叶结点,该叶结点表示的类别就是新样本的类别)。

判定树归纳算法的基本策略:树以代表单个训练样本的节点开始。如果样本都在同一个类,则该节点成为树叶,并用该类标记。否则,算法使用成为信息增益的基于熵的度量作为启发信息,选择能够最好的将样本分类的属性。对测试属性每个已知的值,创建一个分枝,并据此划分样本。算法使用同样的过程,递归地形成每个划分上的样本判定树。一旦一个属性出现在一个节点上,就不必考虑该节点的任何后代上。递归划分步骤仅当下列条件之一成立时停止:

(a)给定节点的所有样本属于同一类;

(b ) 没有剩余属性可以用来进一步划分样本,在此情况下,使用多数表决所得的类编号将节点转化为树叶;

(c ) 如果某个分枝没有样本,则以其划分前的训练样本的多数类创建一个树叶。

分析决策树算法的优缺点:1)决策树归纳是一种构建分类模型的非参数方法,决策树分类器的构造不需要任何领域知识或参数设置,它的学习和分类步骤简单快速,可以处理高维数据;2)找到最佳的决策树是NP 完全问题,可以采用一种贪心的、自顶向下的递归划分策略建立决策树;3)构建决策树技术不需要昂贵的计算代价;4)决策树算法对于噪声的干扰具有相当好的鲁棒性,采用避免过分拟合的方法之后尤其如此;5)冗余属性不会对决策树的准确率造成不利的影响;6)用树的形式表示直观,易于理解;但7)当决策树很小时,训练和检验误差都很大,称为模型拟合不足;当规模变得太大时,即使训练误差还在继续降低,但是检验误差开始增大,称为模型过分拟合。

)(log )(Info 21i m i i p p D ∑=-=

)

()()(j D Info D Info A Gain -= 画出最后决策树结束

七、K-means 聚类

(K-means )根据簇中心,选择离这个簇最近的距离的点,计算簇中的均值作为下一个簇中心点,继续计算直到前后不在改变。

划分方法:K 均值、k 中心点计算、区别、优缺点

K-均值算法的输入、输出及聚类过程(流程)。

输入:簇的数目k 和包含n 个对象的数据集。

输出:k 个簇,使平方误差准则最小。

步骤:

i.

任意选择k 个对象作为初始的簇中心; ii.

计算其它对象与这k 个中心的距离,然后把每个对象归入离它“最近”的簇; iii.

计算各簇中对象的平均值,然后重新选择簇中心(离平均值“最近”的对象值); iv.

重复第2第3步直到簇中心不再变化为止。

K-中心点算法的输入、输出及聚类过程(流程)。

输入:结果簇的数目k ,包含n 个对象的数据集

输出:k 个簇,使得所有对象与其最近中心点的相异度总和最小。

流程:

i.

随机选择k 个对象作为初始中心点; ii.

计算其它对象与这k 个中心的距离,然后把每个对象归入离它“最近”的簇; iii.

随机地选择一个非中心点对象Orandom ,并计算用Orandom 代替Oj 的总代价S ; iv.

如果S<0,则用Orandom 代替Oj ,形成新的k 个中心点集合; v. 重复迭代第3、4步,直到中心点不变为止。

区别:K 均值用每类的平均值作为聚类中心,K 中心点是选用对象作为聚类中心。

优缺点:k-medoids 聚类算法比k-means 聚类算法在处理异常数据和噪声数据方面更为鲁棒,因为与聚类均值相比,一个聚类中心的代表对象要较少受到异常数据或极端数据的影响。但是前者的处理时间要比后者更大。两个算法都需要用户事先指定所需聚类个数k 。

八、层次聚类

先找出两个最接近的簇,然后合并他们形成一个簇,其他簇与这个簇的距离取到这个簇中点的最大的距离,最后聚成一个类。

层次方法

层次聚类方法将数据对象组成层次结构或簇的“树”。自底向上的凝聚层次聚类和自顶向上的分裂层次聚类。通常,使用一种称作树状图的树形结构来表示层次聚类的过程,它展示对象是如何一步一步被分组聚集(在凝聚方法中)或话(在分裂方法中)。

无论是凝聚方法还是分裂方法,一个核心问题是度量两个簇之间的距离。最大距离、最小距离、均值距离、平均距离。P300.

缺点:一旦一个步骤(合并或分裂)完成,它就不能被撤消,因此而不能更正错误的决定。

代表算法有:BIRCH 算法(利用层次方法的平衡迭代归约和聚类)、CURE 算法(利用代表点聚类)、Chameleon 算法

九、朴素贝叶斯

)

|()|()|()|(|n 211i i i n

k i i k C x P C x P C x P C x P C X P ?==∏=)(

被预测的类标号是使P (X|C i )P(C i )最大的类C i

十、其他

神经网络及其特点

神经网络是一组连接的输入/输出单元,其中每个连接都与一个权重相关联。在学习阶段,通过调整这些权重,使得它能够预测输入元组的正确类标号来学习。

神经网络的缺点:1)需要很长的训练时间,因而更适合具有足够长的训练时间的应用;2)它需要大量的参数,如网络拓扑或“结构”,通常这些主要靠经验确定;3)神经网络也常常因其可解释性差而受到批评,例如,人们很难解释网络中学习的权重和“隐藏单元”的符号含义;4)神经网络权值学习使用的梯度下降方法经常会收敛到局部极小值。

