搜档网
当前位置:搜档网 › 大型并网光伏发电站系统研究

大型并网光伏发电站系统研究

大型并网光伏发电站系统研究
大型并网光伏发电站系统研究

大型并网光伏发电站系统研究 

张树森 

(东北电力设计院,长春市 130021)

Studies on the system of large grid connection PV power station

Zhang Shusen

(Northeast Electric Power Design Institute,Changchun 130021)

摘要:通过对大型并网光伏发电站典型主接线的介绍,说明大型并网光伏发电站的主要技术原则,阐述大型并网光伏电站的主接线原则、设备配置原则和主要参数选择等技术条件,并特别说明了几个重点问题。推荐通过标准化的方法完成并网光伏电站的设计,提高并网光伏电站运行可靠性。

关键词:并网;光伏电站;系统;研究

Abstract: According to the description of large grid connection PV power station, the author explained the technical principle of the single line, the equipment selection and the primary parameter, etc. The paper emphasized on some important questions also. To improve the reliability of the PV power station, the normative design should be generalized in future.Key words: grid connection PV power station system study

0 引言

随着新能源的发展,大型并网型光伏电站的多种技术方案得到应用。在宁夏回族自治区、甘肃、云南等省,相继建成投产了包括宁夏石嘴山、中节能太阳山、宁发太阳山等并网型光伏发电站,同时还有包括中广核敦煌等项目正处于施工阶段,这些并网型电站的建设、投产对太阳能光伏发电技术起到了很大的推动作用。 

《中华人民共和国标准化法》第二条、第(四)款要求建设工程的设计、施工方法和安全要求应当制定标准,光伏发电工程属于建设工程,为了光伏发电工程的健康发展应当制定标准。《标准化工作指南 第3部分:引用文件》(GB/T20000.3-2003)第4.6条规定,在某些领域,没有国家标准和行业标准或国家标准和行业标准不适用时,国家标准或行业标准可引用国际标准和国际有关文件。现在光伏产品的标准已经具备一定的规模,并有相当的数量的标准等同采用了IEC标准,这样既有利于出口,也有利于规范光伏产品市场,但现行的设计标准配套不全,有资料显示,国家标准化管理委员会正在积极策划开展此项工作。 

正是因为现阶段并网光伏发电站的设计标准配套不全,所以相关工程设计当中参考、参照

了火力发电厂、输变电工程的设计理念。由于设计标准的不统一,所以在工程实践当中出现各种不同的设计方案也不难理解。 

现在主要使用的设计标准包括: 

a) 《地面用光伏(PV)发电系统-概述及导则》(GB/T18479-2001)等同采用IEC 61277(1995); 

b) 《光伏(PV)发电系统的过压保护导则》(SJ/T11127-1997)等同采用IEC 61173(1992)。 

c) 《太阳光伏电源系统安装工程设计规范》(CECS 84-96)。 

 

 

 

1并网型光伏发电典型系统接线图及主要技术原理

1.1并网型光伏发电的典型系统接线图

并网型光伏发电的典型系统接线图,如图1。

图1 并网型光伏发电的典型系统接线

光伏组件经过串联、并联后,形成光伏阵列,光伏阵列经电缆接入光伏阵列防雷汇流箱;若干个光伏阵列防雷汇流箱接入布置于逆变站内的直流配电柜,直流配电柜经电缆接入逆变器,通过逆变器整流后,若干逆变器接入400V配电装置,再通过升压变压器升压。一台升压变压器在内的发电设施被称为一个发电单元(通常为1MWp)。若干个发电单元内(通常为5或10个)的升压变经电缆接入布置于汇集站内的10kV配电装置,最后,通过一回10kV线路接入系统。

1.2电气主接线

并网型光伏发电站的集电线路方案一般采用每个发电单元分别接入10kV配电装置的方

案。该方案简单清晰、安全可靠、运行灵活、便于维护管理。也有采用汇集到主干线路上的方式。

由于10kV、400V配电装置的进出线回路数较少,所以一般均采用单母线的接线方式。

1.3站用电

并网型光伏发电站一般设置两台站用变压器,一台工作变压器由发电站内的10kV配电装置引接,另一台备用变压器由施工电源引接。 

站用变压器一般主要为控制楼周边负荷供电,不为就地逆变站的负荷供电。由于现在国内光伏发电站的发电电价比当地农电或市电价格高,在实际运行当中,通常将引接在施工电源的备用变压器作为工作变压器使用,以降低运行成本。同时,就地逆变站内的暖通、照明等负荷也由于电价差价的原因,在实际运行当中,由站用变压器进行远距离低电压供电。 

对于国外供货的整套发电单元(一般为1MWp),其自用的暖通、照明等负荷电源由发电单元内的400V配电装置引接。 

1.4中性点接地方式

10kV中性点的接地方式应与接入电网的实际情况相适应,有个别光伏电站推荐采用站内独立的接地方式,在不设置隔离变压器的情况下,会造成相关10kV配电网络运行困难。

400V中性点采用直接接地的接地方式。1.5主要电气设备选择

10kV断路器的开断电流一般选为25、31.5kA,配电装置采用户内铠装式交流金属封闭开关设备;400V断路器的开断电流一般选为40、50kA,配电装置采用全封闭抽出式低压成套开关设备。

升压变压器的容量一般全部选为1000kVA。

在型式方面,各个工程有选择油浸式和干式的,油浸式变压器的初始投资略低,而干式变压器的运行维护非常方便,干式变压器应该是首选的变压器型式。另外,在仅选择两台500kW的逆变器时,有一种专用的分裂变压器可供选择。

1.6过电压保护及接地

按照《交流电气装置的过电压保护和绝缘配合》(DL/T620-1997)第7.1.2条的规定,发电厂的主厂房、主控制室和配电装置室一般不装设直击雷保护装置,雷电活动特殊强烈地区的主厂房、主控制室和配电装置室宜装设直击雷保护装置。据此,并网型光伏发电站的主控制室和10kV 配电装置室(通常为一个建筑物)可以不装设直击雷保护装置。

《光伏(PV)发电系统的过压保护导则》(SJ/T11127-1997)第 4.4条规定,在确定是否需要架设避雷装置时,应考虑下列各项因素:人员安全;直接雷击于系统上对运行的影响;避雷击装置的造价与直接雷击的几率和更换损坏元件的费用之间的关系;由于避雷装置阴影引起的系统性能损失。考虑到,光伏阵列现场无人值守、并网型光伏发电站不配置蓄电池、雷击的几率较低且费用可以接受、避雷装置将引起占地面积的增加等因素,并网型光伏发电站的阵列不推荐设置避雷装置。

