搜档网
当前位置:搜档网 › 任务-空气流量传感器的检测教案

任务-空气流量传感器的检测教案

任务-空气流量传感器的检测教案
任务-空气流量传感器的检测教案

如图,热线电阻RH以铂丝制成,RH和温度补偿电阻RK均置于空气通道中的取气管内,与RA、RB共同构成桥式电路。RH、RK阻均随温度化。当空气流经RH 时,使热线温度发生变化,电阻减小或增大,使电桥失去平衡,若要保持电桥平衡,就必须使流经热线电阻的电流改变,以恢复其温度与阻值,精密电阻RA两端的电压也相应变化,并且该电压信号作为热式空气流量计输出的电压信号送往ECU。2)自洁功能发动机转速超过1500r/min,关闭点火开关使发动机熄火后,控制系统自动将热线加热到1000℃以上并保持约1s,使附在热线上的粉尘烧掉。

(2)任务2 热式空气流量计故障点分析(10min)

采用分组讨论,组长总结,得出热式空气流量计理故障点分析

故障原因:

1、外部线路故障1)断路2)短路3)虚接

2、传感器自身故障1)热丝/烧断热膜/破裂2)热线/热膜脏污3)控制电路故障4)外壳破裂5)防护网堵塞

3、ECU故障1)不能提供电源2)内部搭铁故障

(3)任务3 AJR发动机空气流量传感器检测(实训及填写实训报告62min)接通点火开关,不起动发动机,测E与D、E与C之间的电压为蓄电池电压。B与C间的信号电压发动机工作时为2~4V

发动机不工作时为1.0~1.5V

空气流量计的检测原理

空气流量计的检测原理 随着科学技术的发展,我们不断引进先进技术,空气流量计的测试精度高,可以输出线形信号,信号处理简单,被广泛的应用于汽车,燃气、煤气等领域。 空气流量计的检测原理,空气流量计在管道里设置柱状物之后形成两列涡旋,根据涡旋出现的频率就可以测量流量。因为涡旋成两列平行状,并且左右交替出现,与街道两旁的路灯类似,所以有涡街之称。空气流量计设有两个进气通道,主通道和旁通道,进气流量的检测部分就设在主通道上,设置旁通道的目的是为了能够调整主通道的流量,以便使主通道的检测特性呈理想状态。也就是说,对排气量不同的发动机来说,通过改变空气流量计通道截面大小的方法,就可以用一种规格的空气流量计来覆盖多种发动机。主通道上的三角柱和数个涡旋放大板构成卡曼涡旋发生器。在产生卡曼涡旋处的两侧,相对地设置了属于电子检测装置的超声波发送器和超声波接受器,也可以把这两个部件归入空气流量计,这两个电子传感器产生的电信号经空气流量计的控制电路整形、放大后成理想波形,再输入到微机中。为了利用超声波检查涡旋,在涡旋通道的内壁上都粘有吸音材料,目的是防止超声波出现不规则反射。 空气流量计的优缺点,为了克服活门式空气流量计的缺点,即在保证测量精度的前提下,扩展测量范围,并且取消滑动触点,有开发出小型轻巧的空气流量计,即空气流量计。卡曼涡旋是一种物理现象,涡旋的检测方法、电子控制电路与检测精度根本无关,空气的通路面

积与涡旋发生柱的尺寸变化决定检测精度。又因为这种传感器的输出的是电子信号(频率),所以向系统的控制电路输入信号时,可以省去AD转换器。因此,从本质来看,空气流量计是适用于微机处理的信号。 空气流量计的测试精度高,可以输出线形信号,信号处理简单,且经过长期使用,性能不会发生变化,因为是检测体积流量所以不需要对温度及大气压力进行修正。

实训项目一空气流量传感器的检测

实训项目一空气流量传感器的检测 空气流量传感器的功用是检测发动机进气量大小,并将进气量信息转换成电信号输入电单元(ECU),以供ECU计算确定喷油时间(即喷油量)和点火时间。进气量信号是控制单元计算喷油时间和点火时间的主要依据。 一、实训目的和要求 1、掌握空气流量传感器的结构特性,了解其工作原理; 2、掌握空气流量传感器及其控制电路的检测方法(电阻检测、电压检测、波形检测等); 3、掌握空气流量计数据分析的方法。 二、实训课时 实训共安排2课时。 三、器材工具 1、工具:扳手、螺丝刀、电吹风、温度计。 2、设备:桑塔纳AJR发动机故障实验台。 3、仪器:数字万用表、金德K81故障诊断仪。 4、教具:AJR发动机教学挂图一套,空气流量计解剖教具一只,测量用桑塔纳2000Gsi型轿车空气流量计5只。 四、成绩评定 成绩评定的等级为优、良、中、及格和不及格。 五、实训原理 在多点燃油喷射系统中,根据检测进气量的方式不同,空气流量计又分为“D”型(即压力型)和“L”型(即空气流量型)两种类型。“D”型是利用压力传感器检测进气歧管内的绝对压力,测量方法属于间接测量法。控制系统利用检测到的绝对压力与发动机的转速来计算吸入气缸的空气量,又称为速度/密度型燃油喷射控制系统。由于空气在进气歧管内流动时会产生压力波动,发动机怠速(节气门关闭)时的进气量与汽车加速(节气门全开)时的进气量之差可达40倍以上,进气气流的最大流速可达80m/s,因此,“D”型燃油喷射系统的测量精度不高,但控制系统的制造成本较低。“L”型是利用流量传感器直接测量吸入进气管的空气流量。由于采用直接测量的方法,因此进气量的测量精度较高,控制效果优于“D”型燃油喷射系统。当前各个车型采用的“L”型传感器分为体积流量型(如翼片式、量芯式、涡流式)传感器和质量流量型(如热线式和热膜式)传感器。质量流量型传感器工作性能稳定、测量精度高、使用效果好,但制造成本相对“D”型要高。由于热膜式空气流量传感器内没有运动部件,因此没有流动阻力,而且使用寿命远远高于热线式流量传感器。 本次实训选用的是桑塔纳2000Gsi型轿车使用的空气流量计,属“L”型热膜式空气流量计。

