搜档网
当前位置:搜档网 › 三相桥式整流器设计 课程设计 理工版

三相桥式整流器设计 课程设计 理工版

三相桥式整流器设计 课程设计 理工版
三相桥式整流器设计 课程设计 理工版

课程设计任务书

学生姓名:专业班级:自动化06xx班

指导教师:工作单位:自动化学院

题目:三相桥式全控整流电路的设计(带反电动势负载)

初始条件:

1.反电动势负载,E=60V,电阻R=10Ω,电感L无穷大使负载电流连续;

2.U2=220V,晶闸管触发角α=30°;

3.其他器件如晶闸管自己选取。

要求完成的主要任务:(包括课程设计工作得及其技术要求,以及说明书撰写待具体要求)

1.主电路的设计及原理说明;

2.触发电路设计,每个开关器件触发次序及相位分析;

3.保护电路的设计,过流保护,过电压保护原理分析;

4.各参数的计算(输出平均电压,输出平均电流,输出有功功率计算,输出波形分析);

5.应用举例;

6.心得小结。

时间安排:

7月6日查阅资料

7月7日方案设计

7月8日- 9日馔写电力电子课程设计报告

7月10日提交报告,答辩

指导教师签名:年月日

系主任(或责任教师)签名:年月日

摘要

整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。

关键词:整流,变压,触发,过电压,保护电路。

目录

1主电路设计及原理 (1)

1.1 主电路设计 (1)

1.2 主电路原理说明 (1)

2 触发电路的设计 (5)

2.1 电路图的选择 (5)

2.2 触发电路原理说明 (6)

3 保护电路的设计 (8)

3.1 过电压保护 (8)

3.2 过电流保护 (10)

4 各参数的计算 (12)

4.1 输出值的计算 (12)

4.2 输出波形的分析 (14)

5 应用举例 (15)

6 心得体会 (16)

参考文献 (17)

三相桥式全控整流电路的设计

1主电路设计及原理

1.1 主电路设计

其原理图如图1所示。

图1 三相桥式全控整理电路原理图

习惯将其中阴极连接在一起的3个晶闸管(VT1、VT3、 VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。从后面的分析可知,按此编号,晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。

1.2 主电路原理说明

整流电路的负载为带反电动势的阻感负载。假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角α=0o时的情况。此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。此时电路工作波形如图2所示。

图2 反电动势α=0o时波形

α=0o时,各晶闸管均在自然换相点处换相。由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。在分析ud 的波形时,既可从相电压波形分析,也可以从线电压波形分析。从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压 ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。

直接从线电压波形看,由于共阴极组中处于通态的晶闸管对应的最大(正得最多)的相电压,而共阳极组中处于通态的晶闸管对应的是最小(负得最多)的相电压,输出整流电压 ud为这两个相电压相减,是线电压中最大的一个,因此输出整流电压ud波形为线电压在正半周的包络线。

由于负载端接得有电感且电感的阻值趋于无穷大,电感对电流变化有抗拒作用。流过电感器件的电流变化时,在其两端产生感应电动势Li,它的极性事阻止电流变化的。当电流增加时,它的极性阻止电流增加,当电流减小时,它的极性反过来阻止电流减小。电感的这种作用使得电流波形变得平直,电感无穷大时趋于一条平直的直线。

为了说明各晶闸管的工作的情况,将波形中的一个周期等分为6段,每段为60o,如

图2所示,每一段中导通的晶闸管及输出整流电压的情况如表所示。由该表可见,6个晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。

表1 三相桥式全控整流电路电阻负载α=0o 时晶闸管工作情况

图3 给出了α=30o 时的波形。从ωt1角开始把一个周期等分为6段,每段为60o 与α=0o 时的情况相比,一周期中ud 波形仍由6段线电压构成,每一段导通晶闸管的编号等仍符合表1的规律。区别在于,晶闸管起始导通时刻推迟了30o ,组成 ud 的每一段线电压因此推迟30o ,ud 平均值降低。晶闸管电压波形也相应发生变化如图所示。图中同时给出了变压器二次侧a 相电流 ia 的波形,该波形的特点是,在VT1处于通态的120o 期间,ia 为正,由于大电感的作用,ia 波形的形状近似为一条直线,在VT4处于通态的120o 期间,ia 波形的形状也近似为一条直线,但为负值。

图3 α=30o 时的波形 时 段

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ 共阴极组中

导通的晶闸管

VT1 VT1 VT3 VT3 VT5 VT5 共阳极组中

导通的晶闸管

VT6 VT2 VT2 VT4 VT4 VT6 整流输出电压u d u a -u b

=u ab u a -u c =u ac u b - u c =u bc u b - u a =u ba u c - u a =u ca u c -u b =u cb

由以上分析可见,当α≤60o时,u d波形均连续,对于带大电感的反电动势,i d波形由于电感的作用为一条平滑的直线并且也连续。当α>60o时,如α=90o时电阻负载情况下的工作波形如图4所示,ud平均值继续降低,由于电感的存在延迟了VT的关断时刻,使得ud的值出现负值,当电感足够大时,ud中正负面积基本相等,ud平均值近似为零。这说明带阻感的反电动势的三相桥式全控整流电路的α角的移相范围为90度。

图4 α=90o时的波形

2 触发电路的设计

2.1 电路图的选择

晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。晶闸管具有下面的特性:

1)当晶闸管承受反向电压时,无论门极是否有触发电流,晶闸管都不会导通。

2)晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。

3)晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何变化,晶闸管都保持导通,即晶闸管导通后,门极失去作用。

4)晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。

图5 双脉冲触发电路

根据晶闸管的这种特性,通过控制晶闸管的导通和关断时刻,就能控制整流电路的触发角的大小。在整流电路合闸启动过程中或电流断续时,为确保电路的正常工作,需保证同时导通的2个晶闸管均有触发脉冲。在触发某个晶闸管的同时,给序号紧前的一个晶闸管补发脉冲。即用两个窄脉冲代替宽脉冲,两个窄脉冲的前沿相差60o,脉宽一般为20o ~30o,称为双脉冲触发。双脉冲电路较复杂,但要求的触发电路输出功率小。触发电路如图5所示。

2.2 触发电路原理说明

如图5所示,触发电压的形成用KJ004芯片完成。KJ004电路由同步检测电路、锯齿波形成电路、偏形电压、移相电压及锯齿波电压综合比较放大电路和功率放大电路四部分组成。电原理见下图:锯齿波的斜率决定于外接电阻R6、RW1,流出的充电电流和积分电容C1的数值。对不同的移相控制电压VY,只有改变权电阻R1、R2的比例,调节相应的偏移电压VP。同时调整锯齿波斜率电位器RW1,可以使不同的移相控制电压获得整个移相范围。触发电路为正极性型,即移相电压增加,导通角增大,R7和C2形成微分电路,改变R7和C2的值可以获得不同的脉冲输出。KJ004芯片内部结构如图6所示。

图6 KJ004芯片内部结构图

双脉冲信号的形成与控制用KJ041六路双脉冲形成器完成,KJ041是三相全控桥式触发线路中必备的电路,具有双脉冲形成和电子开关控制封锁功能。实用块有电子开关控制的KJ041电路组成逻辑控制,适用于正反组可逆系统。

如图5所示,KJ041的1-6脚管为单脉冲信号输入。把单脉冲信号由10-15脚管两两同时输出形成双脉冲信号,10-15脚管两两同时输出对应输送给VT6-VT1晶闸管。

(1)假设在t1时刻15脚管开始给VT1晶闸管输送脉冲信号,则经过60度后14脚管开始给VT2晶闸管双脉冲信号,即只有15脚管和14脚管有信号输出,其他脚管没信号输出,则此时VT1和VT2同时导通;