根据《交流电气装置的接地》(DL/T

621-1997)第5.1.1条规定,并网型光伏发电厂电气装置的接地电阻应符合下式要求

I

R 120

但不应大于4O 。由于并网型光伏发电站占地较大,接地电阻一般都可以达到要求。 1.7 电缆设施

控制室和逆变站内设置电缆沟道,光伏阵列内的电缆敷设推荐采用直埋方式。

由于并网型光伏电站多数处于寒冷地区,在-15℃以下的低温环境,应按低温条件和绝缘类型要求,选用交联聚乙烯、聚乙烯绝缘、耐寒橡皮绝缘电缆,其电缆挤塑外护层宜选用聚乙烯外护层。低温环境不宜选用聚氯乙稀绝缘电缆。 1.8 消防给水

变电站内建筑物满足耐火等级不低于二级,体积不超过3000m 3,且火灾危险性为戊类时,可不设消防给水。 1.9 通风

工程实践当中发现,逆变器的发热量很大,造成逆变站内的温度较高。应按照环境条件,进行详细的通风量计算。 2 特别说明的几个问题 2.1 电压等级的选定

图1为典型的0.4/10kV 系统。电压等级的主要选择原则如下:

a )由于逆变器的交流侧出线电压还包括315V 、270V 等不同的电压等级,所以400V 配电装置的采用是合适的,但实际运行电压应根据逆变器交流侧出线电压的选择而确定;

b )逆变站高压侧的10kV 配电装置的电

压等级一般在10kV 、35kV 之间做出选择,经技术经济比较确定;

c ) 由于各个工程接入系统情况不同,存在进一步升压至110kV 的送出方案。 2.2 洪水位 

参照小型火电厂,光伏发电站的防洪标准为50年一遇洪水。在具体工程中,要在可行性研究阶段明确。 2.3 积雪深度 

太阳能电池组件与地面之间的最小间距要在0.3米以上,并且应大于最大积雪深度。同时,考虑组件上的积雪滑落后形成的堆积对组件的影响。 3 结论 

鉴于我国目前尚无太阳能发电的国家设计标准和统一的行业标准,在当前太阳能光伏发电工程具体实施过程中,可参考现有的电力、航天、通信等行业的现行标准并参照业已建成投产的工程实践进行设计建设。 参考文献

1 《标准化工作指南 第3部分:引用文件》(GB/T20000.3-2003)

2 《光伏(PV )发电系统的过压保护导则》(SJ/T11127-1997)

3 《交流电气装置的过电压保护和绝缘配合》(DL/T620-1997)

4 《交流电气装置的接地》(DL/T621-1997)

5 《电力工程电缆设计规范》(GB50217-2007)

6 《家用太阳能光伏电源系统技术条件和试验方

法》(GB/T 19064-2003)

7 《小型火力发电厂设计规范》(GB 50049-94)

8 《火力发电厂与变电站设计防火规范》(GB 50229-2006)

9 《地面用光伏(PV)发电系统-概述及导则》(GB/T18479-2001)

10 《太阳光伏电源系统安装工程设计规范》(CECS 84-96)

 

作者简介

张树森,大学本科学历,高级工程师,国家注册咨询工程师、注册安全工程师、注册电气工程师,2005~2007年任东北电力设计院南方分院副总工程师、2007~2010年任长春东电电力工程有限公司总工程师,现任东北电力设计院新能源分公司总工程师,从事发电、输电、变电和新能源设计及管理工作多年。

太阳能光伏发电系统课程设计家庭并网光伏发电系统的优化设计

太阳能光伏发电系统课程设计家庭并网光伏发电系统的优 化设计 《太阳能光伏发电系统》 课程设计 课题名称: 家庭并网光伏发电系统的优化设计专业班级: 学生姓名: 学生学号: 指导教师: 设计时间: 沈阳工程学院 报告正文 目录 第1章绪 论 ..................................................................... . (3) 1.1 设计背 景 ..................................................................... .. (3) 1.2 设计意 义 ..................................................................... ......................................... 3 第2章朝阳市气象资料及地理情况...................................................................... ............... 4 第3章家用并网型...................................................................... .. (6)

太阳能光伏发电系统的优化设 计 ..................................................................... .. (6) 3.1 设计方 案 ..................................................................... .. (6) 3.2负载的计算...................................................................... . (8) 3.3 太阳能电池板容量及串并联的设计及选 型 (9) 3.4 太阳能电池板的方位角与倾斜角的设 计 (10) 3.5 蓄电池容量及串并联的设计及选型..................................................................... 11 3.6 控制器、逆变器的选 型 ..................................................................... (12) 3.7 电气配置及其设 计 ..................................................................... (13) 3.8 系统配置清 单 .....................................................................

光伏并网发电系统设计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。 U R L

图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC变换器和后级的DC-AC逆变器组成。在系统中,DC-DC 变换器采用BOOST结构,主要完成系统的MPPT控制;DC-AC部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz交流电。设计采用单片机SPWM调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT原理及电路设计 MPPT原理 由于光伏阵列的最大功率点是一个时变量,可以采用搜索算法进行最大功率点跟踪。其搜索算法可分为自寻优和非自寻优两种类别。所谓自寻优算法即不直接检测外界环境因素的变化,而是通过直接测量得到的电信号,判断最大功率点的位置。典型的追踪方法有扰动观测法和增量导纳法等。增量导纳法算法的精确度最高,但是,由于增量导纳法算法复杂,对实现该算法的硬件质量要求较高、运算时间变长,会增加不必要的功率损耗,所以实际工程应用中,通常采用扰动观测法算法]1[。 扰动观测法原理:每隔一定的时间增加或者减少电压,并通过观测其后功率变化的方向,