神经网络的优点:1)对于噪声数据的承受能力高,以及它对未经训练的数据的模式分类能力;2)神

经网络可以处理冗余特征,对训练数据中的噪声非常敏感;3)不像大部分的决策树算法,它非常适合连续值的输入和输出;4)神经网络算法是固有并行的,可以使用并行技术来加快计算过程。

SVM支持向量机

SVM:靠核函数将数据从低维映射到高维,变得可分。

支持向量机是一种对线性和非线性数据进行分类的方法。它使用一种非线性映射,把原训练数据映射到较高的维上。在新的维上,它搜索最佳分离超平面(即将一个类的元组与其它类分离的“决策边界”)。使用到足够高维上的、合适的非线性映射,两个类的数据总可以被超平面分开。SVM使用支持向量(“基本”训练元组)和边缘(由支持向量定义)发现该超平面(最佳超平面,最大边缘超平面,离最近的训练元组具有最大距离的超平面)。

数据线性可分的情况:最大边缘超平面,支持向量,边缘

数据非线性可分的情况:1)用非线性映射(核函数:h次多项式核函数,高斯径向基函数核函数,S 型核函数)把原输入数据变换到较高维空间;2)一旦将数据变换到较高维空间,就在信的空间搜索分离超平面,在新空间找到的最大边缘超平面对应于原空间中的非线性分离超平面。

理解SVM的核心:1)非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射;2)寻找特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心;3)支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量。

SVM优点:1)SVM 是一种有坚实理论基础的新颖的小样本学习方法,大大简化了通常的分类和回归等问题;2)SVM 的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”;3)少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒”性。

SVM不足:1)SVM算法对大规模训练样本难以实施。由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间;2)用SVM解决多分类问题存在困难。

贝叶斯网络分类:

贝叶斯分类是统计学分类方法。它们可以预测类隶属关系的概率,如一个给定的元组属于一个特定类的概率。贝叶斯分类基于贝叶斯定理。

朴素贝叶斯分类:例8.4

K 最邻近分类特点:

(1)由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。(2) 当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。数量影响运行结果。(可以采用权值的方法来改进)。(3)该方法的另一个不足之处是计算量较大。(4)准确率受噪声影响。

何为pagerank算法,列举典型应用

PageRank算法是Google排名运算法则(排名公式)的一个非常重要的组成部分,其是用于衡量一个网站好坏的标准,PageRank能够对网页的重要性做出客观评价。

PageRank并不计算直接链接的数量,而是将从网页A指向网页B的链接解释为由网页A对网页B所投的一票。这样,PageRank会根据网页B所收到的投票数量来评估该网页的重要性。此外,PageRank还会评估每个投票网页的重要性,因为某些重要网页的投票被认为具有较高的价值,这样,它所链接的网页就能获得较高的价值。这就是PageRank的核心思想主要用在google搜索引擎上,之后也被用于像论文检

索这样的领域。十一、相关例题

数据挖掘实验报告

《数据挖掘》Weka实验报告 姓名_学号_ 指导教师 开课学期2015 至2016 学年 2 学期完成日期2015年6月12日

1.实验目的 基于https://www.sodocs.net/doc/d215899450.html,/ml/datasets/Breast+Cancer+WiscOnsin+%28Ori- ginal%29的数据,使用数据挖掘中的分类算法,运用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。 2.实验环境 实验采用Weka平台,数据使用来自https://www.sodocs.net/doc/d215899450.html,/ml/Datasets/Br- east+Cancer+WiscOnsin+%28Original%29,主要使用其中的Breast Cancer Wisc- onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 3.实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size (均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。 该数据的数据属性如下: 1. Sample code number(numeric),样本代码; 2. Clump Thickness(numeric),丛厚度;

《数据挖掘》试题与标准答案

一、解答题(满分30分,每小题5分) 1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之 首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。 知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。 2.时间序列数据挖掘的方法有哪些,请详细阐述之 时间序列数据挖掘的方法有: 1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。 2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。 3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。

数据清洗数据分析数据挖掘

数据清洗 1.基本概念 数据清洗从名字上也看的出就是把"脏"的"洗掉",指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。因为数据仓库中的数据是面向某一主题的数据的集合,这些数据从多个业务系统中抽取而来而且包含历史数据,这样就避免不了有的数据是错误数据、有的数据相互之间有冲突,这些错误的或有冲突的数据显然是我们不想要的,称为"脏数据"。我们要按照一定的规则把"脏数据""洗掉",这就是数据清洗。而数据清洗的任务是过滤那些不符合要求的数据,将过滤的结果交给业务主管部门,确认是否过滤掉还是由业务单位修正之后再进行抽取。不符合要求的数据主要是有不完整的数据、错误的数据、重复的数据三大类。数据清洗是与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。 主要类型 残缺数据 这一类数据主要是一些应该有的信息缺失,如供应商的名称、分公司的名称、客户的区域信息缺失、业务系统中主表与明细表不能匹配等。对于这一类数据过滤出来,按缺失的内容分别写入不同Excel文件向客户提交,要求在规定的时间内补全。补全后才写入数据仓库。 折叠错误数据