(2)再过60度后,15脚管停止输出信号,而13脚管开始给VT3输出信号,即只有14脚管和13脚管有信号输出,其他脚管没信号输出,此时VT2和VT3同时导通;

(3)再过60度后,14脚管停止输出信号,而12脚管开始给VT4输出信号,即只有13脚管和12脚管有信号输出,其他脚管没有输出信号,此时VT3和VT4同时导通;

(4)再过60度后,13脚管停止输出信号,而11脚管开始给VT5输出信号,即只有12脚管和11脚管有信号输出,其他脚管没有信号输出,此时VT4和VT5同时导通;

(5)再过60度后,12脚管停止输出信号,而10脚管开始给VT6输出信号,即只有11脚管和10脚管有信号输出,其他脚管没有信号输出,此时VT5和VT6同时导通;

(6)再过60度后,11脚管停止输出信号,而15脚管开始给VT1输出信号,即只有10脚管和15脚管有信号输出,其他脚管没有信号输出,此时VT6和VT1同时导通;

重复以上步骤即得到三相桥式全控整流电路要求的触发信号。

3 保护电路的设计

较之电工产品,电力电子器件承受过电压、过电流的能力要弱得多,极短时间的过电压和过电流就会导致器件永久性的损坏。因此电力电子电路中过电压和过电流的保护装置是必不可少的,有时还要采取多重的保护措施。

3.1 过电压保护

电源侧过电压电力电子设备一般都经变压器与交流电网连接,电源变压器的绕组与绕组、绕组与地中间都存在着分布电容,如图7所示。

图7 交流则过电压

变压器一般为降压型,即电源电压u高于变压器次级电压。电源开关断开时,初、次级绕组均无电压,绕组间分布电容电压也为0,当电源合闸时,由于电容两端电压不能突变,电源电压通过电容加在变压器次级,使得变压器次级电压超出正常值,它所连接的电力电子设备将受到过电压的冲击。

在进行电源拉闸断电是也会造成过电压,在通电的状态将电源开关断开使激磁电流从一定得数值迅速下降到0,由于激磁电感的作用电流的剧烈变化将产生较大的感应电压,因为电压为Ldi/dt,在电感一定得情况下,电流的变换越大,产生的过电压也越大。这个电压的大小与拉闸瞬间电流的参数值有关,在正弦电流的最大值时断开电源,产生的di/dt 最大,过电压也就越大。可见,合闸时出现的过电压和拉闸时出现的过电压其产生的机理是完全不同的。

在电力电子设备的负载电路一般都为电感性,如果在电流较大时突然切除负载,电路中会出现过电压,熔断器的熔断也会产生过电压。另外电力电子器件的换相也会使电流迅速变化,从而产生过电压。上述过电压都发生在电路正常工作地状态,一般叫做操作过电压。

雷击和其他电磁感应也会在电力电子设备中感应出过电压,这类过电压发生地时间和幅度的大小都是没有规律的,是难以预测的。

对于上面的这些过电压,我们可以采用下面的措施进行保护:

(1)阻容保护

过电压幅度一般都很大,但是其作用时间一般却都是很短暂的,即点电压的能量并不是很大的。利用电容两端的电压不能突变这一特点,将电容器并联在保护对象的两端,可以达到过电压保护的目的,这种保护方式叫做阻容保护。起保护作用的电容一般都与电阻串联,这样可以在过电压给电容充电的过程中,让电阻消耗过电压的能量,还可以限制形成的寄生的震荡。图8为电源侧阻容保护原理图。图(a)为单相阻容保护电路,图(b)和图(c)为三相阻容保护电路,RC网络连接成星型,如图(b),也可以连接成三角型,如图(c)。电容越大对过电压的吸收作用越明显。

图8 阻容保护

在途图9中,图(a)为单相阻容保护,阻容网络直接接在电源端,吸收电源过电压。图(b)为接线形式为星型的三相阻容保护电路,平时电容承受电源相电压。图(c)为接线三角型的三相阻容保护电路,平时电容承受电源相电压。显然,三角型接线方式电容的耐压要为星型接线的3倍。但是无论哪种接线,对于同一电路,过电压的能量是一样的,电容的储能也应该相同,所以星型接线的电容容量应为三角型3倍。也就是说两种接线方式电容容量和耐压的乘积是相同的。

(2)整流式阻容保护

阻容保护电路的RC直接接于线路之间,平时支路中就有电流流动,电流流过电阻必然要造成能量的损耗并使电阻发热。为克服这些缺点可采用整流式阻容RC保护电路,阻容式RC保护电路如图9所示。

图9 整流式保护电路

三相交流点经过二极管整流桥变为脉动直流电,经过R1给C充电,电路正常工作无过电压时电容两端保持交流电的峰值电压,而后整流桥给电容回路提供微弱的电流,以补充电容放电所损失的电荷。由于与C并联的R2阻值很大,电容的放电非常慢,因此整流桥输出的电流也非常小。一旦出现过电压,过电压的能量被电容吸收,电容的容量足够大,可以保证此时电容电压的数值在允许范围之内,从而也使电流电压不超过额定值。过电压消失后,电容经R2放电使两端电压恢复到交流电正常的峰值。由此可以看出,R2越大整个电路的功耗越小,但过电压过后电容电压恢复到正常的时间也越长,因此大小收到两次过电压时间最小间隔的限制。

3.2 过电流保护

电力电子电路中的电流瞬时值超过设计的最大允许值,即为过电流。过电流有过载荷短路两种情况。常用的过电路保护措施如图10所示。一台电力电子设备可选用其中的几种保护措施。针对某种电力器件,可能有些保护措施是有效的而另外一些是无效的或不合适的,在选用时应特别注意。

图10 过流保护电路图

交流断路器保护是通过电流互感器获取交流回路的电流值,然后来控制交流电流继电器,当交流电流超过整定值时,过流继电器动作使得与交流电源连接的交流断路器断开,切除故障电流。应当注意过流继电器的整定值一般要小于电力电子器件所允许的最大电流瞬时值,否则如果电流达到了器件的最大电流过流继电器才动作,由于器件耐受过电流的时间极短,在继电器和断路器动作期间电力电子器件可能就已经损坏。

来自电流互感器的信号还可作用于驱动电路,当电流超过整定值时,将所有驱动信号的输出封锁,全控型器件会由于得不到驱动信号而立即阻断,过电流随之消失;半控型器件晶闸管在封锁住触发脉冲后,未导通的晶闸管不再导通,而已导通的晶闸管由于电感的储能器件不会立即关断,但经一定的时间后,电流衰减到 0,器件关断。这种保护方式由电子电路来实现,又叫做电子保护。与断路器保护类似,电子保护的电流整定值也一般应该小于器件所能承受的电流最大值。

快速熔断器保护一般作为最后一级保护措施,与其它保护措施配合使用。根据电路的不同要求,快速熔断器可以接在交流电源侧(三相电源的每一相串接一个快速熔断器),也可以接在负载侧,还可电路中每一个电力电子器件都与一个快速熔断器串联。接法不同,保护效果也有差异。熔断器保护有可以对过载和短路过电流进行“全保护”和仅对短路电流起作用的短路保护两种类型。

撬杠保护多应用于大型的电力电子设备,电路中电流检测、电子保护都是必需的,同时还要在交流电源侧加一个大容量的晶闸管。其保护原理如下:当检测到的电流信号超过整定值时,触发保护用的晶闸管,用以旁路短路电流,晶闸管支路中可接一个小电感用以限制 di/dt;驱动电路开通主电路中的所有电力电子器件,以分散短路能量,让所有器件分担短路电流;使交流断路器断开,切断短路能量的来源。经一段时间的衰减短路能量消失,起到保护作用。

4 各参数的计算

4.1 输出值的计算

三相桥式全控整流电路中,整流输出电压d u 的波形在一个周期内脉动6次,且每次脉

动的波形相同,因此在计算其平均值时,只需对一个脉波(即1/6周期)进行计算即可。此外,因为030α=所以电压输出波形是连续的,以线电压的过零点为时间坐标的零点,可得整流输出电压连续时的平均值为。

2323

1

6sin ()3d u U td t π

α

παωωπ++=?

