搜档网
当前位置:搜档网 › 3 EMI滤波器设计方法 陈为

3 EMI滤波器设计方法 陈为

基于matlab的FIR数字滤波器设计(多通带,窗函数法)

数字信号处理 课程设计报告 设计名称:基于matlab的FIR数字滤波器设计 彪

一、课程设计的目的 1、通过课程设计把自己在大学中所学的知识应用到实践当中。 2、深入了解利用Matlab设计FIR数字滤波器的基本方法。 3、在课程设计的过程中掌握程序编译及软件设计的基本方法。 4、提高自己对于新知识的学习能力及进行实际操作的能力。 5、锻炼自己通过网络及各种资料解决实际问题的能力。 二、主要设计内容 利用窗函数法设计FIR滤波器,绘制出滤波器的特性图。利用所设计的滤波器对多个频带叠加的正弦信号进行处理,对比滤波前后的信号时域和频域图,验证滤波器的效果。 三、设计原理 FIR 滤波器具有严格的相位特性,对于信号处理和数据传输是很重要的。 目前 FIR滤波器的设计方法主要有三种:窗函数法、频率取样法和切比雪夫等波纹逼近的最优化设计方法。常用的是窗函数法和切比雪夫等波纹逼近的最优化设计方法。本实验中的窗函数法比较简单,可应用现成的窗函数公式,在技术指标要求高的时候是比较灵活方便的。 如果 FIR 滤波器的 h(n)为实数, 而且满足以下任意条件,滤波器就具有准确的线性相位: 第一种:偶对称,h(n)=h(N-1-n),φ (ω)=-(N-1)ω/2 第二种:奇对称,h(n)=-h(N-1-n), φ(ω)=-(N-1)ω/2+pi/2 对称中心在n=(N-1)/2处 四、设计步骤 1.设计滤波器 2.所设计的滤波器对多个频带叠加的正弦信号进行处理 3.比较滤波前后信号的波形及频谱 五、用窗函数设FIR 滤波器的基本方法 基本思路:从时域出发设计 h(n)逼近理想 hd(n)。设理想滤波器的单位响应在时域表达为hd(n),则Hd(n) 一般是无限长的,且是非因果的,不能

窗函数设计低通滤波器 电信课设

XXXX大学 课程设计报告 学生:xxx 学号:xxx 专业班级:电子信息工程 课程名称:数字信号处理课程设计 学年学期20XX——20XX 学年第X学期指导教师:xxx 2014年6月

课程设计成绩评定表

目录 1. 窗函数设计低通滤波器 1.1设计目的 (1) 1.2设计原理推导与计算 (1) 1.3设计容与要求 (2) 1.4设计源程序与运行结果 (3) 1.5思考题 (10) 2. 用哈明窗设计FIR带通数字滤波器 2.1设计要求 (14) 2.2设计原理和分析 (14) 2.3详细设计 (15) 2.4调试分析及运行结果 (15) 2.5心得体会 (17) 参考文献 (17)

1.窗函数设计低通滤波器 1.1设计目的 1. 熟悉设计线性相位数字滤波器的一般步骤。 2. 掌握用窗函数法设计FIR 数字滤波器的原理和方法。 3. 熟悉各种窗函数的作用以及各种窗函数对滤波器特性的影响。 4. 学会根据指标要求选择合适的窗函数。 1.2设计原理推导与计算 如果所希望的滤波器的理想的频率响应函数为() ωj d e H ,则其对应的单位脉冲响应为 ()() ωπ ωωπ π d e e H n h j j d d ?- = 21 (4.1) 窗函数设计法的基本原理是设计设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数() ωj e H ,即 ()?????≤<≤=-π ωωωωωα ω c c j j d ,,e e H 0,其中21-=N α ()() ()[]() a n a n d e e d e e H n h c j j j j d d c c --= = = ??- -- πωωπ ωπ ωαωω ωαω π π ω sin 21 21 用有限长单位脉冲响应序列()n h 逼近()n h d 。由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2) ()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函 数() ωj e H 为 ()()n j N n j e n h e H ωω ∑-==1 (4.3) 式中,N 为所选窗函数()n ω的长度。 用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取

有源带通滤波器设计报告

有源带通滤波器设计报告 学生姓名崔新科 同组者王霞吴红娟 指导老师王全州

摘要 该设计利用模拟电路的相关知识,设定上线和下限频率,采用开环增益80dB 以上的集成运算放大器,设计符合要求的带通滤波器。再利用Multisim 仿真出滤波电路的波形和测量幅频特性。通过仿真和成品调试表明设计的有源滤波器可以基本达到所要求的指标。其主要设计内容: 1.确定有源滤波器的上、下限频率; 2.设计符合条件的有源带通滤波器;- 3.测量设计的有源滤波器的幅频特性; 4.制作与调试; 5. 总结遇到的问题和解决的方法。 关键词:四阶电路有源带通滤波器极点频率 The use of analog circuit design knowledge, on-line and set the lower limit frequency, the use of open-loop gain of 80dB or more integrated operational amplifier designed to meet the requirements of the bandpass filter. Re-use Multisim circuit simulation waveform and filter out the measurement of amplitude-frequency characteristics. Finished debugging the simulation and design of active filters that can basically meet the required targets. The main design elements: 1. Determine the active filter, the lower limit frequency; 2. Designed to meet the requirements of the active band-pass filter; - 3. Designed to measure the amplitude-frequency characteristics of active filters; 4. Production and commissioning; 5 summarizes the problems and solutions. Keywords: fourth-order active band-pass filter circuit pole frequency

