搜档网
当前位置:搜档网 › 立体几何典型例题

立体几何典型例题

立体几何典型例题
立体几何典型例题

数 学

立体几何 2

[2014·辽宁卷] 如图所示,△ABC 和△BCD 所在平面互相垂直,且AB =BC =BD =2,∠ABC =∠DBC =120°,E ,AD 的中点.

(1)求证:EF ⊥平面BCG ; (2)求三棱锥D -BCG 的体积.

解:(1)证明:由已知得△ABC ≌△DBC , 因此AC =DC .

又G 为AD 的中点,所以CG ⊥AD ,

同理BG ⊥AD .又BG ∩CG =G ,所以AD ⊥平面BGC . 又EF ∥AD ,所以EF ⊥平面BCG .

(2)在平面ABC 内,作AO ⊥CB 由平面ABC ⊥平面BCD ,知AO ⊥平面BDC .

又G 为AD 的中点,所以G 到平面BDC 的距离h 是AO 长度的一半. 在△AOB 中,AO =AB ·sin 60°=3,所以

V 三棱锥D -BCG =V 三棱锥G -BCD =13·S △DBC

·h =13×12·BD ·BC ·sin 120°·32=1

2

.

[2014·全国新课标卷Ⅰ] 如图1-4,三棱柱ABC - A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C .

(1)证明:B 1C ⊥AB ;

(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱ABC - A 1B 1C 1的高.

解:(1)证明:连接BC 1,则O 为B 1C 与BC 1的交点. 因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1. 又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO , 由于BC 1∩AO =O ,故B 1C ⊥平面ABO .

由于AB ?平面ABO ,故B 1C ⊥AB .

(2)作OD ⊥BC ,垂足为D ,连接AD .作OH ⊥AD ,垂足为H . 由于BC ⊥AO ,BC ⊥OD ,且AO ∩OD =O , 故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,且AD ∩BC =D , 所以OH ⊥平面ABC .

因为∠CBB 1=60°,所以△CBB 1为等边三角形,又BC =1,可得OD =34

. 因为AC ⊥AB 1,所以OA =12B 1C =1

2.

由OH ·AD =OD ·OA ,且AD =OD 2+OA 2=

74,得OH =21

14

. 又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为21

7

.故三棱柱ABC - A 1B 1C 1的高

217

.

[2014·天津卷] 四棱锥P - ABCD 的底面ABCD 是平行四边形,BA =BD =2,AD =2,P A =PD =5,E ,F 分别是棱

(1)证明:EF ∥平面P AB ; (2)若二面角P -AD -B 为60°.

(i)证明:平面PBC ⊥平面ABCD ;

(ii)求直线EF 与平面PBC

解:(1)证明:如图所示,取PB 中点M ,连接MF ,AM .因为F 为PC 中点,所以MF ∥BC ,

且MF =1

2

BC .由已知有BC ∥AD ,BC =AD ,又由于E 为AD 中点,因而MF ∥AE 且MF =

AE ,故四边形AMFE 为平行四边形,所以EF ∥AM .又AM ?平面P AB ,而EF ?平面P AB ,所以EF ∥平面P AB .

(2)(i)证明:连接PE ,BE .因为P A =PD ,BA =BD ,而E 为AD 中点,所以PE ⊥AD ,BE ⊥AD ,所以∠PEB 为二面角P - AD -B 的平面角.在△P AD 中,由P A =PD =5,AD =2,

可解得PE =2.在△ABD 中,由BA =BD =2,AD =2,可解得BE =1.在△PEB 中,PE =2,BE =1,∠PEB =60?,由余弦定理,可解得PB =3,从而∠PBE =90?,即BE ⊥PB .又BC ∥AD ,BE ⊥AD ,从而BE ⊥BC ,因此BE ⊥平面PBC .又BE ?平面ABCD ,所以平面PBC ⊥平面ABCD .

(ii)连接BF ,由(i)知,BE ⊥平面PBC ,所以∠EFB 为直线EF 与平面PBC 所成的角.由

PB =3及已知,得∠ABP 为直角,而MB =12PB =32,可得AM =112,故EF =11

2.又BE

=1,故在直角三角形EBF 中,sin ∠EFB =BE EF =211

11

.所以直线EF 与平面PBC 所成角的正

弦值为21111.

[2014·浙江卷] 四棱锥A -BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,

AB =CD =2,DE =BE =1,AC = 2.

(1)证明:AC ⊥平面BCDE ; (2)求直线AE 与平面ABC 所成的角的正切值. 解:(1)证明:连接BD ,直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2

由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC .

又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE .

(2)在直角梯形BCDE 中,由BD =BC =2,DC =2,得BD ⊥BC . 又平面ABC ⊥平面BCDE ,所以BD ⊥平面ABC .

作EF ∥BD ,与CB 的延长线交于点F ,连接AF ,则EF ⊥平面ABC . 所以∠EAF 是直线AE 与平面ABC 所成的角.

在Rt △BEF 中,由EB =1,∠EBF =π4,得EF =22,BF =2

2;

在Rt △ACF 中,由AC =2,CF =32

2,

得AF =

262

. 在Rt △AEF 中,由EF =22,AF =262

, 得tan ∠EAF =

1313. 所以,直线AE 与平面ABC 所成的角的正切值是13

13

.

[2014·重庆卷] 四棱锥P -ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB =2,

∠BAD =π3,M 为BC 上一点,且BM =1

2

.

(1)证明:BC ⊥平面POM ; (2)若MP ⊥AP ,求四棱锥

20.解:(1)证明:因为四边形ABCD 为菱形,O 为菱形的中心,连接OB ,则AO ⊥OB .

因为∠BAD =π3,所以OB =AB ·sin ∠OAB =2sin π

6

=1.

又因为BM =1

2,且∠OBM =π3

,在△OBM 中,OM 2=OB 2+BM 2-2OB ·BM ·cos ∠OBM

=12+????122-2×1×12×cos π3=34

,所以OB 2=OM 2+BM 2,故OM ⊥BM .

又PO ⊥底面ABCD ,所以PO ⊥BC .从而BC 与平面POM 内的两条相交直线OM ,PO 都垂直,所以BC ⊥平面POM .

(2)由(1)可得,OA =AB ·cos ∠OAB =2×cos 6

= 3.

设PO =a ,由PO ⊥底面ABCD ,知△POA 为直角三角形,故P A 2=PO 2+OA 2=a 2+3.

又△POM 也是直角三角形,故PM 2=PO 2+OM 2=a 2+3

4

.连接AM ,在△ABM 中,AM 2

=AB 2+BM 2-2AB ·BM ·cos ∠ABM =22+????122

-2×2×12×cos 2π3=214

. 由已知MP ⊥AP ,故△APM 为直角三角形,则

P A 2+PM 2=AM 2,即a 2+3+a 2+34=21

4

解得a =32或a =-32(舍去),即PO =3

2

.

此时S 四边形ABMO =S △AOB +S △OMB =12·AO ·OB +1

2·BM ·OM =12×3×1+12×12×32 =5 38

.

所以四棱锥P -ABMO 的体积V 四棱锥P -ABMO =13·S 四边形ABMO

·PO =13×5 38×32=5

16

.

[2014·全国卷] 三棱柱ABC - A 1B 1C 1中,点A 1在平面ABC 内的射影D 在AC 上,

∠ACB =90°,BC =1,AC =CC 1=2.

(1)证明:AC 1⊥A 1B ;

(2)设直线AA 1与平面BCC 1B 1的距离为3,求二面角A 1 - AB - C 的大小.

解:方法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ?平面AA 1C 1C ,故平面AA 1C 1C ⊥平面ABC .又BC ⊥AC ,平面AA 1C 1C ∩平面ABC =AC ,所以BC ⊥平面AA 1C 1C . 连接A 1C ,因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C . 由三垂线定理得AC 1⊥A 1B .

(2)BC ⊥平面AA 1C 1C ,BC ?平面BCC 1B 1, 故平面AA 1C 1C ⊥平面BCC 1B 1.

作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1.

又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,即A 1E = 3. 因为A 1C 为∠ACC 1的平分线,故A 1D =A 1E = 3.

作DF ⊥AB ,F 为垂足,连接A 1F .由三垂线定理得A 1F ⊥AB , 故∠A 1FD 为二面角A 1- AB - C 的平面角.

由AD =AA 2

1-A 1D 2=1,得D 为AC 中点,

所以DF =

55,tan ∠A 1FD =A 1D

DF

=15, 所以cos ∠A 1FD =1

4

.

所以二面角A 1- AB - C 的大小为arccos 1

4

.

方法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图

所示的空间直线坐标系C - xyz .由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内.

(1)证明:设A 1(a ,0,c ),由题设有a ≤2,A (2,0,0),B (0,1,0),则AB →

=(-2,1,0),AC →=(-2,0,0),AA 1→=(a -2,0,c ),AC 1→=AC →+AA 1→=(a -4,0,c ),BA 1→

=(a ,-1,c ).