22.34cos U α= (4-1)

把030α=和U 2=220V 代入式(4-1)计算有。

22.34cos d u U α=

02.34220cos30=?? 3

2.342202=??

445.8V =

输出电流平均值为。 d d U E

I R -= (4-2)

把E=60V,R=10Ω, 445.8d u V =代入式(4-2)计算有。 d d U E

I R -= 445.860

1038.5A

-==

变压器二次侧电流Ia 为。 2

3a d I I =?

(4-3)

代入数值计算得 2

3a d I I =?

238.53

94.3=

?= 将电流波形分解为傅里叶级数,以a 相为例,将电流正、负半波的中点作为时间零点,则有。

231111[sin sin 5sin 7sin11sin13]571113

a d i I t t t t t ωωωωωπ=--++-??? 611.2.323

23

1sin (1)sin k d d

n k k I t I n t n ωωππ=±=???

=+-∑

1611.2.32sin 2sin n n k k I t I n t ωω=±=???

=+

∑ (4-4) 由式(4-4)得电流基波和各次谐波有效值分别为 16

6,61, 1.2.3d

n d I I I I n k k n ππ?=

????==±=???

??

(4-5) 由式(4-3)和式(4-5)可得基波因数为。 1

3

0.955I I νπ==≈ (4-6)

同样从图3可明显看出电流基波与电压的相位差仍为а,故位移因数仍为

11cos cos λ?α==

(4-7) 功率因数即为 1

113

0.955I

COS COS COS I λνλ?ααπ==== (4-8)

把030α=代入计算得

0.955COS λα= 3

0.95520.8

=?=

整流电路的输出视在功率为445.838.517163.3d d S U I W ==?=

有功功率为17163.30.813730.64P S W λ==?=

4.2 输出波形的分析

α=时的输出波形如图11所示。

30

图11 整流电路的输出波形

如图11所示,从ωt1时刻开始把一个周期等分为6份,在Wt1时刻共阴极组VT1

晶闸管接受到触发信号导通,此时阴极输出电压Ud1为幅值最大的a相相电压;到Wt2时刻下一个触发脉冲到来,此时a相输出电压降低,b相输出电压升高,于是阴极输出电压变为b相相电压;到Wt3时刻第三个脉冲到来,晶闸管VT1关断而晶闸管VT2导通,输出电压为此时最高的c相相电压;重复以上步骤,即共阴极组输出电压Ud1为在正半周的包络线。

共阳极组中输出波形原理与共阴极组一样,只是每个触发脉冲比阴极组中脉冲相差180度。6个时段的导通次序如表1所示一样,只是Wt1从零时刻往后推迟30度而已。这样就得出最后输出整流电压为共阴极组输出电压与共阳极组输出电压的差即

Ud=Ud1-Ud2 (4-9) 而由于电路中大电感L的作用,输出的电流为近似平滑的一条直线。图中同时给出了变压器二次侧a相电流 ia 的波形,该波形的特点是,在VT1处于通态的120o期间,ia

为正,由于大电感的作用,ia波形的形状近似为一条直线,在VT4处于通态的120o期间,ia波形的形状也近似为一条直线,但为负值。

5 应用举例

可以设计成能进行电动状态--发电状态转换的电动机应用在汽车的发点装置里面,其设计图如图12所示。

图12 汽车发电装置图

如图12所示,当汽车在平路或上坡路段行驶时,调节整流电路的触发角α使α<90°,这时候整流电路工作在整流状态,三相交流点存储装置向M供电使M工作在电动状态,电能转换为动能带动汽车行驶。

当汽车行驶在下坡路段时,调节α角使α>90°,使输出直流电压Ud平均值为负值,且|Em|>|Ud|,这时候整流电路工作在逆变状态,位能装换为电能,M向三相交流电存储装置输送电流,三相交流电存储装置接受并存储电能。

这样就能使汽车的电源维持较长的供电时间,而且能够节约电能。

6 心得体会

设计,给人以创作的冲动。在画家眼里,设计是一幅清明上河图或是一幅向日葵;在建筑师眼中,设计是昔日鎏金般的圆明园或是今日一塑自由女神像;在电子工程师心中,设计是贝尔实验室的电话机或是华为的程控交换机。凡此种种,但凡涉及设计都是一件良好的事情,因为她能给人以美的幻想,因为她能给人以金般财富,因为她能给人以成就之感,更为现实的是她能给人以成长以及成长所需的营养,而这种营养更是一种福祉,一辈子消受不竭享用不尽。我就是以此心态对待此次《电子技术》课程设计的,所谓“态度决定一切”,于是偶然又必然地收获了诸多,概而言之,大约以下几点:

一、温故而知新。课程设计发端之始,思绪全无,举步维艰,对于理论知识学习不够扎实的我深感“书到用时方恨少”,于是想起圣人之言“温故而知新”,便重拾教材与实验手册,对知识系统而全面进行了梳理,遇到难处先是苦思冥想再向同学请教,终于熟练掌握了基本理论知识,而且领悟诸多平时学习难以理解掌握的较难知识,学会了如何思考的思维方式,找到了设计的灵感。

二、思路即出路。当初没有思路,诚如举步维艰,茫茫大地,不见道路。在对理论知识梳理掌握之后,茅塞顿开,柳暗花明,思路如泉涌,高歌“条条大路通罗马”。顿悟,没有思路便无出路,原来思路即出路。

三、实践出真知。文革之后,关于真理的大讨论最终结果是“实践是检验真理的唯一标准”,自从耳闻以来,便一直以为马克思主义中国化生成的教条。时至今日,课程设计基本告成,才切身领悟“实践是检验真理的唯一标准”,才明晓实践出真知。

四、创新求发展。“创新”目前在我国已经提升到国家发展战略地位,足见“创新”的举足轻重。我们要从小处着手,顺应时代发展潮流,在课程设计中不忘在小处创新,未必是创新技术,但凡创新思维亦可,未必成功,只要实现创新思维培育和锻炼即可。

五、过而能改,善莫大焉。至善至美,是人类永恒的追求。但是,不从忘却“金无足赤,人无完人”,我们换种思维方式,去恶亦是至善,改错亦为至美。在课程设计过程中,我们不断发现错误,不断改正,不断领悟,不断获取。最终的检测调试环节,本身就是在践行“过而能改,善莫大焉”的知行观。

参考文献

[1]王兆安、黄俊,电力电子技术.北京:机械工业出版社,2008

[2]王维平,现代电力电子技术及应用.南京:东南大学出版社,1999

[3]叶斌,电力电子应用技术及装置.北京:铁道出版社,1999

[4]马建国,孟宪元.电子设计自动化技术基础.清华大学出版社,2004

[5]马建国,电子系统设计.北京:高等教育出版社,2004

[6]王锁萍,电子设计自动化教程.四川:电子科技大学出版社2002

大连理工大学-电路理论_2011期末考试试题及答案

电路期末考试(2011) 解永平 2011.06

试卷分数分布 一、(32分,共4题,每题8分) 1. 2. 3. 4. 二、(24分,共3题,每题8分) 1. 2. 3. 三、(12分) 四、(12分) 五、(12分) 六、(8分)

一、计算下列各题(共4题,每题8分) 1、用等效变换法求电流I 。 解:电路等效变换如图所示。由KVL ,得: A 6 7 24668-=+++-=I 8V + 6Ω2Ω 1A I 12V + 4Ω 8V + 6Ω 2Ω 1A I 4Ω 8V + 6Ω2Ω I 6V +4Ω