这一类错误产生的原因是业务系统不够健全,在接收输入后没有进行判断直接写入后台数据库造成的,比如数值数据输成全角数字字符、字符串数据后面有一个回车操作、日期格式不正确、日期越界等。这一类数据也要分类,对于类似于全角字符、数据前后有不可见字符的问题,只能通过写SQL语句的方式找出来,然后要求客户在业务系统修正之后抽取。日期格式不正确的或者是日期越界的这一类错误会导致ETL运行失败,这一类错误需要去业务系统数据库用SQL 的方式挑出来,交给业务主管部门要求限期修正,修正之后再抽取。 折叠重复数据 对于这一类数据--特别是维表中会出现这种情况--将重复数据记录的所有字段导出来,让客户确认并整理。 数据清洗是一个反复的过程,不可能在几天内完成,只有不断的发现问题,解决问题。对于是否过滤,是否修正一般要求客户确认,对于过滤掉的数据,写入Excel文件或者将过滤数据写入数据表,在ETL开发的初期可以每天向业务单位发送过滤数据的邮件,促使他们尽快地修正错误,同时也可以做为将来验证数据的依据。数据清洗需要注意的是不要将有用的数据过滤掉,对于每个过滤规则认真进行验证,并要用户确认。 数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。

《数据挖掘》试题与答案

一、解答题(满分30分,每小题5分) 1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之 首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。 知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。 2. 时间序列数据挖掘的方法有哪些,请详细阐述之 时间序列数据挖掘的方法有: 1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。 2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。 3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。

数据挖掘报告

哈尔滨工业大学 数据挖掘理论与算法实验报告(2016年度秋季学期) 课程编码S1300019C 授课教师邹兆年 学生姓名汪瑞 学号 16S003011 学院计算机学院

一、实验内容 决策树算法是一种有监督学习的分类算法;kmeans是一种无监督的聚类算法。 本次实验实现了以上两种算法。在决策树算法中采用了不同的样本划分方式、不同的分支属性的选择标准。在kmeans算法中,比较了不同初始质心产生的差异。 本实验主要使用python语言实现,使用了sklearn包作为实验工具。 二、实验设计 1.决策树算法 1.1读取数据集 本次实验主要使用的数据集是汽车价值数据。有6个属性,命名和属性值分别如下: buying: vhigh, high, med, low. maint: vhigh, high, med, low. doors: 2, 3, 4, 5more. persons: 2, 4, more. lug_boot: small, med, big. safety: low, med, high. 分类属性是汽车价值,共4类,如下: class values:unacc, acc, good, vgood 该数据集不存在空缺值。

由于sklearn.tree只能使用数值数据,因此需要对数据进行预处理,将所有标签类属性值转换为整形。 1.2数据集划分 数据集预处理完毕后,对该数据进行数据集划分。数据集划分方法有hold-out法、k-fold交叉验证法以及有放回抽样法(boottrap)。 Hold—out法在pthon中的实现是使用如下语句: 其中,cv是sklearn中cross_validation包,train_test_split 方法的参数分别是数据集、数据集大小、测试集所占比、随机生成方法的可

数据挖掘考试题库【最新】

一、填空题 1.Web挖掘可分为、和3大类。 2.数据仓库需要统一数据源,包括统一、统一、统一和统一数据特征 4个方面。 3.数据分割通常按时间、、、以及组合方法进行。 4.噪声数据处理的方法主要有、和。 5.数值归约的常用方法有、、、和对数模型等。 6.评价关联规则的2个主要指标是和。 7.多维数据集通常采用或雪花型架构,以表为中心,连接多个表。 8.决策树是用作为结点,用作为分支的树结构。 9.关联可分为简单关联、和。 10.B P神经网络的作用函数通常为区间的。 11.数据挖掘的过程主要包括确定业务对象、、、及知识同化等几个步 骤。 12.数据挖掘技术主要涉及、和3个技术领域。 13.数据挖掘的主要功能包括、、、、趋势分析、孤立点分析和偏 差分析7个方面。 14.人工神经网络具有和等特点,其结构模型包括、和自组织网络 3种。 15.数据仓库数据的4个基本特征是、、非易失、随时间变化。 16.数据仓库的数据通常划分为、、和等几个级别。 17.数据预处理的主要内容(方法)包括、、和数据归约等。 18.平滑分箱数据的方法主要有、和。 19.数据挖掘发现知识的类型主要有广义知识、、、和偏差型知识五种。 20.O LAP的数据组织方式主要有和两种。 21.常见的OLAP多维数据分析包括、、和旋转等操作。 22.传统的决策支持系统是以和驱动,而新决策支持系统则是以、建 立在和技术之上。 23.O LAP的数据组织方式主要有和2种。 24.S QL Server2000的OLAP组件叫,OLAP操作窗口叫。 25.B P神经网络由、以及一或多个结点组成。 26.遗传算法包括、、3个基本算子。 27.聚类分析的数据通常可分为区间标度变量、、、、序数型以及混合 类型等。 28.聚类分析中最常用的距离计算公式有、、等。 29.基于划分的聚类算法有和。

