搜档网
当前位置:搜档网 › 15-桨叶结冰对旋翼气动特性影响的计算-胡立芃-6

15-桨叶结冰对旋翼气动特性影响的计算-胡立芃-6

15-桨叶结冰对旋翼气动特性影响的计算-胡立芃-6
15-桨叶结冰对旋翼气动特性影响的计算-胡立芃-6

146

第二十六届(2010)全国直升机年会论文

桨叶结冰对旋翼气动特性影响的计算

胡立芃 刘国强 唐正飞

(南京航空航天大学直升机旋翼动力学重点实验室,南京,210016)

摘 要:用CFD 、动量-叶素等方法建立一套桨叶结冰后旋翼气动特性分析方法。包括:二维翼型结冰的建

模;二维翼型结冰后气动特性的计算方法;旋翼结冰对旋翼悬停性能的影响分析。本文使用UH-1的结冰实

验数据验证了算法,并对国产直八直升机进行结冰前后的对比计算。计算结果表明积冰状态下桨叶翼型的

升力系数降低,阻力系数增大。最终结果表明:积冰严重影响着旋翼的性能,这与由相关实验得出的结论

一致。

关键词:结冰;直升机;旋翼

1引言

直升机结冰是一个老问题,也是公认的危及飞行安全的严重问题,特别是直升机旋翼系统结冰比

固定翼飞机更加敏感,由于其自身具有可用功率有限,操纵面较小等特点,积冰更易使直升机造成危

险。美国在1982~2000年统计,因结冰引起583起飞行事故,造成800多人死亡[1]。为了实行直升

机全天候安全飞行的目标,各国针对直升机结冰问题做了大量研究。目前国内外针对旋翼桨叶结冰的

研究方法主要有:在真实结冰气象条件下进行飞行试验;在人工气候实验室制造的模拟云中进行飞行

测试;数值计算和风洞试验。如西科斯公司已经从事结冰研究以及防冰系统的研发超过57年,进行

了直升机真实结冰气象的飞行试验,旋翼和翼型全尺寸模型以及缩比例模型的风洞试验。19世纪70

年代,西科斯公司研制的电加热除冰系统,安装在2400架黑鹰直升机,现在仍然是一种有效的防冰

系统。NASA 也承担了结冰对旋翼翼型影响,直升机旋翼桨叶防/ 除冰系统等问题的研究,建立了实

用的旋翼翼型结冰数据库,同时发展了LEWIC 结冰计算程序。LEWIC 可以计算直升机在结冰条件下

的流场、水滴撞击特性,模拟结冰过程。国内也对结冰模型[2]、流场计算[3]、水滴撞击特性等方面做

了大量研究,分析了结冰对翼型气动性能的影响,以及旋翼的防/ 除冰系统的防护范围[4]等。本文将

采用数值计算方法,通过建立二维翼型结冰的数学模型,预测结冰后翼型形状,进而分析翼型结冰后

的气动特性,采用动量-叶素结合方法分析结冰对旋翼气动特性影响。

2结冰后的外形确定

结冰的数值模拟主要分为:网格生成、空气流场计算、求解水滴运动方程、冰生长模型。由于过

冷水滴在流场中的体积含量很小,不能够影响空气的流动,因此空气控制方程同水滴控制方程可以单

独求解。流程如图1,首先计算空气流场,在求解出水滴粒子的撞击特性和运动轨迹后,建立单位控

制体积内的质量和能量平衡冰生长模型,模拟结冰过程.当翼型形状改变后需要重新生成网格计算,

直到所需的结冰时间为止。

t +??????→?????→↑↓←?????←??????T 结冰外形计算结果 t=0 总时间达到水滴收集系数 指定时间初始外形

生成计算网格空气流场计算结冰外形结 冰 模 型水滴流场求解

图 1 结冰外形计算流程图 2.1 空气流场计算

本文将采用FLUENT 计算空气绕机翼运动的外流场,由于本文假设的结冰部分发生在靠近桨根

147

部分,空气速度较低,使用用定常、不可压纳维-斯托克斯(N-S )方程,积分形式如下:

0u u u x y z

???++=??? (2-1) 2222()()u u u u p u v u x y x y x

ρμ?????+=+-????? (2-2) 2222()()v v v v p u v u x y x y x

ρμ?????+=+-????? (2-3) E E Q W x y

??+=+?? (2-4) 其中ρ为流体的瞬时密度,u 、v 为流场速度在两个坐标方向的分量,E 是系统的总能,Q 为是通过系

统界面以热传导形式传递给系统的热量。

压力-速度耦合采用SIMPLE 算法[5],在中心有限体积法基础上,采用中心格式离散N-S 方程。湍

流模型使用Spalart-Allmaras 模型。流场计算结果再作为已知条件,用于水滴运动方程的求解。

2.2 水滴运动方程求解

采用欧拉参考系下的水滴连续性方程和动量方程[6]分别为:

(2-5) (2-6) 其中,α水滴的容积分数,u 水滴的速度矢量,o u 空气的速度矢量,K 空气-水滴交换系数:

218o p

f K d μρ= (2-7) 公式中:o μ空气动力粘度,p d 水滴直径,f 阻力函数,采用Schiller – Naumann 模型时:

(2-8)

其中,水滴阻力系数D C :

(2-9) ||o o p e o

u u d R ρμ-= (2-10) o ρ为空气密度,通过求解水滴连续方程与动量方程得到水滴的运动方程与水滴容积分数α,

以及欧拉两相流法中,翼型表面局部水滴收集率β:

()()0t u u ρρα?+?=?()()()o t

u uu K u u ραραρα?+?=-?24D e C R f =1000e R >1000e R <0.68724(10.15)/0.44C {

D E e R R +=

148

s s

u LWC u ρβ∞= (2-11)

其中LWC 与u ∞为来流的液态水含量和水滴速度,s u 与s ρ为翼型表面的水滴法向速度与水滴的密

度。

2.3 结冰模型

根据霜冰的形成过程,假设所有的水滴在碰撞后就完全凝结, 并且冰沿着与翼型表面法向一致的

方向增长,可以只考虑质量守恒。根据水滴流场求解结果,一个时间步长内翼型表面控制体的水滴收

集质量为:

T M LWCu A T β?∞=? (2-12)

其中A 为该控制体的水滴撞击面积,T ?为时间步长。

当翼型表面结冰产生新的外形后,需要重新的结冰翼型进行流畅计算,然后求解水滴运动方程、

计算结冰厚度,直到需要的时间为止。

2.4 算法验证

取翼型NACA0012初始计算条件为:

翼型弦长:C = 0. 533m ;气流速度: U ∞ = 119m / s ;

空气液态水含量:LWC = 0. 75g/m3 ;

结冰时间:4.5min;迎角:6°;

水滴当量直径:deq = 20μm ; 图 2 本文计算结冰外形

环境温度: T ∞ = 262K

计算值与实验值的比较如图2~3:

图3为NASA 结冰实验所得翼型结冰后外形,实验所用翼型以及结冰

条件与本文相同。实验所获积冰形状与计算结果趋势一致,结冰厚度基

本相同,从而验证了本文计算翼型结冰形状的准确性。

本文以直八直升机旋翼为例,研究结冰后旋翼气动特性。直八直升

机旋翼转速:207 rpm ;桨叶长度R=9.45m ;桨叶片数:b=6;桨叶翼型:

NACA0012;翼型弦长:C = 0. 54m ;桨叶负扭转5°

50' 图3 NASA 结冰实验结果 根据NACA结冰实验以及常士楠等人直升机旋翼桨叶防/ 除冰

系统防

护范围研究[4],将桨叶分为5段:0~0.25R 、0.25~0.35R 、0.35~0..45R 、

0.45~0.6R 、0.6~1R,其中,0.6~1R 段未发生结冰,取各段中间状态:

分别

是沿桨叶展向20%30%40%52.5%等处(依次定义为

1#2#3#4#截面),计算环境条件为:

空气液态水含量:LWC = 0. 75g/m3;

结冰时间:4.5min;水滴当量直径:deq = 20μm ;

环境温度:T ∞ = 262K ;

通过方程:4-1与4-2计算各个界面处的来流速度与迎角。

计算结果如图4~7所示:

图 4 桨叶0. 2R 处结冰外形

图5 桨叶0.3R处结冰外形图6桨叶0.4R处结冰外形图7桨叶0.525R处结冰外形3 结冰后翼型气动特性计算

结冰翼型的气动特性计算是旋翼气动特性研究的基础,建立翼型的气动特性的计算方法,对准确计算旋翼气动特性具有重要意义。本章将利用计算流体力学(CFD)方法计算翼型气动特性,将结冰后翼型与光滑翼型气动特性计算结果进行对比验证。

流场计算模型与本文2.1相同,计算得到的结冰前后升阻力系数变化如下:

图8为结冰前后阻力系数随迎角的变化曲线图9为结冰前后升力系数随迎角的变化曲线如图8、9所示,结冰对翼型的气动性能有明显的影响,这是由于结冰改变了翼型的外气动外形,气流在结冰翼型后方形成的旋涡对外流场产生了剧烈扰动。对于升力系数,在结冰翼型后方形成的低压区使得升力减小,随着迎角的增大影响越来越明显。由于翼型的摩擦阻力和压差阻力均变大,阻力系数也明显增大,且随着迎角的增大影响也越来越显著;各段翼型气动特性的降低,必然会导致整个桨叶气动特性的降低。

4 旋翼气动特性计算与分析

研究旋翼气动特性的分析方法主要包括:动量理论、叶素理论、涡流理论以及旋翼流场计算的CFD 方法。本文利用动量-叶素理论相结合的方法计算桨叶不同半径处的诱导速度以及翼型迎角,进而计算翼型气动特性,利用叶素理论得到旋翼的气动力、力矩和功率。

4.1动量-叶素理论计算模型

根据动量理论,距离桨盘中心为r,宽度为dr的环带桨盘的拉力增量为:2

1

4

T v r r

?=ρπ?,根据叶素理论21

()()

2

v

T b r a c r

r

ρ

?=Ωθ-?

Ω

149

150

令两方程相等,整理得到半径r 处的诱导速度的方程:

1v = (4-1)

利用上式,通过桨叶上r 处翼型的升力线斜率a 、桨叶安装角θ,叶弦值c 即可确定此处的桨盘平面上的诱导速度1v

确定诱导速度后,即可求得截面处入流角及迎角

1

1tan v r -α=θ-Ω (4-2) 根据翼型的迎角,结合翼型升阻特性,通过叶素理论得到的旋翼的拉力以及扭矩:

考虑桨尖损失系数B ,拉力系数: 22110()()()()l l T x B r c r c b c b c r r R R R R C d d R R

=-ππ?? (4-3) 其中桨尖损失因数B ,

1a l B = (4-4) 总的扭矩系数为:

033110()()()()l d B K x v r c r c b c b c r r R R r R R m d d R R

Ω=+ππ?? (4-5) 其中l c 翼型升力系数,d c 翼型阻力系数,Ω旋翼角速度。

4.2计算结果

使用动量-叶素理论计算得到直八直升机悬停状态下,结冰4.5min 后旋翼升力变化如表1,旋翼功率变化如表2

表 2结冰前后桨叶各段需用功率对比

从表1、2中更可以看出,结冰段越靠近桨尖,桨叶的升力降低越大。这是由于旋翼以某一角速度旋转,沿翼展方向切向速度发生变化,翼尖处最大,越靠近中心则越小,从结冰理论可知,其他条件不变时,相对气流速度越大,结冰越严重。在结冰最严重的第四段桨叶的升力降低12%,对于整个旋翼拉力降低3%,悬停需用功率增加7%。

5结论

通过建立直八直升机旋翼桨叶翼型的结冰模型,进而进行结冰后翼型以及桨叶气动特性的计算 得出以下结论:

(1)积冰会破坏翼型的气动特性, 使得翼型的升力系数降低,阻力系数增加。迎角越大,影响越明

显。

(2)桨叶积冰使得旋翼的气动性能降低,升力降低同时需用功率增大。实际的结冰外形比模拟计算的结果更加不规则,所以实际结冰对桨叶气动特性的影响更大。

参考文献

[1] 庄开莲,田蓉,程娅红等.国外直升机旋翼结冰研究.直升机年会论文,2009.7

[2] 张大林,陈维建.飞机机翼表面霜状冰结冰过程的数值模拟. 航空动力学报,2004,2

[3] 王治国,杨军,结冰对翼型流场影响的研究,燃气涡轮试验与研究,V ol.23,No.1,Feb.,2010

[4] 常士楠,刘达经, 袁修干.直升机旋翼桨叶防/ 除冰系统防护范围研究航空动力学报,Vol. 22 No. 3.Mar . 2007

[5] 王福军. 计算流体动力学分析—CFD 软件原理与应用.北京:清华大学出版社,2004

[6] 杨胜华,林贵平. 霜冰生长过程的数值模拟,计算机工程与设计, 2010,31 (1) 191

[7] John D. Lee,The UH-1H Helicopter Icing Flight Test Program.AIAA-85-0338

[8] Hdmes D G,Connell S D. Solution of t he 2D navier-stokes equations on unstructured adaptive

meshes[R] . AIAA Paper 89-1932,1989.

[9] Bourgault, Y., Boutanios, Z., and Habashi, W. G., ―3D Eulerian Droplets Impingement Using FENSAP-ICE, Part I: Model,

Al gorithms and Validation,‖ AIAA Journal of Aircraft, V ol. 37, pp. 95–103, 2000 .

[10] Addy H E. Ice accretions and icing effect s for modern airfoils[R] . NASA/ TP 2000-210031 ,2000. Numerical simulation of the aerodynamic characteristics of the rotor

blade at icing condition

Hu li-peng Liu guo-qiang Tang zheng-fei

(Science and Technology on Rotorcraft Aeromechanics Laboratory, Nanjing University of Aeronautics and

Astronautics,Nanjing 210016,China)

Abstract:In this paper, CFD software and blade-element momentum theory is used to simulate the aerodynamic characteristics of the rotor blade at icing condition. This paper studied the thermodynamic model for glaze ice accretions as well as thcalculation the aerodynamic characteristics of icy rotor airfoil and blade. Agreement of the results of the simulated ice shape with those of reference shows that the thermodynamic model for glaze ice is correct。After that the paper calculated the icy blade aerodynamic characteristic under hover flight condition with blade-element momentum theory in combination with airfoil aerodynamic characteristics. Results show that:icing have obvious effect on the aerodynamic performance of the blade.

