搜档网
当前位置:搜档网 › 关于有机物分子式确定的计算例题及训练

关于有机物分子式确定的计算例题及训练

关于有机物分子式确定的计算例题及训练
关于有机物分子式确定的计算例题及训练

一、有机物分子式的确定

【例1】实验测得某碳氢化合物A中,含碳80%、含氢20%,求该化合物的实验式。又测得该化合物的相对分子质量是30,求该化合物的分子式。

【例2】2.3g某有机物A完全燃烧后,生成0.1 mol CO2和 2.7gH2O,测得该化合物的蒸气与空气的相对密度是1.6,求该化合物的分子式。

【例3】0.60g某饱和一元醇 A,与足量的金属钠反应,生成氢气112mL(标准状况)。求该一元醇的分子式。

[例4] 某烃含碳氢两元素的质量比为3∶1,该烃对H2的相对密度为8,试确定该烃的分子式.

[例5]已知第一种气态有机物在标准状况下的密度为2.59g/L,第二种气态有机物对空气的相对密度为1.87,第三种气态有机物在标准状况下250mL质量为0.49g.求这三种有机物的相对分子质量.

[例6]某气态碳氢化合物中含碳75%,它的密度是同温同压下氢气密度的8倍,求有机物的分子式.

[例7] 某烃1.68g,完全燃烧生成CO25.28g和H2O2.16g,经测定这种烃在标准状况下的密度为3.75g/L则其分子式是

[例题8] 2.3g某有机物A完全燃烧后,生成0.1molCO2和2.7g H2O,测得该化合物的蒸气与空气的相对密度是1.6,求该化合物的分子式.

[例9]标准状况下,密度为0.717g/L的某气态烃0.56L,在足量氧气中充分燃烧,反应后的气体先通过无水氯化钙,氯化钙增重0.9g;再通过氢氧化钠溶液,溶液增重1.1g.通过计算判断此气态烃的分子式,并画出其分子空间结构的示意图.

[例10] 标准状况下4.48L某烯烃和CO的混合气体与足量的氧气混合点燃,使之反应,将反应完毕后生成的气体通过浓硫酸,浓硫酸增重7.2g,并测得剩余气体中CO2为11.2L (标准状况),求此烯烃分子式.

有机物分子式的确定

1.常温常压下,等质量的以下各烃分别在足量的O2充分燃烧,消耗O2最多的是( );等物质的量的下列各烃分别在足量O2中充分燃烧,消耗O2最多的是( )

A.甲烷

B.乙烯

C.丙炔

D.

2.1.01×105Pa,120℃时,某气态烃在密闭容器中与过量O2混和点燃,完全反应后,保持温

A.CH4

B.C2H6

C.C3H4

D.C2H2

3.

A.C4H8O2

B.C4H10

C.C2H6O2

D.C2H2

4.充分燃烧等质量的下列各组有机物,在相同条件下需O

2

A.乙炔、苯

B.乙醇、甲醚(CH 3-O-CH3)

C.丙炔、异丙苯

D.

5.经测定C3H7OH和C6H12组成的混合物中氧的质量分数为8%,则此混合物中氢的质量分数是

A.78%

B.22%

C.14%

D.13%

6.某有机物含C52.2%,含H13.0%;该有机物1g与足量金属钠反应,标况下生成0.243LH2,

A.C2H6O

B.C2H4O2

C.CH4O

D.C4H10O

7.0.2mol有机物和0.4molO2在密闭容器中燃烧后产物为CO2,CO和H2O(g)。产物经过浓H2SO4 后,质量增加10.8g;再通过灼热的CuO,充分反应后,CuO质量减轻3.2g,最后气体再通

过碱石灰被完全吸收,质量增加17.6g

(1)

(2)若0.2mol该有机物恰恰将与9.2g金属钠完全反应,试确定该有机物的结构简式8.某种橡胶分解产物为碳氢化合物。对这种碳氢化合物做以下实验:

(1)若取一定量该碳氢化合物完全燃烧,使燃烧后的气体通过盛浓H2SO4的洗气瓶;增重0.72g,再通过石灰水,石灰水增重2.2g;

(2)经测定,该碳氢化合物(气体)的密度是相同状况下氢气密度的34倍;

(3)该碳氢化合物0.1mol能和32g溴起加成反应;

(4)经分析,在(3)的生成物中,溴原子分布在不同的碳原子上,且分子中有一个C原

(1)该碳氢化合物的结构简式为____________,名称为____________

(2)该橡胶的结构简式为_____________,名称为____________

贝叶斯决策模型与实例分析报告

贝叶斯决策模型及实例分析 一、贝叶斯决策的概念 贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。 风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。 二、贝叶斯决策模型的定义 贝叶斯决策应具有如下容 贝叶斯决策模型中的组成部分: ) ( ,θ θP S A a及 ∈ ∈。概率分布S P∈ θ θ) (表示决策 者在观察试验结果前对自然θ发生可能的估计。这一概率称为先验分布。 一个可能的试验集合E,E e∈,无情报试验e0通常包括在集合E之。 一个试验结果Z取决于试验e的选择以Z0表示的结果只能是无情报试验e0的结果。 概率分布P(Z/e,θ),Z z∈表示在自然状态θ的条件下,进行e试验后发生z结果

的概率。这一概率分布称为似然分布。 c 以及定义在后果集合C的效用函数u(e,Z,a,θ)。 一个可能的后果集合C,C 每一后果c=c(e,z,a,θ)取决于e,z,a和θ。.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可写成u(e,z,a,θ)。 三、贝叶斯决策的常用方法 3.1层次分析法(AHP) 在社会、经济和科学管理领域中,人们所面临的常常是由相互关联,相互制约的众多因素组成的复杂问题时,需要把所研究的问题层次化。所谓层次化就是根据所研究问题的性质和要达到的目标,将问题分解为不同的组成因素,并按照各因素之间的相互关联影响和隶属关系将所有因素按若干层次聚集组合,形成一个多层次的分析结构模型。 3.1.1层次分析模型 最高层:表示解决问题的目的,即层次分析要达到的目标。 中间层:表示为实现目标所涉及的因素,准则和策略等中间层可分为若干子层,如准则层,约束层和策略层等。 最低层:表示事项目标而供选择的各种措施,方案和政策等。 3.1.2层次分析法的基本步骤 (l) 建立层次结构模型 在深入分析研究的问题后,将问题中所包括的因素分为不同层次,如目标层、指标层和措施层等并画出层次结构图表示层次的递阶结构和相邻两层因素的从属关系。 (2) 构造判断矩阵 判断矩阵元素的值表示人们对各因素关于目标的相对重要性的认识。在相邻的两个层次中,高层次为目标,低层次为因素。 (3) 层次单排序及其一致性检验 判断矩阵的特征向量W经过归一化后即为各因素关于目标的相对重要性的排序权值。利用判断矩阵的最大特征根,可求CI和CR值,当CR<0.1时,认为层次单排序的结果有满意的一致性;否则,需要调整判断矩阵的各元素的取值。 (4) 层次总排序 计算某一层次各因素相对上一层次所有因素的相对重要性的排序权值称为层次总排序。由于层次总排序过程是从最高层到最低层逐层进行的,而最高层是总目标,所以,层次总排序也是计算某一层次各因素相对最高层(总目标)的相对重要性的排序权值。 设上一层次A包含m个因素A1,A2,…,A m其层次总排序的权值分别为a1,a2,…,a m;下一层次B包含n个因素B1,B2,…,B n,它们对于因素A j(j=1,2,…,m)的层次单排序权值分别为:b1j,b2j,…,b nj(当B k与A j无联系时,b kj=0),则B层次总排序权值可按下表计算。 层次总排序权值计算表

