搜档网
当前位置:搜档网 › 干旱对水稻生长发育的影响及其抗旱研究进展

干旱对水稻生长发育的影响及其抗旱研究进展

干旱对水稻生长发育的影响及其抗旱研究进展
干旱对水稻生长发育的影响及其抗旱研究进展

干旱对水稻生长发育的影响及其抗旱研究进展

全瑞兰 王青林 马汉云 扶 定 霍二伟 沈光辉 郭桂英

(河南省信阳市农业科学院水稻研究所,信阳464000)

摘要:水稻(Orazy sativa L.)是主要的粮食作物之一,又是耗水量最多的农作物,水资源短缺严重制约着水稻生产。本文综述了干旱对水稻生长发育的影响,以及水稻抗旱品种鉴定、抗旱育种和节水栽培等抗旱减灾措施的研究进展,以期为今后水稻抗旱性的深入研究提供参考。

关键词:干旱;水稻;生长发育;抗旱;研究进展

水稻作为我国一种主要的粮食作物,约占我国粮食作物播种面积的1/3以及粮食总产量的40%[1]。水

稻是作物中耗水量最大的,每hm 2水稻平均要耗水

4062m 3,我国水资源缺乏,年均降水量比全球平均水平

低20%,人均水资源占有量远远低于世界平均水平,仅为其的1/4,而且水资源的时空分布极其不平衡,南北稻区季节性的干旱频发,严重影响了水稻的正常生长,这也制约着我国水稻生产的可持续发展[2]。为了解决

干旱给水稻生产带来的问题,建立起水稻抗旱的生产技术体系,农业研究人员对水稻抗旱进行了一系列的研究,并取得了一些进展。本文对水稻抗旱品种鉴定、抗旱育种以及节水栽培综合技术等方面简做综述,为水稻抗旱的进一步研究提供参考。

1 干旱对水稻生长发育的影响

1.1 对水稻生理生化的影响 在作物的生命活动中水分起着重大的作用,干旱会影响到作物的各种生理代谢过程。质膜是细胞最外的一层薄膜,它能有效抵御逆境对细胞的伤害,使细胞结构维持稳定,保证生理生化活动能够正常进行。水稻原生质膜的组成和结构在干旱胁迫下发生明显变化,从而破坏了细胞膜的透性。研究发现,随着干旱胁迫强度的增加和时间的延长,超氧化物阴离子自由基(O -2)

、过氧化氢(H 2O 2)和羟基自由基(-OH )大量产生,膜脂过氧化加剧,水稻叶片质膜透性增加,丙二醛(MDA )含量显著提升,造成膜系基金项目: 国家现代农业产业技术体系建设专项资金(CARS-01-61);国

家农业科技成果转化资金项目(2013GB2D000291);河南省现代农业产业技术体系建设专项资金(Z2012-04-01);河南省重点科技攻关项目(142102110029);河南省科技成果转化项目(132201110017)