由|AA 1→

|=2,得(a -2)2+c 2=2,即 a 2-4a +c 2=0. ①

又AC 1→·BA 1→

=a 2-4a +c 2=0,所以AC 1⊥A 1B . (2)设平面BCC 1B 1的法向量m =(x ,y ,z ), 则m ⊥CB →,m ⊥BB 1→,即m ·CB =0,m ·BB 1→

=0.

因为CB →=(0,1,0),BB 1→=AA 1→

=(a -2,0,c ),所以y =0,且(a -2)x +cz =0. 令x =c ,则z =2-a ,所以m =(c ,0,2-a ),故点A 到平面BCC 1B 1的距离为|CA →

|·|cos 〈m ,CA →

〉|=|CA →

·m ||m |=2c c 2+(2-a )2

=c .

又依题设,A 到平面BCC 1B 1的距离为3,

所以c =3,

代入①,解得a =3(舍去)或a =1, 于是AA 1→

=(-1,0,3).

设平面ABA 1 的法向量n =(p ,q ,r ),则n ⊥AA 1→,n ⊥AB →,即n ·AA 1→=0,n ·AB →

=0, 所以-p +3r =0,且-2p +q =0.令p =3,则q =2 3,r =1,所以n =(3,2 3,1).

又p =(0,0,1)为平面ABC 的法向量,故

cos 〈n ,p 〉=n ·p |n ||p |=1

4

所以二面角A 1 - AB - C 的大小为arccos 1

4.

[2014·福建卷] 如图1-6所示,三棱锥A - BCD 中,AB ⊥平面BCD ,CD ⊥BD . (1)求证:CD ⊥平面ABD ;

(2)若AB =BD =CD =1,M 为AD 中点,求三棱锥A - MBC 的体积.

图1-6

19.解:方法一:(1)证明:∵AB ⊥平面BCD ,CD ?平面BCD , ∴AB ⊥CD .

又∵CD ⊥BD ,AB ∩BD =B ,

AB ?平面ABD ,BD ?平面ABD , ∴CD ⊥平面ABD .

(2)由AB ⊥平面BCD ,

得AB ⊥BD .

∵AB =BD =1,∴S △ABD =1

2.

∵M 是AD 的中点, ∴S △ABM =12S △ABD =1

4

.

由(1)知,CD ⊥平面ABD ,

∴三棱锥C - ABM 的高h =CD =1,

因此三棱锥A - MBC 的体积 V A - MBC =V C - ABM

=13S △ABM ·h =1

12

.

方法二:(1)同方法一.

(2)由AB ⊥平面BCD ,得平面ABD ⊥平面BCD .

且平面ABD ∩平面BCD =BD .

如图所示,过点M 作MN ⊥BD 交BD 于点N , 则MN ⊥平面BCD ,且MN =12AB =1

2.

又CD ⊥BD ,BD =CD =1,∴S △BCD =1

2.

∴三棱锥A - MBC 的体积

V A - MBC =V A - BCD -V M - BCD =13AB ·S △BCD -1

3MN ·S △BCD =112

.

[2014·江西卷] 三棱柱ABC - A 1B 1C 1中,AA 1⊥BC ,A 1B ⊥BB 1. (1)求证:A 1C ⊥CC 1;

(2)若AB =2,AC =3,BC =7,问AA 1为何值时,三棱柱ABC - A 1B 1C 1体积最大,

并求此最大值.

19.解:(1) 由AA 1⊥BC 知BB 1⊥BC .又BB 1⊥A 1B ,故BB 1⊥平面BCA 1,所以BB 1⊥A 1C .

又BB 1∥CC 1,所以A 1C ⊥CC 1.

(2)方法一:设AA 1=x .

在Rt △A 1BB 1中,A 1B =A 1B 21-BB 21=4-x 2

.

同理,A 1C =A 1C 21-CC 21=3-x 2

. 在△A 1BC 中,

cos ∠BA 1C =A 1B 2+A 1C 2-BC 2

2A 1B ·A 1C =

-x 2

(4-x 2)(3-x 2),

sin ∠BA 1C =

12-7x 2

(4-x 2)(3-x 2)

所以S △A 1BC =1

2A 1B ·A 1C ·sin ∠BA 1C =12-7x 22

.

从而三棱柱ABC - A 1B 1C 1的体积V =S 直·l =S △A 1BC ·AA 1=x 12-7x 2

2

.