有机物分子式计算(成品)

有机物分子式的确定 一、有机物组成元素的判断——燃烧法 有机物完全燃烧后,各元素对应产物为:C→CO2,H→H2O,Cl→HCl。某有机物完全燃烧后若产物只有CO2和H2O,则其组成元素 欲判定该有机物中是否含氧元素 二、实验式(最简式)和分子式的区别与联系 (1)最简式:表示化合物分子所含各元素的原子数目最简单整数比的式子。 不能确切表明分子中的个各原子的个数。 注意: ①最简式是一种表示物质组成的化学用语; ②无机物的最简式一般就是化学式; ③有机物的元素组成简单,种类繁多,具有同一最简式的物质往往不止一种; ④最简式相同的物质,所含各元素的质量分数是相同的,若相对分子质量不 同,其分子式就不同。例如,苯(C6H6)和乙炔(C2H2)的最简式相同,均为CH,故它们所含C、H元素的质量分数是相同的。 (2)分子式:表示化合物分子所含元素的原子种类及数目的式子。 注意: ①分子式是表示物质组成的化学用语; ②无机物的分子式一般就是化学式; ③由于有机物中存在同分异构现象,故分子式相同的有机物,其代表的物质 可能有多种; ④分子式=(最简式)n。,。 三、有机物相对分子质量的计算方法 1、标准状况下,M=22.4ρ(单位:克/升) 2、相对密度法:M=2D (D是氢气密度的倍数) M=29D (D是空气密度的倍数) 四、确定分子式的方法——关键是计算M (1)、实验式法: 由各元素的质量分数→求出实验式→相对分子质量→求分子式。 例1:某有机物含碳40%,氢6.67%,氧53.3%,如果0.2mol该有机物质量为6g,求它的分子式。 (2)、物质的量关系法——比值法 求:1摩尔有机物中各元素的物质的量之比,就是分子式下标的比。 例2:某混合气体由两种气态烃组成。取2.24升该混合气体完全燃烧后得到4.48升二氧化碳(在标况下)和3.6克水,则这两种气体可能是 A、CH4、C3H8 B、CH4、C3H4 C、C2H4、C3H4 D、C2H2、C2H6 E、C2H4、C2H6 例3:由两种气态烃组成的混合气体30ml,与过量氧气完全燃烧后,生成CO2 60ml,水蒸气45ml(相同条件下测得)。求原混合气的成分及体积比。 (3)、化学方程式法——利用化学方程式求分子式。(已知物质的类别) (4)、燃烧通式法——利用通式和相对分子质量求分子式。

有机物分子式的确定规律总结

有机物分子式的确定 一.有机物组成元素的判断 某有机物完全燃烧后若产物只有CO2和H2O,则其组成元素可能为C、H或C、H、O。 欲判定该有机物中是否含氧元素,首先应求出产物CO2中碳元素的质量及H2O中氢元素的质量,然后将碳、氢元素的质量之和与原有机物质量比较,若两者相等,则原有机物的组成中不含氧;否则,原有机物的组成含氧。 二、有机物分子式的确定 1、根据最简式和分子量确定分子式 例1:某有机物中含碳40%、氢6.7%、氧53.3%,且其分子量为90,求其分子式。 例2:某烃中碳和氢的质量比是24∶5,该烃在标准状况下的密度是2.59g/L,写出该烃的分子式。 注意:(1)某些特殊组成的最简式,在不知化合物相对分子质量时,也可根据组成特点确定其分子式。例如最简式为CH3的在机物,其分子式可表示为(CH3)n,仅当n=2时,氢原子已达饱和,故其分子式为C2H6。同理,最简式为CH3O的有机物,当n=2时,其分子式为C2H6O2 (2)部分有机物的最简式中,氢原子已达饱和,则该有机物的最简式即为分子式。例如最简式为CH4、CH3Cl、C2H6O、C4H10O3等有机物,其最简式即为分子式。 2、根据各元素原子个数确定分子式 例1:吗啡分子含C:71.58% H:6.67% N :4.91% , 其余为氧,其分子量不超过300。试确定其分子式。 例2:实验测得某烃A中含碳85.7%,含氢14.3%。在标准状况下11.2L此化合物气体的质量为14g。求此烃的分子式。 3、根据通式确定分子式 烷烃CnH2n+2 烯烃或环烷烃CnH2n 炔烃或二烯烃CnH2n-2 苯及同系物CnH2n-6 用CnH2n-x(-2≤x≤6)和相对分子量可快速确定烃或分子式

有机物分子式确定专题

有机物分子式的确定 知识点: 1 .有机物燃烧通式的应用 (解题的依据是烃及其含氧衍生物的燃烧通式) 烃:4C x H y +(4x +y )O 2 → 4x CO 2+2y H 2O 或C x H y +(x +4y )O 2 → x CO 2+2y H 2O 烃的含氧衍生物:4C x H y O z +(4x +y -2z)O 2 → 4x CO 2+2y H 2O 或C x H y O z +(x +4y -2z )O 2 → x CO 2+2 y H 2O 规律1:耗氧量大小的比较 等质量的烃(C x H y )完全燃烧时,耗氧量及和H 2O 的量均决定于x y 的比值大小。比值越大,耗氧量越多。生成的CO 2决定于y x 的比值大小。 规律2:等物质的量(相同状况下,等体积气态)的烃(C x H y )完全燃烧时,耗氧量及生成的CO 2和H 2O 的量均决定于C x H y +(x +4y )O 2 → x CO 2+2 y H 2O 系数的大小。 规律3:所取质量一定时,无论以怎样的物质的量之比混合,燃烧生成的CO 2和H 2O 的量为一定值的。烃的最简式相同。 如乙烯与丁烯混合 乙炔和苯混合