100kW光伏并网发电系统典型案例解

100kW光伏并网发电系统典型案例解 100kW光伏并网发电系统典型案例解析 1、项目地点分析 本项目采用光伏并网发电系统设计方案,应用类别为村级光伏电站项目。项目安装地为江西,江西位于位于中国的东南部,长江中下游南岸。地处北纬24°29′-30°04′,东经113°34′-118°28′之间。项目所在地坐标为北纬25°8′,东经114°9′。根据查询到的经纬度在NASA上查询当地的峰值日照时间如下: (以下数据来源于美国太空总署数据库) 从上表可以看出,项目建设地江西在国内属于二三类太阳能资源地区,年平均太阳能辐射量峰值平均每天为3.41kWh/m2,年平均太阳能总辐射量峰值为:3.41kWh/m2*365=1244.65 kWh/m2。 2、光伏组件 2.1光伏组件的选择 本项目选用晶硅太阳能电池板,单块功率为260Wp。下面是一组多晶硅的性能参数,组件尺寸为1650*990*35mm。 2.2光伏组件安装角度

根据项目所在地理位置坐标,项目所在地坐标为项目所在地坐标为北纬25°8′,东经114°9′,光伏组件安装最佳倾角为20°如下图所示: 2.3组件阵列间距及项目安装面积 采用260Wp的组件,组件尺寸为1650*990*35mm,共用400块太阳能电池板, 总功率104kWp。根据下表公式可以计算出组件的前后排阵列间距为2.4m,单 块组件及其间距所占用面积为2.39㎡。

104kWp光伏组件组成的光伏并网发电系统占地面积为2.39*400=956㎡,考虑到安装间隙、周围围墙等可能的占地面积,大约需要1000㎡。 3、光伏支架 本项目为水平地面安装,采用自重式支架安装方式。自重式解决方案适用于平屋顶及地面系统。利用水泥块压住支架底部的铝制托盘,起到固定系统的作用。

太阳能并网光伏发电系统设计

】 南昌航空大学 自学考试毕业论文 【 题目太阳能并网光伏发电系统 专业光伏材料及应用 学生姓名 准考证号 指导教师 . 2012 年 04 月

光伏发电并网控制技术设计 摘要 随着全球经济社会的不断发展,能源消费也相应的持续增长。能源问题已经成为关系到人类生存和发展的首要问题。所以,迫切需要对新的能源进行开发和研究。而太阳能的利用近年来已经逐渐成为新能源领域中开发利用水平高,应用较广泛的能源,尤其在远离电网的偏远地区应用更为广泛。 本文主要对光伏并网发电系统作了分析和研究。论文首先介绍了太阳能发电的意义以及光伏并网发电在国内外的应用现状。其次,对太阳能发电系统的特性和基本原理分别做了具体分析,并对系统各组成部分的功能进行了详细的介绍。接着,对光伏并网中最重要部分——逆变器进行研究。再次,提出光伏并网发电系统的设计方案。最后,对光伏并网发电系统的硬件进行设计。并网光伏发电充分发挥了新能源的优势,可以缓解能源紧张问题,是太阳能规模化发展的必然方向。我国政府高度重视光伏并网发电,并逐步推广"屋顶计划"。太阳能并网发电正在由补充能源向替代能源方向迈进。 关键词:能源;太阳能;光伏并网;逆变器

目录 第一章太阳能光伏产业绪论 (1) 光伏发电的意义 (1) 光伏并网发电 (1) 第二章太阳能光伏发电系统 (5) 太阳能光伏发电简介 (5) 太阳能光伏发电系统的类别 (5) 太阳能光伏发电系统的发电方式 (6) 影响太阳能光伏发电的主要因素 (7) 第三章并网太阳能光伏发电系统组成 (10) 并网光伏系统的组成和原理 (10) 光伏电池的分类及主要参数 (12) 光伏控制器性能及技术参数 (14) 光伏逆变器性能及技术参数 (15) 第四章发展与展望 (18) 发展与展望 (18) 全文总结 (19) 参考文献 (20) 致谢 (21)

光伏并网发电系统设计复习过程

光伏并网发电系统设 计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。

R L U 图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC 变换器和后级的DC-AC 逆变器组成。在系统中,DC-DC 变换器采用BOOST 结构,主要完成系统的MPPT 控制;DC-AC 部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz 交流电。设计采用单片机SPWM 调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT 原理及电路设计 3.1 MPPT 原理

5kWp光伏太阳能并网发电系统

5kWp光伏太阳能并网发电系统 设 计 方 案 设计人:申小波(Mellon) 单位:个人 电话: 日期: 2013年10月27日

目录 一、光伏太阳能并网发电系统简介 (2) 二、项目地点及气候辐照状况 (2) 三、相关规范和标准 (5) 四、系统结构与组成 (5) 五、设计过程 (6) 1、方案简介 (6) 2、设计依据 (6) 3、组件设计选型 (7) 4、直流防雷汇流箱设计选型 (9) 5、交直流断路器 (11) 6、并网逆变器设计选型 (13) 7、电缆设计选型 (14) 8、方阵支架 (15) 9、配电室设计 (15) 10、接地及防雷 (15) 11、数据采集检测系统 (16) 六、仿真软件模拟设计 (17) 七、接入电网方案 (22)

八、设备配置清单及详细参数 (22) 九、系统建设及施工 (22) 十、系统安装及调试 (23) 十一、运行及维护注意事项 (26) 十二、设计图纸 (28) 十三、工程预算投资分析报告 (32)

5kWp光伏太阳能并网发电系统配置方案 一、光伏太阳能并网发电系统简介 并网系统(Utility Grid Connected)最大的特点:太阳电池组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网,并网系统中光伏方阵所产生电力除了供给交流负载外,多余的电力反馈给电网。在阴雨天或夜晚,太阳电池组件没有产生电能或者产生的电能不能满足负载需求时就由电网供电。 因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用光伏方阵所发的电力,从而减小了能量的损耗,并降低了系统的成本。但是系统中需要专用的并网逆变器,以保证输出的电力满足电网电力对电压、频率等电性能指标的要求。因为逆变器效率的问题,还是会有部分的能量损失。这种系统通常能够并行使用市电和太阳能太阳电池组件阵列作为本地交流负载的电源,降低了整个系统的负载缺电率,而且并网系统可以对公用电网起到调峰作用。但并网光伏供电系统作为一种分散式发电系统,对传统的集中供电系统的电网会产生一些不良的影响,如谐波污染,孤岛效应等。 二、项目地点及气候辐照状况 图片来自Google地球 1、项目地点为:江苏省泰州市XX区XX镇; 2、纬度:32°22’,经度:120°12’; 3、平均海拔高度:7m;

家用分布式光伏系统设计(并网型)