因为x 12-7x 2=12x 2-7x 4=

-7????x 2-672+367,

所以当x =67=427,即AA 1=427时,体积V 取到最大值37

7

.

(2)方法二:过A 1作BC 的垂线,垂足为D ,连接AD .

由AA 1⊥BC ,A 1D ⊥BC ,得BC ⊥平面AA 1D ,故BC ⊥AD .又∠BAC =90°,

所以S △ABC =12AD ·BC =12AB ·AC ,得AD =221

7

.

设AA 1=x .在Rt △

A 1D =AD 2-AA 21S △A 1BC =1

2A 1D ·从而三棱柱ABC - A 1B 1C 1的体积V =S 直·l =S △A 1BC ·AA 1=x 12-7x 2

2

.因为x 12-7x 2

=12x 2-7x 4=-7????x 2-672+367

所以当x =67=427,即AA 1=427时,体积V 取到最大值37

7

[2014·新课标全国卷Ⅱ] 四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E

为PD 的中点.

(1)证明:PB ∥平面AEC ;

(2)设AP =1,AD =3,三棱锥P - ABD 的体积V =

3

4

,求A 到平面PBC 的距离.

解:(1)证明:设BD 与AC 的交点为O ,连接EO .

因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . EO ?平面AEC ,PB ?平面AEC , 所以PB ∥平面AEC .

(2)V =13×12×P A ×AB ×AD =3

6AB ,

由V =

34,可得AB =32

. 作AH ⊥PB 交PB 于点H .

由题设知BC ⊥平面P AB ,所以BC ⊥AH , 因为PB ∩BC =B ,所以AH ⊥平面PBC . 又AH =P A ·AB PB =313

13

所以点A 到平面PBC 的距离为313

13

.

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

立体几何题经典例题

D E A F B C O O 1 M D C A S 15.如图,在正三棱柱ABC —A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,则AD 与平面 AA 1C 1C 所成角的正弦值为 . 6.已知正三棱柱111C B A ABC -的棱长为2,底面边长为1,M 是BC 的中点. (1)在直线1CC 上求一点N ,使1AB MN ⊥; (2)当1AB MN ⊥时,求点1A 到平面AMN 的距离. (3)求出1AB 与侧面11A ACC 所成的角θ的正弦值. 7. 如图所示,AF 、DE 分别是1O O ⊙、 ⊙的直径.AD 与两圆所在的平面均垂直,8=AD .BC 是O ⊙的直径,AD OE AC AB //,6==. (1)求二面角F AD B --的大小; (2)求直线BD 与EF 所成角的余弦值. 8.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直.点M 在AC 上移动,点N 在BF 上移动,若 a BN CM ==)20(<

18.(本小题满分12分) 已知矩形ABCD 与正三角形AED 所在的平面 互相垂直, M 、N 分别为棱BE 、AD 的中点, 1=AB ,2=AD , (1)证明:直线//AM 平面NEC ; (2)求二面角D CE N --的大小. 19.(本小题满分12分) 如图,在四棱锥ABCD P -中,底面ABCD 是直角梯形, 2 π = ∠=∠ABC DAB ,且22===AD BC AB , 侧面 ⊥PAB 底面ABCD ,PAB ?是等边三角形. (1)求证:PC BD ⊥; (2)求二面角D PC B --的大小. 15、(北京市东城区2008年高三综合练习一)如图,在直三 棱柱ABC —A 1B 1C 1中,∠BAC =90°,AB =BB 1,直线B 1C 与平面ABC 成30°角. (I )求证:平面B 1AC ⊥平面ABB 1A 1; (II )求直线A 1C 与平面B 1AC 所成角的正弦值; (III )求二面角B —B 1C —A 的大小. 52、(河南省濮阳市2008年高三摸底考试)如图,在多面体ABCDE 中,AE ⊥面ABC ,BD ∥AE ,且AC =AB =BC =BD =2,AE =1,F 为CD 中点. (1)求证:EF ⊥面BCD ; (2)求面CDE 与面ABDE 所成的二面角的余弦值. A B C D M N 第18题图

高一必修二经典立体几何专项试题

高一必修二经典立体几何专项试题

作者: 日期:

高一必修二经典立体几何专项练习题 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面内——有无数个公共点 (2)直线与平面相交一一有且只有一个公共点 (3)直线在平面平行——没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用 a a来表示 a a a Aa =A a //a 22直线、平面平行的判定及其性质 2.2.1直线与平面平行的判定 1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行, 则该直线与此平面平行。 简记为:线线平行,则线面平行。符号表示: a B => a // b 2.2.2平面与平面平行的判定 1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则 这两个平面平行。 符号 示:

// b // 2、判断两平面平行的方法有三种: (1) 用定义; (2) 判定定理; (3) 垂直于同一条直线的两个平面平行。— 223 — 224直线与平面、平面与平面平行的性质 1、直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任 平面与此平面的交线与该直线平行 作用:利用该定理可解决直线间的平行问题 么它们的交线平行。 符号表示: // □ Y =a 作用:可以由平面与平面平行得出直线与直线平行 2.3直线、平面垂直的判定及其性质 、、亠 1 注意点: a)定理中的“两条相交直线”这一条件不可忽视; 简记为:线面平行则线线平行。 符号表示: 2、 ] a // b // 2.3.1直线与平面垂直的判定 1、定义:如果直线L 与平面a 内的任意一条直线都垂直,我们就说直线 L 与平 面a 互相垂 直,记作L 丄a ,直线L 叫做平面a 的垂线,平面a 叫做直线 L 的垂

立体几何证明题定理推论汇总

立体几何公理、定理推论汇总 一、公理及其推论 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈?? 作用: ① 用来验证直线在平面内; ② 用来说明平面是无限延展的。 公理2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。(那么它们有且只有一条通过这个公共点的公共直线) 符号语言:P l P l α βαβ∈?=∈且 ! 作用:① 用来证明两个平面是相交关系; ② 用来证明多点共线,多线共点。 公理3 经过不在同一条直线上的三点,有且只有一个平面。 符号语言:,,,,A B C A B C ?不共线确定一个平面 推论1 经过一条直线和这条直线外的一点,有且只有一个平面。 符号语言:A a A a a αα??∈?有且只有一个平面,使, 推论2 经过两条相交直线,有且只有一个平面。 符号语言:a b P a b ααα?=???有且只有一个平面,使, ) 推论3 经过两条平行直线,有且只有一个平面。 符号语言://a b a b ααα???有且只有一个平面,使, 公理3及其推论的作用:用来证明多点共面,多线共面。 公理4 平行于同一条直线的两条直线平行(平行公理)。

符号语言://////a b a c c b ???? 图形语言: 作用:用来证明线线平行。 二、平行关系 - 公理4 平行于同一条直线的两条直线平行(平行公理)。(1) 符号语言://////a b a c c b ???? 图形语言: 1.线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。(2) 符号语言: ////a b a a b ααα???????? 图形语言: 线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。(3) 符号语言:////a b a a b βαβα??????=? 图形语言: 2.面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4) 符号语言://(/,///),a b b b O a a ββαααβ??=?????? 图形语言: ! 面面平行的判定 如果两个平面垂直于同一条直线,那么这两个平面平行。(5) 符号语言:,,//oo oo ααββ???? ⊥⊥ 图形语言:

高中空间立体几何典型例题

高中空间立体几何典型 例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E=C 1F. 求证:EF ∥平面ABCD. 证明 方法一 分别过E ,F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连接MN. ∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN. 又∵B 1E=C 1F ,∴EM=FN , 故四边形MNFE 是平行四边形,∴EF ∥MN. 又MN ?平面ABCD ,EF ?平面ABCD , 所以EF ∥平面ABCD. 方法二 过E 作EG ∥AB 交BB 1于G , 连接GF ,则B B G B A B E B 1111=, ∵B 1E=C 1F ,B 1A=C 1B , ∴B B G B B C E C 1111=,∴FG ∥B 1C 1∥BC , 又EG ∩FG =G ,AB ∩BC =B , ∴平面EFG ∥平面ABCD ,而EF ?平面EFG , ∴EF ∥平面ABCD . 2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.

(1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △3 21G G G ∶S △ABC . (1)证明 如图所示,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F , 连接DE 、EF 、FD ,则有PG 1∶PD =2∶3, PG 2∶PE =2∶3,∴G 1G 2∥DE . 又G 1G 2不在平面ABC 内, ∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC . 又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC . (2)解 由(1)知PE PG PD PG 21 =32,∴G 1G 2=32DE . 又DE =21AC ,∴G 1G 2=31 AC . 同理G 2G 3=31AB ,G 1G 3=3 1BC . ∴△G 1G 2G 3∽△CAB ,其相似比为1∶3, ∴S △3 21G G G ∶S △ABC =1∶9. 3如图所示,已知S 是正三角形ABC 所在平面外的一点,且SA =SB =SC ,SG 为△SAB 上的高, D 、 E 、 F 分别是AC 、BC 、SC 的中点,试判断S G 与平面DEF 的位置关系,并给予证明. 解 SG ∥平面DEF ,证明如下: 方法一 连接CG 交DE 于点H , 如图所示.