带阻滤波器设计原理计算

带阻滤波器设计原理计算 时间:2009-07-08 20:38:37 来源:资料室作者: 滤波器是一种只传输指定频段信号,抑制其它频段信号的电路。 滤波器分为无源滤波器与有源滤波器两种: ①无源滤波器: 由电感L、电容C及电阻R等无源元件组成 ②有源滤波器: 一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。 利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。 从功能来上有源滤波器分为: 低通滤波器(LPF)、高通滤波器(HPF)、 带通滤波器(BPF)、带阻滤波器(BEF)、 全通滤波器(APF)。 其中前四种滤波器间互有联系,LPF与HPF间互为对偶关系。当LPF的通带截止频率高于HPF的通带截止频率时,将LPF与HPF相串联,就构成了BPF,而LPF与HPF并联,就构成BEF。在实用电子电路中,还可能同时采用几种不同型式的滤波电路。滤波电路的主要性能指标有通带电压放大倍

数AVP、通带截止频率fP及阻尼系数Q等。

带阻滤波器(BEF) 如图1(a)所示,这种电路的性能和带通滤波器相反,即在规定的频带内,信号不能通过(或受到很大衰减或抑制),而在其余频率范围,信号则能顺利通过。 在双T网络后加一级同相比例运算电路就构成了基本的二阶有源BEF。 (a) 电路 图 (b) 频率特性 图1二阶带阻滤波器 电路性能参数: 通带增益 中心频率 带阻宽度B=2(2-Aup)f0 选择性

EMI滤波器结构与分类

EMI滤波器结构与分类 一、LC滤波器(也称无源滤波器) LC滤波器是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波。 按滤波器的电抗元件结构区分,有T、L、π型滤波器。 选取的基本出发点是:用滤波器的电感与低的源阻抗或者负载阻抗串联,用滤波器的电容器与一个高的负载阻抗或源阻抗并联。以此保证阻抗最大失配的条件下,使滤波网络实际工作时,即有较大的插入损耗,又有最大的反射损耗,从而实现对EMI 信号的有效抑制。这样,EMI滤波器中的LC电路仍可以维持其谐振滤波特性,同时也能够部分补偿或削弱源阻抗和负载阻抗变

动对滤波器特性的影响。 按滤波器的作用区分,有调谐滤波器和高通滤波器。 ①调谐滤波器 调谐滤波器包括单调谐滤波器和双调谐滤波器,可以滤除某一次(单调谐)或两次(双调谐)谐波,该谐波的频率称为调谐滤波器的谐振频率。 ②高通滤波器 高通滤波器也称为减幅滤波器,主要包括一阶高通滤波器、二阶高通滤波器、三阶高通滤波器和c型滤波器,用来大幅衰减

低于某一频率的谐波,该频率称为高通滤波器的截止频率。 二、 T 型滤波器(即LCL 滤波器) 采用L 滤波器时,为了减小电流纹波,不得不增加L ,导致滤波器体积增大;采用LC 滤波器,虽然结构和参数选取简单,但无法抑制输出电流中的高频纹波,容易因电网阻抗的不确定性影响滤波效果。三相LCL 滤波器因其高效的滤波效果受到广泛重 视。 ①整流器侧电感L 设计 ,...3,2) ()(max 0==h h i hw h u L , ②滤波电容C 设计 b sa oe f E P C ω?22*3) (cos 1*-= ③网侧电感Lg 的设计

FIR带阻滤波器的设计

FIR带阻滤波器的设计 武汉理工大学《数字信号处理》课程设计说明书 1 前言 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器。与IIR滤波器相比,FIR 的实现是非递归的,总是稳定的;更重要的是,FIR滤波器在满足幅频响应要求的同时,可以获得严格的线性相位特性。因此,它在高保真的信号处理,如数字音频、图像处理、数据传输、生物医学等领域得到广泛应用。 有限长单位冲激响应(FIR) 数字滤波器具有严格的线性相位,又具有任意的幅频特性。同时FIR 系统只有零点,系统是稳定的,因而容易实现线性相位和允许实现多通道滤波器。只要经过一定的时延,任何非因果有限长序列都能变成因果的有限长序列,因而总能用因果系统来实现。FIR 滤波器由于单位冲激响应是有限长的,可以用快速傅立叶变换(FFT) 算法来实现过滤信号,从而大大提高运算效率。由于FIR 滤波器具有以上优点,在信号处理和数据传输中得到了广泛的应用。 Matlab 语言是一种用于科学计算的高效率语言。随着Matlab信号处理工具箱(Signal Processing Toolbox) 的不断完善,使数字滤波器的计算机辅助设计得以实现。 1 武汉理工大学《数字信号处理》课程设计说明书 2 设计原理 2.1 带阻滤波器的设计 理想带阻的频响:

其单位抽样响应: 带阻滤波器(W1,W2)=高通滤波器(W2)+低通滤波器(W1) 2.2 滤波器频率特性根据h(n),hd(n)W(n)时域中两序列相乘。 在频域中:为hd(n)与W(n)的卷积 (且为两序列频谱的周期卷积) ,1jw,jj(w,,),?H(e),H(e)W(edd,,,2, jw 以低通H(e)为例,说明频率特性d jwjw(1)H(e),H(e)发生了什么变化,d (2)研究什么窗函数使 jwjwH(e),H(e)变化最小。d jwjw最佳即使H(e),,,,逼近H(e)d 2.3 窗口法原理 用一个有限长度的窗口函数序列W(n)来截取hd(n):(即进行砍头截尾), h(n)=W(n)hd(n)使h(n)满足因果,有限长,实序列,并具有奇、偶对称性,则可设计出具有线性相位的FIR滤波器。 窗口法应用广泛,利用窗函数法可以设计四种线性相位FIR DF,即低通、高通、带通、带阻。 2