规律4:气态烃(C x H y)在氧气中完全燃烧后(反应前后温度不变且高于100℃): 4C x H y+(4x+y)O2→ 4x CO2+2y H2O 若y=4,V总不变;(有CH4、C2H4、C3H4、C4H4) 若y<4,V总减小,压强减小;(只有乙炔) 若y>4,V总增大,压强增大。 例 10ml某气态烃在50ml氧气中充分燃烧 ,得到液态水和35ml 混合气(所有气体体积在同温同压下测定),该烃可能是 A. CH4 B. C2H6 C. C3H6 D. C4H6 2.确定烃分子式的基本方法: [方法一] 根据有机物的摩尔质量和有机物中各元素的质量分数(或元素质量比),推算出1mol该有机物中各元素的原子物质的量,从而确定分子中的各原子个数。 即:质量分数→1mol物质中各元素原子物质的量→分子式 [方法二] 根据有机物中各元素的质量分数(或元素的质量比),求出有机物的最简式,再根据有机物的式量确定化学式(分子式)。即:质量分数→最简式→分子式 注意: (1)某些特殊组成的最简式,在不知化合物的相对分子质量时,也可根据组成特点确定其分子式。 例如:最简式为CH3的烃,其分子式可表示为(CH3)n 当n=2时,氢原子已达饱和,故其分子式为C2H6。

高中化学选修5 第一章 专题与练习 有机物分子式的确定

专题与练习有机物分子式的确定 1.有机物组成元素的判断 一般来说,有机物完全燃烧后,各元素对应产物为:C→CO2,H→H2O,Cl→HCl。某有机物完全燃烧后若产物只有CO2和H2O,则其组成元素可能为C、H或C、H、O。欲判定该有机物中是否含氧元素,首先应求出产物CO2中碳元素的质量及H2O中氢元素的质量,然后将碳、氢元素的质量之和与原有机物质量比较,若两者相等,则原有机物的组成中不含氧;否则,原有机物的组成含氧。 2.实验式(最简式)和分子式的区别与联系 (1)最简式是表示化合物分子所含各元素的原子数目最简单整数比的式子。不能确切表明分子中的原子个数。 注意: ①最简式是一种表示物质组成的化学用语; ②无机物的最简式一般就是化学式; ③有机物的元素组成简单,种类繁多,具有同一最简式的物质往往不止一种; ④最简式相同的物质,所含各元素的质量分数是相同的,若相对分子质量不同,其分子式就不同。例如,苯(C6H6)和乙炔(C2H2)的最简式相同,均为CH,故它们所含C、H元素的质量分数是相同的。 (2)分子式是表示化合物分子所含元素的原子种类及数目的式子。 注意: ①分子式是表示物质组成的化学用语; ②无机物的分子式一般就是化学式; ③由于有机物中存在同分异构现象,故分子式相同的有机物,其代表的物质可能有多种; ④分子式=(最简式)n。即分子式是在实验式基础上扩大n倍,

。 3.确定分子式的方法 (1)实验式法由各元素的质量分数→求各元素的原子个数之比(实验式)→相对分子质量→求分子式。 (2)物质的量关系法由密度或其他条件→求摩尔质量→求1mol分子中所含各元素原子的物质的量→求分子式。(标况下M=dg/cm3×103·22.4L/mol) (3)化学方程式法利用化学方程式求分子式。 (4)燃烧通式法利用通式和相对分子质量求分子式。 由于x、y、z相对独立,借助通式进行计算,解出x、y、z,最后求出分子式。 [例1] 3.26g样品燃烧后,得到4.74gCO2和1.92gH2O,实验测得其相对分子质量为60,求该样品的实验式和分子式。 (1)求各元素的质量分数 (2)求样品分子中各元素原子的数目(N)之比

有机物分子式确定方法

一、直接求算法 直接计算出1mol气体中各元素原子的物质的量,推出分子式。步骤为:密度(或相对密度)→摩尔质量→1mol气体中各元素的原子个数→分子式。 例1、0.1L某气态烃完全燃烧,在相同条件下测得生成0.1LCO2和0.2L水蒸气且标准状况下其密度为0.717g / L,该烃的分子式是:( ) A. CH4 B. C2H4 C. C2H2 D. C3H6 解析:由M=0.717g /L*22.4 L/mol=16 g/mol,可求N(C)= 0.1 L/0.1 L=1, N(H)= 0.2 L*2/0.1 L=4,即1mol该烃中含1mol C, 1mol H,则其分子式为CH4, 二、最简式法 通过有机物中各元素的质量分数或物质的量,确定有机物的最简式(即各原子最简整数比),再由烃的相对分子质量来确定分子式。 烃的最简式的求法为:N(C):N(H)=(碳的质量分数/12):(氢的质量分数/1)=a:b(最简整数比)。 例1、某气态烃含碳85.7%,氢14.3%。标准状况下,它的密度是1.875 g /L,则此

烃的化学式是_______。 解析:由M=1.875g /L*22.4 L/mol=42g/mol, N(C):N(H)=( 85.7%/12):(14.3%/1)=1:2, 最简式为CH2,该烃的化学式可设为(CH2)n,最简式式量为14,相对分子质量为42,n=3,此烃为C3H6。 练习:某烃完全燃烧后生成8.8gCO2和4.5g水。已知该烃的蒸气对氢气的相对密度为29,则该烃的分子式为_______。答案:C4H10 注意:某些特殊组成的最简式,可直接确定其分子式。如最简式为CH4的烃中,氢原子数为四,已经饱和,其最简式就是分子式。 三、通式法 若已知烃的种类可直接设,烷烃设为CnH2n+2, 烯烃设为CnH2n,炔烃设为CnH2n-2,苯及苯的同系物设为CnH2n-6;若为不确定分子则设为CxHy. 例1、若1 mol某气态烃CxHy完全燃烧,需用3 mol O2,则( ) A. x=2,y=2 B. x=2,y=4 C. x=3,y=6 D. x=3, y=8 解析:由烃的燃烧方程式CxHy+(x+y/4)O2→xCO2+y/2H2O,依题意x+y/4=3,