数据挖掘与分析心得体会

正如柏拉图所说:需要是发明之母。随着信息时代的步伐不断迈进,大量数据日积月累。我们迫切需要一种工具来满足从数据中发现知识的需求!而数据挖掘便应运而生了。正如书中所说:数据挖掘已经并且将继续在我们从数据时代大步跨入信息时代的历程中做出贡献。 1、数据挖掘 数据挖掘应当更正确的命名为:“从数据中挖掘知识”,不过后者显得过长了些。而“挖掘”一词确是生动形象的!人们把数据挖掘视为“数据中的知识发现(KDD)”的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤! 由此而产生数据挖掘的定义:从大量数据中挖掘有趣模式和知识的过程!数据源包括数据库、数据仓库、Web、其他信息存储库或动态地流入系统的数据。作为知识发现过程,它通常包括数据清理、数据集成、数据变换、模式发现、模式评估和知识表示六个步骤。 数据挖掘处理数据之多,挖掘模式之有趣,使用技术之大量,应用范围之广泛都将会是前所未有的;而数据挖掘任务之重也一直并存。这些问题将继续激励数据挖掘的进一步研究与改进! 2、数据分析 数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。 数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步: 1、探索性数据分析:当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。 2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。 3、推断分析:通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。 数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各

学习18大经典数据挖掘算法

学习18大经典数据挖掘算法 本文所有涉及到的数据挖掘代码的都放在了github上了。 地址链接: https://https://www.sodocs.net/doc/d215899450.html,/linyiqun/DataMiningAlgorithm 大概花了将近2个月的时间,自己把18大数据挖掘的经典算法进行了学习并且进行了代码实现,涉及到了决策分类,聚类,链接挖掘,关联挖掘,模式挖掘等等方面。也算是对数据挖掘领域的小小入门了吧。下面就做个小小的总结,后面都是我自己相应算法的博文链接,希望能够帮助大家学习。 1.C4.5算法。C4.5算法与ID3算法一样,都是数学分类算法,C4.5算法是ID3算法的一个改进。ID3算法采用信息增益进行决策判断,而C4.5采用的是增益率。 详细介绍链接:https://www.sodocs.net/doc/d215899450.html,/androidlushangderen/article/details/42395865 2.CART算法。CART算法的全称是分类回归树算法,他是一个二元分类,采用的是类似于熵的基尼指数作为分类决策,形成决策树后之后还要进行剪枝,我自己在实现整个算法的时候采用的是代价复杂度算法, 详细介绍链接:https://www.sodocs.net/doc/d215899450.html,/androidlushangderen/article/details/42558235 3.KNN(K最近邻)算法。给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。近的点的权重大点,远的点自然就小点。 详细介绍链接:https://www.sodocs.net/doc/d215899450.html,/androidlushangderen/article/details/42613011 4.Naive Bayes(朴素贝叶斯)算法。朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导。 详细介绍链接:https://www.sodocs.net/doc/d215899450.html,/androidlushangderen/article/details/42680161 5.SVM(支持向量机)算法。支持向量机算法是一种对线性和非线性数据进行分类的方法,非线性数据进行分类的时候可以通过核函数转为线性的情况再处理。其中的一个关键的步骤是搜索最大边缘超平面。 详细介绍链接:https://www.sodocs.net/doc/d215899450.html,/androidlushangderen/article/details/42780439 6.EM(期望最大化)算法。期望最大化算法,可以拆分为2个算法,1个E-Step期望化步骤,和1个M-Step最大化步骤。他是一种算法框架,在每次计算结果之后,逼近统计模型参数的最大似然或最大后验估计。

数据挖掘课程报告

数据挖掘课程报告 学习“数据挖掘”这门课程已经有一个学期了,在这十余周的学习过程中,我对数据挖掘这门技术有了一定的了解,明确了一些以前经常容易混淆的概念,并对其应用以及研究热点有了进一步的认识。以下主要谈一下我的心得体会,以及我对数据挖掘这项课题的见解。 随着数据库技术和计算机网络的迅速发展以及数据库管理系统的广泛应用,

人们积累的数据越来越多,而数据挖掘(Data Mining)就是在这样的背景下诞生的。 简单来说,数据挖掘就是从大量的数据中,抽取出潜在的、有价值的知识、模型或规则的过程。作为一类深层次的数据分析方法,它利用了数据库、人工智能和数理统计等多方面的技术。从某种角度上来说,数据挖掘可能并不适合进行科学研究,因为从本质上来说,数据挖掘这个技术是不能证明因果的,以一个最典型的例子来说,例如数据挖掘技术可以发现啤酒销量和尿布之间的关系,但是显然这两者之间紧密相关的关系可能在理论层面并没有多大的意义。不过,仅以此来否定数据挖掘的意义,显然就是对数据挖掘这项技术价值加大的抹杀,显然,数据挖掘这项技术从设计出现之初,就不是为了指导或支持理论研究的,它的重要意义在于,它在应用领域体现出了极大地优越性。 首先有一点是我们必须要明确的,即我们为什么需要数据挖掘这门技术?这也是在开课前一直困扰我的问题。数据是知识的源泉,然而大量的数据本身并不意味信息。尽管现代的数据库技术使我们很容易存储大量的数据,但现在还没有一种成熟的技术帮助我们分析、理解这些数据。数据的迅速增加与数据分析方法的滞后之间的矛盾越来越突出,人们希望在对已有的大量数据分析的基础上进行研究,但是目前所拥有的数据分析工具很难对数据进行深层次的处理,使得人们只能望“数”兴叹。数据挖掘正是为了解决传统分析方法的不足,并针对大规模数据的分析处理而出现的。数据挖掘可以帮助人们对大规模数据进行高效的分析处理,以节约时间,将更多的精力投入到更高层的研究中,从而提高科研工作的效率。 那么数据挖掘可以做些什么呢?数据挖掘的研究领域非常广泛,主要包括数据库系统、基于知识的系统、人工智能、机器学习、知识获取、统计学、空间数据库和数据可视化等领域。具体来说,它可以做这七件事情:分类,估计,预测,关联分析,聚类分析,描述和可视化,复杂数据类型挖掘。在本学期的学习过程中,我们对大部分内容进行了较为详细的研究,并且建立了一些基本的概念,对将来从事相关方向的研究奠定了基础。由于篇幅限制,就不对这些方法一一讲解了,这里只谈一下我在学习工程中的一些见解和心得。 在学习关联规则的时候,我们提到了一个关于“尿布与啤酒”的故事:在一