(整理)带通滤波器设计

实验八 有源滤波器的设计 一.实验目的 1. 学习有源滤波器的设计方法。 2. 掌握有源滤波器的安装与调试方法。 3. 了解电阻、电容和Q 值对滤波器性能的影响。 二.预习要求 1. 根据滤波器的技术指标要求,选用滤波器电路,计算电路中各元件的数值。设计出 满足技术指标要求的滤波器。 2. 根据设计与计算的结果,写出设计报告。 3. 制定出实验方案,选择实验用的仪器设备。 三.设计方法 有源滤波器的形式有好几种,下面只介绍具有巴特沃斯响应的二阶滤波器的设计。 巴特沃斯低通滤波器的幅频特性为: n c uo u A j A 21)(??? ? ??+= ωωω , n=1,2,3,. . . (1) 写成: n c uo u A j A 211) (??? ? ??+=ωωω (2) )(ωj A u 其中A uo 为通带内的电压放大倍数,ωC A uo 为截止角频率,n 称为滤波器的阶。从(2) 式中可知,当ω=0时,(2)式有最大值1; 0.707A uo ω=ωC 时,(2)式等于0.707,即A u 衰减了3dB ;n 取得越大,随着ω的增加,滤波器的输出电压衰减越快,滤波器的幅频特性越接近于理想特性。如图1所示。ω 当 ω>>ωC 时, n c uo u A j A ??? ? ??≈ωωω1 )( (3) 图1低通滤波器的幅频特性曲线

两边取对数,得: lg 20c uo u n A j A ωω ωlg 20)(-≈ (4) 此时阻带衰减速率为: -20ndB/十倍频或-6ndB/倍频,该式称为衰减估算式。 表1列出了归一化的、n 为1 ~ 8阶的巴特沃斯低通滤波器传递函数的分母多项式。 在表1的归一化巴特沃斯低通滤波器传递函数的分母多项式中,S L = c s ω,ωC 是低通 滤波器的截止频率。 对于一阶低通滤波器,其传递函数: c c uo u s A s A ωω+= )( (5) 归一化的传递函数: 1 )(+= L uo L u s A s A (6) 对于二阶低通滤波器,其传递函数:2 22)(c c c uo u s Q s A s A ωωω++ = (7) 归一化后的传递函数: 1 1)(2 ++= L L uo L u s Q s A s A (8) 由表1可以看出,任何高阶滤波器都可由一阶和二阶滤波器级联而成。对于n 为偶数的高阶滤波器,可以由2n 节二阶滤波器级联而成;而n 为奇数的高阶滤波器可以由2 1-n 节二

根据ADS的带阻滤波器设计

电磁波与微波技术 课程设计 ----带阻滤波器的设计与仿真 课题:带阻滤波器的设计与仿真 指导老师: 姓名: 学号:

目录 1.设计要求 (3) 2.微带短截线带阻滤波器的理论基础 (3) 2.1理查德变换 (4) 2.2科洛达规则 (6) 3.设计步骤 (7) 3.1ADS 简介 (7) 3.2初步设计过程 (8) 3.3优化设计过程 (14) 3.4对比结果 (17) 4.心得体会 (17) 5.参考文献 (18)

1.课程设计要求: 1.1 设计题目:带阻滤波器的设计与仿真。 1.2设计方式:分组课外利用ads软件进行设计。 1.3设计时间:第一周至第十七周。 1.4 带阻滤波器中心频率:6GHz;相对带宽:9%;带内波纹: <0.2dB。 1.5 滤波器阻带衰减>25dB;在频率5.5GHz和6.5GHz处,衰 减<3dB;输入输出阻抗:50Ω。 2.微带短截线带阻滤波器的理论基础 当频率不高时,滤波器主要是由集总元件电感和电容构成,但当频率高于500Mz时,滤波器通常由分布参数元件构成,这是由于两个原因造成的,其一是频率高时电感和电容应选的元件值小,由于寄生参数的影响,如此小的电感和电容已经不能再使用集总参数元件;其二是此时工作波长与滤波器元件的物理尺寸相近,滤波器元件之间的距离不可忽视,需要考虑分布参数效应。我们这次设计采用短截线方法,将集总元件滤波器变换为分布参数滤波器,其中理查德变换用于将集总元件变换为传输段,科洛达规则可以将各滤波器元件分隔。 2.1 理查德变换

通过理查德变换,可以将集总元件的电感和电容用一段终端短路和终端开路的传输线等效。终端短路和终端开路传输线的输入阻抗具有纯电抗性,利用传输线的这一特性,可以实现集总元件到分布参数元件的变换。 在传输线理论中,终端短路传输线的输入阻抗为: 错误!未找到引用源。= 错误!未找到引用源。(1.0) 式中 错误!未找到引用源。 当传输线的长度错误!未找到引用源。= 错误!未找到引用源。时 错误!未找到引用源。 (1.1) 将式(1.1)代入式(1.1),可以得到 错误!未找到引用源。(1.2)式中 错误!未找到引用源。 (1.3) 称为归一化频率。

