搜档网
当前位置:搜档网 › (精)二次函数最值知识点总结_典型例题及习题

(精)二次函数最值知识点总结_典型例题及习题

(精)二次函数最值知识点总结_典型例题及习题
(精)二次函数最值知识点总结_典型例题及习题

二次函数在闭区间上的最值

一、 知识要点:

一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。

一般分为:对称轴在区间的左边,中间,右边三种情况.

设f x ax bx c a ()()=++≠2

0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a

ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值:

(1)当[]-∈b a m n 2,时,f x ()的最小值是f b a ac b a

f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。

(2)当[]-?b a

m n 2,时 若-

m n ,上是增函数则f x ()的最小值是f m (),最大值是f n () 若n b a <-2,由f x ()在[]

m n ,上是减函数则f x ()的最大值是f m (),最小值是f n () 当a <0时,可类比得结论。

二、例题分析归类:

(一)、正向型

是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨

论往往成为解决这类问题的关键。此类问题包括以下四种情形:(1)轴定,区间定;(2)

轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1. 轴定区间定

二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在

定区间上的最值”。

例1. 函数y x x =-+-2

42在区间[0,3]上的最大值是_________,最小值是_______。

练习. 已知232x x ≤,求函数f x x x ()=++21的最值。

2、轴定区间变

二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数

在动区间上的最值”。

例2. 如果函数f x x ()()=-+112定义在区间[]

t t ,+1上,求f x ()的最值。

例3. 已知2()43f x x x =--+,当[1]()x t t t ∈+∈R ,时,求()f x 的最值.

对二次函数的区间最值结合函数图象总结如下:

当a >0时

???????+<-+≥-=))((212)())((212)()(21max 如图如图,,n m a b n f n m a b m f x f ????

?????<-≤-≤->-=)(2)()(2)2()(2)()(543min 如图如图如图,,,m a b m f n a b m a b f n a b n f x f

当a <0时

????

?????<-≤-≤->-=)(2)()(2)2()(2)()(876max 如图如图如图,,,m a b m f n a b m a b f n a b n f x f f x f m b a m n f n b a m n ()()()()()()()min =-≥+-<+???????,,如图如图212212910

3、轴变区间定

二次函数随着参数的变化而变化,即其图象是运动的,但定义域区间是固定的,我们称

这种情况是“动二次函数在定区间上的最值”。

例4. 已知x 21≤,且a -≥20,求函数f x x ax ()=++2

3的最值。

例5. (1) 求2f (x )x 2ax 1=++在区间[-1,2]上的最大值。

(2) 求函数)(a x x y --=在]1,1[-∈x 上的最大值。

4. 轴变区间变

二次函数是含参数的函数,而定义域区间也是变化的,我们称这种情况是“动二次函数

在动区间上的最值”。

例6. 已知24()(0),y a x a a =->,求22(3)u x y =-+的最小值。

(二)、逆向型

是指已知二次函数在某区间上的最值,求函数或区间中参数的取值。

例7. 已知函数2

()21f x ax ax =++在区间[3,2]-上的最大值为4,求实数a 的值。

例8.已知函数2

()2

x f x x =-+在区间[,]m n 上的最小值是3m 最大值是3n ,求m ,n 的值。

例9. 已知二次函数2f (x )ax (2a 1)x 1=+-+在区间3,22??-

????

上的最大值为3,求实数a 的值。

二次函数在闭区间上的最值专题演练

1.函数y 12++=x x 在]1,1[-上的最小值和最大值分别是 ( )

)(A 1 ,3 )

(B 43 ,3 (C )21- ,3 (D )41-, 3 2.函数242-+-=x x y 在区间]4,1[ 上的最小值是 ( )

)(A 7- )(B 4- )(C 2- )(D 2

3.函数5

482+-=x x y 的最值为 ( ) )(A 最大值为8,最小值为0 )(B 不存在最小值,最大值为8

(C )最小值为0, 不存在最大值 )(D 不存在最小值,也不存在最大值

4.若函数]4,0[,422∈+--=x x x y 的取值范围是______________________

5.已知函数f x ax a x a ()()()[]=+---

22130322≠在区间,上的最大值是1,则实数a 的值为_____________.

