搜档网
当前位置:搜档网 › 用ANSYS LS-DYNA模拟爆炸过程

用ANSYS LS-DYNA模拟爆炸过程

用ANSYS LS-DYNA模拟爆炸过程
用ANSYS LS-DYNA模拟爆炸过程

焊接过程数值模拟的发展

内蒙古科技大学 本科生课程论文 题目:焊接过程数值模拟的发展 学生姓名:孑然De90后 学号:096110。。。。 专业:材料成型及控制工程 班级:成型09—1班 指导教师:

焊接过程数值模拟的发展 摘要: 介绍了焊接数值模拟技术在焊接接头微观组织分析、焊接温度场分析、焊接应力应变分析、氢扩散分析方面的研究现状,并对焊接数值模拟技术在这几方面的模拟方法、原理及模型的建立进行了较为详细的介绍,最后,对我国焊接数值模拟技术的发展进行了展望。 焊接数值模拟方法一直是研究和电阻点焊过程的有效方法。详细介绍了焊接过程数值模拟技术的研究现状和进展。并指出了焊接过程数值模拟及应用的发展方向。 关键词:焊接;微观组织;温度场;数值模拟 The Welding Process of The Development of Numerical Simulation Abstract: This article introduced research status of welding numerical simulation technology from several aspects,suchas microstructure analysis on welding joints,welding temperature field analysis,welding stress and strain analysis,researchstatus of hydrogen diffusion。and detailedly introduced its simulation method,principle and modeling.Finallytheprospect of China welding numericM simulation technology is carried out. Welding numerical simulation methods has been research and the effective method of resistance spot process. Detailed introduces the welding process of numerical simulation technology research and progress. And points out the welding process and application of the numerical simulation development direction. Key words: welding;microstructure;temperature field;stress-strain;hydrogen diffusion;numerical simulation 1引言 1.1 背景 焊接是一个涉及电弧物理、传质传热、冶金和力学的复杂过程,单纯采用理。

焊接过程的数值模拟

《焊接过程的数值模拟》课程简介 课程编号:02044906 课程名称:焊接过程的数值模拟/ Numerical simulation of welding process 学分:2 学时:32 (课内实验(践):上机:16 课外实践:) 适用专业:焊接技术与工程专业 建议修读学期:7 开课单位:材料科学与工程学院材料加工工程系 课程负责人:卢云 先修课程:焊接冶金学、计算机基础、VB语言及程序设计 考核方式与成绩评定标准:采用平时成绩+上机考试成绩相结合的方式,平时成绩占课程考核成绩的50%,平时成绩考核采用作业、上机实验和报告相结合的方式;上机考试成绩占课程考核成绩的50%。 教材与主要参考书目: 主要参考书目:1、焊接数值模拟技术及其应用,汪建华,上海交通大学出版社,2003 2、计算材料学,D.罗伯编著,项金钟、吴兴惠译,化学工业出版社,2002 内容概述: 本课程初步介绍焊接过程中数值模拟技术的一些基本原理,基本方法,研究进展和研究内容。初步探讨使用有限元软件作为平台实现焊接的数值模拟过程。重点介绍焊接热传导在有限元程序中的使用及应用。通过本课程的学习,使学生了解焊接数值模拟的基本方法,学会综合运用其它方面的知识来实现简单焊接过程的数值模拟,并能够对模拟的结果进行有效的分析。初步具备分析和解决焊接工程问题的能力。 This course introduces some basic principles, methods, research progress and contents of the numerical simulation technology in the welding process. The realization of numerical Simulation of welding based on finite element software platform is also discussed briefly. The application of welding heat conduction in the finite element program is emphasized on. Through this course, the students should understand the basic methods of numerical simulation of welding, learn the integrated use of the knowledge of other aspects to achieve a simple welding numerical simulation, and can effectively analyze the simulation results. This course is to present the practical analysis and solve for welding engineering problems.

焊接虚拟仿真培训系统,DOC

焊接虚拟仿真培训系 统,D O C(总3页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

1、焊接培训行业状况 焊接是一项对过程要求很高的工作,在现有的手工焊接生产中,采用MAG/MIG焊接的约占50%,TIG焊接约占30%,MMA焊接约占20%;如:在造船行业中,MAG约占70%,MMA约占30%;那么,这就需要焊工要有扎实的操作手法、规范的动作。而在焊接培训过程中传统方式存在以下多种问题: (1)消耗大量的焊条(丝)、焊件和保护气体等材料; (2)对学员的培训过程难以准确掌握; (3)对学员的焊接水平难以评价; (4)培训效果不尽理想; (5)培训过程环境污染严重,有害健康; (6)培训过程安全性差。 2、项目实施目的 1)减少甚至避免焊接练习过程中强光、高温、明火及烟尘以及有毒气体的产生,全面保护教师和学员的身体健康; 2)减少或者避免焊接实训过程中对空气污染的有害气体的排放,防止对环境造成污染; 3)能够让无工作经验的学员快速、真实的投入到焊接实训中,提高培训效率,避免由于无经验操作产生的事故。同时能够让有经验的训练者有更高的训练平台,提高焊接技术; 4)节省真实焊材、工件等焊接材料以及工业用电,降低培训成本; 方便教学。 3、焊接仿真模拟器概述 电焊操作训练模拟器系统是由武汉科码软件有限公司独立自主研发的焊接虚拟仿真培训系统。该系统是基于虚拟计算机系统,是以中高度仿真的教学培训系统,能让学员在接近真实的模拟环境下进行焊接技术的训练。该系统能促进焊接技能向实际工况焊接的有效转换。与传统的焊接培训相比减少了焊材的浪费。该设备结合了:焊工的动作、仿真焊接焙池、焊接声音及焊接手感,使用该系统的受训者能够感受到几乎真实的焊接过程。 电焊模拟实训系统是新一代环保、节能、通用型操作技能实训与评价平台。 该系统采用分布式仿真实训技术、虚拟现实技术、微机测控技术、声音仿真技术及计算机图像实时生成技术。在不需要真实焊机的情况下,通过仿真主控系统、位置追踪系统,将焊接演练过程中焊枪的位置、速度和角度等进行采集处理,并实时生成虚拟焊缝。 该系统将仿真操作设备、实时3D技术及渲染引擎相结合,演练过程真实,视觉效果、操作手感与真实一致。在焊接演练的过程中,学员能够看到焊接电弧以及焊液从生成、流动到冷却的过程,同时听到相应的焊接音效。 该系统与传统的焊接技艺教学能有机的融合在一起,是实现灵活、高效、安全、节约、绿色无污染的焊接模拟培训教学与考核的最佳教学方法。 通过电焊模拟实训系统,学员不仅仅可以获得与传统实训相同的操作经验,同时通过系统内置的数据采集、智能专家辅助模块和量化考核评价系统等一系列先进独特的教学功能,配合合理明晰的焊接知识穿插讲解,使学员可以获得在传统教学实践过程中难以量化的精确焊接培训指导,大幅度提升学员在培训过程中的方向性和目的性,有效缩短学员的培训周期,降低教师的教学负担,达到以低成本、低投入实现“精教、精学、精炼”的焊接培训机制。