EMI 原理分析

开关电源EMI滤波器原理与设计研究 魏应冬,吴燮华 (浙江大学电气工程学院,浙江 杭州 310027) 摘要:在开关电源中,EMI滤波器对共模和差模传导噪声的抑制起着显著的作用。在研究滤波器原理的基础上,探讨了一种对共模、差模信号进行独立分析,分别建模的方法,最后基于此提出了一种EMI滤波器的设计程序。 关键词:开关电源;EMI滤波器;共模;差模 0 引言 高频开关电源由于其在体积、重量、功率密度、效率等方面的诸多优点,已经被广泛地应用于工业、国防、家电产品等各个领域。在开关电源应用于交流电网的场合,整流电路往往导致输入电流的断续,这除了大大降低输入功率因数外,还增加了大量高次谐波。同时,开关电源中功率开关管的高速开关动作(从几十kHz到数MHz),形成了EMI(electromagnetic interference)骚扰源。从已发表的开关电源论文可知,在开关电源中主要存在的干扰形式是传导干扰和近场辐射干扰,传导干扰还会注入电网,干扰接入电网的其他设备。 减少传导干扰的方法有很多,诸如合理铺设地线,采取星型铺地,避免环形地线,尽可能减少公共阻抗;设计合理的缓冲电路;减少电路杂散电容等。除此之外,可以利用EMI滤波器衰减电网与开关电源对彼此的噪声干扰。 EMI骚扰通常难以精确描述,滤波器的设计通常是通过反复迭代,计算制作以求逐步逼近设计要求。本文从EMI滤波原理入手,分别通过对其共模和差模噪声模型的分析,给出实际工作中设计滤波器的方法,并分步骤给出设计实例。 1 EMI滤波器设计原理 在开关电源中,主要的EMI骚扰源是功率半导体器件开关动作产生的d v/d t 和d i/d t,因而电磁发射EME(Electromagnetic Emission)通常是宽带的噪声信号,其频率范围从开关工作频率到几MHz。所以,传导型电磁环境(EME)的测量,正如很多国际和国家标准所规定,频率范围在0.15~30MHz。设计EMI滤波器,就是要对开关频率及其高次谐波的噪声给予足够的衰减。基于上述标准,通常情况下只要考虑将频率高于150kHz的EME衰减至合理范围内即可。 在数字信号处理领域普遍认同的低通滤波器概念同样适用于电力电子装置中。简言之,EMI滤波器设计可以理解为要满足以下要求: 1)规定要求的阻带频率和阻带衰减;(满足某一特定频率f stop有需要H stop的衰减);

带阻滤波器设计范文

模拟电路课程设计报告设计课题:二阶带阻滤波器的设计 专业班级: 学生姓名: 学号: 指导教师: 设计时间:

题目二阶带阻滤波器的设计 一、设计任务与要求 1.截止频率f H=2000Hz,f L=200Hz; 2.电压增益A V=1----2; 3.阻带衰减速率为-40dB/10倍频程; 4.用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证 将输入电压同时作用于低通滤波器和高通滤波器,再将两个电路的输出电压求和,就可以得到带阻滤波器,其中低通滤波器的截止频率fp1应小于高通滤波器的截止频率fp2,因此电路的阻带为(fp2-fp2).实用电路常利用无源LPF和HPF 并联构成带阻滤波器电路,然后接同向比例运算电路,从而得到有源带阻滤波器,由于两个无源滤波电路均由三个元件构成英文字母T,故称之为双T网络。 根据电路的传递函数和归一化滤波器传递函数的分母多项式,建立起系数的方程组。根据课设要求,我们选择巴特沃斯(butterworth)滤波电路。巴特沃斯滤波器的幅频响应在通带中具有最平幅度特性,但是通带到阻带衰减较慢。由于要求为-40dB/十倍频程,选择二阶有源低通滤波器电路,即n=2。 方案一、压控电压源二阶带阻滤波器 这种电路的性能和带通滤波器相反,即在规定的频带内,信号不能通过(或受到很大衰减或抑制),而在其余频率范围,信号则能顺利通过。在双T网络后加一级同相比例运算电路就构成了基本的二阶有源BEF。电路图如下: 方案二、无限增益多路负反馈二阶带阻滤波器 该电路由二阶带通滤波器和一个加法器组成

三、单元电路设计与参数计算 (1)直流电源部分 直流电源由电源变压器,整流电路,滤波电路,稳压电路四部分构成。 1、稳压电源的组成框图 2、电路图 3、整流、滤波电路 用四个整流二极管组成单相桥式整流电路,将交流电压U2变成脉动的直流 变 压 整 流 滤 波 稳 压 负 载

EMI电源滤波器基本知识介绍

EMI电源滤波器基本知识介绍 电磁干扰(EMI)电源滤波器(以下简称滤波器)是由电感、电容组成的无源器件。实际上它起两个低通滤波器的作用,一个衰减共模干扰另一个衰减差模干扰。它能在阻带(通常大于10KHz)范围内衰减射频能量而让工频无衰减或很少衰减地通过。EMI电源滤波器是电子设备设计工程师控制传导干扰和辐射电磁干扰 的首选工具 (一)EMI电源滤波器部分技术参数简介 插入损耗 滤波器的插入损耗是不加滤波器时从噪声源传递到负载的噪声电压与接入滤波器时负载上的噪声电压之比。插入损耗衡量EMI电源滤波器电性能的重要参数,用下式表示:Eo IL=20log--- E 式中:Eo------不加滤波器时,负载上的干扰噪声电平。 E------接入滤波器后,同一负载上的干扰噪声电平。 干扰方式有共模干扰和差模干扰两种,其定义为:共模干扰:叠加于火线(P)、零线(N)和地线(E)之间的干扰电压。 差模干扰:叠加于火线(P)和零线(N)之间的干扰电压。 因此插入损耗又分为共模插入损耗和差模插入损耗,插入损耗的测试原理图 如下:

泄漏电流:滤波器的泄漏电流是指在250VAC的电压下,火线和零线与外壳间流过的电流。它主要取决于滤波器中的共模电容。从插入损 耗考虑,共模电容越大,电性能越好,此时,漏电流也越大。但从安全方面考虑,泄漏电流又不能过大,否则不符合安全标准要求。尤其是一些 医疗保健设备,要求泄漏电流尽可能小。因此,要根据具体设备要求来确定共模 电容的容量。泄漏电流测试电路如下所示 耐压测试 为确保(交流)电源滤波器的质量,出厂前全部进行耐压测试。测试标准为: 火线与地线(或零线与地线)之间施加频率为50Hz的1500VAC高压,时 间一分钟,不发生放电现象和咝咝声。 火线与零线之间施加1450V直流高压,时间一分钟,不发生放电现象和咝 咝声 (二)EMI电源滤波器的选用 根据设备的额定工作电压、额定工作电流和工作频率来确定滤波器的类型。滤波器的额定工作电流不要取的过小,否则会损坏滤波器或降低滤波器的寿命。但额定工作电流也不要取的过大,这是因为电流大会增大滤波器的体积或降低滤波器的电性能,为了既不降低滤波器的电性能,又能保证滤波器安全工作,一般按设备额定电流的1.2倍来确定滤波器的额定工作电流。 根据设备现场干扰源情况,来确定干扰噪声类型,是共模干扰还是差模干扰,这样才能有针对性的选用滤波器。如不能确定干扰类型,可通过实际试探来确定

实验四 窗函数法设计FIR数字滤波器

实验四 窗函数法设计FIR 数字滤波器 一、实验目的 1、掌握窗函数法设计FIR 数字滤波器的原理及具体方法。 2、掌握频率取样法设计FIR 数字滤波器的原理和基本方法。 3、学习利用窗函数法和频率取样法设计低通、带通、高通、带阻数字滤波器。 二、实验环境 计算机、MATLAB 软件 三、实验基础理论 窗函数设计FIR 滤波器 1.基本原理 窗函数设计法的基本思想为,首先选择一个适当的理想的滤波器()j d H e ω ,然后 用窗函数截取它的单位脉冲响应(n)d h ,得到线性相位和因果的FIR 滤波器。这种方法的重点是选择一个合适的窗函数和理想滤波器,使设计的滤波器的单位脉冲响应逼近理想滤波器的单位脉冲响应。 2.设计步骤 (1)给定理想滤波器的频率响应()j d H e ω ,在通带上具有单位增益和线性相位, 在阻带上具有零响应。一个带宽为()c c ωωπ<的低通滤波器由下式给定: π ωωωωωωω≤<=≤=-||,0)(,||,)(c j d c ja j d e H e e H 其中α为采样延迟,其作用是为了得到一个因果系统。 (2)确定这个滤波器的单位脉冲响应 ) ()) (sin()(a n a n n h c d --= πω 为了得到一个(n)h 长度为N 的因果的线性相位FIR 滤波器,我们令 2 1 -= N a (3)用窗函数截取(n)d h 得到所设计FIR 数字滤波器:)()()(n R n h n h N d = 3.窗函数的选择 常用的窗函数有矩形(Rectangular )窗,汉宁(Hanning )窗,海明(Hamming )窗、布莱克曼(Blackman )窗、凯瑟(Kaiser )窗等 表4-1 MATLAB 中产生窗函数的命令

有源带通滤波器设计

二阶有源模拟带通滤波器设计 摘要 滤波器是一种具有频率选择功能的电路,它能使有用的频率信号通过。而同时抑制(或衰减)不需要传送频率范围内的信号。实际工程上常用它来进行信号处理、数据传送和抑制干扰等,目前在通讯、声纳、测控、仪器仪表等领域中有着广泛的应用。 以往这种滤波电路主要采用无源元件R、L和C组成,60年代以来,集成运放获得迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。此外,由于集成运放的开环电压增益和输入阻抗都很高,输出阻抗比较低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。 通常用频率响应来描述滤波器的特性。对于滤波器的幅频响应,常把能够通过信号的频率范围定义为通带,而把受阻或衰减信号的频率范围称为阻带,通带和阻带的界限频率叫做截止频率。 滤波器在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的位置分布,滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。文中结合实例,介绍了设计一个二阶有源模拟带通滤波器。 设计中用RC网络和集成运放组成,组成电路选用LM324不仅可以滤波,还可以进行放大。 关键字:带通滤波器 LM324 RC网络

目录 目录 (2) 第一章设计要求 (3) 1.1基本要求 (3) 第二章方案选择及原理分析 (4) 2.1.方案选择 (4) 2.2 原理分析 (5) 第三章电路设计 (7) 3.1 实现电路 (7) 3.2参数设计 (7) 3.3电路仿真 (9) 1.仿真步骤及结果 (9) 2.结果分析 (11) 第四章电路安装与调试 (12) 4.1实验安装过程 (12) 4.2 调试过程及结果 ..................................................................................................... 错误!未定义书签。 4.2.1 遇到的问题 .................................................................................................. 错误!未定义书签。 4.2.2 解决方法 ...................................................................................................... 错误!未定义书签。 4.2.3 调试结果与分析 (12) 结论 (13) 参考文献 (14)