统和多种酶遭受严重损伤[3]。植物体内有着能够清除活性氧伤害的抗氧化酶,如超氧化物歧化酶(SOD )和过氧化氢酶(CAT )等。研究发现,水稻叶片的SOD 和

CAT 活性在干旱胁迫下升高与其抗旱性强弱呈正相关,对耐旱性强的水稻品种的分析显示多有较强的抗

氧化胁迫的能力[4]。

水稻在遭受干旱逆境时,细胞分裂和细胞扩张减

少,新叶生长和叶片扩增受到抑制,叶片加速衰老,叶面积系数减少,同时叶表面气孔关闭,CO 2导度降低。随着干旱胁迫程度的加深,水稻叶片中叶绿素的分解加快,叶绿体的超微结构受到不可逆的破坏,光合量子效率、光合电子传递速率、羧化效率及光合磷酸化活力下降,导致叶肉细胞光合能力下降,引发光合作用降低,减少有机物合成,使生长受到抑制。光合作用对干旱的敏感性相比之下要大于呼吸作用。干旱胁迫初期,水稻叶、茎及植株呼吸速率明显提升,随着胁迫时间的延长又明显下降。干旱胁迫还导致氮代谢受到破坏,使硝酸还原酶活性降低,引起植物体内硝酸累积而引发毒害,同时增强水解酶活性,引起蛋白质的降解,降低蛋白质含量,增加了可溶性氮含量,不利于水稻的生长和代谢。1.2 对水稻生长及产量的影响 水稻在水分胁迫下生长状况和形态特征发生变化,主要是由于其体内细胞在胁迫下脱水,造成在结构、生理生化等方面产生系列反应。水稻在生长中对水分胁迫极为敏感。土壤不同时期的干旱都将抑制水稻新叶出生、叶片扩展、分蘖能力、株高生长、穗长、地上干物质积累等生理特性[5]。叶的生长对缺水最为敏感,水分缺失使叶片加速衰老,叶面积系数减少。干旱胁迫引起根系生长速率降低,根长、根数和重量明显减少,同时在土壤干旱时水稻根尖木栓化加速,使其吸收机能降低。在不同生育时期水稻遭受水分胁迫,各器官的干物重、总干重显著降低,最终引起产量下降。

在不同的生育期,水稻对干旱的反应程度各异,插秧至返青期由于水稻根系受到破坏,对干旱的反应较敏感,对水、肥吸收能力较差,长期干旱影响其存活率;分蘖至开花期缺水,植株反应极其敏感,分蘖及有效穗

植物抗旱机理研究进展

植物抗旱机理研究进展 水资源短缺以及土壤盐渍化是目前制约农业生产的一个全球性问题,全球约有20%的耕地受到盐害威胁,43%的耕地为干旱、半干旱地区。干旱与盐害严重影响植物的生长发育,造成作物减产,并使生态环境日益恶化。在我国,仅2001年华北、西北和东北地区的466.7万hm2稻的种植面积就因为缺水而减少了53.3万hm2。在自然条件下,由于环境胁迫而严重影响了作物生长发育,其遗传潜力难以发挥,干旱、盐渍不仅影响了作物的产量,而且限制了植物的广泛分布,因此,提高作物的抗旱、耐盐能力已经成为现代植物研究工作中急需解决的关键问题之一。现将植物特殊生理结构功能综述如下。 1植物形态结构特征对其耐旱机制的影响 1.1根系 植物根系是植物直接吸收水分的重要器官,它对植物的耐旱功能具有至关重要的作用。纵深发达的根系系统可使植物充分吸收利用贮存在土壤中的水分,使植物度过干旱期。对高粱的根系解剖学研究发现,高粱根系吸水每天以3.4 cm的稳定速率下伸,直到开花后约10 d,在有限水分条件下,吸水的多少由根系深度决定,深层吸水差是由于根长不够所致。此外,根水势能也能反映根系的吸收功能。根水势低,吸水能力强。据报道,高粱根水势一般为-1.22~1.52 Mbar,而玉米仅为-1.01~1.11 Mbar,高粱的吸水能力约是玉米的2倍(Cnyxau,1974),对干旱的耐受能力也强于玉米。一般认为抗旱性强的植物,根水势低,利于水分吸收。 1.2叶片 作为同化和蒸腾器官的叶片,在长期干旱胁迫下,叶片的形态结构会发生变化,其形态结构的改变与植物的耐旱性有着密切的关系。主要表现在:叶片表皮外壁有发达的角质层,角质层是一种类质膜,其主要功能是减少水分向大气散失,是植物水分蒸发的屏障。厚的角质层可提高植物的能量反射与降低蒸腾,从而增强植物的抗旱性;具有表皮毛,可以保护植物避免强光照射,减少蒸腾;具有大的栅栏组织/海绵组织比和小的表面积/体积比,发达的