数值模拟在焊接中的应用

数值模拟在焊接中的应用 摘要:焊接是一复杂的物理化学过程,借助计算机技术,对焊接现象进行数值模拟,是国内外焊接工作者的热门研究课题,并得到了越来越广泛的应用。概括介绍了数值分析方法,综述了国内外焊接数值模拟在热过程分析、残余应力分析、焊接热源分析方面的研究现状及发展趋势。 关键词:焊接;数值模拟;研究现状 焊接是一个涉及电弧物理、传质传热、冶金和力学的复杂过程,单纯采用理论方法,很难准确的解决生产实际问题。因此,在研究焊接生产技术时,往往采用试验手段作为基本方法,其模式为“理论—试验—生产”,但大量的焊接试验增加了生产的成本,且费时费力。计算机技术的飞速发展给各个领域带来了深刻的影响。结合数值计算方法和技术的不断改进,工程和科学中越来越多的问题都可以采用计算机数值模拟的方法进行研究。采用科学的模拟技术和少量的实验验证,以代替过去一切都要通过大量重复实验的方法,不仅可以节省大量的人力和物力,而且还可以通过数值模拟解决一些目前无法在实验室里直接进行研究的复杂问题。用数值方法仿真实际的物理过程,有时被称为“数值实验”。作为促进科学研究和提高生产效率的有效手段,数值实验的地位已经显得越来越重要了。在工程学的一些领域中,已经视为和物理实验同等重要。与焊接生产领域采用的传统经验方法和实验方法相比,数值模拟方法具有以下优点: (l)可以深入理解焊接现象的本质,弄清焊接过程中传热、冶金、和力学的相互影响和作用; (2)可以优化结构设计和工艺设计,从而减少实验工作量,缩短生产周期,提高焊接质量,降低工艺成本。 一、焊接数值模拟中的数值分析方法 数值模拟是对具体对象抽取数学模型,然后用数值分析方法,通过计算机求解。经过几十年的发展,开发了许多不同的科学方法,其中有:(1)解析法,即数值积分法;(2)蒙特卡洛法; (3)差分法;(4)有限元法。数值积分法用在原函数难于找到的微积分计算中。常用的数值积分法有梯形公式、辛普生公式,高斯求积法等。蒙特卡洛法又称随机模拟法。即对某一问题做出一个适当的随机过程,把随机过程的参数用由随机样本计算出的统计量的值来估计,从而由这个参数找出最初所述问题中的所含未知量。差分法的基础是用差商代替微商,相应的就把微分方程变为差分方程来求解。差分法的主要优点是对于具有规则的几何特性和均匀的材料特性问题,其程序设计和计算简单,易于掌握理解,但这种方法往往局限于规则的差分网格,不够灵活。在焊接研究中差分法常用于焊接热传导、熔池流体力学氢扩散等问题的分析。有限元法起源于20世纪50年代航空工程中飞机结构的矩阵分析,现在它已被用来求解几乎所有的连续介质和场的问题。在焊接领域,有限元法已经广泛的用于焊接热传导、焊接热弹塑性应力和变形分析、焊接结构的断裂力学分析等。在工程应用中,上述数值方法常相互交叉和渗透。 二、焊接熔池的传热与流体流动模拟进展 焊接熔池的传热和流体流动计算机模拟是焊接模拟领域的一个重要领域,同时也是焊接冶金模拟中最为复杂的一个方向之一。因为焊接过程中大部分非平衡的物理、化学反应都在短时间内集中在焊接熔池这一局部高温区域内,这部分区域存在着很大程度上的成分、组织和性能的不均匀性。而对焊接熔池的物理测试十分困难,且费用大,因此大部分的研究是基于数值模拟的基础进行的。对焊接熔池的数值模拟有助于人们从更深层次上理解焊接过程的物理实质,模拟的结果有利于实现对焊接过程的控制。但目前关于焊接熔池的传热与流体流动模型都是建立在大量的假设和简化基础上的[1~3],因而模拟结果与实际有一定的出入,需要

建筑工程钢结构焊接过程模拟与焊接变形、焊接ansys应力有限元分析(详细图解分析)