有机物分子式的确定专题

有机物分子式的确定专题 一、分子式确定的基本思路 1、有机物组成元素的定性分析 通常通过充分燃烧有机物的方式来确定有机物的组成元素,即: 2、有机物分子式定量分析 练:列式计算下列有机物的相对分子质量; ①标准状况下某烃A气体密度为0.717g/L; ②某有机物B的蒸气密度是相同条件下氢气的14倍; ③标准状况下测得0.56g某烃C气体的体积为448mL; 二、确定单一有机物分子式的分析方法 1、直接法:直接计算出1mol气体中各元素原子的物质的量,即可推出分子式

【例1】某烃A 0.1 mol,完全燃烧只生成标况下的CO24.48L和水5.4g,求A的分子式。 2、最简式法 方法:质量分数、质量比原子数之比→ 最简式分子式(最简式)n = 分子式 【例2】常温下某气态烃A的密度为相同条件下氢气密度的15倍,该烃中C的质量分数为80%,则该烃的实验式为,分子式为。 有时可根据最简式和有机物的组成特点(H原子饱和情况)直接确定分子式,如: 3、商余法 a.方法:将烃的相对分子质量除以14(即CH2的相对质量),则最大的商为烃或烃基中含CH2原子团的个数,余数为氢原子数(若余数为正数,则加氢原子数;若余数为负数,则减氢原子数)。 即:M r ÷ 14 = n(商) …… m(余数) ,如:

b.方法: Mr÷ 12 = n (商) …… m (余数) ,则分子式一般为C n H m [例3]:某烃的相对分子质量为128,则该烃的分子式为。 4、通式法 ③常见有机物的分子通式 ③方法: 相对分子质量 n (碳原子数) 分子式 分子通式 [例4]:某烷烃的相对分子质量为44,则该烷烃的分子式为。 5、方程式法:利用有机物燃烧的化学方程式进行计算推断 适用于已知条件是反应前后气体体积的变化、气体压强的变化或气体密度的变化的题型。 烃: C H (x )O x C O H O x y 222 +++点燃y y 42?→???③V (体积变化) 烃的含氧衍生物: C x H y O m + (24m y x -+)O 2 → x CO 2 + 2 y H 2O ③V (体积变化) 【例5】20③时,某气态烃与氧气混合装入密闭容器中,点燃爆炸后回到原温度,此时容器内气体的压强为反应前的一半,经氢氧化钠溶液吸收后,容器内几乎成真空,此烃可能是 A 、CH 4 B 、 C 2H 6 C 、C 3H 8 D 、C 2H 4 【变式】10mL 某气态烃,在50mL 氧气中充分燃烧,得到液态水,以及体积为35mL 的混合气体(所有气体体积均在同温、同压下测定),该气态烃是 。 6.讨论法

贝叶斯决策例题

例:某工程项目按合同应在三个月内完工,其施工费用与工程完工期有关。假定天气是影响能否按期完工的决定因素,如果天气好,工程能按时完工,获利5万元;如果天气不好,不能按时完工,施工单位将被罚款1万元;若不施工就要付出窝工费2千元。根据过去的经验,在计划实施工期天气好的可能性为30%。为了更好地掌握天气情况,可以申请气象中心进行天气预报,并提供同一时期天气预报资料,但需要支付资料费800元。从提供的资料中可知,气象中心对好天气预报准确性为80%,对坏天气预报准确性为90%。问如何进行决策。 解:采用贝叶斯决策方法。 (1)先验分析 根据已有资料做出决策损益表。 根据期望值准则选择施工方案有利,相应最大期望收益值EMV*(先)=0.8 (2)预验分析 完全信息的最大期望收益值:EPPI=0.3×5+0.7×(-0.2)

=1.36(万元) 完全信息价值: EVPI=EPPI- EMV*(先)=1.36-0.8=0.56(万元) 即,完全信息价值大于信息成本,请气象中心进行预报是合算的。 (3)后验分析 ①补充信息:气象中心将提供预报此时期内两种天气状态x 1(好天气)、x 2(坏天气)将会出现哪一种状态。 从气象中心提供的同期天气资料可得知条件概率: 天气好且预报天气也好的概率 P (x 1/θ1)=0.8 天气好而预报天气不好的概率 P (x 2/θ1)=0.2 天气坏而预报天气好的概率 P (x 1/θ2)=0.1 天气坏且预报天气也坏的概率 P (x 2/θ2)=0.9 ②计算后验概率分布:根据全概率公式和贝叶斯公式,计算后验概率。 预报天气好的概率 1111212()()(/)()(/)P x P P x P P x θθθθ=+ =0.31 预报天气坏的概率 2121222()()(/)()(/)P x P P x P P x θθθθ=+ =0.69 预报天气好且天气实际也好的概率:

根据有机物的化学式计算不饱和度

根据有机物的化学式计算不饱和度 (1)若有机物的化学式为CxHy则Ω=(2x+2-y)/2 (2)若有机物为含氧化合物,因为氧为二价,C=O与C=C“等效”,所以在进行不饱和度的计算时可不考虑氧原子,如CH2=CH2、C2H4O、C2H4O2的Ω为1。氧原子“视而不见” 推导:设化学式为CxHyOz-------------CxHy-z(OH)z ,由于H、OH都是一价在与碳原子连接,故分子式等效为CxHy。 (3)若有机物为含氮化合物,设化学式为CxHyNz-------------CxHy-2z(NH2)z,由于—H、—NH2都是一价在与碳原子连接,故分子式等效为CxHy-z (4)按照该法可以推得其它有机物分子的不饱和度 (5)有机物分子中的卤素原子取代基,可视作氢原子计算Ω。如:C2H3Cl的不饱和度为1,其他基团如-NO2、-NH2、-SO3H等都视为氢原子。 (6)碳的同素异形体,可将它视作Ω=0的烃。 如C60 (7)烷烃和烷基的不饱和度Ω=0 2.非立体平面有机物分子,可以根据结构计算,Ω=双键数+叁键数×2+环数 如苯:Ω=3+0×2+1=4 即苯可看成三个双键和一个环的结构形式。 注意环数等于将环状分子剪成开链分子时,剪开碳碳键的次数。 3.立体封闭有机物分子(多面体或笼状结构)不饱和度的计算,其成环的不饱和度比面数少数1。 如立方烷面数为6,Ω=6-1=5 61 |评论 U=1+n4 +1/2*(n3-n1), n4表示4价原子数,一般是C原子,n3表示3价原子数,一般是N 原子,n1表示一价原子数,一般是H原子,2价的O不需考虑。