带阻滤波器设计

信息科学与技术学院电路分析大作业 题目 专业(班级) 姓名 学号 指导教师

17级“电路分析”课程大作业:滤波器的设计 一、要求: 1、完成所要求的各性能指标的滤波器的设计; 2、完成滤波电路的仿真; 3、根据所做的工作完成相关的论文(纸质及电子文档)。 二、论文要求: 1、了解相关应用的背景资料,了解滤波器的工程应用; 2、滤波电路的工作原理的理论分析; 3、电路参数选择的依据; 4、设计过程的记录; 5、仿真结果的记录、计算、分析; 6、心得和体会。 三、时间安排: 1、12月18日(第15周之前)完成仿真调试及验收;

2、12月25日(第16周之前)提交论文。 四、滤波器指标要求: 请设计一带阻滤波电路,上、下限截止频率分别为1500Hz、5000Hz。 目录 一、滤波器的背景资料和工程应用; 二、滤波电路的工作原理的理论分析; 三、电路参数选择的依据; 四、设计过程的记录; 五、仿真结果的记录、计算、分析; 六、心得和体会;

一、滤波器的背景资料和工程应用 定义: 电源滤波器是由电容、电感和电阻组成的滤波电路。滤波器可以对电源线中特定频率的频点或该频点以外的频率进行有效滤除,得到一个特定频率的电源信号,或消除一个特定频率后的电源信号。 主要作用: 分类:

⑴ 按所处理的信号 按所处理的信号分为模拟滤波器和数字滤波器两种。 ⑵按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。 低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 ⑶ 按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 二、 滤波电路的工作原理的理论分析 1.工作原理 滤波器是一种选择装置,它对输入信号进行加工和处理,从中选出某些特定的信号作为输出。电滤波器的任务是对输入信号进行选频加权传输。 电滤波器是Campbell 和wagner 在第一次世界大战期间各自独立发明的,当时直接应用于长途载波电话等通信系统。电滤波器主要由无源元件R 、L 、C 构成,称为无源滤波器。 滤波器的输出与输入关系通常用电压转移函数H(S)来描述,电压转移函数又称为电压增益函数,它的定义如下 ) () ()(0S U S U S H i = 式中U O (S)、U i (S)分别为输出、输入电压的拉氏变换。在正弦稳态情况下,S=j ω,电压转移函数可写成 )(0)() ()()(ωφωωωωj i e j H j U j U j H == ? ? 式中H j ()ω表示输出与输入的幅值比,称为幅值函数或增益函数,它与频率的关系称为幅频特性;Φ(ω)表示输出与输入的相位差,称为相位函数,它与频率的关系称为相频特性。幅频特性与相频特性统称滤波器的频率响应。滤波器的幅频特性很容易用实验方法测定。 本实验仅研究一些基本的二阶滤波电路。滤波器按幅频特性的不同,可分为低通、高通、带通和带阻和全通滤波电路等几种,图附录1—1给出了低通、高通、带通和带阻滤波电的典型幅频特性。 低通滤波电路,其幅频响应如图1(a)所示,图中|H(j ωC)|为增益的幅值,K 为增益常

二阶有源带阻滤波器课程设计汇总

二阶有源带阻滤波器 设计报告 目录 1、设计要求………………………..P1 2、设计作用及目的………………..P1 3、设计的具体实现 ⑴系统概述……………………...P1-P8 ⑵单元电路设计及仿真分析…...P9-P22 ⑶PCB版电路制作……………..P 4、心得体会及建议………………...P 5、附录……………………………...P 6、参考文献………………………...P

一、设计要求 ⑴、设计一个二阶有源带阻滤波器电路,要求中心频率0f=50Hz,Q=10; ⑵、设计时要综合考虑实用、经济并满足性能要求指标; ⑶、合理选用元器件。 二、设计的作用、目的 ⑴、掌握二阶有源带阻滤波器电路的设计方法 ⑵、了解二阶有源带阻滤波器的性能特点 ⑶、掌握二阶有源带阻滤波器的安装与调试方法 ⑷、掌握滤波器有关参数的测量、计算方法 ⑸、理论应用于实践,增强动手能力 三、设计的具体实现 1、系统概述 ⑴、相关知识了解 由有源器件(晶体管或集成运放)和电阻、电容构成的滤波器称为RC有源滤波器。滤波器分为一阶、二阶和高阶滤波器。阶数越高,其幅频特性越接近于理想特性,滤波器的性能就越好。滤波器的功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信号处理、数据传输、抑制干扰等方面。这类滤波器主要优点是:小型,价廉;不需要阻抗匹配且可具有一定的增益;抗干扰能力强;截止频率低(可低至10-3Hz)。因受运算放大器的频带限制,主要用在超低频至几百千赫的频率范围。根据滤波器所能通过信号的频率范围或阻止信号频率范围的不同,滤波器可分为低通、高通、带通与带阻等四种滤波器。 这里专门对二阶有源带阻滤波器进行研究。常用的二阶有源带阻滤波器电路有两种形式,一种是无限增益多路负反馈(MFA)有源二阶带阻滤波器电路,另一种是电压控制电压源(VcVs)有源二阶带阻滤波器电路。 电压控制电压源电路,它的运放为同相输入,具有高输入阻抗、低输出阻抗

带阻滤波器的设计与仿真(DOC)