水稻的生长发育电子教案

水稻的生长发育

第三节水稻的生长发育 水稻的一生是指水稻种子萌发到种子成熟。从器官生长发展的特点看:可分成幼苗期、分蘖期、幼穗形成期和结实期。从生长发育的特点来看:可分为营养生长期和生殖生长期。以幼穗分化为界,在幼穗分化以前,主要是以根、茎、叶、分蘖等营养器官增殖为主,故称为营养生长期;幼穗分化以后,是以生长幼穗、颖花、种子等生殖器官为主,故称之为生殖生长期。 一、幼苗期的生长发育 幼苗是指种子萌发到三叶期这个阶段,习惯把秧苗在秧田生长的时期称为幼苗期。苗期可分为种子萌发和秧苗成长两个时期。 (二)、幼苗的生长 幼苗的生长是指第一真叶抽出至成秧移栽。芽谷播种后,胚根下扎,胚芽就向上坚起,叫扎根扶针。随后,不完全叶伸出叶鞘,称为出苗,全田有50%的出苗即为出苗期。 不完全叶抽出1-2天后,长了第一片完全叶,秧苗明显显现绿色,此时称为现青。全田有50%的苗长出第一完全叶时为现青期,以后长出第二、三片完全叶,至第四完全叶出现时,基部茎节就能发生分蘖。一般把第三片完全叶以前的时期称为幼苗期。 二、分蘖期的生长发育 从分蘖开始发生到停止的时期称为分蘖期。 (一)分蘖发生及条件 1、分蘖的发生:水稻的分蘖是接近地表基部密集节上的腋芽,在适宜条件下萌发起来的侧茎。发生分蘖的节称为分蘖节。分蘖发生所在节位低的叫低位分蘖,发生所在节位高的叫高位分蘖。一般低位分蘖成穗率高,穗型也大。由主茎长出的分蘖称第一次分蘖,由第一次分蘖长出的分蘖称为二次分蘖,依次类推。生产上常规稻一般以一次分蘖多,二次分蘖少,三、四次分蘖更少。而杂交稻二、三、四次分蘖均有发生。 2、分蘖发生的条件:分蘖发生的内在因素:品种不同,分蘖特性差异较大,籼稻品种大于粳稻和糯稻,多穗型品种大于大穗型品种,杂交水稻大于常规稻。分蘖的外界条件:一是气温、水温:分蘖发生的临界气温为15℃、水温16-17℃,最适宜气温为28-31℃,水温32-34℃。二是水分:过多或过少对分蘖都有抑制作用。三是光照强度:植株过繁茂,栽插过密、荫蔽严重会降低有效分蘖率。四是肥料:肥料充足时,分蘖快而多,返之,慢而少。五是插秧深度:浅插对分蘖有利,分蘖早而多;插秧深,分蘖节位高,分蘖迟而少。 (二)有效分蘖和无效分蘖

水稻田间管理技术

水稻田间管理技术 湄潭县农牧局向明 习惯上把水稻种子萌发到新种子形成,成为水稻的一生。根据形态、生理等特点,可将水稻的一生分为营养生长和生殖生长两个时期(或阶段)。营养生长期,是指从种子萌发到稻穗开始分化以前的一段生长时期;生殖生长期,是指从稻穗开始分化到成熟收获的生长期。 根据形态、生理特点,可将营养生长期划分为秧田营养生长期和大田营养生长期。其中秧田营养生长期又可划分为三个时期,即从种子萌发至不完全叶伸出的幼芽期,从不完全叶伸出至第三叶全出的幼苗期,从第四叶伸出至移栽的成苗期。 大田营养生长期可分为返青期和分蘖期。从插秧至叶色转青、新叶开始恢复正常生长这段时间,叫返青期。分蘖期可分为有效分蘖期和无效分蘖期:有效分蘖期,是指开始分蘖到全田总茎数达到与计划收获穗数相当的时期;无效分蘖期,是指从全田总茎数与计划收获穗数相当时至停止分蘖的时期。 生殖生长期又可分为幼穗发育期和开花结实期。幼穗发育期,包括从幼穗开始分化至顶叶出一小半以前的幼穗形成期和从顶叶出一 小半至抽穗的孕穗期。开花结实期,可分为从稻穗开始抽出顶叶叶鞘至开花授粉完毕的出穗开花期,从授粉完毕至成熟收获的结实成熟期。 水稻田间管理按时间可分为返青前田间管理、分蘖期田间管理、长穗期田间管理,田间管理的主要内容包括水分管理、施肥管理和病