焊接过程模拟与焊接变形、焊接Ansys应力有限元分析 1.1 焊接变形与焊接应力 焊接时,加热和冷却循环总会导致一定程度的变形,焊接变形对尺寸稳定性以及结构力学性能都有很大的影响,控制焊接变形在焊接加工中是一个关键的任务。 在钢结构焊接中,焊接工艺会使构件温度场产生不均匀变化,从而在构件中产生复杂的残余应力分布。残余应力是一种自相平衡的力系,当构件承受荷载时,如受拉、受压等,荷载引起的应力将与截面残余应力相叠加,从而使构件某些部位提前达到屈服强度,并发生塑性变形,故会严重降低构件的刚度和稳定性以及结构疲劳强度。 对构件进行焊接,在焊件上产生局部高温的不均匀温度场,焊接中心处温度可达1600℃,高温区的钢材会发生较大程度的膨胀伸长,但受到相邻钢材的约束,从而在焊件内引起较高的温度应力,并在焊接过程中,随时间和温度而不断变化,称其为焊接应力。焊接应力较高的部位,甚至将达到钢材的屈服强度而发生塑性变形,因而钢材冷却后将有残存于焊件内的应力,称为焊接残余应力。并且在冷却过程中,钢材由于不能自由收缩,而受到拉伸,于是焊件中出现了一个与焊件加热方向大致相反的内应力场。 1.2 Ansys有限元焊接分析 为通过对焊接过程的三维有限元模拟分析以及焊接后构件变形及残余应力分布分析,为评估焊接对焊件的影响提供更加合理、有效、可靠的分析数据,并为焊接工艺提供一定的指导,为采用的焊接过程提供一定的分析依据,采用大型有限元计算软件Ansys作为分析工具对焊接过程与焊件的变形与残余应力进行了分析。 ANSYS有2种方式来考虑热分析与力学分析之间的耦合,即直接耦合和间接耦合。 间接耦合法的处理思路为先进行温度场的模拟,然后将求出的结点温度作为体载荷施加在结构中,计算焊接残余应力与变形。即:

焊接模拟sysweld详细教程

目录1、模型的建立 1.1创建Points 1.2由Points生成Lines 1.3由Lines生成Edges 1.4由Edges生成Domains 1.5离散化操作 1.6划分2D网格 1.7生成Volumes 1.8离散Volumes 1.9生成体网格 1.10划分换热面 1.11划分1D网格 1.12合并节点 1.13保存模型 1.14组的定义操作 1.15保存 2、焊接热源校核 2.1建立模型并修改热源参数 2.2检查显示结果 2.3保存函数 2.4热源查看 2.5保存热源 2.6高斯热源校核 3、焊接模拟向导设置 3.1材料的导入 3.2热源的导入 3.3材料的定义 3.4焊接过程的定义 3.5热交换的定义

3.6约束条件的定义 3.7焊接过程求解定义 3.8冷却过程求解定义 3.9检查 4、后处理与结果显示分析 4.1计算求解 4 .2导入后处理文件 4.3结果显示与分析

1、模型的建立 1.1创建points 根据所设计角接头模型的规格,选定原点,然后分别计算出各节点的坐标,按照Geom./Mesh.→geometry→point步骤,建立一下十个点:(0,0,0)、(0,0,10)、(0,0,50)、(10,0,50)、(10,0,20)、(10,0,10)、(20,0,10)、(50,0,10)、(50,0,0)、(10,0,0)。 1.2由Points生成Lines 按照Geom./Mesh.→geometry→1Dentities步骤,按照一定的方向性将各点连接成如下图所示的Lines: 1.3由Lines生成Edges 按照Geom./Mesh.→geometry→EDGE步骤,点击选择各边,依次生成如下图所示各Edges:

焊接数值模拟

电阻点焊过程数值模拟技术研究进展及应用 摘要:数值模拟方法一直是研究和电阻点焊过程的有效方法。详细介绍了电阻 点焊过程数值模拟技术的研究现状和进展及其工业应用。并指出了电阻点焊过程数值模拟及应用的发展方向。 1 引言 电阻点焊以其生产效率高、焊接质量易保证、易实现自动化等优点而在汽车、航空及航天等工业领域获得了广泛的应用【1】。然而电阻点焊又是一个高度非线性的电、热、力等变量作用的耦合过程,其中包括焊接时的电磁、传热过程、金属的熔化和凝固、冷却时的相变、焊接应力与变形等,且电阻点焊熔核形成过程的不可见性和焊接过程的瞬时性给试验研究带来了很大困难,使人们对电阻点焊的过程机理一直缺乏比较深入的认识。计算机技术和数值模拟技术的发展为电阻点焊研究提供了有效的理论分析手段,国内外的学者一直在尝试利用数值模拟的方法来研究点焊过程,已相继建立了许多数值模型,并取得了很多突破。 2 点焊过程数值模拟分析方法的演化过程【2】 数值模拟技术应用于电阻点焊源自20 世纪60 年代,研究者们依据描述力、热、电过程的基本方程并对方程中参数变化和边界条件进行简化和假设,建立了点焊过程的数学模型,进而用数值模拟的方法对点焊过程温度场、电流场、电势和应力、应变场进行求解,用以研究点焊过程机理。其分析方法从有限差分发展到有限元,模型从一维发展到三维,从单场分析发展到多物理场耦合分析,考虑的因素越来越多并且越来越接近实际。学者Chang 【3】对此有过详细的总结。总的来说,点焊数值模拟分析方法的演化大致可以分为以下4个阶段。 (1)有限差分法【3】。有限差分法在早期对碳钢电阻点焊电热分析中应用得非常多。其优点是计算简单,收敛性好,但是有限差分法无法求解力学问题。 因此,焊接过程中的力效应和热电效应的相互作用无法通过有限差分法来表征和求解。 (2)有限单元法【3】。1984 年,学者Nied 【4】首次采用有限单元法来模拟电阻点焊过程中的预压阶段和通电阶段,他指出忽视预压阶段接触半径的变化是产生后续误差的根源,并通过计算获得了预压阶段电极和工件(E /W)及工件之间(W/W)的实际接触面积,并以此计算结果来进行热、电耦合分析。与有限差分法相比,有限单元法充分考虑了电极压力对焊接 过程中电极和工件、工件之间接触状态的作用。但是, Nied 的分析方法仍忽视了电极压力对电流密度和接触电阻的影响。 (3)完全耦合的有限元法【3】。1993 年,Syed 等【5】意识到焊接阶段由于电极压力和受热区热膨胀的相互作用,W/W 界面的实际接触面积会不断发生 变化。因此,他们提出了一种将电热分析和热力分析反复迭代、完全耦合的“电一热一力”分析方法。这种完全耦合的算法在理论上是严谨而精确的,它是电阻点焊数值建模方法的一次重大突破。然而这种分析方法计算 量巨大,并有可能产生无法收敛的数学问题。 (4)增量耦合的有限元法。它是Browne 【6】于1995年提出的一种更加稳健的算法,将热力分析得到的接触状态结果以时间步长为增量更新到电热分析