活动1(电控汽油发动机空气供给系统故障的诊断)教案

【课题】活动1 电控汽油发动机空气供给系统故障的诊断 【情景描述】 当电控汽油发动机工作时,出现动力不足、燃油消耗增加或排放超标,可能发动机空气供给系统有故障,需要进行诊断分析并加以排除,以恢复发动机性能。此项工作要求掌握电控发动机空气供给系统的工作原理和故障诊断方法。 【教材版本】 吕坚.汽车运用与维修专业课程改革试验教材——汽车故障诊断.北京:高等教育出版社,2009 【教学目标】 知识目标:通过讲解与演示,知道电控汽油发动机空气供给系统主要元件的功用、构造与原理;知道故障诊断的基本流程。 能力目标:通过演示与实训,使学生会正确使用汽车专用诊断仪读取和清除故障信息;会使用万用表和汽车示波仪检测元件工作状况。 情感目标:渗透专业学习与实际相结合的思想,从而激发学生学习专业课的兴趣。 【教学重点、难点】 教学重点:电控汽油发动机空气供给系统主要元件的结构与原理。 教学难点:电控汽油发动机空气供给系统主要元件诊断与检测的仪器操作。【教学媒体及教学方法】 本节课通过使用理论—-实操一体化的教学方法,调动学生的学习积极性,注重培养学生观察分析、实践动手能力,针对不同的学生采用因材施教的方法,使全体学生在任务引领下的学习中都能有所收获。 使用教材项目四活动1,使用电控发动机台架和诊断、检测仪器实物和投影

仪播放的多媒体演示素材。 本节内容可大体分为三部分,对每一部分内容结合采用讲授法、演示法、实习操作等不同的教学方法。一是通过演示,讲授电控汽油发动机空气供给系统主要元件的结构与原理;二是通过演示法、实习操作使学生进一步熟悉、理解和掌握电控汽油发动机空气供给系统主要元件故障诊断的流程以及检测仪器的操作。【课时安排】 6课时(270分钟) 【教学建议】 教学采用理实一体化方法,在教学过程中应交替使用诊断仪实物、多媒体和教材。根据学生基本情况及学习中的总体反应,加强和学生的互动,使学生积极地参与到教学活动中来。 【教学过程】 一、导入(15分钟) 电子控制汽油喷射系统(EFI系统)是利用安装在发动机不同部位上的各种传感器所测得的工作参数,按电控单元中设定的控制程序,通过对汽油喷射时间的控制来调节喷油量,从而改变混合气浓度,使发动机在各种工况下都能获得与所处工况相匹配的最佳空燃比。 电控汽油喷射系统都由三个子系统组成,即:空气供给系统、燃油供给系统和控制系统。 二、新授(120分钟) 1.空气供给系统的功用与组成(15分钟) 教师分析讲解:空气供给系统的作用:向汽油机提供与发动机负荷相适应的、清洁的空气,同时对流入发动机气缸的空气质量进行直接或间接计量,使它们在

空气流量传感器原理

空气流量传感器原理 车用空气流量传感器(或称空气流量计)是用来直接或间接检测进入发动机气缸空气量大小,并将检测结果转变成电信号输入电子控制单元ECU。电子控制汽油喷射发动机为了在各种运转工况下都能获得最佳浓度的混合气,必须正确地测定每一瞬间吸入发动机的空气量,以此作为ECU计算(控制)喷油量的主要依据。如果空气流量传感器或线路出现故障,ECU得不到正确的进气量信号,就不能正常地进行喷油量的控制,将造成混合气过浓或过稀,使发动机运转不正常。电子控制汽油喷射系统的空气流量传感器有多种型式,目前常见的空气流量传感器按其结构型式可分为翼片(叶片)式、卡尔曼涡流式、热膜式等几种。 1、翼片式空气流量传感器 图9-9是翼片式空气流量计工作原理图,该空气流量传感器在主进气道内安装有一个可绕轴旋转的翼片。在发动机工作时,空气经空气滤清器过滤清器过滤后进入空气流量传感器并推动翼片旋转,使其开启。翼片开启角度由进气量产生的推力大小和安装在翼片轴上复位弹簧弹力的平衡情况决定。当驾驶员操纵加速踏板来改变节气门开度时,进气量增大,进气气流对翼片的推力也增大,这时翼片开启的角度也增大。在翼片轴上安装有一个与翼片同轴旋转的电位计,这样在电位计上滑片的电阻的变化转变成电压信号。 当空气量增大时,其端子VC和VS之间的电阻值减小,两端子之间输出的信号电压降低;当进气量减小时,进气气流对翼片的推力减小,推力克服弹簧弹力使翼片偏转的角度也减小,端子VC与VS之间的电阻值增大,使两端子间输 图9-9 翼片式空气流量计工作原理 出的信号电压升高。ECU通过变化的信号电压控制发动机的喷油和点火时间。2、卡曼涡旋式空气流量传感器 为了克服动片式空气流量传感器的缺点,即在保证测量精度的前提下,扩展测量范围、并且取消滑动触点,人们又开发出小型轻巧的空气流量传感器,即卡曼涡旋式空气流量传感器。野外的架空电线被风吹时会嗡嗡发出声响,风速越高声音频率越高,这是因气流流过电线后形成涡旋所致,液体、气体等流体中均会发生这种现象,利用这一现象可以制成涡旋式流量传感器。在管道里设置柱状物,使流体流过柱状物之后形成两列涡旋,根据涡旋出现的