家用分布式光伏系统设计 摘要:太阳能是最普遍的自然资源,也是取之不尽的可再生能源。分布式光伏发电特指采用光伏组件,将太阳能直接转换为电能的分布式发电系统。它是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就近并网,就近转换,就近使用的原则,不仅能够有效提高同等规模光伏电站的发电量,同时还有效解决了电力在升压及长途运输中的损耗问题。 目前应用最为广泛的分布式光伏发电系统,是建在建筑物屋顶的光伏发电项目,方便接入就近接入公共电网,与公共电网一起为附近的用户供电。从发电入网角度出发,根据家庭用电情况可以给出系统施工要求、设计方法以及光伏组件、逆变器的选择等。 关键词:太阳能分布式光伏发电系统 1.前言 太阳能是一种重要的,可再生的清洁能源,是取之不尽用之不竭、无污染、人类能够自由利用的能源。太阳每秒钟到达地面的能量高达50万千瓦,假如把地球表面0.1%的太阳能转换为电能,转变率5%,每年发电量可达5.6×1012kW·h,相当于目前世界上能耗的40倍。从长远来看,太阳能的利用前景最好,潜力最大。近30年来,太阳能利用技术在研究开发、商业化生产和市场开拓方面都获得了长足发展,成为快速、稳定发展的新兴产业之一。 本文简单地阐述了家用分布式光伏发电系统设计方法和施工要求,仅供参考。 2.太阳能光伏发电应用现状 太阳能转换为电能的技术称为太阳能光伏发电技术(简称PV技术)。太阳能光伏发电不仅可以部分代替化石燃料发电,而且可以减少CO2和有害气体的排放,防止地球环境恶化,因此发展太阳能光伏产业已经成为全球各国解决能源与经济发展、环境保护之间矛盾的最佳途径之一。目前发达国家如美国、德国、日本的光伏发电应用领域从航天、国防、转向了民用,如德国的“百万屋顶计划”使许多家庭不仅利用太阳能光伏发电解决了自家供电,而且这些家庭还办成了一所所私人的“小型电站”,能够源源不断地为公用电网提供电能。 近几年,我国光伏行业发展也非常迅速。国家对光伏发电较为重视,国家和地方政府相继出台了一些列的补贴政策以促进光伏产业的发展,国家发改委实施“送电到乡”、“光明工

并网光伏发电系统

并网光伏发电系统 并网太阳能光伏发电系统是由光伏电池方阵并网逆变器组成,不经过蓄电池储能,通过并网逆变器直接将电能输入公共电网。并网太阳能光伏发电系统相比离网太阳能光伏发电系统省掉了蓄电池储能和释放的过程,减少了其中的能量消耗,节约了占地空间,还降低了配置成本。值得申明的是,并网太阳能光伏发电系统很大一部分用于政府电网和发达国家节能的案件中。并网太阳能发电是太阳能光伏发电的发展方向,是21世纪极具潜力的能源利用技术。 并网光伏发电系统有集中式大型并网光伏电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。但这种电站投资大、建设周期长、占地面积大,因而没有太大发展。而分散式小型并网光伏系统,特别是光伏建筑一体化发电系统,由于投资小、建设快、占地面积小、政策支持力度大等优点,是并网光伏发电的主流。 概述 太阳能发电是传统发电的有益补充,鉴于其对环保与经济发展的重要性,各发达国家无不全力推动太阳能发电工作,如今中小规模的太阳能发电已形成了产业。太阳能发电有光伏发电和太阳能热发电 2 种方式,其中光伏发电具有维护简单、功率可大可小等突出优点,作为中、小型并网电源得到较广泛应用。并网光伏发电系统比离网型光伏发电系统投资减少25 %。将光伏发电系统以微网的形式接入到大电

网并网运行,与大电网互为支撑,是提高光伏发电规模的重要技术出路,并网光伏发电系统的运行也是今后技术发展的主要方向,通过并网能够扩张太阳能使用的范围和灵活性。 特点及必要条件 在微网中运行,通过中低压配电网接入互联特/超高压大电网,是并网光伏发电系统的重要特点。并网光伏发电系统的基本必要条件是,逆变器输出之正弦波电流的频率和相位与电网电压的频率和相位相同。 并网光伏发电系统分类 1、有逆流并网光伏发电系统 有逆流并网光伏发电系统:当太阳能光伏系统发出的电能充裕时,可将剩余电能馈入公共电网,向电网供电(卖电);当太阳能光伏系统提供的电力不足时,由电能向负载供电(买电)。由于向电网供电时与电网供电的方向相反,所以称为有逆流光伏发电系统。 2、无逆流并网光伏发电系统 无逆流并网光伏发电系统:太阳能光伏发电系统即使发电充裕也不向公共电网供电,但当太阳能光伏系统供电不足时,则由公共电网向负载供电。 3、切换型并网光伏发电系统 所谓切换型并网光伏发电系统,实际上是具有自动运行双向切换的功能。一是当光伏发电系统因多云、阴雨天及自身故障等导致发电量不足时,切换器能自动切换到电网供电一侧,由电网向负载供电;二是

家用分布式光伏系统设计(并网型)

家用分布式光伏系统设计 邓李军 (通威太阳能光伏电力事业部技术研发部,成都) 摘要:太阳能是最普遍的自然资源,也是取之不尽的可再生能源。分布式光伏发电特指采用光伏组件,将太阳能直接转换为电能的分布式发电系统。它是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就近并网,就近转换,就近使用的原则,不仅能够有效提高同等规模光伏电站的发电量,同时还有效解决了电力在升压及长途运输中的损耗问题。 目前应用最为广泛的分布式光伏发电系统,是建在建筑物屋顶的光伏发电项目,方便接入就近接入公共电网,与公共电网一起为附近的用户供电。从发电入网角度出发,根据家庭用电情况可以给出系统施工要求、设计方法以及光伏组件、逆变器的选择等。 关键词:太阳能分布式光伏发电系统 1.前言 太阳能是一种重要的,可再生的清洁能源,是取之不尽用之不竭、无污染、人类能够自由利用的能源。太阳每秒钟到达地面的能量高达50万千瓦,假如把地球表面0.1%的太阳能转换为电能,转变率5%,每年发电量可达5.6×1012kW·h,相当于目前世界上能耗的40倍。从长远来看,太阳能的利用前景最好,潜力最大。近30年来,太阳能利用技术在研究开发、商业化生产和市场开拓方面都获得了长足发展,成为快速、稳定发展的新兴产业之一。 本文简单地阐述了家用分布式光伏发电系统设计方法和施工要求,仅供参考。 2.太阳能光伏发电应用现状 太阳能转换为电能的技术称为太阳能光伏发电技术(简称PV技术)。太阳能光伏发电不仅可以部分代替化石燃料发电,而且可以减少CO2和有害气体的排放,防止地球环境恶化,因此发展太阳能光伏产业已经成为全球各国解决能源与经济发展、环境保护之间矛盾的最佳途径之一。目前发达国家如美国、德国、日本的光伏发电应用领域从航天、国防、转向了民用,如德国的“百万屋顶计划”使许多家庭不仅利用太阳能光伏发电解决了自家供电,而且