11·22青岛输油管道爆炸事件 详细 中石化

11·22青岛输油管道爆炸事件2013年11月22日凌晨3点,位于黄岛区秦皇岛路与斋堂岛路交汇处,中石化输油储运公司潍坊分公司输油管线破裂,事故发现后,约3点15分关闭输油,斋堂岛约1000平方米路面被原油污染,部分原油沿着雨水管线进入胶州湾,海面过油面积约3000平方米。黄岛区立即组织在海面布设两道围油栏。处置过程中,当日上午10点30分许,黄岛区沿海河路和斋堂岛路交汇处发生爆燃,同时在入海口被油污染海面上发生爆燃。初步原因分析是管线油进入市政管网导致爆燃发生,事故排除恐怖破坏原因。此次事故共造成62人遇难,医院共收治伤员136人。 1事发过程 2013年11月22日凌晨2时40分,位于山东省青岛经济技术开发区(即黄岛区)秦皇岛路和斋堂岛街交汇处,中石化管道公司输油管线破裂,造成原油泄漏。约3时15分,中石化方面发现管道破裂,黄岛油库关闭输油,“向110报警,黄岛区立即组织处置”。但此时原油已进入雨水管线,并沿着雨水管线进入胶州湾边的港池。7时30分,中石化(一说黄岛区)方面在入海口处设置了两道围油栏。7时许,青岛海事部门接到青岛港务局和丽东化工厂的报告,称发现海面有油。8时30分,青岛市环境保护局接报,赶到入海口现场救援。10时30分许,黄岛秦皇岛路附近,雨水涵道和输油管线抢修作业现

场相继发生爆燃。爆炸波及青岛市丽东化工厂部分设施。10时40分,距爆炸点约1公里外的雨水管道末端入海口处,发生原油燃烧起火。11时左右,爆炸点附近居民、小学疏散。13时,现场两处明火点全部扑灭。 2事故救援 青岛市环保局一位工作人员介绍,事故现场已经成立指挥部,包括环保、安监、公安等多个部门正在现场进行处置。市、区两级领导及开发区公安、消防、安监、市政、环保等多部门立即赶赴现场,组织力量紧急处置。青岛120急救中心派出8辆救援车前往,伤者被送到青医附院西海岸园区。医院门口准备了大量推车,医护人员正全力救治伤者. 据“黄岛发布”通报,国务院事故调查组已到位,事故原因由调查组调查后发布。国家卫生计生委于2013年11月22日晚派出由2名烧伤科、2名重症医学、1名骨科、1名呼吸科专家组成的国家级专家组赶往青岛协助开展爆燃事故伤员救治工作。 据青医附院黄岛分院一名负责组织救治的工作人员通报,该院已接收48名伤员,其中一人死亡,五人重伤,仍有伤员被陆续送往医院。青医附院从总院调动20名医生赶往黄岛分院。 山东省委常委、青岛市委书记李群同志第一时间赶往现场指挥调度,市领导牛俊宪、王鲁明、张大勇也在现场参与指挥调度和组织扑救。

焊接操作仿真训练模拟器

武汉科码焊接操作仿真训练模拟器 产品采用分布式仿真实训技术、虚拟现实技术、微机测控技术、声音仿真技术及计算机图像实时生成技术。在不需要真实焊机的情况下,通过仿真主控系统、位置追踪系统,将焊接演练过程中焊枪的位置、速度和角度等进行采集处理,并实时生成虚拟焊缝。 将仿真操作设备、实时3D技术及渲染引擎相结合,演练过程真实,视觉效果、操作手感与真实一致。在焊接演练的过程中,学员能够看到焊接电弧以及焊液从生成、流动到冷却的过程,同时听到相应的焊接音效。 可实现教师端各项功能,分别是:监控、课程设计、任务设计、学生管理、成绩管理、任务共享和系统设置。教师机用于制定任务,供学生练习和考试,在考试完成后可以查看考试成绩,并对学生进行管理。 1、教师软件功能 (1)监控 选择虚拟焊接设备,向其发送训练或考试任务。每台设备应可以同时接受不同类型的课程,或进入不同的模式。 (2)课程设计 可以对课程内容进行设置,应包括:课程名称、任务等,并可方便的添加和删除。应可以查看课程信息:选择一个节点,显示出该节点的详细信息。 (3)任务设计 应可以对任务内容进行设置,须包括:任务名称、目的、焊机类型、接口类型、焊接位置、坡口类型和母材厚度等。 应可查看该教师设计的任务:选择一个节点显示出该节点的详细信息。 (4)学生管理 应可以新建年级、新建专业、新建班级、新建学生、修改学生信息、删除信息等。 (5)成绩管理 须可以查看自己所管理班级的课程成绩单、学生考试成绩单、任务详细成绩单。须能以文字报告、焊接参数曲线显示训练结果。 (6)任务共享