空气流量计故障分析检测

空气流量计故障分析检测 空气流量计是用来计量发动机进气量的传感器,在汽车电控燃油喷射系统中,把空气流量信号和发动机转速信号一起作为喷油时间的基准信号。空气流量计的发展大体上经历了4代:L 型、D型、热线式、热模式。发动机工作不稳定的原因很多,空气流量计是重点检查的对象,但是要确认它是否有故障,故障分析、检查方法就显得尤为重要,下面通过两个例子加以说明。 一、故障一 凌志LS400轿车高速闯车。发动机在原地加速时运转正常。当汽车行驶速度在120~14 0公里左右时,汽车会出现闯动的现象,有时闯动频繁,有时只是偶尔闯动,感觉好像是发动机 间歇断火。故障分析:发动机空载运转时正常,而故障只在120km/h车速以上时发生,或者说是有较大负荷时故障才出现,因此故障原因可能是发动机高速断火、断油、喷油量突然减少,或者是废气再循环、汽油蒸气回收系统、进气控制系统、氧传感器闭环控制系统等在高速时工作不正常造成的。检修:读取故障代码,无码检查点火系统,将示波器接到一个点火线圈的中央高压线,试车、闯车时点火高压为8KV~10KV,正常,点火波形良好;将示波器接到另一个点火线圈的中央高压线,再试车出现故障时点火波形也良好。后来将示波器逐个接到各缸的高压线,再试车,结果发现闯车时各缸的高压都正常,波形都止常,可见闯车的原因不是点火系统造成的,应查找其他方面的原因。将示波器接到第一缸喷油器控制端,试车,观察喷油时间的变化情况,闯车该气缸的喷油时间正常,为3.5ms左右。然后将示波器逐个接到其余气缸的喷油器控制端,再试车,观察喷油时间的变化情况,闯车时每个气缸的喷油时间都无异常。也不能说明故障是喷油量造成的。接上电脑检测故障诊断仪,读取数据流,从获得的数据来看,当系统由闭环控制进入开环控制时,车速在120km/h左右,是容易出现闯车的时候。断开氧传感器接线, 强迫发动机常处于开环控制,接着试车,故障依旧。其他数据都正常。最后怀疑可能是某个传感器的信号不稳定,影响了发动机的动态工作,而且这个信号在诊断仪上又看不出问题。关键的传感器有曲轴位置传感器、凸轮轴位置传感器、节气门位置传感器、空气流量计、车速传感器等。将示波器逐个接到曲轴位置传感器、凸轮轴位置传感器、节气门位置传感器,试车出现故障时这些信号都正常。将示波器接到空气流量计(涡流式)信号端,试车,出现故障时发

空气流量计的检测方法

空气流量计的检测方法 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

空气流量计的检测方法空气流量计基本结构及性能特点随着对发动机汽车尾气排放要求的提高,越来越多的发动机采用精密的空气计量传感器计量进入发动机的空气量,发动机ECU根据空气计量传感器信号初步设定基本供油量,以满足发动机各种工况空燃比,进而保证发动机各种工况对混合气的要求。 空气流量计分类:按测量空气流量的方法可分为两种:①直接测量方法传感器——空气流量计。②间接测量方法传感器——进气歧管压力传感器(负压传感器)。直接测量方法传感器按其测量信号转化形式又可分为3种。 (1)机械式空气流量计,即可动叶片式空气流量计。其特点是将燃油泵控制开关、空气温度传感器、CO调节器及空气流量计等功能融为一体,结构较复杂,但精度较高。不过由于叶片具有弹簧阻力增加了进气阻力,使它对发动机在急加速时的响应不够理想,故现在很少使用。 (2)卡尔曼涡流式空气流量计。它是通过采集涡流频率完成空气流速测量,主要是通过光电(如丰田车型)和超声波采集(如韩国现代、日本三菱等)进气涡流,具有进气阻力小、计量准确的特点,但因其结构复杂、不耐振动且造价高,现已逐步被热线式空气流量计取代。 (3)热线式空气流量计。热线式空气流量计按其热线形又分为3种。 ①热丝式——将加热丝均匀分布在计量通道内。热丝式空气流量计(图1)精度高、分布均匀,可精确计量空气量,但由于热丝很细~且暴露在空气中,在空气高速流动时,空气中的沙粒很容易击断热丝。

②热膜式——将加热丝印刷在一块线路板上,并将线路板固定在空气通道中间。由于热丝被固定且受到保护膜的保护,寿命提高,但由于保护膜热传导较差,影响计量精度。 ③热阻式——将加热丝绕成线圈形式固定在石英玻璃管内或暴露在空气通道内。由于热阻式空气流量计热丝被固定,故热线寿命延长,但由于热阻面积很小,只能部分采空气流量,要求空气通道内空气流速均匀,所以常在进气侧安装梳流格栅。 由于热膜式和热阻式空气流量计均是部分采集空气计量空气量,故精度较热丝式较差。另外,热丝式、热膜式和热阻式空气流量计还都易受空气中水分及灰尘的污染,所以在控制电路上都做了专门的设计,每次打开点火开关或关闭点火开关后,流量计中的热丝会由电路提供瞬时大电流加热,使热丝瞬间产生高温(700-1 000℃),烧掉污染在热丝、热膜或热阻表面的杂质,保持空气流量计量精度。 轿车使用的空气流量计,属“L”型热膜式空气流量计,安装在空气滤清器壳体与进气软管之间。其核心部件是流量传感元件和热电阻(均为铂膜式电阻)组合在一起构成热膜电阻。在传感器内部的进气通道上设有一个矩形护套,相当于取样管,热膜电阻设在护套中。为了防止污物沉积到热膜电阻上而影响测量精度,在护套的空气入口一侧设有空气过滤层,用以过滤空气中的污物。为了防止进气温度变化使测量精度受到影响,在护套内还设有一个铂膜式温度补偿电阻,温补电阻设置在热膜电阻前面靠近空气入口一侧。温度补偿电阻和热膜电阻与传感器内部控制电路连接,

空气流量传感器1

四、汽车维修电子故障诊断与分析
[发动机电子]
空气流量传感器的故障分析
主讲:天津市优耐特汽车电控技术有限公司 王征

空气流量传感器故障诊断与分析 教学目的与要求
了解空气流量传感器的结构与工作原理。 了解空气流量传感器故障对整个电控系统的影响。 掌握空气流量传感器的检测方法(电阻测试、电压测试、 波形测试、数据流测试),工艺流程,技术规范。 掌握空气流量传感器数据分析的方法。

空气流量传感器故障诊断与分析 概述
空气流量传感器负责测 量发动机进气空气质量流 量。 通过测量该流量可以对 发动机的排放和输出功率 的工作点进行优化。 进气量信号是电控单元 精确计算喷油量的主要依 据,如果空气流量传感器 发生故障,电控单元将启 动备用模式,把空气流量 值 设 定 在 5g/s ( 暖 机 时),同时记录故障代 码。此时,将造成怠速不 稳、发动机喘抖、怠速游 车、怠速转速偏高、燃油 脉宽增加、行驶费油、点 火推迟、尾气排放恶劣 等。
点击查看动画