大型光伏电站并网特性

大型光伏电站并网特性 光伏发电系统可分为离网光伏发电系统和并网光伏发电系统,并网光伏发电系统比离网型光伏发电系统投资减少25 %。将光伏发电系统以微网的形式接入到大电网并网运行,与大电网互为支撑,是提高光伏发电规模的重要技术出路,光伏发电系统并网运行也是今后技术发展的主要方向,通过并网能够扩张太阳能使用的范围和灵活性。 光伏发电并网就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网。可以分为带蓄电池的和不带蓄电池的并网发电系统。带有蓄电池的并网发电系统具有可调度性,可以根据需要并入或退出电网,还具有备用电源的功能,当电网因故停电时可紧急供电,带有蓄电池的光伏并网发电系统常常安装在居民建筑。不带蓄电池的并网发电系统不具备可调度性和备用电源的功能,一般安装在较大型的系统上。 光伏发电并网有集中式大型并网光伏电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。但这种电站投资大、建设周期长、占地面积大,还没有太大发展。而分散式小型并网光伏,特别是光伏建筑一体化光伏发电,由于投资小、建设快、占地面积小、政策支持力度大等优点,是光伏发电并网的主流。 光伏发电系统并网的基本必要条件是,逆变器输出之正弦波电流的频率和相位与电网电压的频率和相位相同。 光伏发电系统并网有2 种形式:集中式并网和分散式并网。 集中式并网:特点是所发电能被直接输送到大电网,由大电网统一调配向用户供电, 与大电网之间的电力交换是单向的。适于大型光伏电站并网,通常离负荷点比较远,荒漠光伏电站采用这种方式并网。 分散式并网:又称为分布式光伏发电并网,特点是所发出的电能直接分配到用电负载上,多余或者不足的电力通过联结大电网来调节,与大电网之间的电力交换可能是双向的。适于小规模光伏发电系统,通常城区光伏发电系统采用这种方式,特别是于建筑结合的光伏系统。 光伏发电系统并网的基本必要条件是,逆变器输出之正弦波电流的频率和相位与电网电压的频率和相位相同。 光伏电站接入电网时对系统电网有一定影响,主要表现在太阳能光伏电站的实际输出功率随光照强度的变化而变化:白天光照强度最强时,发电装置输出功率最大,夜晚几乎无光照以后,输出功率基本为零。因此,除设备故障因素以外,发电装置输出功率随日照、天气、季节、温度等自然因素而变化,输出功率不稳定。 受多种因素影响,光伏发电系统输出功率具有不连续和不确定的特点,其中气象条件的影响最显著。此外,光伏发电系统的输出功率还具有很强的变化周期,这会对电网产生周期性冲击,据国外有关文献资料介绍,电网发电容量中光伏发电的比例不宜超过10%~15%,否则整个电网将难以运行。因此,有必要进行光伏发电出力预测,以了解光伏电源的发电运行特性,这不仅

光伏发电系统-毕业设计

1. 引言 日常生活和社会生产都离不开能源。人们通过直接或间接利用某些自然资源得到能,因而,把具有某种形式能量资源以及由它加工或转换得到的产品统称为能源。前者叫自然能源或一次能源,如矿物燃料、植物燃料、太阳能、水能、风能、海洋能、地热能和潮汐能等,后者通常又把可再生的自然资源称为新能源,其围包括太阳能、生物质能、风能、地热能和海洋能等。矿物燃料(煤、石油、天然气等)又称为常规能源。 值得注意,几乎所有的自然资源,从广义的角度看都来自太阳能。由大气、陆地、海洋、生物等所接受的太阳能都是各种自然资源的源泉。矿物燃料是古生物长期沉积在地下形成的,它的形成源自远古的太阳能。[9]水的蒸发和凝结,风、雨、冰、雪等自然现象的动力也是靠太阳,因而水能、风能归根到底都来自太阳能。生物质能是通过光合、光化作用转化太阳辐射能取得的。由于太阳和月球对地球水的吸水作用产生潮汐能。 世界上最丰富的永久能源是太阳能。地球截取的太阳能辐射能通量为1.7ⅹ1014kW,比核能、地热和引力能储量总和还要大5000多倍。其中约30%被反射回宇宙空间;47%转变为热,以长波辐射形式再次返回空间;约23%是水蒸发、凝结的动力,风和波浪的动能,植物通过光合作用吸收的能量不到0.5%。地球每年接受的太阳能总量为1ⅹ1018kW·h。这相当于5ⅹ1014桶原油,是探明原油储量的近千倍,是世界年耗总能量的一万余倍。 太阳的能量是如此巨大,正如通常所说的“取之不尽、用之不竭”,但是太阳辐射能的通量密度较低,大气层外为1353W/m2.太通过大气层时会进一步衰减,还会受到天气、昼夜以及空气污染等因素的影响,因而,太阳能对地球又呈

光伏发电项目并网接入系统方案

光伏发电项目并网接入系统方案 工作单号: 项目业主:(以下简称甲方) 供电企业:(以下简称乙方)根据国家和地方政府有关规定,结合中山市供用电的具体情况,经甲、乙方共同协商,达成光伏发电项目接入系统方案如下: 一、项目地址: 二、发电量使用情况:平均日发电量为6433kWh,**工业园每月平均用电量约40万度,白天(6:00-18:00)日均用电量约为6600度,基本满足自发自用。 三、发电设备容量: 合计2260 kWp。 四、设计依据和原则 1、相关国家法律、法规 《中华人民共和国可再生能源法》 国家发展改革委《可再生能源发电有关管理规定》 国家发展改革委《可再生能源发电价格和费用分摊管理试行办法》