Key words: ice accretion; helicopter; helicopter rotor

151

气动特性分析

飞行器总体设计课程设计 150座客机气动特性分析 计算全机升力线斜率C L : 为机翼升力线斜率:CL -_^ = 2 AR 2 d h 2C L :._W S gross 该公式适用于d h /b < 0.2的机型 Z 为校正常数,通常取值为3.2; d h 为飞机机身的最大宽度;b 为机翼的展长; S net 为外露机翼的平面面积;S gross 为全部机翼平 面面积。 由于展弦比A R =90 算出C La_w =514( 1/rad ) 又因为Z 为校正常数,通常取值为3.2; d h 为飞机机身的最大宽度,等于3.95m ; b 为机翼的展长,等于34.86m; C L: C La_W 1 dh b 丿 S gpss

S net为外露机翼的平面面积,估算等于119.65m2;S gross为全部机翼平面面积,等于134.9 m2;算出E为因子等于1.244. 所以可以算出全机升力线斜率缶等于6.349 二.计算最大升力系数C Lmax C Lmax =14 1'0-064regs C L? ①regs为适航修正参数,按适航取证时参考的不同失速速度取值。 由于设计的客机接近于A320,所以取①regs等于1 所以代入上面公式得到C Lmax等于1.662 三.计算增升装置对升力的影响 前面选择了前缘开缝襟翼 c LE /c为前缘缝翼打开后机翼的弦长与原弦长 的比例,它与机翼外露段的相对展长有一定对应关系。

70 20 30 40 SO 60 70 &0 100 Wing ¥Ngwl span 所以先计算机翼外露段的相对展长 等于(1-机身宽/展长)% 机身宽为3.95m ,展长为34.86m, 代入公式,算出机翼外露段的相对展长 等于88.67%,对应到上图,纵坐标 C 'LE lc 等于 1.088 。 絲翌娄型 克鲁格標資 0.3 前缘 前缘缝翼 0.4 c 中缝 1.3 后缘 < 无面积延伸〉 L6 二缝 1.9 单繼 1.3 / e 后缘(何而积絃仲) 蚁缝 1,6 c 三缝 1 9強々 1.0&

飞机的气动布局与机翼的几何参数

飞机的气动布局与机翼的几何参数 人类向往飞行是从模仿鸟类飞行开始的。但是由于鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。 而真正促使人们遨游天空的,也许是受中国风筝的启发,在航空之父凯利的科学理论指导下,将动力和升力面分开考虑,而发明了固定翼飞机。 飞机是二十世纪人类史最伟大的科学成就。是人类最快捷、舒适、高效、安全的交通运输工具,在国家安全、社会和国民经济的发展中占有极其重要的地位。 当年李白受安史之乱蒙冤沦为囚犯,被流放到白帝城后,朝廷大赦天下,他立刻返舟东下,重出三峡,欣喜的心情无法言表: 朝辞白帝彩云间,千里江陵一日还。两岸猿声啼不住,轻舟已过万重山。 如果李白乘飞机,不知如何写佳作。是否同意写成如下: 朝辞白帝彩云间,千里江陵一时还。两耳风声鸣不住,轻机已过万重山。 人类要想自由飞翔,必须做到: 1、必须有良好的气动外形 2、必须有轻巧的结构 3、必须有相当的动力 4、必须达到一定的速度 5、必须有机敏的操纵机构 6、必须有导航系统 与鸟的飞行不同,飞机在空中能够飞行是依靠与空气的相对运动,而产生作用在飞机上的力和力矩来实现的。如对于水平等速直线飞行而言,从飞机受力条件,有(升力与重力平衡) L=G L V ¥ F=D D//V (推力与阻力平衡) ¥ M=0 (俯仰力矩保持守恒)

飞机产生升力必须具备的条件: (1)有空气(飞机在空中飞行是靠作用于飞机上的空气动力)。此外,喷气发动机的氧气也是取源于空气。(2)必须存在一定的飞行速度(飞机和空气之间要有一定的相对运动,产生空气动力)。 (3)要有适当的气动外形、受力大小和飞行姿态。 (4)必须存在保持和改变飞行状态的能力。 1、飞机的气动布局 不同类型的飞机、不同的速度、不同的飞行任务,飞机的气动布局是不同的。 何为飞机的气动布局? 广义而言:指飞机主要部件的尺寸、形状、数量、及其相互位置。 飞机的主要部件有:推进系统、机翼、机身、尾翼(平尾、立尾)、起落架等。 按机翼和机身连接的相互位置分为: 按机翼弦平面有无上反角分为:

风力机组气动特性分析与载荷计算-1

目录 1前言错误!未定义书签。 2风轮气动载荷............................................... 错误!未定义书签。 2.1动量理论.................................................................................................. 错误!未定义书签。 2.1.1不考虑风轮后尾流旋转 .................................................................. 错误!未定义书签。 2.1.2考虑风轮后尾流旋转...................................................................... 错误!未定义书签。 2.2叶素理论.................................................................................................. 错误!未定义书签。 2.3动量──叶素理论.................................................................................. 错误!未定义书签。 2.4叶片梢部损失和根部损失修正 .............................................................. 错误!未定义书签。 2.5塔影效果.................................................................................................. 错误!未定义书签。 2.6偏斜气流修正.......................................................................................... 错误!未定义书签。 2.7风剪切...................................................................................................... 错误!未定义书签。3风轮气动载荷分析........................................... 错误!未定义书签。 3.1周期性气动负载...................................................................................... 错误!未定义书签。 4.1载荷情况DLC1.3..................................................................................... 错误!未定义书签。 4.2载荷情况DLC1. 5..................................................................................... 错误!未定义书签。 4.3载荷情况DLC1.6..................................................................................... 错误!未定义书签。 4.4载荷情况DLC1.7..................................................................................... 错误!未定义书签。 4.5载荷情况DLC1.8..................................................................................... 错误!未定义书签。 4.6载荷情况DLC6.1..................................................................................... 错误!未定义书签。 风力发电机组气动特性分析与载荷计算 1前言 风力发电机是靠风轮吸取风能的,将气流动能转为机械能,再转化为电能输送电网,风力机气动力学计算是风力机设计中的一项重要工作。特别是对于大、中型风机,其意义更为重大。风力机处于自然大气环境中,大气紊流、风剪切、风向的变化(侧偏风)和塔影效应等,这些现象使叶片受到非常复杂气动载荷的作用,对风力机的气动性能和结构疲劳寿命产生很大的影响。对一台大型风力发电机组来说,除风轮叶片产生机组的气动载荷外,机舱和支撑风轮和机舱的塔筒也产生气动载荷,这些都对机组的载荷产生影响。 2风轮气动载荷 目前计算风力发电机的气动载荷有动量—叶素理论、CFD等方法。动量—叶素理论是将风轮叶片沿展向分成许多微段,称这些微段为叶素,在每个叶素上的流动相互之间没有干扰,叶素可以认为是二元翼型,在这些微段上运用动量理论求出作用在每个叶素上的力和力矩,然后沿叶片展向积分,进而求得作用在整个风轮上的力和力矩,算得旋翼的拉力和功率。动量—叶素理论形式比较简单,计算量小,便于工程应用,估算机组初始设计时整机的气动性能,被广泛用于风力机的设计和性能计算,而且还用来确定风力机的动态载荷,不断地被进一步改进和完善。CFD数值计算不需要对数学模型作近似处理,直接对流体运动进行数值模拟,从物理意义上说,数值求解N-S方程的CFD方法应该是最全面准确计算风力机气动特性的方法。但是,由于极大的计算工作量,数值计算的稳定性等原因,目前CFD求解N-S方程方法还远不能作为风力机气动设计和研究的日常工具。作为解决工程问题的工具还不太实际。为此在计算中应用动量—叶素理论方法来计算机组的气动载荷。 2.1 动量理论 动量理论是经典的风力机空气动力学理论。风轮的作用是将风的动能转换成机械能,但是它究竟能够吸收多大的风的动能就是动量理论回答的问题。下面分不考虑风轮后尾流旋转和考虑风轮后尾流旋转两种情况应用动量理论。 2.1.1不考虑风轮后尾流旋转 首先,假设一种简单的理想情况:

48 自转旋翼机桨叶结构设计-钱伟(6)