不饱和度,又称缺氢指数,是有机物分子不饱和程度的量化标志,通常用希腊字母Ω表示。此概念在推断有机化合物结构时很有用。从有机物结构计算不饱和度的方法:单键对不饱和度不产生影响,因此烷烃的不饱和度是0(所有原子均已饱和)。一个双键(烯烃亚胺、羰基化合物等)贡献一个不饱和度。一个叁键(炔烃、腈等)贡献两个不饱和度。一个环(如环烷烃)贡献一个不饱和度。环烯烃贡献2个不饱和度。 从有机物分子结构计算不饱和度的方法 根据有机物分子结构计算,Ω=双键数+叁键数×2+环数如苯: Ω=3+0×2+1=4 即苯可看成三个双键和一个环的结构形式。补充理解说明:单键对不饱和度不产生影响,因此烷烃的不饱和度是0(所有原子均已饱和)。一个双键(烯烃、亚胺、羰基化合物等)贡献1个不饱和度。一个叁键(炔烃、腈等)贡献2个不饱和度。一个环(如环烷烃)贡献1个不饱和度。环烯烃贡献2个不饱和度。一个苯环贡献4个不饱和度。一个碳氧双键贡献1个不饱和度。一个-NO2贡献1个不饱和度。例子:丙烯的不饱和度为1,乙炔的不饱和度为2,环己酮的不饱和度也为2。 从分子式计算不饱和度的方法 第一种方法为通用公式:Ω=1+1/2∑Ni(Vi-2) 其中,Vi 代表某元素的化合价,Ni 代表该种元素原子的数目,∑ 代表总和。这种方法适用于复杂的化合物。第二种方法为只含碳、氢、氧、氮以及单价卤素的计算公式:Ω=C+1-(H-N)/2 其中,C 代表碳原子的数目,H 代表氢和卤素原子的总数,N 代表氮原子的数目,氧和其他二价原子对不饱和度计算没有贡献,故不需要考虑氧原子数。这种方法只适用于含碳、氢、单价卤素、氮和氧的化合物。第三种方法简化为只含有碳C和氢H或者氧的化合物的计算公式:Ω =(2C+2-H)/2 其中C 和H 分别是碳原子和氢原子的数目。这种方法适用于只含碳和氢或者氧的化合物。补充理解说明:(1)若有机物为含氧化合物,因为氧为二价,C=O与C=C“等效”,所以在进行不饱和度计算时可不考虑氧原子。如CH2=CH2(乙烯)、CH3CHO(乙醛)、CH3COOH(乙酸)的不饱和度Ω为1。(2)有机物分子中的卤素原子取代基,可视作氢原子计算不饱和度Ω。如:C2H3Cl的Ω为1,其他基团如-NH2、-SO3H等都视为氢原子。(3)碳的同素异形体,可将其视作氢原子数为0的烃。如C60(足

(完整word版)有机物分子式的确定练习题

有机物分子式的确定练习题 一、选择题 1.在常温常压下,将16mL H2、CH4、C2H2的混合气体与足量的O2混合,点燃后使之完全燃烧,冷却至原状态,测得总体积比原体积减小26mL,则混合气体中CH4的体积是A.2mL B.4mL C.8mL D.无法计算 2.在一定条件下,将A、B、C三种炔烃所组成的混合气体4g在催化剂条件下与足量的H2发生加成反应,反应生成4.4g三种对应的烷烃,则所得烷烃中一定含有 A.戊烷B.乙烷C.丙烷D.丁烷 3.含碳原子数相同的某烯烃和炔烃组成的混合气体与燃烧后生成的CO2和水蒸气的体积(同温同压下测定)比为3∶6∶4,则原混合气体的成分是 A.C3H6,C3H4B.C2H4,C2H2C.C4H8,C4H6D.C5H10,C5H8 4.充分燃烧某液态芳香烃X,并收集产生的全部水,恢复到室温时,得到水的质量跟原芳香烃X的质量相等。则X的分子式是 A.C10H14B.C11H16C.C12 H18D.C13H20 5.11.2L甲烷、乙烷、甲醛组成的混合气体,完全燃烧后生成l 5.68L CO2(气体体积均在标准状况下测定),混合气体中乙烷的体积百分含量为 A.20%B.40%C.60%D.80% 6.“长征二号”火箭所用的主要燃料叫做“偏二甲肼”。已知该化合物的相对分子质量为60,其中含碳的质量分数为40%,氢的质量分数为13.33%,其余是氮元素,则“偏二甲肼”的化学式为() A.CH4N B.C2H8N2C.C3 H10N D.CN3H6 7、某单烯烃3.5g跟溴水反应,得到无色油状液体质量为11.5g,则该烃的化学式为() A、C2H4 B、C3H6 C、C4H8 D、C5H10 8、一种气态烷烃和一种气态烯烃组成的混合物共10g,混合气体的密度是相同状况下H2密度的12.5倍。该混合物气体通过装有溴水的试剂瓶时,试剂瓶的质量增加了8.4g。该混合气体可能是() A 乙烷和乙烯 B 乙烷和丙烯 C 甲烷和乙烯 D 甲烷和丙烯 二、填空计算题 9.1体积某烃的蒸气完全燃烧生成的CO2比水蒸气少1体积(在相同条件下测定)。0.1 mol 烃燃烧,其燃烧产物全部被碱石灰吸收,碱石灰增重39g。则该烃的化学式为。10.某烃A 0.2mol在氧气中完全燃烧后,生成化合物B、C各1.2mol。试回答: ⑴42g A完全燃烧时,应消耗的氧气在标准状况下的体积为; ⑵若A能使溴水褪色,且在催化剂存在下与H2加成的产物分子中含有4个甲基,则A可能的结构简式为(任写一种) ; ⑶某有机物的分子式为C x H y O2,若x的值与A分子中的碳原子个数相同,则该分子中y 的最大值为。 11、某烃A 0.2 mol在O2中充分燃烧,生成化合物B、C各1.2 mol。试回答: (1)烃A的分子式:,B、C的分子式分别是、。(2)若一定量的烃A燃烧后生成B、C各3 mol,则有g 烃A参加了反应,燃烧时消耗了标况下O2 L。 12. 某炔烃A催化加氢后转化为最简式为“CH2”的另一种烃B,5.6g B恰好能吸收12.8g溴转化为溴代烷烃,则A烃可能是__ ____、___ ___、____ __。

人教版高中化学考点精讲 有机物分子式和结构式的确定(附解答)

高中化学考点精讲有机物分子式和结构式的确定 复习重点 1.了解确定有机物实验式、分子式的方法,掌握有关有机物分子式确定的计算; 2.有机物分子式、结构式的确定方法 难点聚焦 一、利用有机物燃烧反应的方程式进行计算 有关化学方程式 由上可知,相同碳原子数的烯烃(环烷烃)与一元饱和醇完全燃烧时,耗氧量相同(把