须实现查看其它教师所设计的任务并能共享。选择要查看的教师,任务列表中须显示出所有的任务,单击某一任务应可以查看任务详细信息。 (7)系统设置 须可将学员列表中的自由设备添加到自己的教学组。可以修改登录密码、设置公差等级的具体参数。 2、管理员功能 须可向虚拟焊接设备发送任务;能查看课程信息、任务信息、学生信息和成绩;对教师进行管理;分配虚拟焊接设备设备。管理员分为七个部分:设备监控、课程设计、任务设计、教师管理、学生管理、成绩管理和系统设置。 (1)设备监控 须可以查看当前焊接设备,通过选择教师(管理员“设备监控”可以“选择教师”,其他功能与教师“监控”相同)、课程及任务向学员机发送任务。 (2)课程设计 管理员端“课程设计”可以“选择教师”,须可以查看其教师名下的课程及详细任务信息。其他功能与教师登录的“课程设计”相同。 (3)任务设计 管理员的“任务设计”须可以“选择教师”,并能查看其任务列表,详细任务信息等。 (4)教师管理 须具有管理员权限的人员,可添加和修改教师账户信息。 (5)学生管理 须可以选择教师,查看其管理的学生信息。 (6)成绩管理 须可以选择教师查看其管理学生的考试信息等。 (7)系统设置 通过设备管理应可以方便的添加和删除设备。通过设备分组须可以给每个教师分配学员。 3.模拟焊接的内容与种类

simufact.welding焊接模拟教程

simufact.welding焊接模拟教程 案例文件,请使用simufact.welding3.1.0及以上版本打开 之前一直都是发的forming的教程,而simufact.welding网上的资料相对较少,其实simufact.welding软件也是一款很不错的软件,以往我们做焊接非线性大多数都是用marc,但是marc那个不人性化的界面,以及建模的复杂,让新手们望而却步。simufact基于marc和ife.weldsim两个求解器,取长补短,开发了极易使用的焊接模拟软件,今天我就带大家一起来体验一下吧。欢迎捧场噢! 1、打开simufact.welding3.1.0软件。点击新建按钮创建一个新的仿真模拟。 2、在弹出的界面中设定工作名称及保存位置。点击ok确定 3、在新弹出的界面中,设定重力方向、工件数量、工作平台数量、完全固定夹具数量、力固定夹具数量、机械手数量,设定完成后点击ok确定 重力方向:按照实际与所建立的几何模型坐标系来设定。如图所示,模型空间坐标系如下图所示,焊接构件放置于地面工作平台上,因此设定重力方向为Z的负方向。 工件数量:图示为两个工件焊接,上方柱形构件及下方平板行构件。数量设置为2 工作平台:起支撑作用,图示,蓝色构件下面的黄色构件为工作平台,一些复杂形状的构件焊接时,内部支撑夹具形状要复杂一些,但是道理是一样的。它们对工件起到支撑作用。 完全固定夹具:根据实际中夹具工装设定,意为XYZ方向均不可动。 里固定夹具:施加一定的力,使工件固定。如图示蓝色板类件上面的四个小圆柱,通过它们施加一定的力,让构件压在工作平台上。 机械手数量:焊接工艺中用到的机械手数量,有些工艺需要多个机械手同时进行焊接,按照实际定义即可。本案例为一个机械手,顺序焊接底部四条直线焊缝,没道焊缝之间间隔一段时间(机械手转向)。

某输气站“1.20”天然气管道爆炸着火事故案例

某输气站“ 1?20”天然气管道爆炸看火事故案例 2006年1月20日12时1 7分,某油气田分公司输气管理处仁寿运销部富加输气站发生天然气管道爆炸着火事故,造成10人死亡、3人重伤、47人轻伤。 一、基本情况 富加站位于四川省眉山市仁寿县富加镇马鞍村4组,是集过滤分离、调压、计量、配气等为一体的综合性输气站场。输气管理处两条干线威青线和威成线通过富加站,设计日输气量950X104m3/d,设计压力4.0MPa,其中威青线(管线直径①720mm)建成投产于1976年,威成线(管线直径①630mm)建成投产于1967年。事故前威青线的日输气量为50X104m3,运行压力为1.5?2.5MPa。事故发生时,该管段的日输气量为26X104m3、压力1.07Mpa,气流方向为文宫至汪洋。 威青、威成线建成投产30多年来,由于城乡经济建设发展,该地区已由一、二类地区上升为三、四类地区,管道两侧5米范围内形成了大量违章建筑物等安全隐患。2005年该油气田分公司组织实施威成线三、四类地区(钢铁一汪洋段)安全隐患整改和威青、威成线场站适应性大修改造。工程由某工程公司设计、某输气分公司承建、某监理公司负责监理。于2005年9月1日正式动工,原计划12月1 5日主体工程结束。因从意大利进口的球阀推迟到货(原计划2005年11 月30日到货,实际到货时间为2006年1月10日),变更计划为2006年1月19日进行威青线的碰口作业。 二、事故经过 1月19日7时30分,开始施工,18时30分施工完毕; 1月20日8时30分,组织从富加至文官方向置换空气; 1月20日I O时30分,完成置换空气作业,开始缓慢升压: 1月20日I 0时40分、11时40分,作业人员两次巡检无异常。压力缓慢升至1.07MPa,恢复正常流程。