2、电路如图所示。(1)问a 和b 两点间的导线上需串入一个多大电阻R ,才能使这两点间的电流减小为短路电流的一半?(2)串入一个多大电阻R ,该电阻才能获得最大功率?并求此功率。解:求ab 端的开路电压U OC ,如图所示。 则:V 12 64 2264OC =+==+-=I I I U I 1= I +3I = 4I 4V + 6Ω 2Ω 4I I + 1Ω I ab a b 4V + U OC +求ab 端的输入电阻R eq ,如图所示。 U = -4I +6I = 2I 6Ω 2Ω4I I +1Ω a b U +I 1 3I 由KCL ,得:由KVL ,得:Ω== 5.01eq I U R (1) A 25.01 eq OC SC ===R U I 则:R =0.5 Ω 1 2 SC eq OC ==+I R R U (2)当R =0.5 Ω时, W 5.05.0*41 42 2 max OC ===R U P

I &R L 2 I &1 I &C U &+ 解:电路的相量模型如图所示; 由欧姆定律,得: V 0100 ?∠=U & A 45210 5 50100?-∠=+?∠==j Z U I && A 901045210 1 11010101?-∠=?-∠--=--=j j I j j I &&10Ω -j 10Ω I &2 I &1 I &U &+ j 10Ω A 01045210 1 111010102 ?∠=?-∠-=-=j I j I &&+ 1 j + &1 I &I &2 I &U &Ω ?∠=+=--+= 4525 5510 10)10(1010j j j j Z

三相桥式全控整流电路课程设计.

目录 1. 绪论 (1) 2. 主电路设计及原理 (2) 2.1总体框架图 (2) 2.2三相桥式全控整流电路的原理 (2) 2.3 实验内容 (5) 3. 单元电路设计 (7) 3.1 主电路 (7) 3.2 触发电路 (7) 3.3 保护电路 (8) 3.4 硬件电路PCB版图 (11) 3.4.1 顶层视图 (11) 3.4.2 底层视图 (12) 3.4.3 顶层覆盖图 (12) 3.4.4 3D视图 (13) 4 .电路分析与仿真 (14) 4.1 带电阻负载的波形分析 (14) 4.2 三相桥式全控整流电路定量分析 (16) 4.2.1 仿真模型图 (19) 4.2.2 仿真实验结论 (19) 5. 结论 (20) 6. 参考文献 (22) 7. 附录 (23)

第一章绪论 整流电路技术在工业生产上应用极广。如调压调速直流电源、电解及电镀的直流电源等。整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。 整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 把交流电变换成大小可调的单一方向直流电的过程称为可控整流。整流器的输入端一般接在交流电网上。为了适应负载对电源电压大小的要求,或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1,变成二次电压U2。由晶闸管等组成的全控整流主电路,其输出端的负载,我们研究是电阻性负载、电阻电感负载(如直流电动机的励磁绕组,滑差电动机的电枢线圈等)。以上负载往往要求整流能输出在一定范围内变化的直流电压。为此,只要改变触发电路所提供的触发脉冲送出的早晚,就能改变晶闸管在交流电压U2一周期内导通的时间,这样负载上直流平均值就可以得到控制。

110kV变电站电气一次部分课程设计

课程设计任务书 设计题目: 110kV变电站电气 一次部分设计 前言 变电站(Substation)改变电压的场所。是把一些设备组装起来,用以切断或接通、改变或者调整电压。在电力系统中,变电站是输电和配电的集结点。主要作用是进行高底压的变换,一些变电站是将发电站发出的电升压,这样一方面便于远距离输电,第二是为了降低输电时电线上的损耗;还有一些变电站是将高压电降压,经过降压后的电才可接入用户。对于不同的情况,升压和降压的幅度是不同的,所以变电站是很多的,比入说远距离输电时,电压为11千伏,甚至更高,近距离时为1000伏吧,这个电压经

变压器后,变为220伏的生活用电,或变为380伏的工业用电。 随着我国电力工业化的持续迅速发展,对变电站的建设将会提出更高的要求。本文通过对110KV变电站一次系统的设计,其中针对主接线形式选择,母线截面的选择,电缆线路的选择,主变压器型号和台数的确定,保护装置及保护设备的选择方法进行了详细的介绍。其中,电气设备的选择包括断路器、隔离开关、互感器的选择和方法与计算,保护装置包括避雷器和避雷针的选择。其中分析短路电流的计算方法和原因,是为了保证供电的可靠性。 目录 第1章原始资料及其分析 (4) 1原始资料 (4) 2原始资料分析 (6) 第2章负荷分析 (6) 第3章变压器的选择 (8) 第4章电气主接线 (11) 第5章短路电流的计算 (14) 1短路电流计算的目的和条件 (14) 2短路电流的计算步骤和计算结果 (15) 第6章配电装置及电气设备的配置与选择 (18) 1 导体和电气设备选择的一般条件 (18) 2 设备的选择 (19) 结束语 (25)

青岛理工大学结构力学期末考试重点

第1章平面体系的几何组成分析 一、是非题 1、在任意荷载下,仅用静力平衡方程即可确定全部反力和内力的体系是几何不变体系。() 2、在图1-1所示体系中,去掉1—5,3—5,4—5,2—5,四根链杆后,得简支梁12 ,故该体系为具有四个多余约束的几何不变体系。() 12 34 5 图1-1 图1-2 3、几何瞬变体系产生的运动非常微小并很快就转变成几何不变体系,因而可以用作工程结构。( ) 4、有多余约束的体系一定是几何不变体系。() 5、图1-2所示体系按三刚片法则分析,三铰共线,故为几何瞬变体系。() 1、几何瞬变体系 2、无多余约束的几何不变体系 图1-3 图1-4 3、无多余约束的几何不变体系 4、无多余约束的几何不变体系 图1-5 图1-6 5、几何可变体系 6、无多余约束的几何不变体系 A

图1-7 图1-8 第2章静定结构的内力计算 一、是非题 1、静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。() 2、静定结构受外界因素影响均产生内力,内力大小与杆件截面尺寸无关。() 3、静定结构的几何特征是几何不变且无多余约束。() 4、图2-1所示结构|| M C =0。() P P C a a D a a A B C 图2-1 图2-2 5、荷载作用在静定多跨梁的附属部分时,基本部分一般内力不为零。() 6、图2-2所示静定结构,在竖向荷载作用下,AB是基本部分,BC是附属部分。 () 7、图2-3所示结构B支座反力等于P/2()↑。() P l l A B 图2-3 9、在相同跨度及竖向荷载下,拱脚等高的三铰拱,水平推力随矢高减小而减小。() 10、图2-5所示桁架有9根零杆。() P P 12 3 P P A B C a a a a 图2-5 图2-6 11、图2-6所示桁架有:N 1=N 2 =N 3 = 0。() 12、图2-7所示对称桁架在对称荷载作用下,其零杆共有三根。()

三相可控整流电路课程设计

二.三相晶闸管全控整流电路原理说明 2.1主电路原理说明 晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。编号如图示,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6 。 带电阻负载时的工作情况 晶闸管触发角α=0o时的情况:此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。此时电路工作波形如图所示。 α=0o时,各晶闸管均在自然换相点处换相。由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压 ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。将波形中的一个周期等分为6段,每段为60度,如图2-18所示,每一段中导通的晶闸管及输出整流电压的情况如下表所示。由该表可见,6个晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。 时段 1 2 3 4 5 6 共阴极组中 导通的晶闸 管 VT1 VT1 VT3 VT3 VT5 VT5 共阳极组中 导通的晶闸 管 VT6 VT2 VT2 VT4 VT4 VT6 整流输出电 压ud ua-ub=uab ua-uc=uac ub- uc=ubc ub- ua=uba uc- ua=uca uc-ub=ucb