带阻滤波器的设计与仿真 摘要:本文利用ADS设计了一个带阻滤波器,预期目标是满足中心频率为6GHz,相对带宽为9%,带内波纹小于0.2dB,阻带衰减大于25dB,在频率5.5GHz和6.5GHz处,衰减小于3dB,输入输出阻抗为50Ω。设计完成对其进行优化,结果证明,优化之后,带阻滤波器的的各项参数更加符合预期的要求。 关键字:ADS;带阻滤波器;优化 The Design And Simulation Of Bandstop Filter Abstract: this paper ADS design a band elimination filter, anticipated goal is to meet the center frequency for 6 GHz, relative bandwidth for 9%, less than 0.2 dB with inner ripple, stop-band attenuation more than 25 dB, 5.5 GHz in frequency and 6.5 GHz place, less than 3 dB atten uation, input/output impedance for 50 Ω. Design completed the optimization results show, after optimization, with the parameters of the stop filter more in line with the requirements of the expected. Key Words: ADS;Bandstop filter; optimization 一、引言 带阻滤波器是指能通过大多数频率分量、但将某些范围的频率分量衰减到极低水平的滤波器,与带通滤波器的概念相对。要想得到带阻滤波器,只需将输入电压同时作用于低通滤波器和高通滤波器,再将两个电路的输出电压求和,就可以实现。从这个概念,本文利用理查德变换和科洛达规则的原理进行设计。二、微带短截线带阻滤波器的理论基础 当频率不高时,滤波器主要是由集总元件电感和电容构成,但当频率高500Mz 时,滤波器通常由分布参数元件构成,这是由于两个原因造成的,其一是频率高时电感和电容应选的元件值小,由于寄生参数的影响,如此小的电感和电容已经不能再使用集总参数元件;其二是此时工作波长与滤波器元件的物理尺寸相近,滤波器元件之间的距离不可忽视,需要考虑分布参数效应。我们这次设计采用短截线方法,将集总元件滤波器变换为分布参数滤波器,其中理查德变换用于将集总元件变换为传输段,科洛达规则可以将各滤波器元件分隔。 1.理查德变换 通过理查德变换,可以将集总元件的电感和电容用一段终端短路和终端开路的传输线等效。终端短路和终端开路传输线的输入阻抗具有纯电抗性,利用传输线的这一特性,可以实现集总元件到分布参数元件的变换。在传输线理论中,终

:开关电源中常用EMI滤波器

摘要:开关电源中常用EMI滤波器抑制共模干扰和差模干扰。三端电容器在抑制开关电源高频干扰方面有良好性能。文中在开关电源一般性能EMI滤波器电路结构基础上,给出了使用三端电容器抑制高频噪声的滤波器结构。并使用PSpice软件对插入损耗进行仿真,给出了仿真结果。 1 开关电源特点及噪声产生原因 随着电子技术的高速发展,电子设备种类日益增多,而任何电子设备都离不开稳定可靠的电源,因此对电源的要求也越来越高。开关电源以其高效率、低发热量、稳定性好、体积小、重量轻、利于环境保护等优点,近年来取得快速发展,应用领域不断扩大。开关电源工作在高频开关状态,本身就会对供电设备产生干扰,危害其正常工作;而外部干扰同样会影响其正常工作。 开关电源干扰主要来源于工频电流的整流波形和开关操作波形。这些波形的电流泄漏到输入部位就成为传导噪声和辐射噪声,泄漏到输出部位就形成了波纹问题。考虑到电磁兼容性的有关要求,应采用EMI电源滤波器来抑制开关电源上的干扰。文中主要研究的是开关电源输入端的EMI滤波器。 2 EMI滤波器的结构 开关电源输入端采用的EMI滤波器是一种双向滤波器,是由电容和电感构成的低通滤波器,既能抑制从交流电源线上引入的外部电磁干扰,还可以避免本身设备向外部发出噪声干扰。开关电源的干扰分为差模干扰和共模干扰,在线路中的传导干扰信号,均可用差模和共模信号来表示。差模干扰是火线与零线之间产生的干扰,共模干扰是火线或零线与地线之间产生的干扰。抑制差模干扰信号和共模干扰信号普遍有效的方法就是在开关电源输入电路中加装电磁干扰滤波器。EMI滤波器的电路结构包括共模扼流圈(共模电感)L,差模电容Cx和共模电容Cy。共模扼流圈是在一个磁环(闭磁路)的上下两个半环上,分别绕制相同匝数但绕向相反的线圈。两个线圈的磁通方向一致,共模干扰出现时,总电感迅速增大产生很大的感抗,从而可以抑制共模干扰,而对差模干扰不起作用。为了更好地抑制共模噪声; 共模扼流圈应选用磁导率高,高频性能好的磁芯。共模扼流圈的电感值与额定电流有关。差模电容Cx通常选用金属膜电容,取值范围一般在0.1~1μF。Cy用于抑制较高频率的共模干扰信号,取值范围一般为2200~6800 pF。常选

实验五IIR数字滤波器设计及软件实现

实验四:IIR数字滤波器设计及软件实现 一、实验内容及步骤 1、调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号 st,三路信号在时域混叠无法在时域分离,但频域是可分离的,所以可以通过滤波的方法在频域分离。 2、要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可 以分离st中三路抑制载波单频调幅信号的三个滤波器(低通、高通、带通)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1db,阻带最小衰减为60db. 3、编程序调用MATLAB滤波器设计函数ellipord和ellip分别设计三个椭圆滤 波器,并绘图显示其损耗函数曲线。 4、调用滤波器实现函数filter,用三个滤波器分别对信号产生函数mstg产生 的信号st进行滤波,分离出st中的三路不同载波频率的调幅信号yn1、yn2、yn3的,并绘图显示其时域波形,观察分离效果。 二、实验结果显示 原信号图形:

高通滤波器 输出波形

带通滤波器输出波形

低通滤波器输出波形

带阻滤波器输出波形

三、实验结论:由上面所绘图形可知,利用数字滤波器完全可以将时域混叠而频域未混叠的波形分开,达到滤波目的。 四、思考题 (1)请阅读信号产生函数mstg,确定三路调幅信号的载波频率和调制信号频率。答:第一路调幅信号的调制信号频率为100HZ,载波频率为1000HZ;第二路调幅信号的调制信号频率为50HZ,载波频率为500HZ;第三路调幅信号的调整信号频率为25HZ,载波频率为250HZ。 (2)信号产生函数mstg中采样点数N=1600,对st进行N点FFT可以得到6根理想谱线。如果取N=1800,可否得到6根理想谱线?为什么?N=2000呢?请改变函数mstg 中采样点数N的值,观察频谱图验证您的判断是否正确? 答: 因为信号st是周期序列,谱分析时要求观察时间为整数倍周期。分析可知,st的每个频率成分都是25Hz的整数倍。采样频率Fs=10kHz=25×400Hz,即在25Hz 的正弦波的1个周期中采样400点。所以,当N为400的整数倍时一定为st的整数个周期。因此,采样点数N=800和N=2000时,对st进行N点FFT可以得到6根理想谱线。如果取N=1000,不是400的整数倍,不能得到6根理想谱线。

带阻滤波器介绍及ADS设计实例

帯阻滤波器研究 1 绪论 1.1带阻滤波器的研究意义 微波滤波器具有选频、分频和隔离信号等重要作用,在现代微波毫米波通信、卫星通信、遥感和雷达技术等系统中应用广泛,其性能的优劣将直接影响到整个系统的运行质量。而带阻滤波器作为微波滤波器的一种,在通信系统中也起着十分重要的作用。通常在许多微波系统中,要求信号传输时,衰减应尽可能的小,而对不需要的噪声、干扰、杂散等则要抑制掉,即需具有很高的衰减度。带阻滤波器适于在宽频范围滤除某窄带频,无线通信系统中抑制高功率发射机、非线性功放的杂散频谱以及带通滤波器的寄生通带等,这时,如采用一个或几个带阻滤波器来抑制它们,就比采用带通滤波器的宽阻带来抑制更加灵活有效。 传统的带阻滤波器设计结构一般是由1 /4波长短截线谐振器,并沿主波导或主传输线排列,而谐振器间隔为1/ 4波长的奇数倍,这种结构的带阻滤波器的矩形系数不够理想且体积庞大。事实上,比较带通滤波器和带阻滤波器的频率响应,不难发现,带通滤波器的回波损耗对应带阻滤波器的带内衰减,带通滤波器的通带对应带阻滤波器的阻带,带通滤波器的传输零点对应带阻滤波器的反射零点,可见将带通滤波器的各种拓扑结构来实现带阻滤波器的设计是可行的。 随着信息产业和无线通信的蓬勃发展,微波频段呈现相对拥挤的状态,这就对滤波器的性能提出了更高的要求,尤其是在移动通讯基站双工器和多工器中使用的滤波器,除了通带内低插入损耗、小型化的要求外,对通带外的衰减更是提出了苛刻的要求。据此传统的滤波器,比如:最大平坦和切比雪夫滤波器很难胜任。增加滤波器的阶数,可以提高矩形系数,是一种在传统的滤波器设计中比较有效的方法,但这样体积、带内插损均增加了。虽然椭圆函数滤波器具有带外有限零点,零点位置却由阶数决定,且只适用于零点位置对称的情况。以广义切比雪夫函数实现的滤波器通过非相邻谐振腔的交叉耦合,可以产生有限零点,且这些零点可以是对称的,也可以是非对称的,这使得可以更加灵活地根据需要对滤波器的带外抑制度进行调节,提高其矩形系数。 另外,通过引入源与负载间直接耦合,N阶交叉耦合滤波器可以实现N个带外有限远处的零点。但这种结构源与负载之间需要很强的耦合,在一些实际应用中不易实现。非谐振节点的引入,N阶滤波器能产生N个有限频率的零点而不需源与负载直接耦合,也不必交叉耦合。这种方法还便于滤波器的模块化设计,即用于将简单的产生传输零点的结构进行级联,使得每个单元仍能独立的控制其零点,故这种结构的滤波器便于调谐并降低了制造公差的灵敏度。 同轴腔体滤波器在微波频段是应用最广泛的滤波器之一。同轴腔体滤波器的带内插损低,结构紧凑,有电容加载时,同轴腔体滤波器的体积可以做得很小,此外,其还有功率容量高等优点。据此,采用同轴腔体滤波器设计选频双工器,通过改变传统结构,可实现很高的收端异频隔离度和收端同频隔离度。 1.2国内外带阻滤波器的研究现状 在过去的几十年中,带通滤波器已经被广泛研究,但是带阻滤波器的报道较少。一般带阻滤波器设计是由1/4波长短截线谐振器构成的,谐振器间隔1/4长的奇数倍并沿主波导或主传输线排列,这种结构的带阻滤波器的矩形系数不理想

相关主题