第二十八届(2012)全国直升机年会论文 自转旋翼机桨叶结构设计 钱伟1朱清华1陈宣友2 (南京航空航天大学直升机旋翼动力学重点实验室,南京,210016;中航工业发展中心,北京,100012) 摘要:本文以某一自转旋翼机桨叶结构设计为例,介绍了中小型自转旋翼机复合材料桨叶初步结构设计,包括关键材料的选取,整体结构安排,常用部件布置等。为桨叶后续分析及调整奠定基础。 关键字:自转旋翼机;桨叶;设计 1引言 自转旋翼机的抗风能力较高。一般来说,其抗风能力强于同量级的固定翼飞机,而大体与直升机的抗风能力相当。旋翼机的性价比很高,胜过同量级直升机1/5~1/10。 旋翼系统主要给旋翼机提供升力和俯仰、滚转姿态操纵,桨毂常用的是全铰接式、跷跷板式。由于不需反扭矩装置,主要型式是单旋翼构型。旋翼常采用2片或3片桨叶,由于应用于直升机的负扭桨叶对自转旋翼机来讲并没有多大优势,所以常用无扭转或甚至是正扭转桨叶[1]。 桨叶是旋翼飞行器的关键部件,对旋翼机的性能和飞行安全都有重要影响。因此,桨叶设计直接影响飞行性能、飞行品质和飞行安全性。 2桨叶的气动参数优化选择 对于整个旋翼桨盘,起阻碍转动作用的桨叶段形成了一个阻转区,起驱使转动作用的桨叶段形成了一个驱动区,桨根段形成了一个失速区,这是垂直来流状态下的区域分布。 当有前飞速度时,来流有偏角,为斜流,各方位加上前飞相对速度投影的影响。显然,在后行桨叶侧靠近桨根处有一圆形反流区,反流区位于失速区内,失速区内气动力主要表现为阻力。桨盘升力主要由阻转区和驱动区气动合力的垂直分力合成[1]。本文选取桨叶半径,弦长,负扭度,及翼型配置进行优化设计(该技术方法另文呈现)。 3桨叶结构布置 3.1桨叶结构形式 根据优化设计选择桨叶参数,如下表1: 表1 桨叶的主要设计参数 旋翼形式跷跷板式(带挥舞铰) 旋翼转向右旋(俯视逆时针旋转) 旋翼直径D=12.8m 旋翼转速1(前飞状态)Ω=27.22rad/s (260r/min) 旋翼转速2(起飞状态)Ω=39.79rad/s (380r/min) 桨叶平面形状矩形 桨叶翼型OA212 桨叶扭转角0° 桨叶弦长0.350m

桨叶的外形设计

叶片外形确定 设已知风轮尖速比0λ,直径D,叶片数B 和剖面翼型,叶片来流角?可由下式确定。0 33cot 2 2 r R ?λλ== 然后根据设计者经验取各剖面攻角α,一般取α满足升阻 比L/D 在最大值附近,再根据θ?α=-确定叶片扭角。最后根据 C = 要完整设计风力机叶片,可以按下面方法进行。 1. 风轮设计参数 给定风力机输出功率P 、设计风速1V 、机电效率12ηη,风能利用系数p C ,空气密度ρ 2. 风力机设计步骤 (1)计算风力机风轮直径D 根据公式321120.49P D C P V ηη=求得直径D (2)确定尖速比 根据设计风速,给定风力机转速,用电机加一个变速箱达到要求。这样就可以确定风力机的叶尖速比。 (3)确定叶轮的实度和叶片数目。已知尖速比,根据尖速比 与叶轮实度的关系图可以得到实度,对于小型的风力机叶片数目取3比较合适。 (4)将风轮分为10个剖面,每个剖面间隔0.1R,计算各剖面的λ值。 (5)选取翼型。确定升阻比最大时的攻角α和升力系数L C 。

(6)用公式0 33cot 22r R ?λλ==确定每个剖面的来流角? (7)确定每个剖面的形状参数N, 可用公式N = 计算 (8)对于每一个计算点,使用下列公式计算弦长.L rN C B C =, 根部区弦宽太大,故进行线化或其他处理. (9) 计算叶片展弦比SP. R C SP = C 为平均弦宽 (10)根据叶片的展弦比,对升力曲线进行修正。用经验性的校正调整攻角,以得到最佳的升阻比L/ D 根据升力曲线与轴相交处的攻角0α采用下列公式算出校正后的攻角c α, 03 (1)0.11L c P C S αα=+ + (11)根据公式c θ?α=-得到扭角,在根部,得到的扭角过大,也可做适当修正。 (12)绘制精确的叶片和翼型图。

空气螺旋桨结构分析设计

靠桨叶在空气中旋转将发动机转动功率转化为推进力或升力的装置,简称螺旋桨。它由多个桨叶和中央的桨毂组成,桨叶好像一扭转的细长机翼安装在桨毂上,发动机轴与桨毂相 连接并带动它旋转。中国明代(1368~1644年)民间的玩具“竹蜻蜓”实际上是一种原始的螺旋桨。喷气发动机出现以前,所有带动力的航空器无不以螺旋桨作为产生推动力的装置。目前螺旋桨仍用于装活塞式和涡轮螺旋桨发动机的亚音速飞机。直升机旋翼和尾桨也是一种螺旋桨。 原理螺旋桨旋转时,桨叶不断把大量空气(推进介质)向后推去,在桨叶上产生一向前的力,即推进力。一般情况下,螺旋桨除旋转外还有前进速度。如截取一小段桨叶来看,恰像一小段机翼,其相对气流速度由前进速度和旋转速度合成(图1 )。桨叶上的气动力在前进方向的分力构成拉力。在旋转面内的分量形成阻止螺旋桨旋转的力矩,由发动机的力矩来平衡。桨叶剖面弦(相当于翼弦)与旋转平面夹角称桨叶安装角。螺旋桨旋转一圈,以桨叶安装角为导引向前推进的距离称为桨距。实际上桨叶上每一剖面的前进速度都是相同的,但圆周速度则与该剖面距转轴的距离(半径)成正比,所以各剖面相对气流与旋转平面的夹角随着离转轴的距离增大而逐步减小,为了使桨叶每个剖面与相对气流都保持在有利的迎角范围内,各剖面的安装角也随着与转轴的距离增大而减小。这就是每个桨叶都有扭转的原因。 空气螺旋桨 螺旋桨效率以螺旋桨的输出功率与输入功率之比表示。输出功率为螺旋桨的拉力与飞行速度的乘积。输入功率为发动机带动螺旋桨旋转的功率。在飞机起飞滑跑前,由于前进速度为零,所以螺旋桨效率也是零,发动机的功率全部用于增加空气的动能。随着前进速度的增加,螺旋桨效率不断增大,速度在200~700公里/时范围内效率较高,飞行速度再增大,由于压缩效应桨尖出现波阻,效率急剧下降。螺旋桨在飞行中的最高效率可达85%~90%。螺旋桨的直径比喷气发动机的大得多,作为推进介质的空气流量较大,在发动机功率相同时,螺旋桨后面的空气速度低,产生的推力较大,这对起飞(需要大推力)非常有利。 构造特点螺旋桨有2、3或4个桨叶,一般桨叶数目越多吸收功率越大。有时在大功率涡轮螺旋桨飞机上还采用一种套轴式螺旋桨,它实际上是两个反向旋转的螺旋桨,可以抵消反作用扭矩。在发动机功率低于100千瓦的轻型飞机上,常用双叶木制螺旋桨。它是用一根拼接的木材两边修成扭转的桨叶,中间开孔与发动机轴相连接。螺旋桨要承受高速旋转时