数据挖掘考试题

数据挖掘考试题 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

数据挖掘考试题 一.选择题 1. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离( ) A.分类 B.聚类 C.关联分析 D.主成分分析 2. ( )将两个簇的邻近度定义为不同簇的所有点对邻近度的平均值,它是一种凝聚层次聚类技术。 (单链) (全链) C.组平均方法 3.数据挖掘的经典案例“啤酒与尿布试验”最主要是应用了( )数据挖掘方法。 A 分类 B 预测 C关联规则分析 D聚类 4.关于K均值和DBSCAN的比较,以下说法不正确的是( ) 均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象。 均值使用簇的基于原型的概念,DBSCAN使用基于密度的概念。 均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇 均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇 5.下列关于Ward’s Method说法错误的是:( ) A.对噪声点和离群点敏感度比较小 B.擅长处理球状的簇 C.对于Ward方法,两个簇的邻近度定义为两个簇合并时导致的平方误差 D.当两个点之间的邻近度取它们之间距离的平方时,Ward方法与组平均非常相似 6.下列关于层次聚类存在的问题说法正确的是:( ) A.具有全局优化目标函数 B.Group Average擅长处理球状的簇

C.可以处理不同大小簇的能力 D.Max对噪声点和离群点很敏感 7.下列关于凝聚层次聚类的说法中,说法错误的事:( ) A.一旦两个簇合并,该操作就不能撤销 B.算法的终止条件是仅剩下一个簇 C.空间复杂度为()2m O D.具有全局优化目标函数 8.规则{牛奶,尿布}→{啤酒}的支持度和置信度分别为:( ) 9.下列( )是属于分裂层次聚类的方法。 Average 10.对下图数据进行凝聚聚类操作,簇间相似度使用MAX计算,第二步是哪两个簇合并:( ) A.在{3}和{l,2}合并 B.{3}和{4,5}合并 C.{2,3}和{4,5}合并 D. {2,3}和{4,5}形成簇和{3}合并 二.填空题: 1.属性包括的四种类型:、、、。 2.是两个簇的邻近度定义为不同簇的所有点对邻近度的平均值。 3. 基本凝聚层次聚类算法空间复杂度,时间复杂度,如果某个簇到其他所有簇的距离存放在一个有序表或堆中,层次聚类所需要的时间复杂度将为。 4. 聚类中,定义簇间的相似度的方法有(写出四 个):、、、。 5. 层次聚类技术是第二类重要的聚类方法。两种层次聚类的基本方 法:、。 6. 组平均是一种界于和之间的折中方法。

数据清洗数据分析数据挖掘

数据清洗1.基本概念 数据清洗从名字上也看的出就是把"脏"的"洗掉",指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。因为中的数据是面向某一主题的数据的集合,这些数据从多个业务系统中抽取而来而且包含历史数据,这样就避免不了有的数据是错误数据、有的数据相互之间有冲突,这些错误的或有冲突的数据显然是我们不想要的,称为""。我们要按照一定的规则把"""洗掉",这就是数据清洗。而数据清洗的任务是过滤那些不符合要求的数据,将过滤的结果交给业务主管部门,确认是否过滤掉还是由业务单位修正之后再进行抽取。不符合要求的数据主要是有不完整的数据、错误的数据、重复的数据三大类。数据清洗是与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。 主要类型 残缺数据 这一类数据主要是一些应该有的信息缺失,如的名称、分公司的名称、客户的区域信息缺失、业务系统中主表与明细表不能匹配等。对于这一类数据过滤出来,按缺失的内容分别写入不同Excel文件向客户提交,要求在规定的时间内补全。补全后才写入。 错误数据 这一类错误产生的原因是业务系统不够健全,在接收输入后没有进行判断直接写入造成的,比如数值数据输成全角数字、字符串数据后面有一个回车操作、日期格式不正确、日期越界等。这一类数据也要分类,对于类似于、数据前后有

不可见字符的问题,只能通过写语句的方式找出来,然后要求客户在业务系统修正之后抽取。日期格式不正确的或者是日期越界的这一类错误会导致ETL运行失败,这一类错误需要去业务用SQL的方式挑出来,交给业务主管部门要求限期修正,修正之后再抽取。 重复数据 对于这一类数据--特别是维表中会出现这种情况--将重复数据记录的所有字段导出来,让客户确认并整理。 数据清洗是一个反复的过程,不可能在几天内完成,只有不断的发现问题,解决问题。对于是否过滤,是否修正一般要求客户确认,对于过滤掉的数据,写入Excel文件或者将过滤数据写入数据表,在ETL开发的初期可以每天向业务单位发送过滤数据的邮件,促使他们尽快地修正错误,同时也可以做为将来验证数据的依据。数据清洗需要注意的是不要将有用的数据过滤掉,对于每个过滤规则认真进行验证,并要用户确认。 数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。 类型 在统计学领域,有些人将数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。 探索性数据分析是指为了形成值得假设的检验而对数据进行分析的一种方法,是对传统统计学假设检验手段的补充。该方法由美国着名统计学家约翰·图基(John Tukey)命名。