财建[2012]21号《关于做好2012年金太阳示范工作的通知》 《国家电网公司光伏电站接入电网技术规定》(试行) 国务院《关于促进光伏产业健康发展的若干意见》 国家发改委《分布式发电管理暂行办法》 财政部《关于分布式光伏发电实行按照电量补贴政策等有关问题的通知》 国家能源局《关于开展分布式光伏发电应用示范区建设的通知》 国家发改委《关于发挥价格杠杆作用促进光伏产业健康发展的通知》 国家能源局《光伏电站项目管理暂行办法》 财政部《关于调整可再生能源电价附加征收标准的通知》 财政部《关于光伏发电增值税政策的通知》 国家能源局《分布式光伏发电项目暂行办法》 财政部《关于对分布式光伏发电自发自用电量免征政府性基金有关问题的通知》 国家能源局《光伏发电运营监管暂行办法》 2、最新政策解读: 国家能源局于2014年7月提出《关于进一步落实分布式光伏发电有关政策的通知》,并就这两份文件向各省市能源发改委相关部门以及部分企业征求意见。该文件针对分布式光伏电站提出了进一步完善意见,根据国内市场的特点扩大分布式光伏电站应用,在促进屋顶落实、项目融资、电网接入、备案管理和电力交易上提出进一步落实和保证性政策。 该文件的突出特点是分布式光伏电站的补贴可专为标高电价托底,同时提高补贴到位及时性,增加电站收益。第一,进而预留国家财政补贴的方式确保资金到位;

光伏并网发电系统的分类及其结构

光伏并网发电系统的分类及其结构 一.可调度式与不可调度式 目前常见的光伏并网发电系统,根据其系统功能可以分为两类:一种为不含蓄电池的“不可调度式光伏并网发电系统”;另一种为系统包括蓄电池组作为储能环节的“可调度式光伏并网发电系统”。两者的系统配置示意图如图1和图2所示。可调度式并网光伏系统设置有储能装置,兼有不间断电源和有源滤波的功能,而且有益于电网调峰。但是,其储能环节通常存在寿命短、造价高、体积笨重以及集成度低的缺点,因此,目前这种形式的应用较少。 可调度式光伏并网发电系统与不可调度式相比,最大的不同是系统中配有储能环节,通常采用铅酸蓄电池组,其容量可根据实际需要进行配置。在功能上,可调度式系统有一定扩展和提高,主要包括: (1)系统控制器中除了并网逆变器部分外,还包括蓄电池充放电控制器,根据系统功能要求进行蓄电池组能量管理。 (2)在交流电网断电时,可调度式系统可以实现不间断电源(Uninterruptible Power Supply,UPS)的功能,为本地重要交流负载供电。 (3)较大容量的可调度式光伏并网发电系统还可以根据运行需要控制并网输出功率,实现一定的电网调峰功能。 图.1 不可调度式光伏并网发电系统配置示意图

图.2调度式光伏并网发电系统配置示意图 虽然在功能上优于不可调度式光伏并网系统,但由于增加了储能环节,可调度式光伏并网系统存在着明显的缺点。这些缺点是目前限制可调度式光伏并网系统广泛应用的主要原因,包括: (1)增加蓄电池组导致系统成本增加。 (2)蓄电池的寿命较短,远低于系统其他部件寿命:目前免维护铅酸蓄电池在合理使用下寿命通常为 3 到 5 年,而光伏阵列一般可以稳定工作 20 年以上。 (3)废弃的铅酸蓄电池必须进行回收处理,否则将造成严重的环境污染。二.集中式发电与分布式发电 根据光伏并网发电系统的规模和集中程度,可以将其分为集中式发电系统和分布式发电系统。集中式发电系统可以看作一个太阳能发电站,其峰值功率可以达到上兆瓦,输出电压等级也较高,可以直接连入中压或高压输电网。例如上世纪 90 年代在西班牙托莱多建成的兆瓦级太阳能电站,以及 1999 年在德国慕尼黑建成的与建筑集成的兆瓦级太阳能电站。截止 2005 年,世界上最大的太阳能电站是安装在德国 Espenhain 的太阳能电站,装机容量 5.5MWP,由约33,500 个太阳能电池组件组成,于 2004 年 9 月开始正式运行。

5kW并网型可调度式光伏发电系统设计

辽宁工业大学 光伏发电技术课程设计(论文)题目: 5kW并网型可调度式光伏发电系统设计 院(系): 专业班级: 学号: 121806015 学生姓名: 指导教师:(签字) 起止时间: 2015.12.14-2015.12.25

课程设计(论文)任务及评语 院(系):新能源学院教研室:电气教研室Array 注:成绩:平时40% 论文质量60% 以百分制计算

摘要 近些年来,能源问题迫使世界各国对新能源开发和利用。太阳能因其自身的优势成为最有前途的一种新能源。将太阳能转换为电能越来越多的成为人们关注的焦点,只要成功,前途无量。但太阳能光伏发电仍旧存在着一些缺点,如成本高、能量转换率低,需要不断地改良,优化。对于光伏发电而言,并网模式是将其效率最大化最为理想的方式,因此要做好并网光伏发电系统的设计优化,才能满足电网对发电质量的要求,以及本身的安全运行。本文先对光伏发电进行了回顾,而后重点介绍了并网光伏发电系统,并提出了并网光伏发电系统设计的优化建议。 关键词:无线传感器网络;室内定位;RSSI;加权质心;混合定位

目录 第1章绪论 (1) 1.1光伏发电系统概况 (1) 1.2本文研究内容 (2) 第2章光伏发电系统总体设计 (3) 第3章发电系统设备选择及设计 (4) 3.1太阳能电池板的选择 (4) 3.2蓄电池参数计算及选择 (5) 3.3逆变器设计 (6) 3.4汇流箱设计 (9) 3.5并网逆变器控制保护设计 (11) 第4章总结 (13) 参考文献 (14) 附录A 光伏并网系统结构图 (16) 附录B 并网发电系统原理图 (17)