飞机的气动布局与机翼的几何参数资料讲解

飞机的气动布局与机翼的几何参数

飞机的气动布局与机翼的几何参数 人类向往飞行是从模仿鸟类飞行开始的。但是由于鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。 而真正促使人们遨游天空的,也许是受中国风筝的启发,在航空之父凯利的科学理论指导下,将动力和升力面分开考虑,而发明了固定翼飞机。 飞机是二十世纪人类史最伟大的科学成就。是人类最快捷、舒适、高效、安全的交通运输工具,在国家安全、社会和国民经济的发展中占有极其重要的地位。 当年李白受安史之乱蒙冤沦为囚犯,被流放到白帝城后,朝廷大赦天下,他立刻返舟东下,重出三峡,欣喜的心情无法言表: 朝辞白帝彩云间,千里江陵一日还。两岸猿声啼不住,轻舟已过万重山。 如果李白乘飞机,不知如何写佳作。是否同意写成如下: 朝辞白帝彩云间,千里江陵一时还。两耳风声鸣不住,轻机已过万重山。 人类要想自由飞翔,必须做到: 1、必须有良好的气动外形 2、必须有轻巧的结构 3、必须有相当的动力 4、必须达到一定的速度 5、必须有机敏的操纵机构 6、必须有导航系统 与鸟的飞行不同,飞机在空中能够飞行是依靠与空气的相对运动,而产生作用在飞机上的力和力矩来实现的。如对于水平等速直线飞行而言,从飞机受力条件,有 L=G L V ¥(升力与重力平衡) F=D D//V ¥(推力与阻力平衡) M=0 (俯仰力矩保持守恒) 飞机产生升力必须具备的条件: (1)有空气(飞机在空中飞行是靠作用于飞机上的空气动力)。此外,喷气发动机的氧气也是取源于空气。 (2)必须存在一定的飞行速度(飞机和空气之间要有一定的相对运动,产生空气动力)。 (3)要有适当的气动外形、受力大小和飞行姿态。

直升机旋翼桨毂结构形式

直升机旋翼桨毂(含主桨尾桨)结构形式 1.简介 尾桨是用来平衡反扭矩和对直升机进行航向操纵的部件。旋转着的尾桨相当于一个垂直安定面,能对直升机航向起稳定作用。虽然后桨的功用与旋翼不同,但是它们都是由旋转而产生空气动力、在前飞时处于不对称气流中工作的状态,因此尾桨结构与旋翼结构有很多相似之处。尾桨的结构形式有跷跷板式、万向接头式、铰接式、无轴承式、“涵道尾桨”式等等。前面几种形式与旋翼形式中的讨论相似,只是铰接式尾桨一般不设置摆振铰。70年代以来,又发展了无轴承尾桨(包括采用交叉式布置无轴承尾桨)及“涵道尾桨”。“涵道尾桨”是把尾桨置于机身尾斜梁的“涵道”之中。涵道风扇直径小,叶片数目多。前飞时尾面可以提供拉力,因此,可以减小尾桨的需用功率。但在悬停时“涵道风功率消耗偏大,对直升机悬停和垂直飞行性能不利。可以避免地面人员或机外物体与尾桨相碰撞,安全性好。 1.1. 名词解释(参考图 2.2-1) 1)水平铰(挥舞铰)的作用:发动机丁作时,旋翼便以一定的转速转动。在飞 行过程中(如前飞),由于飞行速度的存在,使得旋翼前行桨叶的相对气流速度大于后行桨叶的相对气流速度,从而使前行桨叶产生的升力大于后行桨叶产生的升力。若没有水平铰,则由两侧桨叶升力大小不等所构成的滚转力矩,将使直升机倾斜。有水平铰时,情况则不同。前行桨叶升力大,便绕水平铰向上挥舞;后行桨叶升力小,便绕水平铰向下挥舞。这样,横侧不平衡的滚转力矩就不会传到机身,从而避免了直升机在前飞中产生倾斜。 2)垂直铰(摆振或摆振铰)的作用:直升机前飞时,桨叶在绕旋翼轴转动的同 时还要绕水平铰挥舞。桨叶作挥舞运动时,桨叶重心距旋翼轴的距离不断变化。由理论力学得知,旋转着的质量对旋转轴沿径向有相对运动时,会受到

风力机的翼型与叶片外形设计简介

风力机的翼型与叶片外形设计简介 摘要 关键词:风力机,翼型,叶片 Introduction to aerofoil and blade shape design for wind turbine Abstract Keywords: 引言 叶片是风力机重要的能量转换部件,其设计和制造直接影响风力机发电机组的高效安全运行。风力机的运行效率直接与叶片的空气动力设计有关,包括叶片长度、翼型、沿纵向翼型的分布和安装角。 1、翼型与叶片外形设计的重要性 2、叶片外形设计的大概过程,强调叶片外形设计时翼型的前提作用 3、给出论文的框架 1.1 风力机翼型设计 1.1.1风力机翼型设计发展过程及特点 讲清与飞机翼型的区别 翼型空气动力特性的好坏直接影响风力机的性能,翼型的形状也影响叶片的主体结构形式。在风力机叶片翼型参数的设计过程中,各个参数的变化都会对其他参数的设计产生影响。在设计中本着能够使单位叶素有最大的功率利用系数的原则,来选择翼型参数。 在20世纪七八十年代的风力机设计过程中,很多风力机直接采用了NACA系列中的航空翼型。但风力机的工作条件和飞机有较大的区别,一方面风力机叶片工作时,其攻角变化

范围大;另一方面风力机叶片设计要考虑低雷诺数的影响,风力机和飞机工作的雷诺数范围有所不同,其影响将就也不完全一样,过去在小型风力机设计中考虑雷诺数较少而是直接选 用,以翼弦为特征长度的雷诺数在风轮径向方向是变化的,在大型叶片设计中必须给以考虑。设计实践表明,使用航空翼型虽然可以得到很高的升阻比,但是在低雷诺数环境下,航空翼型易于发生泡式分离,从而使升阻比特性恶化。另外,航空翼型对表面粗糙度比较敏感,在翼型几何形状由于灰尘、结冰等原因发生变化时,翼型的气动特性往往也会迅速恶化,从而不适于直接作为风力机叶片翼型使用。 因此,选择翼型常根据以下原则:对低速风轮,由于叶片数较多,不需要特殊的翼型升阻比;对于高速风轮,叶片数较少,应选择在很宽的风速范围内具有较高的升阻比和平稳失速特性的翼型,对粗糙度不敏感,以便获得较高的功率系数;另外要求翼型的气动噪声低。 1.1.2风力机翼型分类 按风机发电量,按不同实验室; 不同类型的风力发电机对翼型的不同要求 1.1.3风力机翼型设计方法简要介绍 1.1.4风力机翼型小结 创新点在于:对于不同类型的风机翼型应该怎么样选取,在一个叶片上不同翼型的分布。 1.2 叶片外形设计 从轮毂中心到叶尖不同位置处,翼型的选择 从轮毂中心到叶尖不同位置处,相应翼型的弦长长度公式 从轮毂中心到叶尖不同位置处,相应翼型的攻角 失速型叶片与变桨型叶片的区别(安装角的问题) 陆上风机叶片与海上风机叶片的区别 MW风机与小型风机叶片的区别 1.3 金风750KW与1.5MW的翼型与叶片外形特点 提出目前叶片所存在问题