空气流量传感器故障诊断与分析 工作原理
在空气质量流量计工作时,若无气流通过,加 热区域两侧温度梯度呈对称分布,两个测量点温 度一致。
当气流单向流过时,由于气流通过中心的加热区时被 加热,从而与两侧热膜的热交换情况不同,使流量计中 的两个传感元件测量点温度发生不同变化,产生温差。 温度差随着流量增大而增大。温度差的大小和正负反映 了空气质量流的流量和方向。
点击查看动画
内置的评估电路相应地将温差转化为电压信号 输出,电控单元便是根据该电压信号确定空气流 量和质量。
1-无流量时温度分布,2-有流量时温度分布,3- 传感元件,4-加热区,5-无流量时温度分布热膜,6- 带测量外套管的HFM5,7-空气流。M1、M2-测量点, T1、T2-对应点的温度,ΔT-用以产生信号的两点间温 度差。

空气流量计的检测方法

空气流量计的检测方法 空气流量计基本结构及性能特点随着对发动机汽车尾气排放要求的提高,越来越多的发动机采用精密的空气计量传感器计量进入发动机的空气量,发动机ECU 根据空气计量传 感器信号初步设定基本供油量,以满足发动机各种工况空燃比,进而保证发动机各种工况对混合气的要求。 空气流量计分类:按测量空气流量的方法可分为两种:①直接测量方法传 感器一一空气流量计。②间接测量方法传感器一一进气歧管压力传感器(负压传感器)。直接测量方法传感器按其测量信号转化形式又可分为3种。 (1) 机械式空气流量计,即可动叶片式空气流量计。其特点是将燃油泵控制开关、空气温度传感器、CO 调节器及空气流量计等功能融为一体,结构较复杂,但精度较高。不过由于叶片具有弹簧阻力增加了进气阻力,使它对发动机在急加速时的响应不够理想,故现在很少使用。 (2) 卡尔曼涡流式空气流量计。它是通过采集涡流频率完成空气流速测量,主要是通过光电(如丰田车型)和超声波采集(如韩国现代、日本三菱等)进气涡流,具有进气阻力小、计量准确的特点,但因其结构复杂、不耐振动且造价高,现已逐步被热线式空气流量计取代。 (3) 热线式空气流量计。热线式空气流量计按其热线形又分为 3 种。 ①热丝式一一将加热丝均匀分布在计量通道内。热丝式空气流量计(图1) 精度高、分布均匀,可精确计量空气量,但由于热丝很细(0.01~0.05mm)且暴露在空气中,在空气高速流动时,空气中的沙粒很容易击断热丝。 ②热膜式——将加热丝印刷在一块线路板上,并将线路板固定在空气通道中间。由 于热丝被固定且受到保护膜的保护,寿命提高,但由于保护膜热传导 较差,影响计量精度。

第三章1发动机控制系统传感器的结构原理与检修

第三章 发动机电控系统传感器的结构原理与检修 1.掌握各传感器的结构、原理 2.掌握传感器的检测方法

桑塔纳2000GSI轿车发动机喷油器活性炭罐 空气流量 传感器 活性炭罐 电磁阀 霍尔传感器 发动机 ECU 氧传感器水温传感器节气门控制器爆震传感器爆震传 感器 转速传感器进气温度传感器点火线圈

传感器的性能指标与要求 ?1、性能指标:精度、响应特性、可靠性、耐久性、结构的紧凑性、适应性、输出电平和制造成本。 ?2、基本要求: ?①、线性特性、再现性要好。 ?②、数量可增加 ?③、通用性要好 ?④、可测量性

第一节 空气流量传感器(AFS) 1. 直接测量方式(L 型) (1)体积流量型 1)1)空气流量计(叶片-Vane Type) 2)卡门旋涡(Karmann Karmann Vortex) Vortex) 空气流量传感器 a)a)光电检测方式 b)b)超声波检测方式 (2)质量流量型 1)热线式空气流量传感器(Hot-Wire Air Flow Sensor) 2)热膜式空气流量传感器(Hot-Film Type Air Flow Sensor) 2. 间接测量方式(D 型) MAP MAP (进气歧管绝对压力)传感器 1. 直接测量方式(L 型) (1)体积流量型 1)1)空气流量计(叶片-Vane Type) 2)卡门旋涡(Karmann Karmann Vortex) Vortex) 空气流量传感器 a)a)光电检测方式 b)b)超声波检测方式 (2)质量流量型 1)热线式空气流量传感器(Hot-Wire Air Flow Sensor) 2)热膜式空气流量传感器(Hot-Film Type Air Flow Sensor) 2. 间接测量方式(D 型) MAP MAP (进气歧管绝对压力)传感器 一、进气量检测方法的分类

进气增压系统教案

【任务引入】 一辆帕萨特B5 1.8T,高速(车速>120km/h),有挫车现象。经检查,维修人员初步判断为进气系统故障,需进一步对进气系统进行检查。 【必备知识】 一、废气涡轮增压系统 1.废气涡轮增压的作用及基本结构 废气涡轮增压是指利用发动机排出的高温高压的废气能量,驱动涡轮作高速运转,带动同轴上的压缩机,由此压缩吸入的空气并送入气缸内,因而可以吸入大量的空气,显著提高进气效率,达到提高发动机输出功率的目的。 废气涡轮增压器的基本结构如图6-13所示。涡轮驱动压缩器将吸入的空气压缩,使之升温,从而减小其密度。吸入的空气在中冷器中再次被冷却,从而提高其密度。

图6-13 废气涡轮增压系统 1-压缩器(压缩吸入的空气) 2-废气涡轮(驱动压缩机) 3-由中冷器散发的热量 4-新鲜空气 5-压缩升温后的空气进入中冷器 6-发动机排气驱动涡轮 7-空气入口 8-排气 2.废气涡轮增压系统的组成及工作原理 1)真空膜片式涡轮增压系统 真空膜片式涡轮增压系统结构如图6-14所示,利用发动机排出的废气作为动力来推动涡轮增压机内的涡轮(位于排气道内),涡轮又带动同轴的压缩轮(位于进气道内),压缩轮就压缩由空气滤清器管道送来的新鲜空气,再送入气缸。 图6-14 真空膜片式涡轮增压系统结构 2)电控废气涡轮增压系统 由发动机ECU控制的废气涡轮增压系统的组成如图6-15所示。该系统的主要置有涡轮增压器、膜片执行器、中间冷却器、排气旁通阀和机械式换气阀等,系统的电控元件有发动机控制模块J220、增压压力控制电磁阀N75、空气流量计G70、发动机转速传感器G28和增压压力传感器G31等。ECU通过使电磁阀得失电来控制真空膜片式的真空压力,从而控制排气旁通阀的开关。