数据挖掘分类算法比较

数据挖掘分类算法比较 分类是数据挖掘、机器学习和模式识别中一个重要的研究领域。通过对当前数据挖掘中具有代表性的优秀分类算法进行分析和比较,总结出了各种算法的特性,为使用者选择算法或研究者改进算法提供了依据。 一、决策树(Decision Trees) 决策树的优点: 1、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 2、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 3、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。 4、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。 5、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 6、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 7、可以对有许多属性的数据集构造决策树。 8、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。 决策树的缺点: 1、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。 2、决策树处理缺失数据时的困难。 3、过度拟合问题的出现。 4、忽略数据集中属性之间的相关性。 二、人工神经网络 人工神经网络的优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。 人工神经网络的缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。

《数据挖掘》结课报告

《数据挖掘》结课报告 --基于k-最近邻分类方法的连衣裙属性数据集的研究报告 (2013--2014 学年第二学期) 学院: 专业: 班级: 学号: 姓名: 指导教师: 二〇一四年五月二十四日

一、研究目的与意义 (介绍所选数据反应的主题思想及其研究目的与意义) 1、目的 (1)熟悉weka软件环境; (2)掌握数据挖掘分类模型学习方法中的k-最近邻分类方法; (3)在weka中以“Dress Attribute DataSet”为例,掌握k-最近邻分类算法的相关方法; (4)取不同的K值,采用不同的预测方法,观察结果,达到是否推荐某款连衣裙的目的,为企业未来的规划发展做出依据。 2、意义 此数据集共有14个属性,500个实例,包含了连衣裙的各种属性和根据销售量的不同而出现的推荐情况,按照分类模型学习方法中的k-最近邻分类方法依据各属性推断应推广哪些种类的裙子,对发展市场的扩大及企业的发展战略具有重要意义。 二、技术支持 (介绍用来进行数据挖掘、数据分析的方法及原理) 1、原理:k-最近邻分类算法是一种基于实例的学习方法,不需要事先对训练数据建立分类模型,而是当需要分类未知样本时才使用具体的训练样本进行预测,通过在训练集中找出测试集的K个最近邻,来预测估计测试集的类标号; 2、方法:k-最近邻方法是消极学习方法的典型代表,其算法的关键技术是搜索模式空间,该方法首先找出最近邻即与测试样本相对

接近的所有训练样本,然后使用这些最近邻的类标号来确定测试样本的类标号。 三、数据处理及操作过程 (一)数据预处理方法 1、“remove”属性列:数据集中属性“Dress_ID”对此实验来说为无意义的属性,因此在“Attributes”选项中勾选属性“Dress_ID”并单击“remove”,将该属性列去除,并保存新的数据集; 2、离散化预处理:需要对数值型的属性进行离散化,该数据集中只有第3个属性“rating”和第13个属性“recommendation”为数值型,因此只对这两个属性离散化。 “recommendation”属性只有2个取值:0,1,因此用文本编辑器“Ultra Edit”或者写字板打开数据集并直接修改“Dress Attribute Data Set.arff”文件,把“@attribute recommendation numeric”改为“@attribute recommendation {0,1,}”,并保存;在“Explorer”中重新打开“Dress Attribute Data Set.arff”,选中“recommendation”属性后,右方的属性摘要中“Type”值变为“Nominal”。 在过滤器Filter中单击“choose”,出现树形图,单击“weka”--“Filters”--“unsupervised”--“attribute”--“discretize”,点击“Choose”右边的文本框进行参数设置,把“attribute Indices”右边改成“3”,计划将该属性分成3段,于是把“bins”改成“3”,其它参数不更改,点“OK”回到“Explorer”,单击“Apply”离散化后的数据如下所示:

最新数据挖掘考试题目——关联分析资料

数据挖掘考试题目——关联分析 一、10个选择 1.以下属于关联分析的是() A.CPU性能预测B.购物篮分析 C.自动判断鸢尾花类别D.股票趋势建模 2.维克托?迈尔-舍恩伯格在《大数据时代:生活、工作与思维的大变革》一书中,持续强调了一个观点:大数据时代的到来,使我们无法人为地去发现数据中的奥妙,与此同时,我们更应该注重数据中的相关关系,而不是因果关系。其中,数据之间的相关关系可以通过以下哪个算法直接挖掘() A.K-means B.Bayes Network C.C4.5 D.Apriori 3.置信度(confidence)是衡量兴趣度度量()的指标。 A.简洁性B.确定性 C.实用性D.新颖性 4.Apriori算法的加速过程依赖于以下哪个策略() A.抽样B.剪枝 C.缓冲D.并行 5.以下哪个会降低Apriori算法的挖掘效率() A.支持度阈值增大B.项数减少 C.事务数减少D.减小硬盘读写速率 6.Apriori算法使用到以下哪些东东() A.格结构、有向无环图B.二叉树、哈希树 C.格结构、哈希树D.多叉树、有向无环图 7.非频繁模式() A.其置信度小于阈值B.令人不感兴趣 C.包含负模式和负相关模式D.对异常数据项敏感 8.对频繁项集、频繁闭项集、极大频繁项集的关系描述正确的是()[注:分别以1、2、3代表之] A.3可以还原出无损的1 B.2可以还原出无损的1 C.3与2是完全等价的D.2与1是完全等价的 9.Hash tree在Apriori算法中所起的作用是() A.存储数据B.查找 C.加速查找D.剪枝 10.以下不属于数据挖掘软件的是() A.SPSS Modeler B.Weka C.Apache Spark D.Knime 二、10个填空 1.关联分析中表示关联关系的方法主要有:和。 2.关联规则的评价度量主要有:和。 3.关联规则挖掘的算法主要有:和。 4.购物篮分析中,数据是以的形式呈现。 5.一个项集满足最小支持度,我们称之为。 6.一个关联规则同时满足最小支持度和最小置信度,我们称之为。