变压器课程设计-兰州交通大学

. . 电气2013级“卓班” 企业课程(电机学)实习与实训报告 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师: 兰州交通大学自动化与电气工程学院 2015年7月25日

1 实习报告 1.1实习项目 1.1.1 实习项目 1 时间:2015-7-22,上午8:00至12: 00 地点:中国北车集团兰州机车厂 指导教师:张红生 实习内容:了解电机生产、制造的工艺流程及测试方法 今天,我们来到了中国北车兰州机车厂了解电机生产、制造的工艺流程及测试方法。兰州机车厂隶属中国北方机车车辆工业集团公司,是西北地区机车检修的重要基地,目前检修的主要品种有东风系列内燃机车和韶山型电力机车。 北车兰州机车有限公司是中国北车股份有限公司的全资子公司,始建于1954年,是我国西北地区唯一的内燃机车、电力机车检修基地,铁路工程机械制造基地和规模最大、品种最全的工矿机车制造基地,属国家高新技术企业。今天,在老师的带领下,我们来到了兰州机车厂进行了认识实习。 在进入厂区前,工作人员给我们详细地介绍了相关的注意事项,我们了解到厂区 内部的设备大多都是 带电设备,不能直接 触摸,以免发生危险, 同时也给我们介绍到 中国北车兰州机车厂 是中国北车集团下属 的分公司,主要承担 机车的保养和修理任 务。当机车运行到120 万公里时就必须要进 厂检修。检修也是一 步一步完成的,他们 厂里的各个车间分别 承担着不同的检修任图1 内燃机车主发电机转子务。

进入车间,我们在一个老师的带领下,从外向里开始参观。首先我们参观了电机车间,观看了电机部件的生产,电机的拆卸及组装。进入车间后,我们看到了 正在检修的内燃机车主 发电机的定转子(如图1 和图2所示),在发电机 转子的转子上,绕着一系 列的励磁绕组,励磁绕组 是可以产生磁场的线圈 绕组,有串励和并励之分 的,发电机内用励磁 图 2 内燃机车主 发电机定子 绕组,可以替代永磁体, 可以产生永磁体无法产生的强大的磁通密度,且可以方便调节,从而可以实现大功率发电。在发电机的定子绕组上,绕的是发电机的电枢绕组,电枢绕组由一定数目的电枢线圈按一定的规律连接组成,他是直流电机的电路部分,也是感生电动势,产生电磁转矩进行机电能量转换的部分。线圈用绝缘的圆形或矩形截面的导线绕成,分上下两层嵌放在电枢铁心槽内,上下层以及线圈与电枢铁心之间都要妥善地绝缘,并用槽楔压紧。 接下来,工作人员又带我们了解了机车上的电压互感器,电压互感器的实质就是一个带铁芯的变压器,它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。 最后,我们又参观了电器车间,进去后就可以看到组成机车电气系统的分立元件的生产和检修,车间分为了两部分,一部分用于机车电气系统中一些较大部件的检修,生产和加工;另一部分是一些机车电气小部件及控制开关的检修生产。通过今天的参观实习,我对电机的检修与生产的工艺流程有了进一步的认识,不仅见到了原来在课本上学过但却没有实际见过的东西,也学到了原来在课本上学不到的知识,让我深刻的认识到将理论转换为实践的重要意义,在以后的生活和工作中,我要不断的充实和丰富自己,不放弃任何能够锻炼自己的机会,让自己能够学习到更多的知识。 1.1.2实习项目2 时间:2015-7-22,下午2:30至4: 30 地点:甘肃宏宇变压器有限公司

电力电子课程设计三相可控整流电路

目录 第1章概述 (2) 第2章方案确定 (3) 2.1原始数据 (3) 2.2设计任务 (3) 2.3设计要求 (3) 2.4方案分析 (3) 2.5方案选择 (4) 第3章电路设计 (5) 3.1主电路 (5) 3.2触发电路 (9) 3.3保护电路 (10) 3.4控制电路 (13) 第4章主电路元件计算及选择 (14) 4.1变压器参数计算 (14) 4.2电力电子器件电压、电流等定额计算 (15) 4.3平波电抗器电感值的计算 (16) 4.4电容滤波的电容计算 (16) 第5章设计总结与体会 (18) 参考文献 (19) 附录 (20)

第1章概述 目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。这类整流电路结构简单,控制技术成熟,但交流侧输入功率因数低,并向电网注入大量的谐波电流。据估计,在发达国家有60%的电能经过变换后才使用,而这个数字在本世纪初达到95%。 电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。 而电能的传输中,直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。近年发展起来的柔性交流输电(FACTS)也是依靠电力电子装置才得以实现的。

电力变压器课程设计

1 前言 随着工农业生产和城市的发展,电能的需要量迅速增加。为了解决热能资源(如煤田)和水能资源丰富的地区远离用电比较集中的城市和工矿区这个矛盾,需要在动力资源丰富的地区建立大型发电站,然后将电能远距离输送给电力用户。同时,为了提高供电可靠性以及资源利用的综合经济性,又把许多分散的各种形式的发电站,通过送电线路和变电所联系起来。这种由发电机、升压和降压变电所,送电线路以及用电设备有机连接起来的整体,即称为电力系统。 电力系统是有各种电力系统元件组成的,它们包括发电、输变电、负荷等机械、电气主设备以及控制、保护等二次辅助设备。WDT-Ⅲ型电力系统综合自动化试验系统是一个完整的电力系统典型模型,它为我们提供了一个自动化程度很高的多功能实验平台,是为了适应现代化电力系统对宽口径“复合型”高级技术人才的需要而研制的电力类专业新型教学试验系统。 本设计所要完成的工作是利用VC语言开发WDT电力系统综合自动化实验台监控软件,主要是完成准同期控制器监控软件的编写,它要求能显示发电机及无穷大系统的相关参数,如电压、频率和相位角,并能发送准同期合闸命令。

2 电力系统实验台 WDT-Ⅲ型电力系统综合自动化实验教学系统主要由发电机组、试验操作台、无穷大系统等三大部分组成(如图2.1所示)。 图 2.1 WDT-Ⅲ型电力系统综合自动化试验系统 2.1 发电机组 该系统的发电机组主要由原动机和发电机两部分构成,另外,它还包括了测速装置和功率角指示器(用于测量发电机电势与系统电压之间的相角 ,即发电机转子相对位置角),测得的发电机的相关数据传输回实验操作台,与无穷大系统的相关参数进行比较,从而确定系统是否满足了发电机并网条件。 2.1.1 原动机 在实际的发电厂中,原动机一般用的是水轮机、气轮机、柴油机或者其他形式的动力机械,将水流,气流,燃料燃烧或原子核裂变产生的能量转换为带动发电机轴旋转的机械能,从而带动发电机转子的旋转。 在WDT-Ⅲ型电力系统综合自动化试验台的发电机组中,原动机是由直流发电机(P N=2.2kW,U N=220V)模拟实现其功能的。直流电动机(模拟原动机)与发电机的结

最新三相桥式全控整流电路课程设计

三相桥式全控整流电路课程设计

电力电子技术课程设计说明书三相桥式全控整流电路 系、部:电气与信息工程系 专业:自动化

目录 第1章绪论 0 1. 电子技术的发展趋势 (1) 2. 本人的主要工作 (2) 第2章主电路的设计及原理 (2) 1. 总体框图 (3) 2. 主电路的设计原理 (3) 2.1带电阻负载时 (5) 2.2阻感负载时 (7) 3. 触发电路 (8) 4. 保护电路 (9) 5. 参数计算 (10) 5.1 整流变压器的选择 (10) 5.2 晶闸管的选择 (11) 5.3 输出的定量分析 (11) 第3章 MATLAB的仿真 (13) 1. MA TLAB仿真软件的简介 (13) 2. 仿真模拟图 (13) 3. 仿真结果 (13) 第4章结束语 (16) 参考文献 (17) 第1章绪论