6.已知函数322+-=x x y 在闭区间],0[m 上有最大值3,最小值2,则m 的取值范围是

( )

(A) ),1[+∞ (B) ]2,0[ (C) ]2,1[ (D) ]2,(-∞

7.设),](1,[,44)(2R t t t x x x x f ∈+∈--=求函数)(x f 的最小值.

8. 已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围。

9. 若函数2()(2)2(2)40f x a x a x x R =-+--<∈对一切恒成立,则a 的取值范围( )

A.(,2]-∞

B.[2,2]-

C.(2,2]-

D.(,2)-∞- 10.. 已知函数2()442f x x ax =++∞在(-,0]内单调递减,则a 取( )

A.3a ≥

B.3a ≤

C.a <-3

D.a 3≤- 11. 已知函数2()f x x kx =-+在[2,4]上是单调函数,求k 的取值范围。

12. 已知函数2

()23f x x x =-+在[0,m]上有最大值是3,最小值是2,求m 的取值范围。

13. 已知函数()f x =M ,最小值为m ,则M+m=________.

14. 已知函数22()44f x x ax a =-+-2a+2在[0,2]上的最小值为3,求a 的值。

15.求函数2()2f x x x =-++3的单调区间。

16. 已知函数2()26f x x x =-+在下列定义域上的值域:

(1)定义域为{x Z ∈︱03}x ≤≤ (2)定义域为[-2,1].

17. 已知函数2()3,f x x ax a =++-若[2,2]x ∈-,有()2f x ≥恒成立,求a 的取值范围。

18. 已知函数2()f x x =,2,x a -≤≤其中2a ≥,求该函数的最大值与最小值。 19已知二次函数2()6f x x x a =-++的函数值总为负数,求a 的取值范围。

20. 已知二次函数2()(6)2(1)1f x m x m x m =++-++的图像与x 轴总有交点,求m 的取值范围。

21. 已知二次函数2()(1)3f x x m x m =+-++顶点在y 轴上,求m 的值。

22. 已知函数22()()2f x mx m m x =+-+的图像关于y 轴对称,求m 的值。

23. 已知函数2()(2)2(2)40f x a x a x =-+--<对一切x 恒成立,求m 的取值范围。

24. 已知函数2()4,(13)f x x ax x =-≤≤是单调增函数,求实数a 的取值范围。

25. 已知函数2()1f x x ax =-+有负值,求a 的取值范围。

26. 已知函数2()(2)32f x m x m =---的图像在x 轴下方,求m 的值。

27. 已知函数2()10f x x ax =++≥对于一切1(0,]2x ∈成立,求a 的取值范围。

28. 已知函数2()23f x x mx =-+,当(,1]x ∈-∞-时是减函数,求m 的取值范围。

29已知函数()f x =R ,求a 的取值范围。

30.已知函数2()426()f x x ax a x R =-++∈的值域为[0,]+∞,求a 的值。

31. . 已知函数2

()4f x x x m =-≥对于(0,1]x ∈恒成立,,求m 的取值范围。

32. . 已知函数2()f x x bx c =++在[0,)+∞上是单调函数,则b 的取值范围。

33.已知函数2()2(2)2(2)f x x a x a a =-++>,求在[0,2]上的最小值。

34. .已知函数2()2(2)2f x x a x a =-++,在[0,2]上是单调函数,求a 的取值范围。

35.已知函数2()2(2)2f x x a x a =-++,在[,2]t t +上是偶函数,求a 的取值范围。

36.当a=-2时,求.函数2()2(2)2f x x a x a =-++在[,2]t t +上的最小值。

37. 已知函数()f x =R ,求a 的取值范围。

38. 已知函数2()21f x x ax =++,求[2,1]x ∈-上的最值。

39. 已知函数2()21f x x x =+-,求[,1]x m m ∈+上的最值。

40. 已知函数2()21f x x ax a =-++-,[0,1]x ∈上的最值为2,求a 的值。

41. 已知函数2()22f x x x =++:

(1)若x R ∈,求f(x)的最小值。

(2)若[1,3]x ∈,求f(x)的最小值。 (3)若[,2],x a a a R ∈+∈,求f(x)的最小值。

42. 已知函数2()23f x x kx =-++,求[1,2]x ∈-上的最大值。

43. 已知函数2()21f x kx kx =++,求[3,2]x ∈-上的最值。

44. 已知函数221()334

f x x x b =--++,求[,],(0)x b b b ∈->上的最值。 45. 已知函数()()1f x x x t =--+,求[1,1]x ∈-上的最值。

46. 已知函数2()(21)3f x ax a x =+--,求3[,2]2x ∈-上的最大值。

47. 已知函数2()3f x x ax =++,求[0,1]x ∈上的最值。

48. 已知函数()()f x x x a =--,求[1,]x a ∈-上的最大值。

49. 已知函数2()21f x x ax =++,在[1,2]x ∈-上的最大值为4,求a 的值。

50. 若不等式2296260x ax a a -+--≥在1133x -

≤≤内恒成立,求a 的取值范围。 51. 已知函数2()23f x x x =++,求[,1]x t t ∈+上的最值。

52. 已知函数2

()25f x ax ax =-+,求[0,3]x ∈上的最值。

53. 已知函数2()23f x x ax =--+,求[3,1]x ∈-上的最值。

54. 已知函数2()38f x ax x =-+,求[2,]x ∈-+∞上的最值。

55. 已知函数2()(43)2f x a x x a =--+,求[0,1]x ∈上的最值。

56. 已知函数22()(21)1f x x t x t =+++-,当t 取何值时,函数的最小值为0.

57. 已知函数2()21f x x tx =-+,求[1,1]x ∈-上的最大值。

58. 已知函数2()4f x x x a =-+,在[0,6]x ∈上的最大值为13,求a 的值。

59. 已知函数2()24f x x ax =-+,在[0,3]x ∈上的最小值为1,求a 的值。

60. 已知函数2()24f x x ax =-+,在[1,3]x ∈上的最大值为13,求a 的值。

61. 已知函数2()24f x x ax =-+,在[1,3]x ∈上的值域。

62. 已知函数2()1030f x x x =-+,在[,3]x a a ∈+上的最小值为6,求a 的值。

63. 已知函数2()1030f x x x =-+,求在[,3]x a a ∈+上的最小值。

64.已知)(x f 2

2a ax x +

-=,在区间]1,0[上的最大值为)(a g ,求)(a g 的最小值。

二次函数专项复习经典试题集锦(含答案)

二次函数专项复习经典试题集锦(含答案) 一、选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2=x 2. 二次函数c bx ax y ++=2的图象如右图,则点 ),(a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式 是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 下面所示各图是在同一直角坐标系,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( ) B D 6. 抛物线322+-=x x y 的对称轴是直线( ) A. 2-=x B. 2=x C. 1-=x D. 1=x

7. 二次函数2)1(2+-=x y 的最小值是( ) A. 2- B. 2 C. 1- D. 1 8. 二次函数c bx ax y ++=2的图象如图所示,若 c b a M ++=24c b a N +-=,b a P -=4,则( ) A. 0>M ,0>N ,0>P B. 0N ,0>P C. 0>M ,0P D. 0N ,0

x 时,求使y ≥2的x 的取值围.

初三.二次函数知识点总结

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项 系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: 结论:a 的绝对值越大,抛物线的开口越小。 总结:

2. 2 =+的性质: y ax c 结论:上加下减。 总结:

3. ()2 =-的性质: y a x h 结论:左加右减。 总结: 4. ()2 =-+的性质: y a x h k

总结: 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法 如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 请将2245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成 ()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式 2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧, 左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

二次函数知识点总结及典型题目

二次函数知识点总结及典型题目 一.定义: 一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点. 二.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0

初三数学二次函数知识点总结

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数, 0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,.