焊接模拟软件

目录 1、T型接头模型的建立 1.1创建Points (1) 1.2由Points生成Lines (1) 1.3由Lines生成Edges (2) 1.4由Edges生成Domains (2) 1.5离散化操作 (3) 1.6划分2D网格 (5) 1.7生成Volumes (6) 1.8离散Volumes (8) 1.9生成体网格 (10) 1.10划分换热面 (11) 1.11划分1D网格 (12) 1.12合并节点 (13) 1.13保存模型 (14) 1.14组的定义操作 (15) 1.15保存 (17) 1.16小结 (17) 2、焊接热源校核 2.1网格的建立 (18) 2.2材料的导入及定义 (20) 2.3热源过程参数的定义 (20) 2.4求解 (21) 2.5热源显示 (21) 2.6修改参数 (22) 2.7热源校核 (22) 2.8检查显示结果 (23)

2.9保存函数 (24) 2.10热源查看 (24) 2.11保存热源 (25) 2.12小结 (25) 3、焊接模拟向导设置 3.1材料的导入 (26) 3.2热源的导入 (26) 3.3材料的定义 (27) 3.4焊接过程的定义 (27) 3.5热交换的定义 (28) 3.6约束条件的定义 (28) 3.7焊接过程求解定义 (28) 3.8冷却过程求解定义 (29) 3.9检查 (29) 3.10小结 (31) 4、后处理与结果显示分析 4.1计算求解 (32) 4 .2导入后处理文件 (32) 4.3结果显示与分析 (33) 4.4小结 (36)

1、T型接头模型的建立 1.1创建Points 根据所设计T型接头模型的规格,选定原点,然后分别计算出各节点的坐标,按照Geom./Mesh.→geometry→point步骤,建立以下13个点:P1(-25,0,-10)、P2(7,0,-10)、P3(10,0,-10)、P4(13,0,-10)、P5(35,0,-10)、P6(35,0,0)、P7(10,0,0)、P8(10,0,30)、P9(0,0,30)、P10(0,0,3)、P11(-1.5,0,1.5)、 P12(-3,0,0)、P13(-25,0,0)如下图所示: 1.2由Points生成Lines 按照Geom./Mesh.→geometry→1Dentities步骤,按照一定的方向性将各点连接成如下图所示的Lines:

焊接操作仿真训练模拟

焊接操作仿真训练模拟器 采用分布式仿真实训技术、虚拟现实技术、微机测控技术、声音仿真技术及计算机图像实时生成技术。在不需要真实焊机的情况下,通过仿真主控系统、位置追踪系统,将焊接演练过程中焊枪的位置、速度和角度等进行采集处理,并实时生成虚拟焊缝。 将仿真操作设备、实时3D技术及渲染引擎相结合,演练过程真实,视觉效果、操作手感与真实一致。在焊接演练的过程中,学员能够看到焊接电弧以及焊液从生成、流动到冷却的过程,同时听到相应的焊接音效。 实现教师端各项功能,分别是:监控、课程设计、任务设计、学生管理、成绩管理、任务共享和系统设置。教师机用于制定任务,供学生练习和考试,在考试完成后可以查看测试成绩,并对学生进行管理。 1、教师软件功能 (1)监控 选择虚拟焊接设备,向其发送训练或测试任务。每台设备应可以同时接受不同类型的课程,或进入不同的模式。 (2)课程设计 可以对课程内容进行设置,应包括:课程名称、任务等,并可方便的添加和删除。应可以查看课程信息:选择一个节点,显示出该节点的详细信息。 (3)任务设计 应可以对任务内容进行设置,须包括:任务名称、目的、焊机类型、接口类型、焊接位置、坡口类型和母材厚度等。 应可查看该教师设计的任务:选择一个节点显示出该节点的详细信息。 (4)学生管理 应可以新建年级、新建专业、新建班级等。 (5)成绩管理 须可以查看自己所管理班级的课程成绩单、学生测试成绩单、任务详细成绩单。须能以文字报告、焊接参数曲线显示训练结果。 (6)任务共享 须实现查看其它教师所设计的任务并能共享。选择要查看的教师,任务列表中须显示出所有的任务,单击某一任务应可以查看任务详细信息。 (7)系统设置 须可将学员列表中的自由设备添加到自己的教学组。可以修改登录密码、设置公差等级的具体参数。 2、管理员功能 须可向虚拟焊接设备发送任务;能查看课程信息、任务信息、学生信息和成绩;对教师进行管理;分配虚拟焊接设备设备。管理员分为七个部分:设备监控、课程设计、任务设计、教师管理、学生管理、成绩管理和系统设置。 (1)设备监控 须可以查看当前焊接设备,通过选择教师(管理员“设备监控”可以“选择教师”,其他功能与教师“监控”相同)、课程及任务向学员机发送任务。 (2)课程设计