高考立体几何大题经典例题.

N M P C B A <一 >常用结论 1.证明直线与直线的平行的思考途径:(1转化为判定共面二直线无交点; (2转化为二直 线同与第三条直线平行; (3转化为线面平行; (4转化为线面垂直; (5转化为面面平行 . 2.证明直线与平面的平行的思考途径:(1转化为直线与平面无公共点; (2转化为线线平 行; (3转化为面面平行 . 3. 证明平面与平面平行的思考途径:(1 转化为判定二平面无公共点; (2 转化为线面平行; (3转化为线面垂直 . 4.证明直线与直线的垂直的思考途径:(1转化为相交垂直; (2转化为线面垂直; (3转 化为线与另一线的射影垂直; (4转化为线与形成射影的斜线垂直 . 5.证明直线与平面垂直的思考途径:(1转化为该直线与平面内任一直线垂直; (2转化为该直线

与平面内相交二直线垂直; (3转化为该直线与平面的一条垂线平行; (4转化为该直线垂直于另一个平行平面; (5转化为该直线与两个垂直平面的交线垂直 . 6.证明平面与平面的垂直的思考途径:(1转化为判断二面角是直二面角; (2转化为线面垂直 . 3、如图,在正方体 1111ABCD A B C D -中, E 是 1AA 的中点, 求证: 1//AC 平面BDE 。 5、已知正方体 1111ABCD A B C D -, O 是底 ABCD 对角线的交点 . 求证:(1 C1O ∥面 11AB D ; (21 AC ⊥面 11AB D . 9、如图 P 是ABC ?所在平面外一点, , PA PB CB =⊥平面 PAB , M 是 PC 的中点, N 是 AB 上的点, 3AN NB = A D 1 C B D C D D B A C 1

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算” ,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:( 1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的 结论是什么。 对命题条件的探索常采用以下三种方法:(1 )先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;( 3)把几何问题转化为 代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。 (一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高 级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化:

公理4 (a//b,b// c a I Ic ) 面面平行性质I I a, a II b a ,b 线线//| 疋 a II线面平行判定 ----------------- > 线面// | 疋 / / 线面平行性质 a II a II a II 2.线线、线面、面面垂直关系的转化: 三垂线定理、逆定理 PA , A0为PO 在内射影 a 则a OA a PO a PO a AO 线线丄 a, b a // b a b A a II ,b II // 面面平行判定1 面面平行性质1 I I / / / / O I a, I I 线面垂直判定1 a b 线面丄屯 面面垂直判定 推论2 l,且二面角I 线面垂直定义面面垂直性质, 成直二面角 3.平行与垂直关系的转化:

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

专题一立体几何经典练习题

2 专题一 立体几何 班级: _____ 姓名: _____ 学号: _____ 一、选择题(4 分×10=40 分) 1.直线 l , l 和 α , l // l , a 与 l 平行,则 a 与 l 的关系是 1 2 1 2 1 2 A .平行 B .相交 C .垂直 D .以上都可能 2.若线段 AB 的长等于它在平面内射影长的 3 倍,则这条斜线与平面所成角的余弦值为 A . 1 3 B . 2 2 2 2 C . D . 3 3 3.在正方体 ABCD-A 1B 1C 1D 1 中,B 1C 与平面 DD 1B 1B 所成的角的大小为 A .15 B . 30 C . 45 D . 60 4.有下列命题:①空间四点共面,则其中必有三点共线;②空间四点不共面,则其中 任何三点不共线;③空间四点中有三点共线,则此四点共面;④空间四点中任何三点 不共线,则此四点不共面.其中正确的命题是 A .②③ B .①②③ C .①③ D .②③④ 5.有一山坡,倾斜度为 300,若在斜坡平面上沿着一条与斜坡底线成 450 角的直线前进 1 公里,则升高了 A . 250 2 米 B . 250 3 米 C . 250 6 米 D . 500 米 6.已知三条直线 a , b , l 及平面 α , β ,则下列命题中正确的是 A . 若b ? α , a // b , 则a // α B .若 a ⊥ α , b ⊥ α ,则 a // b C . 若 a ? α ,α β = b ,则 a // b D .若 a ? α , b ? α , l ⊥ a , l ⊥ b , 则 l ⊥ α 7.已知 P 是△EFG 所在平面外一点,且 PE=PG ,则点 P 在平面 EFG 内的射影一定在△EFG 的 A .∠FEG 的平分线上 B .边 EG 的垂直平分线上 C .边 EG 的中线上 D .边 EG 的高上 8.若一正四面体的体积是18 2 cm 3,则该四面体的棱长是 A . 6cm B . 6 3 cm C .12cm D . 3 3 cm 9.P 是△ABC 所在平面α 外一点,PA ,PB ,PC 与α 所成的角都相等,且 PA ⊥BC ,则 △ABC 是 A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形 3 10.如图,在多面体 ABCDEF 中,已知 ABCD 是边长为 3 的正方形,EF//AB ,EF= ,EF 2 与面 AC 的距离为 2,则该多面体的体积为 E F A .2 B .4 C . 2 2 D . 4 2 D C 二、填空题(4 分×4=16 分) A B 11.空间四边形 ABCD 中,AB=6,CD=8,E 、F 、G 分别是 BD ,AC ,BC 的中点,若异面直