二次函数经典例题及答案

二次函数经典例题及答案 1.已知抛物线的顶点为P (- 4,—2),与x轴交于A B两点,与y轴交于点C,其中B点坐标为(1 , 0)。 (1) 求这条抛物线的函数关系式; (2) 若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ ADQ 1 2 9 . 135 y=2 x +4x - 2;存在点Q (-1 , -4 ) , Q (2^5-9,-%'5 ) , Q (--^, -4) ?析 一2 25 试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a ( x+4) - 2,然后把点B的坐 标代入解析式求出a的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A、C的坐标,从而得 到OA OC AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出/ OAC勺正弦值与余弦值,再分① AD=QD时,过Q作QE1丄x轴于点E,根据等腰三角形三线合一的性质求出AQ,再利用/ OAC勺正弦求出QE的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;②AD=AQ时,过Q作QE2丄x轴于点E>,利用/ OAC勺正弦求出QE2的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;③AQ=DQ时,过Q作QE3丄x轴于点已,根据等腰三角形三线合一的性质求出AE 的长度,然后求出OE,再由相似三角形对应边成比例列式求出QE3的长度,从而得到点Q 的坐标. 试题解析:(1 )???抛物线顶点坐标为( 25 -4 , - 2), ???设抛物线解析式为 2 25 y=a (x+4) - 2 为等腰三角形?若存在,请求出符合条件的点

二次函数知识点及典型例题

二次函数一、二次函数的几何变换 二、二次函数的图象和性质 (Ⅰ) y=a(x-h)2+k (a≠0)的图象和性质

(Ⅱ) y=ax2+bx+c (a≠0)的图象和性质

(Ⅲ) a 、b 、c 的符号对抛物线形状位置的影响 三、待定系数法求二次函数的解析式 1、一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式。 2、顶点式:()k h x a y +-=2 .已知图像的顶点或对称轴,通常选择顶点式。 3、交点式:已知图像与x 轴的交点横坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=。 4、顶点在原点,可设解析式为y=ax 2 。 5、对称轴是y 轴(或者顶点在y 轴上),可设解析式为y= ax 2 +c 。 6、顶点在x 轴上,可设解析式为()2 h x a y -=。 7、抛物线过原点,可设解析式为y=ax2+bx 。 四、抛物线的对称性 1、抛物线与x 轴有两个交点(x 1,0)(x 2,0),则对称轴为x= 2x x 2 1+。 2、抛物线上有不同的两个交点(m ,a )(n,a ),则对称轴为x=2 n m +。 3、抛物线c bx ax y ++=2(a ≠0)与y 轴交点关于对称轴的对称点为(a b -, c)。

五、二次函数与一元二次方程的关系 对于抛物线c bx ax y ++=2 (a ≠0),令y=0,即为一元二次方程02=++c bx ax ,一元二次方程的解就是二次函数与x 轴交点的横坐标。要分三种情况: 1、 判别式△=b 2 -4ac >0?抛物线与x 轴有两个不同的交点(a b 24ac b -2+,0) (a b 24ac b --2,0)。有韦达定理可知x 1+x 2=a b - ,x 1·x 2= a c 。 2、 判别式△=b 2 -4ac=0?抛物线与x 轴有一个交点(a b 2-,0)。 3、 判别式△=b 2 -4ac=0?抛物线与x 轴无交点。 六、二次函数与一元二次不等式的关系 1、a >0:(1)02>c bx ax ++的解集为:x <x 1或x >x 2(x 1<x 2)。 (2)02 <c bx ax ++的解集为:x 1<x <x 2(x 1<x 2)。 2、a <0:(1)02>c bx ax ++的解集为:x 1<x <x 2(x 1<x 2)。 (2)02 <c bx ax ++的解集为:x <x 1或x >x 2(x 1<x 2)。 七、二次函数的应用 1、面积最值问题。 2、长度、高度最值问题。 3、利润最大化问题。 4、利用二次函数求近似解。