15-桨叶结冰对旋翼气动特性影响的计算-胡立芃-6

146 第二十六届(2010)全国直升机年会论文 桨叶结冰对旋翼气动特性影响的计算 胡立芃 刘国强 唐正飞 (南京航空航天大学直升机旋翼动力学重点实验室,南京,210016) 摘 要:用CFD 、动量-叶素等方法建立一套桨叶结冰后旋翼气动特性分析方法。包括:二维翼型结冰的建 模;二维翼型结冰后气动特性的计算方法;旋翼结冰对旋翼悬停性能的影响分析。本文使用UH-1的结冰实 验数据验证了算法,并对国产直八直升机进行结冰前后的对比计算。计算结果表明积冰状态下桨叶翼型的 升力系数降低,阻力系数增大。最终结果表明:积冰严重影响着旋翼的性能,这与由相关实验得出的结论 一致。 关键词:结冰;直升机;旋翼 1引言 直升机结冰是一个老问题,也是公认的危及飞行安全的严重问题,特别是直升机旋翼系统结冰比 固定翼飞机更加敏感,由于其自身具有可用功率有限,操纵面较小等特点,积冰更易使直升机造成危 险。美国在1982~2000年统计,因结冰引起583起飞行事故,造成800多人死亡[1]。为了实行直升 机全天候安全飞行的目标,各国针对直升机结冰问题做了大量研究。目前国内外针对旋翼桨叶结冰的 研究方法主要有:在真实结冰气象条件下进行飞行试验;在人工气候实验室制造的模拟云中进行飞行 测试;数值计算和风洞试验。如西科斯公司已经从事结冰研究以及防冰系统的研发超过57年,进行 了直升机真实结冰气象的飞行试验,旋翼和翼型全尺寸模型以及缩比例模型的风洞试验。19世纪70 年代,西科斯公司研制的电加热除冰系统,安装在2400架黑鹰直升机,现在仍然是一种有效的防冰 系统。NASA 也承担了结冰对旋翼翼型影响,直升机旋翼桨叶防/ 除冰系统等问题的研究,建立了实 用的旋翼翼型结冰数据库,同时发展了LEWIC 结冰计算程序。LEWIC 可以计算直升机在结冰条件下 的流场、水滴撞击特性,模拟结冰过程。国内也对结冰模型[2]、流场计算[3]、水滴撞击特性等方面做 了大量研究,分析了结冰对翼型气动性能的影响,以及旋翼的防/ 除冰系统的防护范围[4]等。本文将 采用数值计算方法,通过建立二维翼型结冰的数学模型,预测结冰后翼型形状,进而分析翼型结冰后 的气动特性,采用动量-叶素结合方法分析结冰对旋翼气动特性影响。 2结冰后的外形确定 结冰的数值模拟主要分为:网格生成、空气流场计算、求解水滴运动方程、冰生长模型。由于过 冷水滴在流场中的体积含量很小,不能够影响空气的流动,因此空气控制方程同水滴控制方程可以单 独求解。流程如图1,首先计算空气流场,在求解出水滴粒子的撞击特性和运动轨迹后,建立单位控 制体积内的质量和能量平衡冰生长模型,模拟结冰过程.当翼型形状改变后需要重新生成网格计算, 直到所需的结冰时间为止。 t +??????→?????→↑↓←?????←??????T 结冰外形计算结果 t=0 总时间达到水滴收集系数 指定时间初始外形 生成计算网格空气流场计算结冰外形结 冰 模 型水滴流场求解 图 1 结冰外形计算流程图 2.1 空气流场计算 本文将采用FLUENT 计算空气绕机翼运动的外流场,由于本文假设的结冰部分发生在靠近桨根

在汽车行业的气动外形优化混合方法

在汽车行业的气动外形优化混合方法 摘要 复杂的工业气动外形优化工具的发展,是基于一个混合的过程。随机优化方法、夫妇遗传算法和确定性的BFGS方法。Navier-Stokes方程、K - ε湍流模型对于每个优化所需要的评估能解决与商业CFD代码的非结构化网格周围的形状优化。经过各种验证测试的,该方法被成功地应用于优化一个简化的汽车的后部形状,使计算加速阻力系数的时间的最小化。 1.介绍 由于环境和销售参数的原因,降低道路车辆的耗油量与汽车制造商有关。因此,,更精确地降低车辆的空气动力学阻力系数成为汽车研究中心的主要议题之一。因为它已被证明的阻力系数是40%,依赖于外部形状和它的后部几何形状。一个数值优化方法在这里提出,以寻求得到创新的低阻力的汽车的形状。这项研究的主要目的是利用流体力学分析优化策略建立一个单一学科的设计问题。本文开发的自动优化方法是基于两种类型的算法耦合而形成的。 随机选择的算法是一种遗传算法(GA)。为了减少公司漫长的模拟时间,同时保持它的优点,已加上一个基于梯度的确定性方法,该方法具有快速收敛到一个现有的解决方案的优势。即以下的方法:首先,提高随机人群的解决方案。然后,基于梯度的方法的几个步骤通过以下方式获得对GA的最优个体,重新注入高原人口和GA重新启动,直到得到新的个人。方法稳定后该混合算法就将停止。遗传过程只是轻微扰动,但在同一时间,梯度法允许更快的下降得到最优解。 在工业应用中,基于梯度的方法的困难之一是成本函数的灵敏度相对于它的参数的计算。在有限差分近似的梯度试验中,其作为一个商业CFD代码已被用来解决的不可压缩的Navier-Stokes和K-ε方程。 论文被分为三个部分。首先,对一些特殊性的优化方法进行了介绍。然后通过分析优化对新型混合方法进行了验证。最后,把第一次的3D形状优化呈现出来。

22-悬停状态三维桨尖旋翼模型桨叶表面动态压力测量试验(26室 林永峰)(7)

22-悬停状态三维桨尖旋翼模型桨叶表面动态压力测量试验(26室林永峰)(7)

第二十六届(2010年)全国直升机年会论文 悬停状态三维桨尖旋翼模型桨叶表面动态压力测量试验 林永峰1黄建萍1严军2陈文轩2 (1.中国直升机设计研究所旋翼动力学重点实验室,江西景德镇,333001; 2.中国直升机设计研究所,江西景德镇,333001;) 摘要:研制了抛物线后掠带下反的4m直径三维桨尖形状的旋翼模型,在一片桨叶的5个剖面上布置了微型压力传感器,开展了悬停状态下抛物线后掠桨尖和抛物线后掠带下反桨尖旋翼模型动态压力测量试验。采用动态信号的采集方法测量了桨叶表面压力,对试验结果进行了分析,给出了分析结论。 关键词:三维桨尖;旋翼;表面压力;试验 0 引言 桨尖形状对旋翼性能有着重大的影响。桨尖区域是一个非常敏感的区域。它既是桨叶的高动压区,又是桨尖涡的形成和逸出之处,桨尖形状小的改变就能导致桨尖涡的涡强和轨迹有大的变化,从而影响旋翼的流场、气动载荷和噪声。因此,采用合适的桨尖形状,能有效地改进旋翼的气动性能[1] [2] [3] [4] [5],对直升机旋翼桨尖形状的理论和试验研究已成为当今旋翼气动研究的重要课题。 自70年代以来,美、英、法、德和俄国先后开始了各自的旋翼桨尖形状的研究。在80年代后新研制的直升机旋翼上,就很少使用矩形桨尖了。大量的非矩形桨尖在直升机旋翼上得到广泛的应用,特别是采用BERP桨尖的英国“山猫”直升机于1986年创造了400.87km/h的世界直升机速度记录[6]。使研究人员认识到桨尖形状的改进是改善旋翼气动特性的重要途径之一。 美国西科斯基公司还在旋翼台上用UH-60A旋翼模型试验了三种桨尖,桨尖长度为6%,三种桨尖分别是后掠桨尖、双后掠尖削桨尖(DST桨尖)和双后掠尖削带20°下反桨尖。 欧洲的法国和德国在三维桨尖的理论分析和试验方面也开展了许多研究工作,德国在三维桨尖的气动机理研究方面开展了流场显示和表面测压试验研究。 本次桨叶表面动态压力测量试验研制了抛物线后掠、抛物线后掠+下反桨尖形状的两付4m直径的旋翼模型,研究悬停状态下三维桨尖对旋翼气动特性的影响。 183