02进气系统教案

A 组织教学学生考勤填写日志 B 课前提问 C 导入新课 第二节进气系统 (一)进气系统的组成与型式 进气系统是测量和控制汽油燃烧时所需要的空气量的。其组成是由测量空气流量的方式决定的,根据测量空气流量的方式不同,进气系统有质量流量式的进气系统(用于L型EFI 系统)、速度密度式的进气系统(用于D型EFI系统)和节流速度式的进气系统三种。 (二)进气系统主要零部件的结构 1、空气滤清器 电控汽油喷射发动机的空气滤清器与一般发动机的空气滤清器相同,注意安装方向。 2、空气流量计 目前汽车上所用的空气流量计主要有叶片式空气流量计、卡门涡旋式空气流量计、热线式空气流量计和热膜式空气流量计等四种。 (1)叶片式空气流量计 图1-6所示是叶片式空气流量计的结构,图1-7所示是叶片式空气流量计的空气通道,图1-8所示是叶片式空气流量计的电位计部分结构。 叶片式空气流量计由测量板(叶片)、缓冲板、阻尼室、旁通气道、怠速调整螺钉、回位弹簧等组成,此外内部还设有电动汽油开关及进气温度传感器等。 当吸入空气推开测量板的力与弹簧变形后的回位力相平衡时,测量板即停止转动。用电位计检测出测量板的转动角度,即可得知空气流量。 叶片式空气流量计电位器的内部电路如图1-10所示,电位计检测空气量有电压比与电压值两种方式。在VB端子上加有蓄电池电压而形成电压VC,那么,检测出来的是VB-E2与VC-VS的电压比。如表1-1中的图所示。电压值的检测方法为:吸入空气量∝随电位计动作变化的电压值。 当在VC点加上一定的电压(+5V)时,电位计滑动触头的动作随吸入空气量变化,VS-E2间的电压变化直接作为吸入空气量信息,把滑动触头电压值送入电控单元并进行A/D变换,即可以数字信号输出检测结果。滑动触头电压与吸入空气量成正比,呈线性关系。 表1-1为以电压比与电压值两种检测方式的对比表。

第三章流量检测

第三章流量检测 内容提要: 1.差压式流量计 2.转子流量计 3.旋涡流量计 4.质量流量计 5.其他流量计 ★8学时★基本概念: 介质流量是控制生产过程达到优质高产和安全生产以及进行经济核算所必需的一个重要参数。 流量大小:单位时间内流过管道某一截面的流体数量的大小,即瞬时流量。 总量:在某一段时间内流过管道的流体流量的总和,即瞬时流量在某一段时间内的累计值。 1.差压式流量计 差压式(也称节流式)流量计是基于流体流动的节流原理,利用流体流经节流装置时产生的压力差而实现流量测量的。 通常是由能将被测流量转换成压差信号的节流装置和能将此压差转换成对应的流量值显示出来的差压计以及显示仪表所组成。 节流现象与流量基本方程式 (1)节流现象 流体在有节流装置的管道中流动时,在节流装置前后的管壁处,流体的静压力产生差异的现象称为节流现象。节流装置包括节流件和取压装置。 如图3-1孔板装置及压力、流速分布图 注意:要准确测量出截面Ⅰ、Ⅱ处的压力有困难,因为产生最低静压力p2′的截面Ⅱ的位置随着流速的不同会改变。因此是在孔板前后的管壁上选择两个固定的取压点,来测量

流体在节流装置前后的压力变化。因而所测得的压差与流量之间的关系,与测压点及测压方式的选择是紧密相关的。 (2)节流基本方程式 流量基本方程式是阐明流量与压差之间定量关系的基本流量公式。它是根据流体力学中的伯努利方程和流体连续性方程式推导而得的。 p F M p F Q ?=?=101 22 ρεαραε 可以看出:要知道流量与压差的确切关系,关键在于α的取值。流量与压力差ΔP 的平方根成正比。 标准节流装置 国内外把最常用的节流装置、孔板、喷嘴、文丘里管等标准化,并称为“标准节流装置”。 标准化的具体内容包括节流装置的结构、尺寸、加工要求、取压方法、使用条件等。 例:如图(孔板断面示意图),标准孔板对尺寸和公差、粗糙度等都有详细规定。 其中d /D 应在~之间;最小孔径应不小于;直孔部分的厚度h =(~)D ;总厚度H <;锥面的斜角α=30°~45°等等,需要时可参阅设计手册。 我国规定:标准节流装置取压方法分为角接取压法、法兰取压法。 例:标准孔板采用角接取压法和法兰取压法,标准喷嘴为角接取压法。 如图:环式取压结构