高中数学二次函数分类讨论经典例题

例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围; (2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围 (4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围. 例3已知函数3)12()(2--+=x a ax x f 在区间]2,2 3[-上的最大值为1,求实数a 的值。

解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(?吗?),即.4 21-++++≥+????? ?????≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于 ???<<0)3(0)1(f f 即? ??<++++<++++0142)3(690142)3(21m m m m 得.421-0)4(0g m 或,0 )4(0???>)(恒成立,求实数a 的取 值范围。 解:(1)0)()(恒成立?.)]([min a x f >又当]1,1[-∈x 时, 5)1()]([min -=-=f x f ,所以).5,(--∞∈a 【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立?a x f >min )]([;(2)a x f <)(恒成立?a x f )(有解?a x f >max )]([;(4)a x f <)(有解?.)]([min a x f < 分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴

(完整版)九年级上册数学二次函数知识点汇总,推荐文档

新人教版九年级上二次函数知识点总结 知识点一:二次函数的定义 1.二次函数的定义: 一般地,形如(是常数,)的函数,叫做二次函数.2y ax bx c =++a b c ,,0a ≠其中是二次项系数,是一次项系数,是常数项. a b c 知识点二:二次函数的图象与性质抛物线的三要素:开口、对称轴、顶 ??点 2. 二次函数的图象与性质 ()2 y a x h k =-+(1)二次函数基本形式的图象与性质:a 的绝对值越大,抛物线的开口越小 2y ax = (2)的图象与性质:上加下减 2y ax c =+

(3)的图象与性质:左加右减 ()2 y a x h =-

(4)二次函数的图象与性质 ()2 y a x h k =-+ 3. 二次函数的图像与性质 c bx ax y ++=2 (1)当时,抛物线开口向上,对称轴为,顶点坐标为. 0a >2b x a =-2424b ac b a a ??-- ??? ,当时,随的增大而减小;当时,随的增大而增大;当时,2b x a <- y x 2b x a >-y x 2b x a =-有最小值 .y 2 44ac b a - (2)当时,抛物线开口向下,对称轴为,顶点坐标为. 0a <2b x a =-2424b ac b a a ??-- ??? ,当时,随的增大而增大;当时,随的增大而减小;当时,2b x a <- y x 2b x a >-y x 2b x a =-有最大值 .y 2 44ac b a -

4. 二次函数常见方法指导 (1)二次函数2y ax bx c =++图象的画法①画精确图 五点绘图法(列表-描点-连线) 利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. ②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点.(2)二次函数图象的平移平移步骤: ①将抛物线解析式转化成顶点式,确定其顶点坐标;()2 y a x h k =-+()h k ,② 可以由抛物线经过适当的平移得到具体平移方法如下: 2 ax 【【【(h <0)【【【 【【(h >0)【【【(h 【【|k|【【【 平移规律:概括成八个字“左加右减,上加下减”.(3)用待定系数法求二次函数的解析式①一般式:.已知图象上三点或三对、 的值,通常选择一般式. ②顶点式:.已知图象的顶点或对称轴,通常选择顶点式. ③交点式: .已知图象与轴的交点坐标 、 ,通常选择交点式. (4)求抛物线的顶点、对称轴的方法 ①公式法:,∴顶点是,对称轴a b ac a b x a c bx ax y 44222 2 -+ ??? ? ?+=++=),(a b ac a b 4422--是直线.a b x 2- =②配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(, ()k h x a y +-=2 h ),对称轴是直线. k h x =

二次函数知识点总结及典型例题

浙教版九年级上册二次函数知识点总结及典型例题 知识点一、二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2 ≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2- =对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2 与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。 【例1】、已知函数y=x 2 -2x-3, (1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图; (2)求图象与坐标轴交点构成的三角形的面积: (3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0 知识点二、二次函数的解析式 二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)两根 当抛物线c bx ax y ++=2 与x 轴有交点时,即对应的一元二次方程02 =++c bx ax 有实根1x 和 2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式 ))((21x x x x a y --=。如果没有交点,则不能这样表示。 a 的绝对值越大,抛物线的开口越小。 (3)三顶点 顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时,我