光伏发电并网系统Simulink仿真实验

光伏发电并网系统Simulink仿真实验 报告电气工程学院 王安20 一.光伏发电系统基本原理与框架图 基本原理为:光伏阵列接受太阳能产生直流电流电压,同时电流电压受光照和温度的影响,而后经DC\DC(BOOST升压电路)转化将电压升高,再经DC\AC逆变产生交流电压供给负载使用。在这中间需要用MPPT使光伏电池始终工作在最大功率点处。 二.光伏电池的工作原理 光伏发电的能量转换器件是太阳能电池,又叫光伏电池。光伏电池发电的原理是光生伏打效应。光伏电池应用P-N结的光伏效应(Photovoltaic Effect)将来自太阳的光能转变为电能。当太阳光照射到太阳能电池上时,电池吸收光能,产生光电子-空穴对。在电池内电场的作用下,光生电子和空穴被分离,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏打效应”。若在内建电场的两侧引出电极并接上负载,则负载就有“光生电流”流过,从而获得功率输出。这样,太阳的光能就变成了可以使用的电能。 三.光伏发电系统并网Simulink仿真 利用MTALAB中的simulink软件包,可以对10KW,380V光伏发电系统进行仿真,建立仿真模型如下: 输入参数如下: Simulink提供的子系统封装功能可以大大增强simulink系统模型框图的可读性封装子模块如下: 光伏电池封装模块: 最大功率点跟踪模块:

PWM模块如下: 并网端PWM内部PI模块: 运行结果如下图所示: 光伏电池输出电压如下: 光伏电池输出电流如下: 光伏电池输出功率波形如下: 并网(220V)成功后输出电流波形: 结果分析:通过对光伏发电的matlab-simulink仿真,得到了与理论曲线基本相同的电压、电流、功率曲线,但仍有不足之处,比如产生了许多谐波。通过这次的仿真实验,让我更加深刻认识了光伏发电的工作原理和过程,对光伏发电过程中可能出现的问题也有了一定的了解。虽然自己现在没办法解决,但随着自己学习的深入,以后会有办法解决的。另外,此次试验是和几个同学一起完成过程中也遇到了很多问题,最后集思广益解决了很多的问题,这让我也明白了合作的重要性。

并网光伏发电系统电气系统简介

并网光伏发电系统电气系统简介 1、光伏发电系统背景2013年7月4日国务院颁发《关于促进光伏产业健康发展的若干意见》,意见中明确指出未来发展光伏产业的重要性。光伏产业是全球能源科技和产业的重要发展方向,是具有巨大发展潜力的朝阳产业,也是我国具有国际竞争优势的战略性新兴产业。我国光伏产业当前遇到的问题和困难,既是对产业发展的挑战,也是促进产业调整升级的契机,特别是光伏发电成本大幅下降,为扩大国内市场提供了有利条件。要坚定信心,抓住机遇,开拓创新,毫不动摇地推进光伏产业持续健康发展。 2、光伏发电系统组成 太阳能光伏发电系统主要由太阳能光伏电池组,光伏系统电池控制器,逆变器,汇流箱和交直流逆变器是其主要部件。其中的核心元件是光伏电池组和控制器。各部件在系统中的作用是: (1)光伏电池:光电转换。 (2)控制器:作用于整个系统的过程控制。光伏发电系统中使用的控制器类型很多,如2点式控制器,多路顺序控制器、智能控制器、大功率跟踪充电控制器等,我国目前使用的大都是简单设计的控制器,智能型控制器仅用于通信系统和较大型的光伏电站。 (3)逆变器:将光伏组件发出的直流电转化成交流电。 (4)汇流箱:将一定数量、规格相同的光伏电池串联起来,组成一个个光伏串列,然后再将若干个光伏串列并联接入光伏汇流防雷箱,在光伏防雷汇流箱内汇流后,通过控制器,直流配电柜,光伏逆变器,交流配电柜,配套使用从而构成完整的光伏发电系统,实现与市电并网。 (5)交直流逆变器:由于它的功能是交直流转换,因此这个部件最重要的指标是可靠性和转换效率。并网逆变器采用最大功率跟踪技术,最大限度地把光伏电池转换的电能送入电网。 3并网光伏发电电气系统设计方法简介 3.1 并网光伏发电系统构成

11.并网光伏发电微网系统-刘士荣

Grid-Connection Photovoltaic Micro-Grid System
并网光伏发电微网系统
刘士荣 教授
liushirong@https://www.sodocs.net/doc/dd2557394.html,
杭州电子科技大学 光伏发电微网系统技术中心
2010年8月28日 2010年 28日
1
提纲 一、分布式发电(DG)、微型电网与智能电网 分布式发电(DG)、微型电网与智能电网 )、 二、国外微电网发展现状 国外微电 三、杭州电子科技大学PV微电网项目介绍 杭州电子科技大学PV微 PV 四、主要研究工作
2

一、分布式发电、微型电网与智能电网 分布式发电、 1、分布式发电(Distributed Generation, DG) 分布式发电(
以清洁能源为主的分布式电源( 以清洁能源为主的分布式电源( Distributed Energy Resources, DERs) DERs)
微型燃气轮机发电:以天然气、甲烷、汽油(柴油) 微型燃气轮机发电:以天然气、甲烷、汽油(柴油)为燃料
的超小型燃气轮机,发电效率可达30%以上 实行热电联产, 以上, 的超小型燃气轮机,发电效率可达30%以上,实行热电联产,效 率可进一步提高。特点:体积小、发电效率高、排污少、 率可进一步提高。特点:体积小、发电效率高、排污少、运行维 护简单。 护简单。
燃料电池发电:熔融碳酸盐型MCFC、磷酸盐型PAFC、 燃料电池发电:熔融碳酸盐型MCFC、磷酸盐型PAFC、固体
氧化物型SOFC、质子交换膜PEMFC。将燃料(天然气、 氧化物型SOFC、质子交换膜PEMFC。将燃料(天然气、煤制 石油)中的氢气借助电解质与空气中的氧气发生化学反应, 气、石油)中的氢气借助电解质与空气中的氧气发生化学反应, 在生成水的同时进行发电。 在生成水的同时进行发电。 除电能之外,副产品: 除电能之外,副产品:热、水、少量CO2 少量CO2
分布式电源( Distributed Energy Resources, DERs) 分布式电源( DERs) 太阳能发电技术(光伏、光热) 太阳能发电技术(光伏、光热) 风力发电技术 生物质能发电技术 海洋能发电技术 地热能发电技术 储能装置: 储能装置:
蓄电池储能、超导储能、 蓄电池储能、超导储能、飞轮储能