热线式空气流量传感器的检测与诊断

热线式空气流量传感器的检测与诊断 热线式空气流量传感器的信号是ECU确定发动机基本喷油量的重要信号之一,它的好坏直接影响了电喷发动机的运行是否正常。因此,掌握热线式空气流量传感器的检测方法是成为一个合格汽车维修人员的必备条件。 标签:热线式检测诊断 热线式空气流量传感器是空气流量传感器众多类型中的一种,其作用是将吸入气缸内的空气量转变成电信号发送给ECU。该信号是ECU确定发动机基本喷油量的重要信号之一。 热线式空气流量传感器主要由感知空气流量的白金热线、根据进气温度进行修正的温度补偿电阻、控制热线电流并产生输出信号电压的控制线路板和壳体等组成。 1 热线式空气流量传感器的工作原理 热线式空气流量传感器的工作原理采用的是惠斯顿电桥。白金热线电阻RH 和温度补偿电阻RK分别是惠斯顿电桥的一个臂,热线支撑环后端的塑料护套上安装有一个精密电阻RA,作为惠斯顿电桥的一个臂,该电阻上的电压即是热线式空气流量传感器的输出信号电压。惠斯顿电桥的另一个臂RB安装在控制线路板上。 将点火开关置于ON位置,白金热线电阻周围的空气没有流动,此时的惠斯顿电桥处于平衡状态。启动发动机,在进气真空度的作用下,当空气流过白金热线时,热线的热量被空气吸收,使其变冷。热线周围通过的空气流量越大,被带走的热量就越多。在工作中将热线温度与吸入空气温度差保持在100℃,热线温度由混合集成电路控制,当空气流量增大时,由于空气带走的热量增多,为保持热线温度,混合集成电路使热线电阻通过的电流增大,反之,则减小。这样,使得通过热线电阻的电流是空气流量的单一函数,即热线电流随着空气流量的增大而增大,随空气流量的减小而减小。此时就可以使ECU根据热线电流的变化计算出空气流量的大小。 2 热线式空气流量传感器的检测 热线式空气流量传感器出现故障一般有两种情况:一种是电路短路或者断路,导致传感器完全失效。此时ECU内部的自诊断电路会将故障信息以故障码的形式存储起来并使仪表板上的故障指示灯常亮。另一种情况是白金热线赃污,传感器信号失准,不能提供正确的进气流量信号,但ECU自诊断系统检测不出故障信息。 热线式空气流量传感器的故障将导致传感器计量的进气量与实际进气量不

(完整版)教案1空气流量计

南宁市第四职业技术学校 教案

南宁市第四职业技术学校

2.空气流量计的工作原理 在下图所示电路中,电桥处于平衡状态时热线与冷线温度相差保持100℃。当空气流过空气流量计时,热线降温而电阻变小,冷线降温而电阻变大,于是电桥失去平衡。控制电路会增加通过热线的电流,使电桥恢复平衡。而电流IH 的增大会使精密电阻的电压降增大,只要测量精密电阻两端的电压降,即可通过计算得知空气的质量流量。 3.空气流量计的电路 4.空气流量计的检修 了解空气流量计的工作电压:9~~14v 空气流量计信号电压:0.2~~4.9V 空气流量:在怠速时应为0.54 ~4.33g/s。转速为2500r/min 时(无负荷)应为3.33~9.17g/s。 (1),通过解码仪检测空气流量计是否损坏或者读取数据进行对比检测 (2),使用万用表对空气流量计进行检修 电源检测:点火开关OFF,脱开空气流量计连接器B2,用专用汽车万用表检测空气流量计连接器B2-3(+B)与B2-4(E2G)端子以及B2-3(+B)与B31-116 端子之间的电压,如图 4 所示。点火开关ON,应为9~14V;点火开关OFF,

应为0V。否则,检查EFI N0.1保险丝、EFI 继电器工作状况以及空气流量计连接器B2-4 子与ECM连接器B31-116 端子间的导线。 电阻检测:用万用表测量空气流量计B2-3、B2-4、B2-5 相互之间的电阻以及各自对地电阻,测得电阻值应大于10kΩ。否则,更换空气流量计。 检测空气流量计线路 断开空气流量计连接器B2 和ECM 连接器B31。检测端子B2 -4(E2G)与B31-116(E2G)、B2-5 (VG)与B31-118(VG)之间的电阻,均应小于1Ω如图 5 所示;检测端子B2-3(+B)、B2-4(E2G)、B2-5(VG)与车身搭铁之间的电阻,应大于10kΩ。否则检修线路故障。如下图示:

1.2电控发动机空气供给系统教案

工作原理:在没有卡门涡流的情况下,接收到的超声波为稳定的信号;有卡门涡流发生时,接收到的超声波成为一个个与涡流数对应的脉冲信号,其频率等于卡门涡流释放的频率,反映了气流速度。此脉冲信号经转换成矩形数字信号,计算机对这个矩形脉冲计数,便可得空气流量。 (3)热线式空气流量计 根据铂丝热线在流量计中安装位置不同,分为主流测量方式和旁通测量方式二种结构形式。 工作原理:温度较低的进气气流通过旋转在空气通道中的温度较高的热线时,热线与空气发生的热量交换,便热线温度下降。通过热线的空气质量流量越大,被带走的热量也多。由于热线是惠斯顿平衡电路的一个

部分,热线温度下降,电阻值发生变化,电桥出现不平衡。 由此可知,流过热线的空气质量越大,维持热线温度所需的电流也越大,反之则越小。 (4)热膜式空气流量计 热膜式空气流量计的主要特点是:发热体由热线改为热膜,热膜拜为固定在薄树脂上的金属铂,或者用厚膜工艺将热线、冷线、精密电阻镀在一块陶瓷片上,它的发体不直接承受空气流动所产生的作用力,从而提高了发热体的强度和工作可靠性。 主要缺点是空气流速不均匀,易影响测量精度。采用这种上空气流量主计的车型有桑塔纳2000时代超人,马自达626等。

课次: 课题:电控发动机空气供给系统 教学目标:掌握典型压力传感器的检测 教学步骤: 一、学习目标及技能要求 熟悉压力传感器的分类,掌握压力传感器的结构、工作原理 二、教学重点 掌握压力传感器的结构、工作原理 三、课前准备 (1)桑塔纳2000GLi型99亲朋秀发动机压力传感器 (2)万用表 四、教学方法 (1)理论辅导(2)示范操作(3)巡回指导 五、教学过程 电控燃油喷射系统中有二种测量进入汽缸空气量的方法:一是用空气流量计直接测量进气的体积流量或质量流量。二是用压力传感器测量进