二次函数经典例题与解答

、中考导航图 顶点 对称轴 1. 二次函数的意义 ; 2. 二次函数的图象 ; 3. 二次函数的性质 开口方向 增减性 顶点式: y=a(x-h) 2+k(a ≠ 0) 4. 二次函数 待定系数法确定函数解析式 一般式: y=ax 2+bx+c(a ≠ 0) 两根式: y=a(x-x 1)(x-x 2)(a ≠0) 5. 二次函数与一元二次方程的关系。 6. 抛物线 y=ax 2+bx+c 的图象与 a 、 b 、 c 之间的关系。 三、中考知识梳理 1. 二次函数的图象 在 画二 次函数 y=ax 2+bx+c(a ≠ 0) 的图象 时通常 先通 过配 方配成 y=a(x+ b ) 2+ 2a 公式来求得顶点坐标 . 2. 理解二次函数的性质 抛物线的开口方向由 a 的符号来确定 , 当 a>0 时, 在对称轴左侧 y 随 x 的增大而减小 b 4ac-b 2 反之当 a0时,抛物线开口向上 ; 当 a<0时,?抛物线开口向 下 ;c 的符号由抛物线与 y 轴交点的纵坐标决定 . 当 c>0 时, 抛物线交 y 轴于正半轴 ; 当 c<0 时,抛物线交 y 轴于负半轴 ;b 的符号由对称轴来决定 .当对称轴在 y?轴左侧时 ,b 的符号与 a 二次函数 4ac-b 的形式 , 先确定顶点 4a (- 2b a 4ac-b 2 ), 然后对称找点列表并画图 ,或直接代用顶点 4a 在对称轴的右侧 ,y 随 x 的增大而增大 简记左减右增 , 这时当 x=- b 时 ,y 2a 最小值= 4ac-b 2 4a

中考数学复习专题二次函数知识点归纳

二次函数知识点归纳 一、二次函数概念 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: o o 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2y ax c =+的性质: 结论:上加下减。 a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下 ()00, y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.

总结: 3. ()2 y a x h =-的性质: 结论:左加右减。 总结: 4. ()2 y a x h k =-+的性质: 总结: a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下 ()0c , y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c . a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h , X=h x h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质

二次函数知识点总结题型分类总结

二次函数知识点总结——题型分类总结 一、二次函数的定义 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①142 +-=x x y ; ②2 2x y =; ③x x y 422 +=; ④x y 3-=; ⑤12--=x y ; ⑥p nx mx y ++=2 ; ⑦()x y ,4=; ⑧x y 5-=。 2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为t t s 252 +=,则t =4秒时,该物体所经过的路程为 _________ 。 3、若函数( ) 54722 2 ++-+=x x m m y 是关于x 的二次函数,则m 的取值范围为 。 4、若函数()1522 ++-=-x x m y m 是关于x 的二次函数,则m 的值为 。 6、已知函数()35112 -+-=+x x m y m 是二次函数,求m 的值。 二、二次函数的对称轴、顶点、最值 记忆:如果解析式为顶点式:()k h x a y +-=2 ,则对称轴为: _ , 最值 为: ; 如果解析式为一般式:c bx ax y ++=2 ,则对称轴为: __ ,最值为: ; 如果解析式为交点式:()()21x x x x a y --=, 则对称轴为: ,最值为: 。 1.抛物线m m x x y -++=2 2 42经过坐标原点,则m 的值为 。 2.抛物线c bx x y ++=2的顶点坐标为(1,3),则b = ,c = . 3.抛物线x x y 32+=的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线x ax y 62-=经过点(2,0),则抛物线顶点到坐标原点的距离为( ) 5.若直线b ax y +=不经过二、四象限,则抛物线c bx ax y ++=2 ( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知抛物线()4 1 12- -+=x m x y 的顶点的横坐标是2,则m 的值是 . 7.抛物线322 -+=x x y 的对称轴是 。 8.若二次函数332 -+=mx x y 的对称轴是直线x =1,则m = 。 9.当n =______,m =______时,函数()()x n m x n m y n -++=的图象是抛物线,