立体几何平行证明题复习过程

立体证明题(2) 1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥ 平面ACE. (1)求证:AE⊥平面BCE; (2)求二面角B﹣AC﹣E的余弦值. 2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP=. (1)求证:平面EFP⊥平面ABFE; (2)求二面角B﹣AP﹣E的大小.

3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且 PA=PD=AD,若E、F分别为PC、BD的中点. (Ⅰ)求证:EF∥平面PAD; (Ⅱ)求证:EF⊥平面PDC. 4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°. (1)求证:AB⊥CD; (2)求二面角D﹣AB﹣C的正切值. 5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD. (1)求证:平面PAD⊥平面PBD; (2)求二面角A﹣PB﹣C的余弦值.

6.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ; (Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值. 7.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,∠DAB 为直角,AB ∥CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点. (Ⅰ)证明:AB ⊥平面BEF ; (Ⅱ)若PA= ,求二面角E ﹣BD ﹣C . 8.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC=4,点M 为PC 中点. (1)求证:DM ⊥平面PBC ; (2)若点E 为BC 边上的动点,且λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为 3 2 ?若存在,求出实数λ的值;若不存在,请说明理由.

立体几何经典题型汇总

1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点.. 向这个平面所引的垂线段和斜线段) ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面. ⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在 任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角]90,0[??∈θ) (向量与向量所成角])180,0[ ∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)

必修二立体几何证明题

C B A D C 1 A 1 必修二立体几何经典证明试题 1. 如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1 2AA 1,D 是棱AA 1的中点 (I)证明:平面BDC 1⊥平面BDC (Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比. 1. 【解析】(Ⅰ)由题设知BC ⊥1CC ,BC ⊥AC ,1CC AC C ?=,∴BC ⊥面11ACC A , 又∵1DC ?面11ACC A , ∴1DC BC ⊥, 由题设知0 1145A DC ADC ∠=∠=,∴1CDC ∠=090,即1DC DC ⊥, 又∵DC BC C ?=, ∴1DC ⊥面BDC , ∵1DC ?面1BDC , ∴面BDC ⊥面1BDC ; (Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132 +???=1 2, 由三棱柱111ABC A B C -的体积V =1, ∴11():V V V -=1:1, ∴平面1BDC 分此棱柱为两部分体积之比为1:1. 2. 如图5所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//AB CD ,PD AD =,E 是PB 的中点,F 是 CD 上的点且1 2 DF AB = ,PH 为△PAD 中AD 边上的高. (1)证明:PH ⊥平面ABCD ; (2)若1PH =,2AD = 1FC =,求三棱锥E BCF -的体积; (3)证明:EF ⊥平面PAB . 【解析】(1)证明:因为AB ⊥平面PAD ,所以PH AB ⊥。 因为PH 为△PAD 中AD 边上的高,所以PH AD ⊥。 因为AB AD A =I ,所以PH ⊥平面ABCD 。 (2)连结BH ,取BH 中点G ,连结EG 。 因为E 是PB 的中点,所以//EG PH 。 因为PH ⊥平面ABCD 所以EG ⊥平面ABCD 。 则1122EG PH = =, 111 332 E BC F BCF V S E G FC AD EG -?=?=????=2。 (3)证明:取PA 中点M ,连结MD ,ME 。因为E 是PB 的中点,所以1 // 2ME AB =。 因为1 // 2DF AB =,所以//ME DF = ,所以四边形MEDF 是平行四边形,所以//EF MD 。 因为PD AD =,所以MD PA ⊥。因为AB ⊥平面PAD ,所以MD AB ⊥。 因为PA AB A =I ,所以MD ⊥平面PAB ,所以EF ⊥平面PAB 。 3. 如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E , 分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.