1. 电子技术的发展趋势 当今世界能源消耗增长十分迅速。目前,在所有能源中电力能源约占40%,而电力能源中有40%是经过电力电子设备的转换才到使用者手中。预计十年后,电力能源中的80%要经过电力电子设备的转换,电力电子技术在21世纪将起到更大作用。 电力电子技术是利用电力电子器件对电能进行控制和转换的学科。它包括电力电子器件、变流电路和控制电路三个部分,是电力、电子、控制三大电气工程技术领域之间的交叉学科。随着科学技术的发展,电力电子技术由于和现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关,已逐步发展成为一门多学科相互渗透的综合性技术学科。 电力电子技术作为一门高技术学科,由于其在节能、减小环境污染、改善工作条件等方面有着重要的作用,现在已广泛的应用于传统工业(例如:电力、机械、交通、化工、冶金、轻纺等)和高新技术产业(例如:航天、现代化通信等)。下面着重讨论电力电子技术在电力系统中的一些应用。 在高压直流输电(HVDC)方面的应用 直流输电在技术方面有许多优点:(1)不存在系统稳定问题,可实现电网的非同期互联;(2)可以限制短路电流;(3)没有电容充电电流;(4)线路有功损耗小;(5)输送相同功率时,线路造价低;(6)调节速度快,运行可靠;(7)适宜于海下输电。随着大功率电子器件(如:可关断的晶闸管、MOS控制的晶闸管、绝缘门极双极性三极管等)开断能力不断提高,新的大功率电力电子器件的出现和投入应用,高压直流输电设备的性能必将进一步得以改善,设备结构得以简化,从而减少换流站的占地面积、降低工程造价。 在柔性交流输电系统(FACTS)中的应用 20世纪80年代中期,美国电力科学研究院(EPRI)N.G.Hingorani博士首次提出柔性交流输电技术的概念。近年来柔性交流输电技术在世界上发展迅速,已被国内外一些权威的输电工作者预测确定为“未来输电系统新时代的三项支持技术(柔性输电技术、先进的控制中心技术和综合自动化技术)之一”。现代电力电子技术、控制理论和通讯技术的发展为FACTS的发展提供了条件。采用IGBT

电力电子三相桥式全控整流电路课程设计讲解

三相桥式全控整流电路的设计 摘要:整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 关键词:整流变压触发过电压保护电路。 1前言 整流电路技术在工业生产上应用极广。如调压调速直流电源、电解及电镀的直流电源等。整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。 整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 把交流电变换成大小可调的单一方向直流电的过程称为可控整流。整流器的输入端一般接在交流电网上。为了适应负载对电源电压大小的要求,或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1,变成二次电压

400A动铁心分磁式弧焊变压器课程设计要点

目录 绪论 ................................................................................................. 错误!未定义书签。第一章动铁心分磁式弧焊变压器简介 (4) 1.1 结构和原理 (4) 1.2 用途及特点 (5) 1.3 安全使用规则 (6) 1.4 故障与处理方法 (7) 1.5 注意事项 (7) 第二章动铁分磁式弧焊变压器设计 (9) 2.1 原始数据 (9) 2.2 初步参数计算 (9) 2.3 初步决定铁心主要尺寸 (10) 2.4 计算初、次级绕组尺寸 (12) 2.5 确定变压器尺寸 (14) 2.6 核算焊接电流 (15) 2.7 验算变压器经济指标 .................................................... 错误!未定义书签。结束语 ............................................................................................. 错误!未定义书签。参考文献 . (20)

绪论 1、弧焊电源在电弧焊中的作用 不同材料、不同结构的工件,需要采用不同的电弧焊工艺方法,而不同的电弧焊工艺方法则需用不同的电弧焊机。例如:操作方便、应用最为广泛的焊条电弧焊,需要由对电弧供电的电源装置、和焊钳组成的手弧焊机;锅炉、化工、造船等工业广为使用的埋弧焊,需要由电源装置和、控制箱和焊车等组成的埋弧焊机;适用于焊接化学性活泼金属的气体保护电弧焊,需要由电源装置、控制箱、焊车(自动焊)或送丝机构(半自动焊)、焊枪、气路和水路系统等组成的气体保护电弧焊;适用于焊接高熔点金属的等离子弧焊,则需要由电源装置、控制系统、焊枪或焊车(自动焊)、气路和水路系统等组成的等离子弧焊机。 由上述可知,各种电弧焊方法所需的供电装置即弧焊电源是电弧焊机的重要组成部分,是对焊接电弧供给电能的装置,它应满足电弧焊所要求的电气特性,这正是本课程将要系统讲述的内容。与弧焊电源配套的其它装置和设备部分,将在《焊接方法和设备》课程中讲述。 显然,弧焊电源电气性能的优劣,在很大程度上决定了电弧焊机焊接过程的稳定性。没有先进的弧焊电源,要实现先进的焊接工艺和焊接过程自动化也是难以办到的。因此,应该对弧焊电源的基本理论、结构特点和电气性能进行深入的研究,真正了解和正确使用弧焊电源,进而研制出新型的弧焊电源,使焊接质量 和生产效率得到进一步提高。[][]5数据来源参考文献 。 2、常见弧焊电源的特点和用途 1、交流弧焊电源 交流弧焊电源包括工频交流弧焊电源(弧焊变压器)、矩形波交流弧焊电源。下面分述其特及用途。 工频交流弧焊电源 即是弧焊变压器,它把电网的交流电变成适合于电弧焊的低电压交流电,它由变压器、电抗器等组成。弧焊变压器具有结构简单、易造易修、成本低、磁偏吹小、空载损耗小、噪声小等优点。但其输出电流波形为正弦波,因此,电弧稳定性较差,功率因数低,一般用于焊条电弧焊、埋弧焊和钨极惰性气体保护电弧焊等方法。 矩形波交流弧焊电源 它是利用半导体控制技术来获得矩形交流电流的。由于输出电流过零点时间短,电弧稳定性好,正负半波通电时间和电流比值可以自由调节,此特点适合于铝及铝合金钨极氩弧焊。 2、直流弧焊电源 直流弧焊发电机

三相全控桥式整流电路

课程设计任务书 学生姓名:专业班级:自动化0602班 指导教师:工作单位:自动化学院 题目:三相桥式全控整流电路的设计(带反电动势负载) 初始条件: 1.反电动势负载,E=60V,电阻R=10Ω,电感L无穷大使负载电流连续; 2.U2=220V,晶闸管触发角α=30°; 3.其他器件如晶闸管自己选取。 要求完成的主要任务:(包括课程设计工作得及其技术要求,以及说明书撰写待具体要求) 1.主电路的设计及原理说明; 2.触发电路设计,每个开关器件触发次序及相位分析; 3.保护电路的设计,过流保护,过电压保护原理分析; 4.各参数的计算(输出平均电压,输出平均电流,输出有功功率计算,输出波形分析); 5.应用举例; 6.心得小结。 时间安排: 7月6日查阅资料 7月7日方案设计 7月8日- 9日馔写电力电子课程设计报告 7月10日提交报告,答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 关键词:整流,变压,触发,过电压,保护电路。

变压器课程设计-兰州交通大学讲解

电气2013级“卓班” 企业课程(电机学)实习与实训报告 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师: 兰州交通大学自动化与电气工程学院 2015年7月25日