二次函数典型例题解析

二次函数典型例题解析 关于二次函数的概念 例1 如果函数1)3(232++-=+-mx x m y m m 是二次函数,那么m 的值为 。 例2 抛物线422-+=x x y 的开口方向是 ;对称轴是 ;顶点为 。 关于二次函数的性质及图象 例3 函数)0(2≠++=a c bx ax y 的图象如图所示, 则a 、b 、c ,?,c b a ++,c b a +-的符号 为 , 例4 (镇江2001中考题)老师给出一个函数y=f (x ),甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。丙:当x <2时,y 随x 的增大而减小。丁:当x <2时,y >0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数—————————————————。 例5 (荆州2001)已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是 (只要写出一个可能的解析式) 例6 已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) (A ) 第一或第二象限 (B )第三或第四象限 (C )第一或第四象限 (D )第二或第三象限 例7 双曲线x k y = )0(≠k 的两分支多在第二、四象限内,则抛物线222k x kx y +-=的大致图 象是( ) 例8 在同一坐标系中,直线b ax y +=和抛物线c bx ax y ++=2 确定二次函数的解析式 例9 已知:函数c bx ax y ++=2的图象如图:那么函数解析式为((A )322++-=x x y (B )322--=x x y (C )322+--=x x y (D )322---=x x y

二次函数知识点及题型归纳总结

二次函数知识点及题型归纳总结 知识点精讲 一、二次函数解析式的三种形式及图像 1. 二次函数解析式的三种形式 (1)一般式:2 ()(0)f x ax bx c a =++≠; (2)顶点式:2 ()()(0)f x a x m n a =-+≠;其中,(,)m n 为抛物线顶点坐标,x m =为对称轴方程. (3)零点式:12()()()(0)f x a x x x x a =--≠,其中,12,x x 是抛物线与x 轴交点的横坐标. 2.二次函数的图像 二次函数2 ()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2b x a =- ,顶点坐标为24(,)24b ac b a a --. (1) 单调性与最值 ①当0a >时,如图2-8所示,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时, 2min 4()4ac b f x a -=;②当0a <时,如图2-9所示,抛物线开口向下,函数在(,] 2b a -∞-上递增,在[,) b -+∞上递减,当 b x =- 时,;24()4ac b f x a -=. (2) 当2 40b ac ?=->时,二次函数2()(0)f x ax bx c a =++≠的图像与x 轴有两个交点11(,0)M x 和 22(,0)M x ,1212|||||| M M x x a =-== . 二、二次函数在闭区间上的最值 闭区间上二次函数最值的取得一定是在区间端点或顶点处. 对二次函数2 ()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值是M ,最小值是m , 图2-9

最新史上最全初三数学二次函数知识点归纳总结

二次函数知识点归纳及相关典型题 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法 (1)公式法:a b ac a b x a c bx ax y 44222 2 -+ ??? ? ? +=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是直线 h x =. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对 称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0c ,与y 轴交于正半轴;③0

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

人教版初三数学二次函数知识点及难点总结

初三数学二次函数知识点总结 二次项系数a决定二次函数图像的开口方向和大小. 当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口. |a|越大,则二次函数图像的开口越小. 1、决定对称轴位置的因素 一次项系数b和二次项系数a共同决定对称轴的位置. 当a与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右. 事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到. 2、决定二次函数图像与y轴交点的因素 常数项c决定二次函数图像与y轴交点. 二次函数图像与y轴交于(0,c) 一、二次函数概念: 1.二次函数的概念:一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0 a≠,而b c,可以为零.二次函数的定义域是全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项.

二、二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax a 的绝对值越大,抛物线的开口越小。Array 2. 2 =+的性质:上加下减。 y ax c

相关主题