立体几何典型例题精选[含答案解析]

F E D C B A ; 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥ 平面ABCD , 1EF =,,90FB FC BFC ? =∠=,3AE = . (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. · ! 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值.

] 变式2:[2014·福建卷] 在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图1-5所示. (1)求证:AB⊥CD; (2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. ? (1)证明:CF⊥平面ADF; (2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED =90°,AB=CD=2,DE=BE=1,AC= 2. — (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小. 【

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

精选高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

高中数学空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B C D .23 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =. 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 13OA AB AO AB ?=u u u u r u u u r u u u r u u u r . 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D -- M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。 对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。 (一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: ?a c //) αβ αγβγ //,// ==???? a b a b 面面平行性质 线面平行性质 a a b a b ////αβαβ?=???? ? ? 面面平行性质1 αβαβ ////a a ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化:

高中立体几何经典题型练习题(含答案)

高中数学立体几何练习题精选试卷 姓名班级学号得分 说明: 1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分100分。考试时间90分钟。 2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。考试结束后,只收第Ⅱ卷 第Ⅰ卷(选择题) 一.单选题(每题2分,共40分) 1.设直线l,m和平面α,β,下列条件能得到α∥β的有() ①l?α,m?α,且l∥β,m∥β; ②l?α,m?α且l∥m; ③l∥α,m∥β且l∥m. A.1个B.2个C.3个D.0个 2.一个四面体中如果有三条棱两两垂直,且垂足不是同一点,这三条棱就象中国武术中的兵器--三节棍,所以,我们常把这类四面体称为“三节棍体”,三节棍体ABCD四个顶点在空间直角坐标系中的坐标分别为A(0,0,0)、B(0,4,0)、C(4,4,0)、D(0,0,2),则此三节棍体外接球的表面积是() A.36πB.24πC.18πD.12π

3.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.B.C.D. 4、如图,三棱柱ABC-A1B1C1的侧棱长和底面边长均为4,且侧棱AA1⊥底面ABC,其主视图是边长为4的正方形,则此三棱柱的侧视图的面积为() A.16B.2C.4D. 5.三棱锥P-ABC的侧棱PA,PB,PC两两互相垂直,且PA=PB=PC=2,则三棱锥P-ABC的外接球的体积是() A.2πB.4πC.πD.8π 6.在正方体ABCD-A′B′C′D′中,过对角线BD‘的一个平面交AA′于点E,交CC′于点F.则下列结论正确的是() ①四边形BFD′E一定是平行四边形 ②四边形BFD′E有可能是正方形 ③四边形BFD′E在底面ABCD的投影一定是正方形 ④四边形BFD′E有可能垂于于平面BB′D. A.①②③④B.①③④C.①②④D.②③④ 7.如图,在四面体A-BCD中,AB⊥平面BCD,BC⊥CD,若AB=BC=CD=1,则AD=()

高中数学立体几何经典常考题型

高中数学立体几何经典常考题型 题型一:空间点、线、面的位置关系及空间角的计算 空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. 【例1】如图,在△ABC 中,∠ABC = π4 ,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平 面ABC ,2DA =2AO =PO ,且DA ∥PO. (1)求证:平面PBD ⊥平面COD ; (2)求直线PD 与平面BDC 所成角的正弦值. (1)证明 ∵OB =OC ,又∵∠ABC =π 4, ∴∠OCB =π4,∴∠BOC =π 2. ∴CO ⊥AB. 又PO ⊥平面ABC , OC ?平面ABC ,∴PO ⊥OC. 又∵PO ,AB ?平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ?平面COD , ∴平面PDB ⊥平面COD. (2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示. 设OA =1,则PO =OB =OC =2,DA =1. 则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).

设平面BDC 的一个法向量为n =(x ,y ,z ), ∴?????n ·BC →=0,n · BD →=0,∴???2x -2y =0,-3y +z =0, 令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=????? ? ??PD →·n |PD →||n | =??????1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=222 11. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标. 第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和答题规范. 【变式训练】 如图所示,在多面体A 1B 1D 1-DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C . (2)求二面角E -A 1D -B 1的余弦值. (1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ?面A 1DE ,B 1C ?面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ?面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.

相关主题