数值模拟在焊接领域的现状和发展前景

数值模拟在焊接领域的现状和发展前景 焊接是一个涉及电弧物理、传质传热、冶金和力学的复杂过程,单纯采用理论方法,很难准确的解决生产实际问题。因此,在研究焊接生产技术时,往往采用试验手段作为基本方法,其模式为“理论—试验—生产”,但大量的焊接试验增加了生产的成本,且费时费力。随着计算机软硬件技术的快速发展,引发了虚拟制造技术的热潮,这其中就包括焊接热加工过程的数值模拟。焊接数值模拟技术的出现,为焊接生产朝“理论—数值模拟—生产”模式的发展创造了条件。焊接数值模拟技术的发展使焊接技术正在发生着由经验到科学、由定性到定量的飞跃。 焊接数值模拟,是以试验为基础,采用一组控制方程来描述一个焊接过程或一个焊接过程的某一个方面,采用分析或数值方法求解以获得该过程的定量认识。焊接数值模拟的关键是确定被研究对象的物理模型及其控制方程。而焊接物理模拟是采用缩小比例或简化了某些条件的模拟件来代替原尺寸形状的实物研究。物理模拟可以校验、校核数值模拟的结果,作为数值模拟的必要补充。 数值模拟是对具体对象抽取数学模型,然后用数值分析方法,通过计算机求解。经过几十年的发展,开发了许多不同的科学方法,其中有:(1)差分法法;(2)有限元法;(3)数值积分法;(4)蒙特卡洛法。 目前,焊接数值模拟已遍及各个焊接领域,主要研究内容有:(1)焊接热传导分析;(2)焊接熔池流体动力学;(3)电弧物理;(4)焊接冶金和焊接接头组织性能的预测;(5)焊接应力与变形;(6)焊接过程中的氢扩散;(7)特殊焊接过程的数值分析,如电阻点焊、陶瓷金属连接、激光焊接、摩擦焊接和瞬态液相焊接等;(8)焊接接头的力学行为。 焊接数值模拟的理论意义在于,通过对复杂或不可观察的现象进行定量分析和对极端情况下尚不知的规则的推测和预测,实现对复杂焊接现象的模拟,以助于认清焊接现象本质,弄清焊接过程规律。焊接数值模拟的现实意义在于,根据对焊接现象和过程的数值模拟,可以优化结构设计和工艺设计,从而减少试验工作量,提高焊接接头的质量。 我国焊接界数值模拟研究起步于80年代初,近年来很多的科研单位和个人投入到了这项研究中,并取得了积极的进展。国内也开发了不少焊接应用软件,包括焊接专家系统。所谓专家系统就是把某一领域的人类专家知识,存储在计算机的知识库中,通过系统进行推理,使计算机能够以和人类专家相近的水平解决该领域的问题。如清华大学开发的通用型弧焊工艺专家系统、哈工大和哈锅开发的焊接工程数据库及专家系统、太原重机厂研制的焊接工艺规程设计CAPP系统等。此外,一些高等院校和企业还开发了焊接裂纹预测系统、焊接变形预测系统、焊条配方优化设计系统、有缺陷焊接结构计算机辅助可靠性评定系统等。 计算机具有非常强大的数学计算和逻辑推理能力,可以模拟各种复杂现象的再现。通过数值模拟,可以部分代替大量的试验工作,具有很大的优越性和高的效益。焊接是一个牵涉到电弧物理、传热、冶金和力学的复杂过程,要得到一个高质量的焊接结构必须要控制这些因素。近20年来,国内外都对焊接预测理论和数值模拟技术进行了许多研究,取得了不少成果。 焊接过程模拟包括焊接熔池模拟和焊接电弧传热传质过程模拟等。关于焊接熔池中的流体流动和传热过程,国内外已做了不少研究工作。认为影响熔池流动的主要因素有:电磁力、表面张力和自然对流等。德国 Aachen大学ISF焊接研

大连中石油国际储运公司输油管道爆炸火灾事故

大连中石油国际储运公司输油管道爆炸火灾事 故 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

大连中石油国际储运有限公司输油管道爆炸火灾事故1企业概况 国际储运公司是中国石油大连中石油国际事业公司(80%股份)与大连港股份公司(20%股份)的合资企业,成立于2005年9月,注册资金1亿元人民币。国际储运公司原油罐区的日常运营和检维修工作由中国石油天然气股份有限公司大连石化分公司负责。国际储运公司原油罐区内建有20个储罐,库存能力185万立方米;周边还有其他单位大量原油罐区、成品油罐区和液体化工产品罐区,储存原油、成品油、苯、甲苯等危险化学品。 2事故经过 事故当天,新加坡太平洋石油公司所属30万吨“宇宙宝石”油轮在向国际储运公司原油罐区卸送最终属于中油燃料油股份有限公司(中国石油控股的下属子公司)的原油;中油燃料油股份有限公司委托天津辉盛达石化技术有限公司(以下简称辉盛达公司)负责加入原油脱硫剂作业,辉盛达公司安排上海祥诚商品检验技术服务有限公司大连分公司(以下简称祥诚公司)在国际储运公司原油罐区输油管道上进行现场作业。所添加的原油脱硫剂由辉盛达公司生产。

2010年7月15日15时30分左右,“宇宙宝石”油轮开始向国际储运公司原油罐区卸油,卸油作业在两条输油管道同时进行。20时左右,祥诚公司和辉盛达公司作业人员开始通过原油罐区内一条输油管道(内径0.9米)上的排空阀,向输油管道中注入脱硫剂。7月16日13时左右,油轮暂停卸油作业,但注入脱硫剂的作业没有停止。18时左右,在注入了88立方米脱硫剂后,现场作业人员加水对脱硫剂管路和泵进行冲洗。18时8分左右,靠近脱硫剂注入部位的输油管道突然发生爆炸,引发火灾,造成部分输油管道、附近储罐阀门、输油泵房和电力系统损坏和大量原油泄漏。事故导致储罐阀门无法及时关闭,火灾不断扩大。原油顺地下管沟流淌,形成地面流淌火,火势蔓延。 事故造成103号罐和周边泵房及港区主要输油管道严重损坏,部分原油流入附近海域。 3事故原因 经初步分析,此次事故原因是:在“宇宙宝石”油轮已暂停卸油作业的情况下,辉盛达公司和祥诚公司继续向输油管道中注入含有强氧化剂的原油脱硫剂,造成输油管道内发生化学爆炸。事故具体原因正在进一步调查分析中。这起事故虽未造成人员伤亡,但大火持续燃烧15个小时,事故现场设备管道损毁严重,周边海域受到污染,社会影响重大,教训极为深刻。