数据挖掘十大算法

数据挖掘十大算法 数据挖掘十大算法—K 近邻算法 k -近邻算法是基于实例的学习方法中最基本的,先介绍基于实例学习的相关概念。 一、基于实例的学习。 1、已知一系列的训练样例,很多学习方法为目标函数建立起明确的一般化描述;但与此不同,基于实例的学习方法只是简单地把训练样例存储起来。 从这些实例中泛化的工作被推迟到必须分类新的实例时。每当学习器遇到一个新的查询实例,它分析这个新实例与以前存储的实例的关系,并据此把一个目标函数值赋给新实例。 2、基于实例的方法可以为不同的待分类查询实例建立不同的目标函数逼近。事实上,很多技术只建立目标函数的局部逼近,将其应用于与新查询实例邻近的实例,而从不建立在整个实例空间上都表现良好的逼近。当目标函数很复杂,但它可用不太复杂的局部逼近描述时,这样做有显著的优势。 3、基于实例方法的不足: (1)分类新实例的开销可能很大。这是因为几乎所有的计算都发生在分类时,而不是在第一次遇到训练样例时。所以,如何有效地索引训练样例,以减少查询时所需计算是一个重要的实践问题。(2)当从存储器中检索相似的训练样例时,它们一般考虑实例的所有属性。如果目标概念仅依赖于很多属性中的几个时,那么真正最“相似”的实例之间很可能相距甚远。 二、k-近邻法基于实例的学习方法中最基本的是k -近邻算法。这个算法假定所有的实例对应于n 维欧氏空间?n 中的点。一个实例的最近邻是根据标准欧氏距离定义的。更精确地讲,把任意的实例x 表示为下面的特征向量:其中a r (x ) 表示实例x 的第r 个属性值。那么两个实例x i 和x j 间的距离定义为d (x i , x j ) ,其中: 说明: 1、在最近邻学习中,目标函数值可以为离散值也可以为实值。 2、我们先考虑学习以下形式的离散目标函数。其中V 是有限集合 {v 1,... v s }。下表给出了逼近离散目标函数的k-近邻算法。 3、正如下表中所指出的,这个算法的返回值f' (x q ) 为对f (x q ) 的估计,它就是距离x q 最近的k 个训练样例中最普遍的f 值。 4、如果我们选择k =1,那么“1-近邻算法”

数据挖掘报告(模板)

第一章:数据挖掘基本理论 数据挖掘的产生: 随着计算机硬件和软件的飞速发展,尤其是数据库技术与应用的日益普及,人们面临着快速扩张的数据海洋,如何有效利用这一丰富数据海洋的宝藏为人类服务业已成为广大信息技术工作者的所重点关注的焦点之一。与日趋成熟的数据管理技术与软件工具相比,人们所依赖的数据分析工具功能,却无法有效地为决策者提供其决策支持所需要的相关知识,从而形成了一种独特的现象“丰富的数据,贫乏的知识”。 为有效解决这一问题,自二十世纪90年代开始,数据挖掘技术逐步发展起来,数据挖掘技术的迅速发展,得益于目前全世界所拥有的巨大数据资源以及对将这些数据资源转换为信息和知识资源的巨大需求,对信息和知识的需求来自各行各业,从商业管理、生产控制、市场分析到工程设计、科学探索等。数据挖掘可以视为是数据管理与分析技术的自然进化产物。自六十年代开始,数据库及信息技术就逐步从基本的文件处理系统发展为更复杂功能更强大的数据库系统;七十年代的数据库系统的研究与发展,最终导致了关系数据库系统、数据建模工具、索引与数据组织技术的迅速发展,这时用户获得了更方便灵活的数据存取语言和界面;此外在线事务处理手段的出现也极大地推动了关系数据库技术的应用普及,尤其是在大数据量存储、检索和管理的实际应用领域。 自八十年代中期开始,关系数据库技术被普遍采用,新一轮研究与开发新型与强大的数据库系统悄然兴起,并提出了许多先进的数据模型:扩展关系模型、面向对象模型、演绎模型等;以及应用数据库系统:空间数据库、时序数据库、 多媒体数据库等;日前异构数据库系统和基于互联网的全球信息系统也已开始出现并在信息工业中开始扮演重要角色。