虫草害防治。 一、水稻水分管理 (一)水稻的需水规律 水稻需水包括生理需水和生态需水。生理需水是指供给水稻本身生长发育、进行正常生命活动所需的水分,,包括水稻植株蒸腾和构成水稻植株体的水分;生态需水是指为保证水稻正常生长发育、创造一个良好的生态环境所需的水分,包括棵间蒸发和稻田渗漏的水分。在水稻生长发育过程中,需水量的变化规律是由小到大,再由大到小。最大需水量多在拔节孕穗期。水稻需水临界期在孕穗期,此期若水分亏缺,容易造成穗小粒少,甚至会导致不抽穗或造成空壳秕粒。所以保证孕穗期水分供应是关键,有利于形成大穗提高产量。 (二)水稻生育前期水分管理 在插秧后2-3天内,除抛秧田一般不灌水,保持田面湿润,以利提早立苗外,插秧稻田都要灌相当苗高1/3-1/2的稍大水层扶秧护苗,以减少叶面蒸腾,防止秧苗凋萎,加速返青成活。如果这时水层过浅,秧苗经风吹日晒,容易失水干枯,造成大缓秧,使壮秧变成弱秧,早秧变成晚秧。扶秧护苗后,要随即改灌2-3厘米的浅水层,经过自然落干后间隔2-3天再灌一次水。主要好处是:有利提高水温和土温,加速土壤养分分解,促进根系吸收,并使植株基部能接受充足光照,有利于分蘖发生。实践证明,浅水间歇灌溉比深水层灌溉分蘖早,蘖位低,蘖数多,质量好。 (三)水稻幼穗发育期的水分管理

水稻的生长发育

第三节水稻的生长发育 水稻的一生是指水稻种子萌发到种子成熟。从器官生长发展的特点看:可分成幼苗期、分蘖期、幼穗形成期和结实期。从生长发育的特点来看:可分为营养生长期和生殖生长期。以幼穗分化为界,在幼穗分化以前,主要是以根、茎、叶、分蘖等营养器官增殖为主,故称为营养生长期;幼穗分化以后,是以生长幼穗、颖花、种子等生殖器官为主,故称之为生殖生长期。 一、幼苗期的生长发育 幼苗是指种子萌发到三叶期这个阶段,习惯把秧苗在秧田生长的时期称为幼苗期。苗期可分为种子萌发和秧苗成长两个时期。 (二)、幼苗的生长 幼苗的生长是指第一真叶抽出至成秧移栽。芽谷播种后,胚根下扎,胚芽就向上坚起,叫扎根扶针。随后,不完全叶伸出叶鞘,称为出苗,全田有50%的出苗即为出苗期。 不完全叶抽出1-2天后,长了第一片完全叶,秧苗明显显现绿色,此时称为现青。全田有50%的苗长出第一完全叶时为现青期,以后长出第二、三片完全叶,至第四完全叶出现时,基部茎节就能发生分蘖。一般把第三片完全叶以前的时期称为幼苗期。 二、分蘖期的生长发育 从分蘖开始发生到停止的时期称为分蘖期。 (一)分蘖发生及条件 1、分蘖的发生:水稻的分蘖是接近地表基部密集节上的腋芽,在适宜条件下萌发起来的侧茎。发生分蘖的节称为分蘖节。分蘖发生所在节位低的叫低位分蘖,发生所在节位高的叫高位分蘖。一般低位分蘖成穗率高,穗型也大。由主茎长出的分蘖称第一次分蘖,由第一次分蘖长出的分蘖称为二次分蘖,依次类推。生产上常规稻一般以一次分蘖多,二次分蘖少,三、四次分蘖更少。而杂交稻二、 三、四次分蘖均有发生。 2、分蘖发生的条件:分蘖发生的内在因素:品种不同,分蘖特性差异较大,籼稻品种大于粳稻和糯稻,多穗型品种大于大穗型品种,杂交水稻大于常规稻。分蘖的外界条件:一是气温、水温:分蘖发生的临界气温为15℃、水温16-17℃,最适宜气温为28-31℃,水温32-34℃。二是水分:过多或过少对分蘖都有抑制作用。三是光照强度:植株过繁茂,栽插过密、荫蔽严重会降低有效分蘖率。四是肥料:肥料充足时,分蘖快而多,返之,慢而少。五是插秧深度:浅插对分蘖有利,分蘖早而多;插秧深,分蘖节位高,分蘖迟而少。 (二)有效分蘖和无效分蘖