飞机的气动布局与机翼的几何参数

飞机的气动布局与机翼 的几何参数 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

飞机的气动布局与机翼的几何参数 ??? 人类向往飞行是从模仿鸟类飞行开始的。但是由于鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。 ??? 而真正促使人们遨游天空的,也许是受中国风筝的启发,在航空之父凯利的科学理论指导下,将动力和升力面分开考虑,而发明了固定翼飞机。 ??? 飞机是二十世纪人类史最伟大的科学成就。是人类最快捷、舒适、高效、安全的交通运输工具,在国家安全、社会和国民经济的发展中占有极其重要的地位。 当年李白受安史之乱蒙冤沦为囚犯,被流放到白帝城后,朝廷大赦天下,他立刻返舟东下,重出三峡,欣喜的心情无法言表: ?? ?朝辞白帝彩云间,千里江陵一日还。两岸猿声啼不住,轻舟已过万重山。 ??? 如果李白乘飞机,不知如何写佳作。是否同意写成如下: ??? 朝辞白帝彩云间,千里江陵一时还。两耳风声鸣不住,轻机已过万重山。 人类要想自由飞翔,必须做到: 1、必须有良好的气动外形 2、必须有轻巧的结构 3、必须有相当的动力 4、必须达到一定的速度 5、必须有机敏的操纵机构 6、必须有导航系统 与鸟的飞行不同,飞机在空中能够飞行是依靠与空气的相对运动,而产生作用在飞机上的力和力矩来实现的。如对于水平等速直线飞行而言,从飞机受力条件,有 ? L=G??? L?V ?? (升力与重力平衡) ¥ ? (推力与阻力平衡) ? F=D??? D//V ¥ ? M=0????????????? (俯仰力矩保持守恒)

飞机产生升力必须具备的条件: (1)有空气(飞机在空中飞行是靠作用于飞机上的空气动力)。此外,喷气发动机的氧气也是取源于空气。 (2)必须存在一定的飞行速度(飞机和空气之间要有一定的相对运动,产生空气动力)。 (3)要有适当的气动外形、受力大小和飞行姿态。 (4)必须存在保持和改变飞行状态的能力。 1、飞机的气动布局 ??? 不同类型的飞机、不同的速度、不同的飞行任务,飞机的气动布局是不同的。 ??? 何为飞机的气动布局 广义而言:指飞机主要部件的尺寸、形状、数量、及其相互位置。 飞机的主要部件有:推进系统、机翼、机身、尾翼(平尾、立尾)、起落架等。 按机翼和机身连接的相互位置分为:

旋翼机总体设计的几个问题

旋翼机总体设计的几个问题 摘要:结合自转旋翼特性及旋翼机设计的独特性,在直升机空气动力学和飞行动力学原理的基础上修改并建立了计算模型,解决了旋翼机气动布局、总体参数及旋翼设计等方面的难题。 旋翼机的旋翼依靠前方来流吹动始终处于自转状态,因而一旦发动机空中停车,可以直接依靠旋翼自转着陆,而直升机旋翼还需要一个转入自转的过程,所以旋翼机没有直升机的低速回避区,安全性更好。旋翼机由于其旋翼自转,没有自发动机至旋翼的减速和传动装置,也不需要平衡旋翼反扭矩的尾桨,因而结构大大简化。现代自转旋翼飞行器采用旋翼预转技术,起飞前通过简单传动装置将旋翼预先驱转,然后通过离合器切断传动链路后起飞,使得它可以跳跃式或超短距起飞(起飞距离0~30m);自转旋翼飞行器降落时,通过操纵旋翼锥体后倾,可实现点式着陆,不需要专用机场。因而近十几年来,旋翼机再次成为航空领域关注的热点。 一、总体参数、布局及飞行性能 1. 参数确定 旋翼机总体设计参数包括总重Gw、使用载荷Guse、旋翼半径R、旋翼桨尖速度ΩR、旋翼桨叶弦长b、桨盘载荷p、旋翼实度σ、功率载荷q、螺旋桨桨叶半径Rp和螺旋桨桨尖速度ωRp等。 根据对已有旋翼机参数的归纳总结,目前使用中的旋翼机大多是小型或轻型的,重量比(空机与总重之比)约0.6。设计任务可以确定总重Gw,也可以确定使用载荷Guse,知道二者之一,便可以求出另一者。为了拥有好的性能,例如停车下降率约为5m/s,一般要求功率载荷q小于4.5kg/hp (59.2N/kw),桨盘载荷p小于12kg/m2 。桨叶片数k可以参考直升机方法确定,目前大多旋翼机采用两片桨叶,安装在跷跷板式桨毂上。典型两片桨叶旋翼,取实度σ为0.034~0.040。 如果实度取稍大值,则桨叶挥舞增加,性能改善不多,故一般都取偏小值。由式(1)可以确定旋翼桨叶弦长b,若需要跳飞,预转旋翼桨尖速度要增大至1.5倍左右。螺旋桨直径根据发动机转速来确定,大的直径对爬升率和低速推力很重要,但是如果取得过大,则全机尺寸高,停放不易。螺旋桨一般与发动机输出轴直接连接,所以螺旋桨转速rpm就是发动机轴转速,螺旋桨桨尖速度ωRp和旋翼机前飞速度的合速度一般不超过声速的90%,目前常用的旋翼机螺旋桨桨尖速度(ωRp)max ≤290m/s。知道发动机转速后,即可确定螺旋桨桨叶直径。轻小型旋翼机总距角θ一般是固定的,中大型旋翼机的θ也不用经常操纵。θ增加,则最小飞行速度减小,最大飞行速度增加,可用功率增加,但预转较费力,一般θ取3°~5°较理想。旋翼轴后倒角一般取-3°~- 12°,取偏小值性能略有改善,但是对跳飞不利。中心铰旋翼要有预锥角,一般约2°~4°。 2. 性能 总体参数与气动、动力学、结构重量、噪声及操稳特性等有密切关系。选取这些参数很繁杂,甚至相互矛盾,如果条件具备,旋翼机也可以像直升机总体参数优化设计一样来优化各参数。旋翼机桨盘载荷p对前飞最大速度Vmax影响很小,但对最小速度Vmin影响很大,p减小,Vmin减小,经济速度、有利速度增大。功率载荷q对 Vmin影响较小,对Vmax等影响很大,q减小,Vmax增加,不影响最大航程。实度σ减小,Vmax随之减小,低速段需用功率也减小,所以可用功率增加;增大σ对跳飞有利,对预转速度rpm要求较低。 3. 布局与部件 旋翼机的最基本的部件是机身、发动机、旋翼系统、螺旋桨、尾面以及起落架。为了改善性能,如提高飞行速度等,还可以选择机翼等部件。机身是所有其他部件的连接件,结构可以是焊接管、金属片、复合材料、单管栓接或混合结构方式,最大强度重量比的机身是碳纤维材料或焊接管结构。发动机在飞行中提供独立于旋翼系统的前飞动力,在地面则可以提供旋翼桨叶预转的动力。随着旋翼机的发展,可用于旋翼机的发动机种类也越来越多。车用、船用、航空发动机都可以