【最全最详细】数据分析与挖掘实验报告

《数据挖掘》实验报告 目录 1.关联规则的基本概念和方法 (2) 1.1数据挖掘 (2) 1.1.1数据挖掘的概念 (2) 1.1.2数据挖掘的方法与技术 (2) 1.2关联规则 (3) 1.2.1关联规则的概念 (3) 1.2.2关联规则的实现——Apriori算法 (4) 2.用Matlab实现关联规则 (6) 2.1Matlab概述 (6) 2.2基于Matlab的Apriori算法 (7) 3.用java实现关联规则 (11) 3.1java界面描述 (11) 3.2java关键代码描述 (14) 4、实验总结 (19) 4.1实验的不足和改进 (19) 4.2实验心得 (20)

1.关联规则的基本概念和方法 1.1数据挖掘 1.1.1数据挖掘的概念 计算机技术和通信技术的迅猛发展将人类社会带入到了信息时代。在最近十几年里,数据库中存储的数据急剧增大。数据挖掘就是信息技术自然进化的结果。数据挖掘可以从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的,人们事先不知道的但又是潜在有用的信息和知识的过程。 许多人将数据挖掘视为另一个流行词汇数据中的知识发现(KDD)的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤。知识发现过程如下:·数据清理(消除噪声和删除不一致的数据) ·数据集成(多种数据源可以组合在一起) ·数据转换(从数据库中提取和分析任务相关的数据) ·数据变换(从汇总或聚集操作,把数据变换和统一成适合挖掘的形式) ·数据挖掘(基本步骤,使用智能方法提取数据模式) ·模式评估(根据某种兴趣度度量,识别代表知识的真正有趣的模式) ·知识表示(使用可视化和知识表示技术,向用户提供挖掘的知识)。 1.1.2数据挖掘的方法与技术 数据挖掘吸纳了诸如数据库和数据仓库技术、统计学、机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像和信号处理以及空间数据分析技术的集成等许多应用领域的大量技术。数据挖掘主要包括以下方法。 神经网络方法:神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。典型的神经网络模型主要分3大类:以感知机、bp反向传播模型、函数型网络为代表的,用于分类、预测和模式识别的前馈式神经网络模型;以hopfield的离散模型和连续模型为代表的,分别用于联想记忆和优化计算的反馈式神经网络模型;以art模型、koholon模型为代表的,用于聚类的自组织映射方法。神经网络方法的缺点是"黑箱"性,人们难以理解网络的学习和决策过程。 遗传算法:遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。sunil已成功地开发了一个基于遗传算法的数据挖掘工具,利用该工具对两个飞机失事的真实数据库进行了数据挖掘实验,结果表明遗传算法是进行数据挖掘的有效方法之一。遗传算法的应用还体现在与神经网络、粗糙集等技术的结合上。如利用遗传算法优化神经网络结构,在不增加错误率的前提下,删除多余的连接和隐层单元;用遗传算法和bp算法结合训练神经网络,然后从网络提取规则等。但遗传算法的算法较复杂,收敛于局部极小的较早收敛问题尚未解决。 决策树方法:决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从

数据挖掘算法

数据挖掘的10大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在 构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

数据挖掘考试题库讲解

一、名词解释 1.数据仓库:是一种新的数据处理体系结构,是面向主题的、集成的、不可更新 的(稳定性)、随时间不断变化(不同时间)的数据集合,为企业决策支持系统提供所需的集成信息。 2.孤立点:指数据库中包含的一些与数据的一般行为或模型不一致的异常数据。 3.OLAP:OLAP是在OLTP的基础上发展起来的,以数据仓库为基础的数据分析处 理,是共享多维信息的快速分析,是被专门设计用于支持复杂的分析操作,侧重对分析人员和高层管理人员的决策支持。 4.粒度:指数据仓库的数据单位中保存数据细化或综合程度的级别。粒度影响存 放在数据仓库中的数据量的大小,同时影响数据仓库所能回答查询问题的细节程度。 5.数据规范化:指将数据按比例缩放(如更换大单位),使之落入一个特定的区域 (如0-1)以提高数据挖掘效率的方法。规范化的常用方法有:最大-最小规范化、零-均值规范化、小数定标规范化。 6.关联知识:是反映一个事件和其他事件之间依赖或相互关联的知识。如果两项 或多项属性之间存在关联,那么其中一项的属性值就可以依据其他属性值进行预测。 7.数据挖掘:从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐 含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。 8.OLTP:OLTP为联机事务处理的缩写,OLAP是联机分析处理的缩写。前者是以数 据库为基础的,面对的是操作人员和低层管理人员,对基本数据进行查询和增、删、改等处理。 9.ROLAP:是基于关系数据库存储方式的,在这种结构中,多维数据被映像成二维 关系表,通常采用星型或雪花型架构,由一个事实表和多个维度表构成。10.MOLAP:是基于类似于“超立方”块的OLAP存储结构,由许多经压缩的、类似 于多维数组的对象构成,并带有高度压缩的索引及指针结构,通过直接偏移计算进行存取。 11.数据归约:缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能 够得到和原始数据相同的分析结果。 12.广义知识:通过对大量数据的归纳、概括和抽象,提炼出带有普遍性的、概括 性的描述统计的知识。 13.预测型知识:是根据时间序列型数据,由历史的和当前的数据去推测未来的数 据,也可以认为是以时间为关键属性的关联知识。 14.偏差型知识:是对差异和极端特例的描述,用于揭示事物偏离常规的异常现象, 如标准类外的特例,数据聚类外的离群值等。

相关主题