水稻的旱种技术

水稻的旱种技术 水稻旱种,是从水稻早直播发展而来的,即是在旱地状况下直播、苗期旱长、中后期利用雨水和适当灌溉以满足稻株需水要求的一种种稻方法。50年代我国北方稻区一些国营农场在水稻旱直播的基础上,为解决灌溉水源不足的问题,试验“水稻幼苗旱长及中后期灌水”,可以说是水稻旱种的雏形。70年代初,北方地区连续干旱,中国农科院作物研究所自1973年开始研究和推广水稻旱种,北方水稻旱种在80年代曾经发展很快,到1985年,北方13个省市的应用面积达16万公顷。水稻旱种,不仅比普通水田稻节省灌溉用水25%~40%,而且可以减少水稻生产中的操作程序(如育秧、移栽等),节省用工,便于机械化生产。特别是与同等条件下的玉米、高粱等旱粮生产相比,经济效益明显。当然,后来由于一些技术和非技术原因,使水稻早种的应用面积急剧缩减。近年来,随着水危机的日益严重和水稻耐旱品种、除草剂等方面的技术进步,水稻旱种再度兴起,旱种技术又有了新的发展。 (一)水稻旱种的类型 水稻旱种,在不同地区,因土壤,气候等生态条件及种植制度不同,其类型也不同。 一是按照水稻旱播后的灌溉模式进行分类,分为旱种水管和早种旱管。旱种水管,是指水稻播种出苗经过一段时间的旱长后,按照常规水稻淹灌或浅湿灌溉的模式进行中后期田间水分管理。其稻田生态特点表现为水分状况由旱田状态转化到水田状态,水分胁迫程度较小。这种类型水稻旱种,主要是分布在降雨量和灌溉条件相对较好的地区或田块。旱种旱管,是指水稻播种出苗后,像早作物(小麦、玉米等)一样,按照定期的湿润灌溉模式进行田间水分管理。其稻田生态特点表现为水分状况一直是旱田状态,水分胁迫程度大。这种类型水稻旱种,有些地方称之为水稻旱作,主要是分布在降雨量更少和灌溉条件相对较差的地区或田块。二是按照水稻旱种的季节和茬口分类,分为春播旱种和夏播旱种。春播水稻旱种主要分布在广大的北方稻区,是1年1熟。最初在北方部分省市的水稻旱种基本上是春播旱种水管。夏播水稻旱种,主要是分布在黄淮地区和南方的部分丘陵山区,一般是在大(小)麦、油菜、大豆等前茬作物收获后播种,也有在麦田套播水稻旱种的,1年两熟。 (二)水稻旱种的技术特点 水稻旱种与旱直播相比的区别是:旱直播是在旱整地、旱播种后,随即灌水,其后田间水分管理与移栽稻一样,保持水层;水稻旱种是旱田足墒播种出苗,保持一段时期旱长,不灌水,中后期根据情况采取浅水灌溉、浅湿间歇灌溉或定期湿润灌溉。 水稻旱种与常规移栽水稻相比的区别:一是改水整地为旱整地或免耕,节约了大量的耕、