并网光伏发电系统结构种类及工作特点分析

并网光伏发电系统结构种类及工作特点分析 所谓并网光伏发电系统就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网。并网光伏发电系统有集中式大型并网光伏系统,也有分散式小型并网光伏系统。集中式大型并网光伏电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。但这种电站投资大、建设周期长、占地面积大。而分散式小型并网光伏系统,特别是光伏建筑一体化发电系统,由于投资小、建设快、占地面积小、政策支持力度大等优点,是目前并网光伏发电的主流。常见并网光伏发电系统一般有下列几种形式。 1.有逆流并网光伏发电系统 有逆流并网光伏发电系统如图2-8所示。当太阳能光伏系统发出的电能充裕时,可将剩余电能馈入公共电网,向电网供电(卖电);当太阳能光伏系统提供的电力不足时,由电网向负载供电(买电)。由于向电网供电时与电网供电的方向相反,所以称为有逆流光伏发电系统。 图2-8有逆流并网光伏发电系统 2.无逆流并网光伏发电系统 无逆流并网光伏发电系统如图2-9所示。太阳能光伏发电系统即使发电充裕也不向公;电网供电,但当太阳能光伏系统供电不足时,则由公共电网向负载供电。 图2-9无逆流并网光伏发电系统 3.切换型并网光伏发电系统

切换型光伏并网发电系统如图2-10所示。所谓切换型并网光伏发电系统,实际上是具有自动运行双向切换的功能。一是当光伏发电系统因多云、阴雨天及自身故障等导致发电量不足时,切换器能自动切换到电网供电一侧,由电网向负载供电;二是当电网因为某种原因,然停电时,光伏系统可以自动切换使与电网分离,成为独立光伏发电系统工作状态。有些切换型光伏发电系统,还可以在需要时断开为一般负载的供电,接通对应急负载的供电,一般切换型并网光伏发电系统都带有储能装置。 图2-10切换型并网光伏发电系统

太阳能光伏并网发电系统

太阳能光伏并网发电系统 摘要:随着经济的发展、社会的进步,电能的消耗越来越大,传统的火电需要燃烧煤、石油等化石燃料,一方面化石燃料蕴藏量有限、越烧越少,正面临着枯竭的危险。另一方面燃烧燃料将排出二氧化碳和硫的氧化物,因此会导致温室效应和酸雨,恶化地球环境。针对上述问题人们对能源提出越来越高的要求,寻找新能源成为当前人类面临的迫切课题。太阳能是一种干净的可再生的新能源,越来越受到人们的亲睐,在人们生活、工作中有广泛的作用,其中之一就是将太阳能转换为电能。本文将对太阳能光伏并网发电系统这个新产品进行体系的构建和市场分析,运用产品开发与管理的知识对新产品进行可行性分析,材料分析以及工艺性分析。 关键词:太阳能发电系统产品体系构建市场分析可行性分析 一、产品体系的构建产品体系由战略层面的文化以及策略层面的价格、包装等一系列要素构成,是企业从操作性角度对产品的审视[1]。 1、产品与文化文化是产品的一个重要组成部分,属于产品附加利益这一层次。产 品文化,是以企业生产的产品为载体,反应物质及精神追求的各种文化要素的总和,是产品价值和文化价值的统一。随着知识经济时代的到来,企业生产的产品决不仅仅是为了满足人们的某种物质生活需要,而是越来越多地考虑人们的精神生活需要,越来越重视产品文化附加值的开发,努力为顾客提供实用的、情感的、心理 的等多方面的享受,努力把使用价值和审美价值融为一体,突出产品中的人性化因素 [1] 。 结合自身的产品,不仅要发掘尽可能多的使用价值,更多的是体现太阳能光伏并网发电系统的文化价值。本产品推崇的太阳不仅仅给世界带来了温暖和光照,即太阳能光伏并网系统结合自身的特点所体现出的文化价值。在当前能源短缺的大环境下,太阳能蕴藏丰富不会枯竭,是理想的清洁能源。由于其安全、干净,不会威胁人类和破坏环境,比传统的煤燃料更环保,所以太阳能更值得推广。 对于顾客的情感方面,近阶段,国家电网的供电大多是采用火力发电,势必造成 能源的短缺和环境的破坏,顾客使用本产品能有效节约能源,保护坏境,充分体 现了顾客对环境保护的高度责任感,也能把这份责任感传递给更多。 2、产品与定位 产品的定位是体系构建中重要的一个环节,产品定位指企业针对同种产品市场进入者的情况,根据消费者对该产品的某一属性或特征的重视程度,为该产品设计

光伏并网发电系统的分类及其结构资料

光伏并网发电系统 并网太阳能光伏发电系统是由光伏电池方阵并网逆变器组成,不经过蓄电池储能,通过并网逆变器直接将电能输入公共电网。并网太阳能光伏发电系统相比离网太阳能光伏发电系统省掉了蓄电池储能和释放的过程,减少了其中的能量消耗,节约了占地空间,还降低了配置成本。值得申明的是,并网太阳能光伏发电系统很大一部分用于政府电网和发达国家节能的案件中。并网太阳能发电是太阳能光伏发电的发展方向,是21世纪极具潜力的能源利用技术。 并网光伏发电系统有集中式大型并网光伏电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。但这种电站投资大、建设周期长、占地面积大,因而没有太大发展。而分散式小型并网光伏系统,特别是光伏建筑一体化发电系统,由于投资小、建设快、占地面积小、政策支持力度大等优点,是并网光伏发电的主流。 概述 太阳能发电是传统发电的有益补充,鉴于其对环保与经济发展的重要性,各发达国家无不全力推动太阳能发电工作,如今中小规模的太阳能发电已形成了产业。太阳能发电有光伏发电和太阳能热发电 2 种方式,其中光伏发电具有维护简单、功率可大可小等突出优点,作为中、小型并网电源得到较广泛应用。并网光伏发电系统比离网型光伏发电系统投资减少25 %。将光伏发

电系统以微网的形式接入到大电网并网运行,与大电网互为支撑,是提高光伏发电规模的重要技术出路,并网光伏发电系统的运行也是今后技术发展的主要方向,通过并网能够扩张太阳能使用的范围和灵活性。 特点及必要条件 在微网中运行,通过中低压配电网接入互联特/超高压大电网,是并网光伏发电系统的重要特点。并网光伏发电系统的基本必要条件是,逆变器输出之正弦波电流的频率和相位与电网电压的频率和相位相同。 分类 1、有逆流并网光伏发电系统 有逆流并网光伏发电系统:当太阳能光伏系统发出的电能充裕时,可将剩余电能馈入公共电网,向电网供 太阳能并网发电系统安装图片(2张) 电(卖电);当太阳能光伏系统提供的电力不足时,由电能向负载供电(买电)。由于向电网供电时与电网供电的方向相反,所以称为有逆流光伏发电系统。

相关主题