1 实习报告 1.1实习项目 1.1.1 实习项目 1 时间:2015-7-22,上午8:00至12: 00 地点:中国北车集团兰州机车厂 指导教师:张红生 实习内容:了解电机生产、制造的工艺流程及测试方法 今天,我们来到了中国北车兰州机车厂了解电机生产、制造的工艺流程及测试方法。兰州机车厂隶属中国北方机车车辆工业集团公司,是西北地区机车检修的重要基地,目前检修的主要品种有东风系列内燃机车和韶山型电力机车。 北车兰州机车有限公司是中国北车股份有限公司的全资子公司,始建于1954年,是我国西北地区唯一的内燃机车、电力机车检修基地,铁路工程机械制造基地和规模最大、品种最全的工矿机车制造基地,属国家高新技术企业。今天,在老师的带领下,我们来到了兰州机车厂进行了认识实习。 在进入厂区前,工作人员给我们详细地介绍了相关的注意事项,我们了解到厂区 内部的设备大多都是 带电设备,不能直接 触摸,以免发生危险, 同时也给我们介绍到 中国北车兰州机车厂 是中国北车集团下属 的分公司,主要承担 机车的保养和修理任 务。当机车运行到120 万公里时就必须要进 厂检修。检修也是一 步一步完成的,他们 厂里的各个车间分别 承担着不同的检修任图1 内燃机车主发电机转子务。

进入车间,我们在一个老师的带领下,从外向里开始参观。首先我们参观了电 机车间,观看了电机部件 的生产,电机的拆卸及组 装。进入车间后,我们看 到了正在检修的内燃机 车主发电机的定转子(如 图1和图2所示),在发 电机转子的转子上,绕着 一系列的励磁绕组,励磁 绕组是可以产生磁场的 线圈绕组,有串励和并励 之分的,发电机内用励磁图2 内燃机车主发电机定子绕组,可以替代永磁体,可以产生永磁体无法产生的强大的磁通密度,且可以方便调节,从而可以实现大功率发电。在发电机的定子绕组上,绕的是发电机的电枢绕组,电枢绕组由一定数目的电枢线圈按一定的规律连接组成,他是直流电机的电路部分,也是感生电动势,产生电磁转矩进行机电能量转换的部分。线圈用绝缘的圆形或矩形截面的导线绕成,分上下两层嵌放在电枢铁心槽内,上下层以及线圈与电枢铁心之间都要妥善地绝缘,并用槽楔压紧。 接下来,工作人员又带我们了解了机车上的电压互感器,电压互感器的实质就是一个带铁芯的变压器,它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。 最后,我们又参观了电器车间,进去后就可以看到组成机车电气系统的分立元件的生产和检修,车间分为了两部分,一部分用于机车电气系统中一些较大部件的检修,生产和加工;另一部分是一些机车电气小部件及控制开关的检修生产。通过今天的参观实习,我对电机的检修与生产的工艺流程有了进一步的认识,不仅见到了原来在课本上学过但却没有实际见过的东西,也学到了原来在课本上学不到的知识,让我深刻的认识到将理论转换为实践的重要意义,在以后的生活和工作中,我要不断的充实和丰富自己,不放弃任何能够锻炼自己的机会,让自己能够学习到更多的知识。

三相半波可控整流电路__课程设计..

《电力电子技术课程》课程设计说明书 课程名称:三相半波可控整流电路设计 学院:电气与信息工程学院 专业:电气工程及其自动化 学生姓名:黄亚娟 学号: 10401240302 指导教师:曹志平 时间: 2013年6月9日

摘要 整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 关键词:整流,变压,触发,晶闸管,额定。

目录 摘要 (2) 目录 (3) 引言 (4) 一、三相半波整流电路原理分析 (4) 1.1.1 纯电阻性半波整流电路原理组成 (4) 1.2.1主电路设计 (4) 1.3.1 电路原理波形分析 (5) 二、三相半波整流电路数量分析 (7) 2.1.1 输出值的计算 (7) 2.2.1晶闸管的有效值 (8) 三、器件额定参数计算 (8) 3.1.1 变压器参数 (8) 3.2.1 晶闸管参数 (8) 3.3.1 变压器容量 (8) 3.4.1 晶闸管额定电压 (8) 3.5.1 晶闸管额定电流 (8) 四、MATLAB软件介绍 (9) 五、MATLAB软件电脑仿真………………………………………………… 1 1 5.1.1 MATLAB软件运用电脑仿真电路模型 (11) 5.2.1纯阻性负载三相半波可控整流电路仿真图像 (11) 5.3.1 仿真结果和实际原理分析比较 (12) 六、心得体会 (12) 七、参考文献 (13) 八致谢 (14)

35KV变压器课程设计

前言 本次课程设计,我选到的题目是35KV变电站电气初设。 此次设计的初衷是设计一个终端变电站,变电站按小型化、无人值班、有人看守,以及综合自动化等要求设计。而变电站的设计应秉承如下原则:安全可靠,技术领先,投资合理,标准统一,运行高效。所以,本次设计应该体现统一性,适应性,先进性,可靠性和经济性。 根据资料,本变电站主供电源曲子白家冲220KV变电站的110KV 母线,经大水变电站两个35KV出现间隔双回线供电。本变电站地理位臵为东经110°24′230″北纬30°35′34″,海拔高度▽89.30;年平均降水量1164.1mm,日最大降水量116.6mm,年平均风速1.6m/s,最大风速20m/s,年平均雷暴日40日/年,为多雷区;占地约为35*40平方米,四周平坦,西面进线,东面出线,该地地质构造为红色硬黏土,土地电阻率为100欧米。

目录 前言 (1) 第一章主变压器的选择 (2) 第二章电气主接线设计 (4) 第三章短路电流计算 (5) 第四章电气设备的选择 (8) 第五章 10KV侧母线的选择 (10) 参考文献 (12)

第一章 主变压器的选择 一、变压器台数的确定 1、对大城市郊区的一次变电所,在中、低压侧已构成环网的情况下,变电所以装设两台主变压器为宜。 2、对地区性孤立的一次变电所或大型工业专用变电所,在设计时应考虑装设三台主变压器的可能性。 3、对于规划只装设两台主变压器的变电所,其变压器基础宜按大于变电所容量的1~2级设计,以便负荷发展时,更换变压器的容量。 所以,由上述三条规定可以确定,本变电站主变压器台数为两台。 二、主变压器容量的确定 1、主变压器容量一般按照变电所建成5~10年的规划负荷选择并适当考虑到远期10~20年的负荷发展。对于城郊变电所,主变压器容量应与城市规划相结合。 2、根据变电所所带负荷的性质和电网结构确定主变压器的容量。对于有重要负荷的变电所,应考虑当一台主变压器停运时,其余变压器在设计过负荷能力后的允许时间内,应保证用户的一级和二级负荷;对于一般性变电所,当一台主变停运时,其余变压器容量应保证全部符合的70%~80%。 3、同级电压的单台降压变压器容量的级别不宜太多,应从全网出发,推行系列化、标准化。 因此,变压器容量的计算为S N 24.4041%70*97 .05600 %70*cos ===βP KVA