焊接数值模拟的研究和发展

焊接数值模拟文献综述 摘要 焊接作为现代制造业必不可少的工艺,在材料加工领域一直占有重要地位。焊接是一个涉及到电弧物理、传热、冶金和力学的复杂过程,焊接现象包括焊接时的电磁、传热过程、金属的熔化和凝固、冷却时的相变、焊接应力和变形等。焊接过程产生的焊接应力和变形,不仅影响焊接结构的制造过程,而且还影响焊接结构的使用性能。这些缺陷的产生主要是焊接时不合理的热过程引起的。由于高集中的瞬时热输入,在焊接过程中和焊后将产生相当大的残余应力(焊接残余应力)和变形(焊接残余变形、焊接收缩、焊接翘曲),而且焊接过程中产生的动态应力和焊后残余应力影响构件的变形和焊接缺陷,而且在一定程度还影响结构的加工精度和尺寸的稳定性。因此,在设计和施工时必须充分考虑焊接应力和变形的特点。焊接应力和变形是影响焊接结构质量和生产率的主要问题之一,焊接变形的存在不仅影响焊接结构的制造过程,而且还影响焊接结构的使用性能。因此对焊接温度场和应力场的定量分析、预测、模拟具有重要意义。传统的焊接温度场和应力预测依赖于试验和统计基础上的经验曲线或经验公式。但仅从实验角度研究焊接热应力和焊后残余应力和变形问题难度很大,无前瞻性,不能全面预测和分析焊接对整个结构的力学特性影响,客观评价焊接质量。在研究焊接生产技术时,往往采用试验手段作为基本方法,但大量的试验增加了生产成本,耗费人力物力,尤其在军工、航天、潜艇、核反应堆等大型重要焊接结构制造过程中,任何尝试和失败都将造成重大经济损失,而数值模拟将发挥其独特的能力和优势。随着有限元技术和计算机技术的飞速发展,为数值模拟技术提供了有力的工具,很多焊接过程可以采用计算机数值模拟。随着差分法、有限元法的不断完善,焊接热应力和残余应力模拟分析技术相应的发展起来。 随着计算机技术发展,20世纪末提出了计算机模拟的手段,为热加工包括焊接技术的发展创造了有力的条件。焊接过程数值模拟可包括以下几个方面:(1)焊接热过程;(2)焊缝金属凝固和焊接接头相变过程;(3)焊接应力和应变发展过程;(4)非均质焊接接头的力学行为; (5)焊接熔池液体流动及形状尺寸;(6)重大结构及其部件的应力分析。利用这种方法可以展望21世纪热加工的研究模式将转变为“理论——计算机模拟——生产”,从而大大提高焊接和材料热加工的科学水平,节约用于实验研究的人力、财力。焊接变形预测方法大多基于有限元分析。近年来,随着计算机软、硬件和有限元法的发展,焊接三维数值模拟的研究成为该领域的前沿,三维焊接热应力和残余应力演化虚拟分析技术也逐渐发展起来。计算机硬件的发展为焊接过程的模拟和工程预测创造了条件,现在Pc机的性能己和十几年前的小型机、中型机性能相差无几,对于简单的、结构不是很复杂的焊接结构可以在PC机上实现其模拟过程。

山东省青岛市“11·22”中石化东黄输油管道泄漏爆炸特别重大事故调查报告

山东省青岛市“11?22”中石化东黄输油管道泄漏爆炸特别重大事故调查报告 一、基本情况 (一)事故单位情况 1.中国石油化工集团公司(以下简称中石化集团公司),是经国务院批准于1998年7月在原中国石油化工总公司基础上重组成立的特大型石油石化企业集团,是国家独资设立的国有公司,注册资本2316亿元。 2.中国石油化工股份有限公司(以下简称中石化股份公司),是中石化集团公司以独家发起方式于2000年2月设立的股份制企业,主要从事油气勘探与生产、油品炼制与销售、化工生产与销售等业务。 3.中石化股份公司管道储运分公司(以下简称中石化管道分公司),是中石化股份公司下属的从事原油储运的专业化公司,位于江苏省徐州市,下设13个输油生产单位,管辖途经14个省(区、市)的37条、6505公里输油管道和101个输油站(库)。 4.中石化管道分公司潍坊输油处(以下简称潍坊输油处),是中石化管道分公司下属的输油生产单位,位于山东省潍坊市,负责管理东黄输油管道等5条、872公里管道。

5.中石化管道分公司黄岛油库(以下简称黄岛油库),是中石化管道分公司下属的输油生产单位,位于山东省青岛经济技术开发区,负责港口原油接收及转输业务。黄岛油库油罐总容量210万立方米(其中,5万立方米油罐34座,10万立方米油罐4座)。 6.潍坊输油处青岛输油站(以下简称青岛站),是潍坊输油处下属的管道运行维护单位,位于山东省青岛市胶州市,负责管理东黄输油管道胶州、高密界至黄岛油库的94公里管道。 (二)青岛经济技术开发区情况 青岛经济技术开发区(以下简称开发区)是经国务院批准于1984年10月成立的。目前管理区域总面积478平方公里,有黄岛、薛家岛等7个街道办事处和1个镇,322个村(居),常住人口近80万人。2012年,完成地区生产总值1365亿元。 (三)东黄输油管道相关情况 东黄输油管道于1985年建设,1986年7月投入运行,起自山东省东营市东营首站,止于开发区黄岛油库。设计输油能力2000万吨/年,设计压力6.27兆帕。管道全长248.5公里,管径711毫米,材料为API5LX-60直缝焊接钢管。管道外壁采用石油沥青布防腐,外加电流阴极保护。1998年10月改由黄岛油库至东营首站反向输送,输油能力1000

相关主题