:相同碳原子数的炔烃(二烯烃)与醛(酮)及饱和二元醇完全燃烧时,耗氧量相同(醛:饱和二元醇: );相同碳原子数的羧酸(酯)与三元醇完全燃烧,耗氧量相同(羧酸:→饱和三元醇:) 二、通过实验确定乙醇的结构式 由于有机化合物中存在着同分异构现象,因此一个分子式可能代表两种或两种以上具有不同结构的物质。在这种情况下,知道了某一物质的分子 式,常常可利用该物质的特殊性质,通过定性或定量实验来确定其结构式。例如:根据乙醇的分子式和各元素的化合价,乙醇分子可能有两种结构: 为了确定乙醇究竟是哪一种结构,我们可以利用乙醇跟钠的反应,做下面这样一个实验。实验装置如右下图所示。在烧瓶里放入几小块钠,从漏斗中缓缓滴入一定物质的量的无水乙醇。乙醇跟适量钠完全反应放出的H2把中间瓶子里的水压入量筒。通过测量量筒中水的体积(应包括由广口瓶到量筒的导管内的水柱的体积),就可知反应生成的H2的体积。 讨论2 下面是上述实验的一组数据:

根据上述实验所得数据,怎样推断乙醇的结构式是(1),还是(2)呢? 由于0.100 mol C2H6O与适量Na完全反应可以生成1.12 L H2,则1.00 mol C2H6O与Na反应能生成11.2 L H2,即0.5 mol H2,也就是1 mol H。这就是说在1个C2H6O 分子中;只有1个H可以被Na所置换,这说明C2H6O分子里的6个H 中,有1个与其他5个是不同的。这一事实与(1)式不符,而与(2)式相符合。因此,可以推断乙醇的结构式应为(2)式。 问题与思考 1.确定有机物分子式一般有哪几种方法? 2.运用“最简式法”确定有机物分子式,需哪些数据? 3.如何运用“商余法”确定烃的分子式? 问题与思考(提示) 1、最简式法;直接法;燃烧通式法;商余法(适用于烃的分子式的求法等 2、①有机物各元素的质量分数(或质量比) ②标准状况下的有机物蒸气的密度(或相对密度) 3、 则为烯烃,环烷烃. ②若余数=2,则为烷烃. ③若余数=-2,则为炔烃.二烯烃 ④若余数=-6,则为苯的同系物. 若分子式不合理,可减去一个C原子,加上12个H原子 有机物分子式的确定典型例题 例题精讲 一、有机物分子式的确定 【例1】实验测得某碳氢化合物A中,含碳80%、含氢20%,求该化合物的实验式。又测得该化合物的相对分子质量是30,求该化合物的分子式。

贝叶斯决策的经典例题练习

一、贝叶斯决策(Bayes decision theory) 【例】某企业设计出一种新产品,有两种方案可供选择:—是进行批量生产,二是出售专利。这种新产品投放市场,估计有3种可能:畅销、中等、滞销,这3种情况发生的可能性依次估计为:0.2,0.5和0.3。方案在各种情况下的利润及期望利润如下表。 企业可以以1000元的成本委托专业市场调查机构调查该产品销售前景。若实际市场状况为畅销,则调查结果为畅销、中等和滞销的概率分别为0.9、0.06和0.04;若实际市场状况为中等,则调查结果为畅销、中等和滞销的概率分别为0.05、0.9和0.05;若实际市场状况为滞销,则调查结果为畅销、中等和滞销的概率分别为0.04、0.06和0.9。问:企业是否委托专业市场调查机构进行调查? 解: 1.验前分析: 记方案d1为批量生产,方案d2为出售专利 E(d1)=0.2*80+0.5*20+0.3*(-5)=24.5(万元) E(d2)=40*0.2+7*0.5+1*0.3=11.8(万元) 记验前分析的最大期望收益为E1,则E1=max{E(d1),E(d2)}=24.5(万元) 因此验前分析后的决策为:批量生产 E1不作市场调查的期望收益 2.预验分析: (1)设调查机构调查的结果畅销、中等、滞销分别用H1、H2、H3表示 由全概率公式 P(H1)=0.9*0.2+0.06*0.5+0.04*0.3=0.232 P(H2)=0.05*0.2+0.9*0.5+0.05*0.3=0.475 P(H3)=0.04*0.2+0.06*0.5+0.9*0.3=0.308 (2)由贝叶斯公式有 P(?1|H1)=0.9*0.2/0.232=0.776 P(?2|H1)=0.06*0.5/0.232=0.129 P(?3|H1)=0.04*0.3/0.232=0.052 P(?1|H2)=0.05*0.2/0.475=0.021 P(?2|H2)=0.9*0.5/0.475=0.947 P(?3|H2)=0.05*0.3/0.475=0.032 P(?1|H3)=0.04*0.2/0.308=0.026 P(?2|H3)=0.06*0.5/0.308=0.097 P(?3|H3)=0.9*0.3/0.308=0.877 (3)用后验分布代替先验分布,计算各方案的期望收益值 a)当市场调查结果为畅销时 E(d1|H1)=80* P(?1|H1)+20* P(?2|H1)+(-5)* P(?3|H1)

化学有机物经典计算题

化学有机物经典计算题

————————————————————————————————作者:————————————————————————————————日期:

? 超大大中小 ? 有机物的知识很散,我现在在复习,平时就应该把这方面的知识归纳总结! 有关有机物燃烧的题型分类解析 一、一定物质的量有机物燃烧耗氧量的计算 有机物燃烧的试题时,其根本依据是有机物燃烧的通式: ①烃:C x H y +(x+y/4)O 2 →xCO 2 +y/2H 2 O?②烃的衍生物:C x H y O z +(x+y /4-z/2)O 2→xCO 2 +y/2H 2 O 若题中明确给出了烃或烃的衍生物的类别,上面的燃烧通式还可进一步简 化,?如烷烃的燃烧:C n H 2n+2 +(3n+1)/2 O 2 →nCO 2 +(n+1)H 2 O 【题型1】①1mol烃C x H y 完全燃烧时的耗氧量为(x+y/4)mol,即每摩碳 原子消耗1molO 2,每4摩氢原子消耗1molO 2 。?②计算1mol烃的含氧衍生 物完全燃烧的耗氧量时,可先将其中的氧原子折算为水,再将剩余C、H原子按烃 的计算方法计算,如C 2H 5 OH可看作C 2 H 4 ·H 2 O,因此其耗氧量与等物质的量的 C 2H 4 耗氧量相同。根据情况,也可将氧原子折算为CO 2 ,如HCOOH可看作 H 2·CO 2 ,故耗氧量与等物质的量的H 2 相同(折算成的H 2 O和CO 2 不消耗氧)?据 此,上面的燃烧通式也能迅速推写出来,而不必死记硬背。 例⒈充分燃烧等物质的量的下列有机物,相同条件下需要相同体积氧气的是()(A)乙烯、乙醛(B)乙酸乙酯、丙烷 (C)乙炔、苯 (D)环丙烷、丙醇 【变式练习】有机物A、B只可能烃或烃的含氧衍生物,等物质的量的A和B完全燃烧时,消耗氧气的量相等,则A和B的分子量相差不可能为(n为正整数) ( )?A、8n B、14nC、18n D、44n 【题型2】在总物质的量一定的情况下,以任意比例混合的有机物完全燃烧后有关量的讨论,解答这种题目的关键是:总物质的量一定的混合物,不论以何比 例混合,只要分子中具有相同的碳(或氢)原子,完全燃烧后产生的CO 2(或H 2 O) 的量也一定。若耗氧量一定,则要求各组分在物质的量相同时,耗氧量也相同,这应是常识性知识。

有机物分子式的相关计算

有机物分子式的相关计算 班级:姓名:号数:评价: 方法一:最简式法 1.某有机物组成中含碳54.5%%, 含氢9.1%,其余为氧又知其蒸汽在标况下的密度为3.94g/L,试求其分子式。 方法二:直接求法 1.某有机物组成中含碳54.5%%, 含氢9.1%,其余为氧又知其蒸汽在标况下的密度为3.94g/L,试求其分子式。 小结:确定有机化合物的分子式的方法: [方法一]由物质中各原子(元素)的质量分数→各原子的个数比(实验式)→由相对分子质量和实验式→有机物分子式 [方法二]1 mol物质中各原子(元素)的质量除以原子的摩尔质量→ 1 mol物质中的各种原子的物质的量→知道一个分子中各种原子的个数→有机物分子式 2.燃烧某有机物A 1.50g,生成1.12L(标况)CO2和0.05mol H2O。该有机物的蒸气对空气的相对密度是1.04,求该有机物的分子式。 方法三:燃烧通式法 3.某有机物蒸汽对H2的相对密度为30,1.2g该有机物完全燃烧生成CO2(标况 下)1.344L,H2O1.44g,求该有机物的分子式。 4.某气态烃10 mL与50 mL氧气在一定条件下作用,刚好消耗尽反应物,生成水蒸气40mL,一氧化碳和二氧化碳各20 mL(各气体体积均在同温、同压下测定) ,该烃的分子式为() A.C3H8 B.C4H6 C.C3H6 D.C4H8 5. 将有机物完全燃烧,生成CO2和H2O,将12 g该有机物完全燃烧产物通过浓硫酸,浓硫酸增重 14.4 g,再通过碱石灰,又增重26.4 g。则该有机物的分子式为() A.C4H10 B.C2H6O C.C3H8O D.C2H4O2 方法四:讨论分析法 6.两种气态烃组成的混合气体0.1 mol,完全燃烧得0.16 mol CO2和3.6 g水,下列说法正确的是()

分子式和结构式的确定

考点48有机物分子式和结构式的确定 复习重点 1.了解确定有机物实验式、分子式的方法,掌握有关有机物分子式确定的计算; 2.有机物分子式、结构式的确定方法 难点聚焦 一、利用有机物燃烧反应的方程式进行计算 有关化学方程式 烷烃+++烯烃或环烷烃+点燃 点燃 C H O nCO (n 1)H O C H +3n 2 O CO nH O n 2n+2222n 2n 222312 n +?→???→?? 炔烃或二烯烃++-点燃C H O nCO (n 1)H O n 2n 2222--?→??312n 苯及苯的同系物++-点燃 C H O nCO (n 3)H O n 2n 6222--?→??332n 饱和一元醇++饱和一元醛或酮++点燃 点燃 C H O +3n 2 nCO (n 1)H O C H O O nCO nH O n 2n+222n 2n 222O n 2312 ?→??-?→?? 饱和一元羧酸或酯++点燃 C H O O nCO nH O n 2n 2222322n -?→?? 饱和二元醇++ +点燃 C H O O nCO (n 1)H O n 2n+22222312n -?→?? 饱和三元醇+++点燃 C H O O nCO (n 1)H O n 2n+23222322n -?→?? 由上可知,相同碳原子数的烯烃(环烷烃)与一元饱和醇完全燃烧时,耗氧量相同(把 C H O C H H O n 2n+2n 2n 2看成·:相同碳原子数的炔烃(二烯烃)与醛(酮)及饱和二元醇完全 燃烧时,耗氧量相同(醛:C H O C H H O n 2n n 2n 22→·-饱和二元醇: C H O C H 2H O n 2n+22n 2n 22→·-);相同碳原子数的羧酸(酯)与三元醇完全燃烧,耗氧量相

有机物分子式的确定练习题

有机物分子式的确定练习题 班级姓名 一、选择题 1.在常温常压下,将16mL H2、CH4、C2H2的混合气体与足量的O2混合,点燃后使之完全燃烧,冷却至原状态,测得总体积比原体积减小26mL,则混合气体中CH4的体积是 () A.2mL B.4mL C.8mL D.无法计算 2.11.2L甲烷、乙烷、甲醛(CH2O)组成的混合气体,完全燃烧后生成l 5.68L CO2(气体体积 均在标准 状况下测定),混合气体中乙烷的体积百分含量为()A.20%B.40%C.60%D.80% 3.分子量为86的烃,在其分子结构上有四个甲基的烃有() A、2种 B、3种 C、4种 D、5种 4.某烯烃0.1mol完全燃烧, 消耗标准状况下的氧气13.44L, 其分子式为() A.C2H4B.C3H6C.C4H8D.C5H10 5.某有机物的分子量为180, 其中含碳40.0%、含氢 6.67%(质量分数), 其余为氧。该有机物的分子式为()A.CH2O B.C6H12O2C.C5H8O7 D.C6H12O6 6.10mL某气态烃,在50mL足量氧气中充分燃烧,得到液态水和35mL的混合气,该混合气通过 足量烧碱溶液,剩余气体5mL(气体体积均在同温同压下测定), 则该气态烃的分子式为 () A.C2H6B.C3H6C.C4H6D.C3H8 7.10mL某气态烃和50mL氧气在密闭容器中点燃, 烃和氧气全部耗尽, 测定生成40mL水气、20mL二氧化碳和20mL一氧化碳,则该烃分子式可能为(所有体积均在相同条件下测定)() A.C2H4B.C3H8C.C4H8D.C4H10 8.1体积某烃的蒸气完全燃烧生成的二氧化碳比水蒸气少1体积(气体体积均在相同状况下测定)。0.1mol该烃完全燃烧的产物全部被碱石灰吸收,固体增重39g。该烃的分子式为()A.C5H12B.C5H10C.C6H14D.C6H12