空气流量计检测

空气流量计在电喷轿车上的重要作用,它是喷油控制的基本信号,也是决定信号。此信号的好坏将影响混合气的配比,也直接影响发动机的动力性、稳定性及污染性。当空气流量计信号发生故障时,电控单元将故障码存贮的同时,也将进气量的测量权交于节气门位置信号替代,这是电控单元的一大功能,即失效保护功能。可想而知,好的空气流量计信号与节气门位置信号有着一定的差距。前者精度高,发动机各工况均好,后者精度差,相比之下,发动机各工况的控制稍有差别。当空气流量计信号出现偏差(不准确)时,电控单元将按错误信号进行控制喷油,使混合气浓了或是稀了,造成发动机转速不稳及动力不足。此种故障在我国国产车型上经常发生,特别是大众车系,更换空气流量计的工作是普遍现象。由于热膜式空气流量计不设自洁功能,常常被脏物影响,同样造成信号不准确。信号不准确的传感器比损坏的传感器危害更大。为了准确有效的检测空气流量计是好是坏还是信号偏差,我们通过理论的探讨及实际经验的积累而总结出一套行而有效的检查方法,供大家参考。 如:一辆大众车系的轿车怠速不稳,加速不良,怀疑热膜式空气流量计信号有问题。可以在发动机运转的状况下拔下空气流量计的插头,观察发动机的变化情况,将会出现以下三种情况。 (1)故障消失。说明此空气流量计信号有偏差,并没有损坏,电控单元一直按有偏差的错误信号进行控制喷油。由于混合比失调。发动机燃烧不正常,将会出现发动机转速不稳或动力不良现象。当拔下空气流量计插头时,电控单元检测不到进气信号,便会立即进入失效保护功能,以节气门位置传感器信号替代空气流量计信号,使发动机继续以替代值进行工作。拔下流量计插头,故障消失,正是说明了拔插头前信号不正确,拔插头后信号正确,故障消失。 一般情况下,故障现象可以表明混合气的浓度。为了确认,我们用检测的方法,以数据说话。在插头的信号端测量动态信号电压,怠速工况下,标准电压为0.8~1.4V;加速到全负荷时,电压信号可接近4V。此车实测值.怠速时为0.3V,加速到满负荷时只有3V。由此可以确认,空气流量计有问题,信号电压整体偏低,故障原因有两种能:①零件质量问题,应更换。②脏污问题,只要用清洗剂清洗即可恢复。 (2)故障依旧。说明此空气流量计早已损坏或线路不良,造成电控单元根本没收到信号或收到的是超值信号,电控单元确认空气流量计信号不良,进入到失效保护功能,同时将故障码存入存贮器,故障指示灯闪烁(指装有指示灯的发动机)。此时拔下空气流量计插头与不拔插头结果是一样的,故障现象不会发生变化。那么当前的故障不应是流量计信号不良所影响的,而是由其他原因所致。当真正的原因找到后,务必更换空气流量计。 (3)故障现象稍有变化。说明此空气流量计是好的。拔下空气流量计插头前,电控单元根据空气流量计信号进行控制,喷油量准确,发动机各工况均好;当拔下空气流量计插头时,电控单元根据节气门位置传感器信号进行控制,喷油量有差异(可从数据流中读出这微小的变化值),发动机工况相对稍差。

空气流量计检测

空气流量计检测 空气流量计在电喷轿车上的重要作用,它是喷油控制的基本信号,也是决定信号。此信号的好坏将影响混合气的配比,也直接影响发动机的动力性、稳定性及污染性。当空气流量计信号发生故障时,电控单元将故障码存贮的同时,也将进气量的测量权交于节气门位置信号替代,这是电控单元的一大功能,即失效保护功能。可想而知,好的空气流量计信号与节气门位置信号有着一定的差距。前者精度高,发动机各工况均好,后者精度差,相比之下,发动机各工况的控制稍有差别。当空气流量计信号出现偏差(不准确)时,电控单元将按错误信号进行控制喷油,使混合气浓了或是稀了,造成发动机转速不稳及动力不足。此种故障在我国国产车型上经常发生,特别是大众车系,更换空气流量计的工作是普遍现象。由于热膜式空气流量计不设自洁功能,常常被脏物影响,同样造成信号不准确。信号不准确的传感器比损坏的传感器危害更大。为了准确有效的检测空气流量计是好是坏还是信号偏差,我们通过理论的探讨及实际经验的积累而总结出一套行而有效的检查方法,供大家参考。 如:一辆大众车系的轿车怠速不稳,加速不良,怀疑热膜式空气流量计信号有问题。可以在发动机运转的状况下拔下空气流量计的插头,观察发动机的变化情况,将会出现以下三种情况。 (1)故障消失。说明此空气流量计信号有偏差,并没有损坏,电控单元一直按有偏差的错误信号进行控制喷油。由于混合比失调。发动机燃烧不正常,将会出现发动机转速不稳或动力不良现象。当拔下空气流量计插头时,电控单元检测不到进气信号,便会立即进入失效保护功能,以节气门位置传感器信号替代空气流量计信号,使发动机继续以替代值进行工作。拔下流量计插头,故障消失,正是说明了拔插头前信号不正确,拔插头后信号正确,故障消失。 一般情况下,故障现象可以表明混合气的浓度。为了确认,我们用检测的方法,以数据说话。在插头的信号端测量动态信号电压,怠速工况下,标准电压为0.8~1.4V;加速到全负荷时,电压信号可接近4V。此车实测值.怠速时为0.3V,加速到满负荷时只有3V。由此可以确认,空气流量计有问题,信号电压整体偏低,故障原因有两种能:①零件质量问题,应更换。②脏污问题,只要用清洗剂清洗即可恢复。 (2)故障依旧。说明此空气流量计早已损坏或线路不良,造成电控单元根本没收到信号或收到的是超值信号,电控单元确认空气流量计信号不良,进入到失效保护功能,同时将故障码存入存贮器,故障指示灯闪烁(指装有指示灯的发动机)。此时拔下空气流量计插头与不拔插头结果是一样的,故障现象不会发生变化。那么当前的故障不应是流量计信号不良所影响的,而是由其他原因所致。当真正的原因找到后,务必更换空气流量计。

发动机电控技术教案

上海科学技术职业学院 《现代汽车发动机电控技术》课程 教 案 总学时/周学时 85学时(51理论)+34实训)授课班级 使用教材《现代汽车发动机电控技术》 任课教师唐晓丹

授课章节第一章第一节汽车发动机电控技术概述教学目的了解发动机电控技的发展状况、特点、应用及基本组成 主要教学内容1、发动机电控技术的发展状况 2、电控技术对发动机性能的影响 3、应用在发动机上的电子控制技术 4、发动机电控系统的基本组成 重点与难点重点:发动机上应用的电子控制技术及基本组成 难点:发动机上应用的电子控制技术及基本组成 教学方法课堂教学:使用多媒体+板书实训教学:教师演示+学生操练 技能培养措施使用轿车及电控发动机实训台进行实训,使学生熟悉发动机上应用的电子控制技术。 讨论练习作业讨论题:现代发动机电控技的发展趋势?练习题:电控技术对发动机性能的影响 授课后记