三相桥式整流电路课设资料

1 绪论 电子技术包括信息电子技术和电力电子技术两大分支。通常所说的模拟电子技术和数字电子技术都属于信息电子技术。电力电子技术是应用于电力领域的电子技术。具体的说,就是使用电力电子器件对电能进行变换和控制的技术。所用的电力电子器件均用半导体制成,故也称为电力半导体器件。电力电子技术所变换的“电力”,功率可以大到数百MW甚至GW,也可以小到数W甚至1W以下。信息电子技术主要用于信息处理,而电力电子技术则主要用于电力变换。 电力电子涉及由半导体开关启动装置进行电源的控制与转换领域。半导体整流控制、半导体硅整的小型化等的出现,产生一个新的电力电子应用领域。半导体硅整流、汞弧整流器应用于控制电源,但是这样的整流回路只是工业电子的一部分,对于汞弧整流器应用范围而言是有局限的。半导体硅整流的应用涉及很多领域,如汽车、电站、航空电子、高频变频器等。 整流电路就是把交流电能转换成直流电能的电路,大多数整流电路由变压器、整流主电路和滤波器等组成,在直流电动机的调速、发电机励磁调节、电解及电镀等领域得到广泛地应用。整流电路由主电路、滤波器和变压器组成。 随着科学技术的日益发展人们对电路的要求越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可方便得到大、中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。在电能的生产和传输上,目前以交流电为主。电力网供给用户的是交流电,而在许多场合,例如电解、蓄电池的充电、直流电动机等,需要用直流电。要得到直流电,除了直流发电机外最普遍应用的是利用各种半导体元件产生直流电。这个方法中,整流是最基础的一步。整流,即利用具有单向导电性的器件,把方向和大小交变的电流变换为直流电。本设计主要是对三相桥式全控整流电路(带反电动势的负载)的研究。 三相桥式全控整流电路与三相半波电路相比,输出整流电压提高一倍,输出电压的脉动率高,基波频率为300HZ,在负载要求相同的直流电压下,晶闸管承受的最大正方向电压将比三相半波减少一半,变压器的容量也比较小,同时三相电流平衡,无须中线。所以,三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。

课程设计变压器设计

课程设计任务书 班级(专业) 10生产过程自动化2班设计人乔月朋 一、课程设计题目:小型单相变压器设计 二、设计要求 通过该设计,初步掌握小型变压器容量、铁心、绕组等设计步骤和方法,熟悉有关规程和设计手册的使用方法。 三、设计的主要内容 1、额定容量的确定 2、铁心尺寸的确定 3、绕组匝数与导线直径 4、绕组排列及铁心尺寸的最后确定 5、讨论说明 6、整理成册 四、原始资料 变压器容量V·A 磁通密度 ×10T 效率η(%)电流密度 铁心计算中的 值 小于10 6000~7000 60~70 3~2.5 2 10~50 7000~8000 70~80 2.5~2 2~1.5 50~100 8000~9000 80~85 2.5~2 1.5~1.3 100~500 9000~11000 85~90 2.5~1.5 1.3~1.25 500~1000 11000~12000 90~92 1.5~1.2 1.25~1.1 五、设计步骤 1、分组布置任务,熟悉原始资料 2、搜集资料,学习理解 3、根据要求进行计算 4、根据要求写出报告,打印成册

5、检查情况、答辩、给出成绩 六、课程设计论文包括的内容 1、设计任务书 2、原理 3、结构 4、额定容量的确定 5、铁心尺寸的确定 6、绕组匝数与导线直径 7、绕组排列及铁心尺寸的最后确定 8、谢辞 9、参考文献 10、后记 要求课程设计自 2011 年 12 月 26 日至 2011 年 12 月 30 日 止自动化专业教研室主任年月日 机电系、系主任签章年月日

指导教师评语: 指导教师: 年月日

目录 1、课程设计任务书 2、教师评语 3、小型单相变压器的设计 (5) 3.1变压器工作原理 (5) 3.2变压器基本结构 (6) 4、变压器基本设计内容 (7) 4.1额定容量的确定 (7) 4.2铁心尺寸的设定 (8) 4.3绕组匝数与导线直径 (9) 4.4绕组排列及铁心尺寸的最后确定 (11) 5、实例举例 (12) 结论 (15) 心得体会 (15) 谢辞 (15) 主要参考文献 (16) 英文资料 (16)

小型变压器课程设计

辽宁工程技术大学 《电机学》课程设计 设计题目:小型单相变压器设计 院(系、部): 专业班级: 姓名: 学号: 指导教师: 日期: 2013-6-28

电气工程系课程设计标准评分模板

摘要 电,现今社会已经近乎于主导地位的洁净能源,还在继续提高着自己的位置。围绕着它所展开的学术研究也一天天的多了起来,针对着世界能源紧缺这个不可回避的问题,人们把希望寄托到了电的身上。它的产生方式很多,这就为它能多方式的产生打下了基础,如水能、风能等不好利用的能源,都能被合理的转化成电能,可见电的发展前景是很广阔的。发电、变电、用电,很多课题都已经大规模的展开,变压器也是其中一门很重要的学科。 变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电变压器原理图流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件。

目录 一﹑变压器的工作原理 (6) 二﹑变压器的组成 (6) (三)﹑其他部分 (8) 三﹑变压器主要参数的计算 (9) (一)、容量的确定 (9) (二)、铁心尺寸的选定 (10) (三)、绕组的计算 (12) (四)、绕组排列 (13) (五)、安全性和稳定性 (14) 四、例题 (15) 五、结论 (17) 参考文献 (18)

一﹑变压器的工作原理 当一个正弦交流电压U1加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通ф1,它沿着铁芯穿过初级线圈和次级线圈形成闭合的磁路。在次级线圈中感应出互感电势U2,同时ф1也会在初级线圈上感应出一个自感电势E1,E1的方向与所加电压U1方向相反而幅度相近,从而限制了I1的大小。为了保持磁通ф1的存在就需要有一定的电能消耗,并且变压器本身也有一定的损耗,尽管此时次级没接负载,初级线圈中仍有一定的电流,这个电流我们称为“空载电流”。 如果次级接上负载,次级线圈就产生电流I2,并因此而产生磁通ф2,ф2的方向与ф1相反,起了互相抵消的作用,使铁芯中总的磁通量有所减少,从而使初级自感电压E1减少,其结果使I1增大,可见初级电流与次级负载有密切关系。当次级负载电流加大时I1增加,ф1也增加,并且ф1增加部分正好补充了被ф2所抵消的那部分磁通,以保持铁芯里总磁通量不变。如果不考虑变压器的损耗,可以认为一个理想的变压器次级负载消耗的功率也就是初级从电源取得的电功率。变压器能根据需要通过改变次级线圈的圈数而改变次级电压,但是不能改变允许负载消耗的功率。 二﹑变压器的组成 (一)﹑铁心 1﹑铁心的作用和形式铁心是变压器的基本部件,由磁导体和夹紧装置组成,所以它有两个作用。 在原理上,铁心的磁导体是变压器的磁路。它把一次电路的电能转为磁能,又由自己的磁能转变为二次电路的电能,是能量转换的媒介,磁导体是铁心的主体。在结构上,铁心的夹紧装置不仅使磁导体成为一个机械上完整的结构,而且在其上面套有带绝缘的线圈,支持着引线,几乎安装了变压器内部的所有部件,所以它又是变压器的骨架。 铁心的重量在变压器各部件中占有绝对的优势,在干式变压器中占总重量的60%左右,在油浸式变压器中由于有变压器油和油箱,重量的比例才下降约占40%。 变压器的铁心(即磁导体)是框形闭合结构。其中,套线圈的部分称心柱,不套线圈只起闭合磁路的部分称铁扼。 铁心分为两大类,不套线圈只起闭合磁路的部分称铁扼。 铁心分为两大类,壳式铁心和心式铁心。铁扼包围了线圈的称为壳式铁心,否则称心式铁心,由带状硅钢片卷绕而成的称卷铁心。 壳式铁心一般是水平放置的,心柱截面为矩形,每相有两个旁扼,壳式铁心的优点是铁心片规格少,心柱截面大而长度短,夹紧和固定方便,漏磁通有闭合回路,附加损耗小,易于油对流散热。缺点是线圈为矩形,工艺特殊,绝缘结构复杂,短路能力差,尤其是硅钢片用量多。 心式铁心的优缺点正好与壳式相反,壳式和心式两种结构各有特色,很难断定其劣式。但由其绝缘所决定的制造工艺则大有区别,一旦选定了某一种结构,就很难转而生产另一种结构。正由于这个原因,国内都采用心式铁心,只有在小容量的单相变压器及特殊用途的变压器中采用壳式铁心。

相关主题