气动特性分析

飞行器总体设计课程设计 150座客机气动特性分析 一. 计算全机升力线斜率L C α _L L W C C ααξ= _L W C α为机翼升力线斜率:()_2/2L W R R C A A απ=+???? ξ为因子: 2_12h net h gross L W gross d S d b S C S απξζ? ?=++ ?? ? 该公式适用于d h / b < 0.2的机型 ζ为校正常数,通常取值为3.2; d h 为飞机机身的最大宽度;b 为机翼的展长; S net 为外露机翼的平面面积;S gross 为全部机翼平面面积。 由于展弦比R A =9.0,算出_L W C α=5.14( 1/rad ) 又因为ζ为校正常数,通常取值为3.2; d h 为飞机机身的最大宽度,等于3.95m ; b 为机翼的展长,等于34.86m;

S net 为外露机翼的平面面积,估算等于119.652m ; S gross 为全部机翼平面面积,等于134.92m ; 算出ξ为因子等于 1.244. 所以可以算出全机升力线斜率L C α等于6.349 二.计算最大升力系数max L C ()max 1410.064L regs L C C α=+Φ Φregs 为适航修正参数,按适航取证时参考的不同 失速速度取值。 由于设计的客机接近于A320,所以取Φregs 等于1 所以代入上面公式得到max L C 等于1.662 三.计算增升装置对升力的影响 前面选择了前缘开缝襟翼 c’LE /c 为前缘缝翼打开后机翼的弦长与原弦长的比例,它与机翼外露段的相对展长有一定对应关系。

风力发电机叶片气动外形设计方法概述

0 引 言 风力发电是风能利用的主要方式,叶片是用来转换风能的关键部件。风力发电机叶片的外形决定了风能转换的效率,因而风力发电机叶片气动外形设计关系到风力发电机的性能,是风力发电机设计着重考虑的部件之一。 Glauert理论、Schmitz理论和动量—叶素理论是叶片设计的基础理论,现代叶片设计方法都是在这些理论上进一步发展起来的。到目前为止,Glauert理论和动量—叶素理论仍在广泛的使用。分别介绍了三种理论如何求解叶片的弦长和来流角并运用C#语言对以上三种方法进行编程,实现对叶片弦长和来流角的求解,并对这三种方法求解出来的结果进行比较和分析。 1 理论方法介绍 1.1 Glauert理论 G1auert设计方法是考虑风轮后涡流流动的叶素理论(即考虑轴向诱导因子a 和切向诱导因子b );但在另一方面,该方法忽略了叶片翼型阻力和叶梢损失的作用,这两者对叶片外形设计的影响较小,仅对风轮的效率 影响较大。[4] 由一系列的推导知道[1],对于在给定半径r 处的尖速比 ,当 时,即 时,P C 有最大值。令 (1)式中: —中间变量 在等式两边同除以 ,得 (2) 风力发电机叶片气动外形设计方法概述 贾娇1 田 德※1,2 王海宽1 李文慧1 谢园奇2 (1.内蒙古农业大学机电工程学院 2.华北电力大学可再生能源学院) 摘 要:该文介绍了目前风力发电机叶片的主要设计理论——Glauert理论、Schmitz理论和动量—叶素理 论。运用以上三种理论,使用c#语言编程分别计算了1000W叶片的弦长和来流角,并对计算出的结 果进行了比较和分析。从设计的结果可以得到,用动量—叶素理论设计出来的弦长和来流角较Glauert 理论和Schmitz理论设计出来的弦长和来流角更小。但是用以上三种理论设计出来的弦长和来流角在 叶根处都偏大。 关键词:风力发电机;叶片;气动外形设计 而 ,则 即 ,由此可得: (3)将上式代入(1),便可求得a 值。 根据 便可求得b ,进而可求出如图1所示给定半径处的来流角 (a)速度 (b)作用力 (4) 便可求出 (5) 1.2 Schmitz理论 很多基本理论是在风力发电机假设叶片无限长的情况下建立的,对于有限长度的叶片当风轮旋转时,升力翼的下表面压力大于大气压力,上表面压力小于大气压 图1 翼型在气流中的运动分析及受力分析 p C

风力机叶片翼型气动性能设计计算方法的分析与研究

2007年,第3期 - -收稿日期:2007-01-15 作者简介:黄 华(1980-),男,江西抚州人,硕士研究生,主要从事风力机叶片翼型气动性能计算研究。 风力机叶片翼型气动性能设计计算方法 的分析与研究 黄 华,张礼达 (西华大学能源与环境学院,四川成都610039) 摘 要:基于翼型理论和线性动量理论对叶片翼型截面升力公式的计算,导出对非设计工况来流角计算的迭代式。应用牛顿-拉普森迭代法对来流角进行计算,根据结果再计算叶片截面的升力、推力、切向力、功率等气动参数。提出一种风力机叶片翼型气动性能的计算和校核设计方法。关键词:气动性能;迭代法;风力机 中图分类号:TK83 文献标识码:A 文章编号:1004-3950(2007)03-0045-03 Analysis and study on desi gn and calculation m ethod of aerodyna m ic perfor mance for airfoils of w i nd turbi ne H UANG H ua ,Z H AN G Li -da (Schoo l o f Ene rgy and Env ironment ,X ihua U n i versity ,Chengdu 610039,Ch i na) Abstrac t :Based on aerofo il t heory and the pr i ncipa l o f linear mom entu m to the calcu lati on of t he lift f o rce for m ulae of b l ade section ,t he itera ti on f o r t he apparentw i nd ang l e pred i ction was obta i ned .By usi ng N ew ton -R aphson iterati on the angle w as calculated .A fter tha t ,the lift ,t hrust ,c ircu m f e renti a l force ,and powe r of the ro t o r was d i m ensi oned .A new ca lcu l a ti on and desi gn m e t hod o f aerodyna m ic perfo r mance for a irfoils of w i nd t urbi ne w as presented .K ey word s :aerodyna m i c perfor m ance ;N ew ton -R aphson itera ti on ;w i nd turb i ne 0 引 言 气动性能计算是风力机设计和校核中的重要环节。设计出桨叶的气动外形后,计算其气动性能,可以作为对设计结果的评价;气动性能计算结 果也可以作为反馈,修正桨叶气动外形提供的数据[1] ,准确的气动性能计算能够提高风轮获取更多的外界风能,风力机桨叶的强度、刚度及稳定性的校核也依赖于气动性能的计算。由于外界来流风速的多变性,风力机桨叶的气动性能计算和校核是一个很复杂的计算过程。 计算叶片在实时叶尖比 的受力和转轮叶片的来流风速是很复杂的,目前各种计算和修正方法给出的都是叶片在设计叶尖比条件下( D )的叶片气动性能参数的计算[2-3] 。对叶片进行设计计算特别在设计叶片的扭曲角时,要计算校核叶片不同半径处的尖速比、形状参数、叶片弦长, 以得到最佳的叶片气动性能,C AD 软件对结构图形设计有很大的帮助,在计算和校核方面有待采 用更直接和有效的方法[4] 。本文从叶片翼型理论和线性动量理论对升力的计算等式出发,得到对叶片非设计工况条件下受力的计算迭代式。考虑各种损失修正讨论迭代式的变换,给叶片气动性能在非设计工况而不单单是设计工况下的计算提供了一个研究和讨论的方法。 1 基础理论 根据施米茨理论计算叶片的外形几何尺寸。叶片在设计叶尖比条件下( D )对于旋转平面的来流角 是给定的,用这个来流角 能够计算叶片能从外界获取的最大能量。叶片的弦长c 和叶片的扭曲角 也给定,这样才能保证风轮运行在设计叶尖比下时,在获取外界最大能量时需要的来流角和 角一致。 新能源及工艺

相关主题