有机物分子式确定的计算方法

有机物分子式确定的计算方法 有机物分子式的确定,即是确定有机物分子里所含元素的种类及各原子的数目。有机物分子式的确定是有机物学习中,最为重要的知识点之一。关于确定有机物分子式的计算题目,也是有机物计算题目当中的重要考题之一。那么,如何确定有机物的分子式呢?总体来讲,先得确定有机物的组成元素,然后再确定各原子的数目从而确定有机物的分子式。下面笔者重点介绍一下在确定有机物分子式的计算当中的一些具体计算方法。 1、确定元素的组成 一般来说,有机物完全燃烧后,各元素对应的产物为c→co2,h→h2o。若有机物完全燃烧后的产物只有co2和h2o,则其组成的元素可能为c、h或c、h、o。欲判断该有机物是否含有氧元素,首先应求出产物中co2中的碳元素质量及h2o中的氢元素的质量,然后将这两种元素的质量相加,再和原有机物的质量进行比较,若相等,则原有机物中不含氧元素,若不相等则原有机物中必定含有氧元素。 2、确定分子式 在确定有机物的组成元素之后,接下来根据题目条件来最终确定这几种元素构成的物质的分子式。在确定分子式进行计算的时候,通常可以采用以下几种计算方法。 方法一、实验式法(即最简式法) 根据有机物的分子式为最简式的整数倍,利用其相对分子质量及求得

的最简式便可 确定其分子式。如烃的最简式求法为: 例1:某含c、h、o三元素的有机物,其c、h、o的质量比为6:1:8,该有机物蒸汽的密度是相同条件下的h2密度的30倍,求该有机物的分子式。 【解析】该有机物中的原子个数比为 故其实验式为ch2o,设其分子式为(ch2o)n,根据题意得: 。 则该有机物的分子式为c2h4o2。 方法二、单位物质的量法 根据题目中的已知条件,确定有机物的元素组成后,直接求出1mol该有机物中各元素原子的物质的量,即可推算出分子式。若给出一定条件下该有机物气体的密度(或相对密度)及各元素的质量分数,则求解分子式的基本途径为:密度(或相对密度)→m→1mol有机物气体中各元素原子的物质的量→分子式。 例2:6.2g某有机物a完全燃烧后,生成8.8gco2和5.4gh2o,并测得该有机物的蒸汽与h2的相对密度是31,求该有机物的分子式。 【解析】分别根据c、h的质量守恒求得a中的c、h质量分别为

有机物分子式计算专题

有机物分子式确定的方法简述 有机物分子式是推导有机物结构的关键,快速准确的推导出分子式能使同学们在有机分析题中事半功倍,以下是我就一些简单、常见的有机物分子式确定的方法作一个简单的归纳:确定有机物分子式需要两个条件: 1、确定分子组成 2、确定分子中各元素对应的原子的个数 一、确定分子组成 确定分子组成最常见的方法就是燃烧法,而燃烧法核心原理就是质量守恒,有机物大多有C、 H、O构成,判断C、H很简单,而有机物中是否含O则需要以下方法确定. 利用测定燃烧产物得到: m(CO2)→n(C)→m(C) m(H2O)→n(H)→m(H) m(C)+ m(H)是否等于有机物中质量,如相等就证明有机物只含C H,反之则必定有O。 二、确定分子中各元素对应的原子的个数 1、实验式法(最简式法):分子式为实验式的整数倍,利用已知条件找到各个原子的个数比值 确定出实验式再结合分子相对分子质量推导出分子式 提示:对相对分子质量的基本求法: 1、列式计算下列有机物的相对分子质量; ①标准状况下某烃A气体密度为0.717g/L; ②某有机物B的蒸气密度是相同条件下氢气的14倍; ③标准状况下测得0.56g某烃C气体的体积为448mL; 【例题分析】 例1、常温下某气态烃A的密度为相同条件下氢气密度的15倍,该烃中C的质量分数为80%,则该烃的实验式为,分子式为。 2、直接法:直接计算出1mol气体中各元素原子的物质的量,即可推出分子式。 【例题分析】 例2、某烃A 0.1 mol,完全燃烧只生成标况下的CO2 4.48L和水5.4g

例3、0.1L某气态烃完全燃烧,在相同条件下测得生成0.1LCO2和0.2L水蒸气,该烃的分子式是() A. CH4 B. C2H4 C. C2H2 D. C3H6 3、通式法:根据有机物原子的组成通式来确定有机物分子式 烷烃C n H2n+2烯烃C n H2n炔烃C n H2n-2苯的同系物C n H2n-6烃C x H y 饱和一元醇C n H2n+2O 饱和一元醛C n H2n O饱和一元酸C n H2n O2 【例题分析】 例4、m g某饱和一元醇A,在氧气中完全燃烧,生成水14.4g,生成CO213.44L(标况下)试确定该有机物的分子式 例5、某烷烃7.2g进行氯代反应完全转化为一氯化物时,放出的气体通入500mL0.2mol/L的烧碱溶液中,恰好完全反应,此烃不能使溴水或酸性高锰酸钾溶液褪色,试求该烃的分子式。 4、平均值法:对于有机混合物,通常假设一个混合物的平均分子式(C x H y或C x H y O z),通 过已知条件推断出平均分子式,在利用平均分子式中碳氢个数来讨论混合物的组成可能。 【例题分析】 例6、由两种气态烃组成的混合烃20mL,跟过量O2完全燃烧。同温同压条件下当燃烧产物通过浓H2SO4后体积减少了30mL,然后通过碱石灰又减少40mL。这种混合气的组成可能有几种? 5、方程式法:利用燃烧的化学方程式进行计算推断 适用于已知条件是反应前后气体体积的变化、气体压强的变化或气体密度的变化的题型。 规律:气体混合烃与足量的氧气充分燃烧后,若总体积保持不变,则原混合烃中的氢原子平均数为4;若体积扩大,则原混合烃中的氢原子平均数大于4;若体积缩小,则原混合烃中氢原子平均数小于4,必有C2H2。(温度在100℃以上)

相关主题