授课章节 第二章、第一、二节汽油机电控燃油喷射系统教学目的掌握电控燃油喷射系统的组成、特点、类型及功能 主要教学内容1、电控燃油喷射系统的组成 2、电控燃油喷射系统的特点 3、电控燃油喷射系统的类型 4、电控燃油喷射系统的功能 重点与难点重点:电控燃油喷射系统的工作原理及功能难点:电控燃油喷射系统的工作原理 教学方法课堂教学:使用多媒体+板书实训教学:教师演示+学生操练 技能培养措施使用电控发动机实训台进行实训,通过设置故障、反复练习;学生能熟练掌握电控燃油喷射系统的组成及工作原理。 讨论练习作业讨论题:电控燃油喷射系统的优点 练习题:说明电控燃油喷射系统的组成作业:说明电控燃油喷射系统的功能

授课后记 授课章节第二章、第四节、空气供给系统主要元件的构造与检修教学目的掌握空气供给系统主要元件的位置、构造与检修 主要教学内容1、空气供给系统主要元件的位置 2、空气供给系统主要元件的构造 3、空气供给系统主要元件的检修 重点与难点重点:空气供给系统主要元件的构造难点:空气供给系统主要元件的检修 教学方法课堂教学:使用多媒体+板书实训教学:教师演示+学生操练 技能培养措施使用电控发动机实训台进行实训,通过设置故障、反复练习;使学生掌握空气供给系统主要元件的检修方法。 讨论练习作业讨论题:空气供给系统由哪些元件组成? 作业题:说明空气供给系统主要元件的检修方法

项目一 汽车修理基础能力训练教案1

项目一汽车修理基础能力训练教案 【课题】活动1:维修仪具的使用 【教材版本】 【教学目标】 1.知识目标:通过讲解、演示,能知道跨接线使用方法;知道测试灯的使用方法;会使用数字表式万用表。 2.能力目标:通过练习,使学生知道如何使用跨接线检测开路或断路;会使用测试灯检测电压和导通性;会使用数字表式万用表检测电压、电流; 会进行二极管、导通性检测。 3.情感目标:在具体的实训作业中锻炼劳动态度,养成良好的工作习惯。【教学重点、难点】 教学重点:使用跨接线检测开路或断路;会使用测试灯检测电压和导通性,数字表式万用表的使用。 教学难点:数字表式万用表的使用说明,实训中贯彻质量意识。 【教学媒体及教学方法】 本活动通过使用讲解—示范—练习巩固的方法,调动学生的学习积极性。通过对典型的作业内容进行练习和巩固,使学生在工作中学习,在工作中掌握相关的技能、知识。 使用测试灯、数字表式万用表等实物和投影仪播放收集的多媒体演示素材(以下素材样例是可播放的图片,可帮助学生对教学内容的理解,提高学习效率)。

跨接线测试灯 Fluke 87数字万用表教学内容可分为基本专业理论和典型工作任务训练两部分。对相关零件的作用和方法介绍部分采用理论讲授和实物操作示范的方法。技能训练部分通过分组活动,以企业的生产标准为依据,进行完整的生产作业活动,让学生在工作中学习,使学生更好地参与到教学过程中来,提升他们的学习兴趣。 【课时安排】 6课时(270分钟) 【教学建议】 采用现场式教学,做学一体。 用两节课的时间对跨接线使用方法、测试灯的使用方法、数字表式万用表的使用方法进行讲解和示范演示。用四节课的时间对“使用跨接线检测开路或断路”、“使用测试灯检测电压和导通性”、“使用数字表式万用表检测电压、电流”、“使用数字表式万用表检测二极管、导通性”项目进行练习。 【教学过程】

气体流量测定与流量计标定

实验二气体流量测定与流量计标定 一、实验目的 气体属于可压缩流体。气体流量的测量,虽然有一些与用于不可压缩流体相同的测量仪表但也有不少专用于气体的测量仪表,在测量方法和检定方法上也有一些特殊之处。显然,气体流量的测量与液体一样,在工业生产上和科学研究中,都是十分重要的。尤其是在近代,工业生产规摸的大型化和科学实验的微型化,往往这些流量、温度、压力等的检测仪表就成为关键问题。 目前,工业用有LZB系列转子流量计,实验室用有LZW系列微型转子流量计,可供选用。对于市售定型仪表,若流体种类和使用条件都按照规格规定,则读出刻度就能知道流量。但从精度上考虑,仍有必要重新进行校正。转子流量计自制是有困难的,因锥形玻璃管的锥度手工难于制作。但是,在科学研究中或其它某种场合,有时,不免还要根据某种特殊需要,创制一些新型测量仪表和自制一些简易的流量计。不论是市售的标准系列产品还是自制的简易仪表,使用前,尤其是使用一段时间后,都需要进行校正,这样才能保证计量的准确、可靠。 气体流量计的标定,一般采用容积法,用标准容量瓶量体积,或者用校准过的流量计作比较标定。在实验室里,一般采用湿式气体流量计作为标准计量器。它属于容积式仪表,事先应经标准容量瓶校准。实验用的湿式流量计的额定流量,一般有 0.2m3·h—1和0.5m3·h—1两种。若要标定更大流量的仪表,一般采用气柜计量体积。实验室往往又需用微型流量计,现时一般采用皂膜流量计来标定。 本实验采用标准系列中的转子流量计和自制的毛细管流量计来测量空气流量。并用经标准容量瓶直接校准好的湿式流量作为标准,用比较法对上述两种流量计进行检定,标定出流量曲线.,对毛细管流量计标定。通过本实验学习气体流量的测量方法,以及气体流量计的原理、使用方法和检定方法。同时,这些知识和实验方法对学习者在进行以下各项实验时,肯定会有帮助,尤其时对今后所从事的各种实验研究工作,也是有益处的。 二、实验原理 1.湿式气体流量计 该仪器属于容积式流量计。它是实验室常用的一种仪器,其构造主要由圆鼓形壳

相关主题