水稻抗旱基因调控机制及其分子育种利用_王莉

分子植物育种,2014年,第12卷,第5期,第1027-1033页 Molecular Plant Breeding,2014,Vol.12,No.5,1027-1033 评述与展望 Review and Progress 水稻抗旱基因调控机制及其分子育种利用 王莉1,2钱前1*张光恒1* 1中国水稻研究所水稻生物学国家重点实验室,杭州,310006;2中国农科院研究生院,北京,100081 *通讯作者,qianqian188@https://www.sodocs.net/doc/d413693583.html,;zhangguangheng@https://www.sodocs.net/doc/d413693583.html, 摘要稻米是中国最主要的粮食作物之一,多途径提高水稻单产和稻米总量,对解决我国粮食安全上具有十分重要的意义。而如何解决日益增长的水稻总产需求和干旱缺水环境之间的矛盾是中国21世纪将面临的最严重的粮食问题之一。本文从水稻抗旱种质资源及耐旱基因的功能角度出发,对抗旱育种的种质资源,耐(抗)旱基因调控机理及其分子育种应用等研究进展进行综述。综合分析认为,水稻抗旱特性调控基因主要包括功能基因和调节基因两大类:功能基因的调控作用主要表现在蛋白酶的调节、糖类物质积累、渗透调节、有毒物质降解和水稻细胞机构调节等五个方面;而调节基因则主要参与编码信号转导相关的信号因子和响应胁迫的转录因子家族。这些基因的克隆为水稻抗旱性研究和抗旱育种奠定了理论基础。此外,中国抗旱分子育种还处于起始阶段,受种植区域、生产成本、稻米品质及病虫害抗性等方面影响,旱稻推广面积偏小。在中国转基因水稻尚未全面放开背景下,目前转基因旱稻品种选育和技术研究还处于技术储备层面。在现阶段抗旱育种实践重点是提高旱稻育种效率和选育技术创新,同时兼顾高产、抗病虫害农艺特性,结合分子技术聚合或导入外源抗旱基因,选育高产、耐旱、优质旱稻品种,充分挖掘旱稻增产潜力。这将为我国缓和粮食生产与淡水资源缺乏之间的矛盾提供新思路,为确保我国粮食安全、调整优化农业结构、促进节水农业持续发展开辟一条新途径。 关键词水稻,抗旱基因,调控机理,分子育种 Regulation Mechanism of Drought-resistance Genes and its Molecular Breeding Utilization in Rice(Oryza sativa L.) Wang Li1,2Qian Qian1*Zhang Guangheng1* 1State Key Laboratory of Rice Biology,China National Rice Research Institute,Hangzhou,310006;2Graduate School of Chinese Academy of Agri-cultural Sciences,Beijing,100081 *Corresponding authors,qianqian188@https://www.sodocs.net/doc/d413693583.html,;zhangguangheng@https://www.sodocs.net/doc/d413693583.html, DOI:10.13271/j.mpb.012.001027 Abstract Rice is one of the main food crops in our country,and it is very important to improve rice yield and total rice product by multiple pathways for food security.But how to solve the contradiction between the require-ment of increasing total amount of rice and the environment of water shortage is the most serious problem we will face in the21st century.The paper expounds the advance in germplasm resources in drought-resistance breeding, regulation mechanism of drought-resistance genes and its molecular breeding application from the point of the drought-resistance germplasm resources and the functions of drought-tolerance genes in rice.The comprehensive analysis comes to the conclusion that drought resistance regulation mechanism mainly consist of functional genes and regulatory genes.The regulating effects of functional genes mainly reflect in protease adjustment, carbohydrate accumulation,osmotic adjustment,toxic material degradation and rice cell machinery regulation; regulatory genes are primarily participate in coding signal factors related to transduction and transcription factors 收稿日期:2014-01-07接受日期:2013-03-27网络出版日期:2014-07-15 URL:https://www.sodocs.net/doc/d413693583.html,/index.php/mpbopa/article/view/1983 基金项目:本研究由国家自然科学基金重大研究计划培育项目(91335105)和国家自然科学基金面上项目(31171531)共同资助

水稻基因组学的的研究进展

基因组学课程论文 所在学院生命科学技术学院 专业14级生物技术(植物方向) 姓名金祥栋 学号2014193012

水稻基因组学的研究进展 摘要:随着模式植物——拟南芥和水稻基因组测序的完成,近年来关于植物基因组学的研究越来越多。水稻是世界上重要的粮食作物之一,养活着全世界近一半的人口。同时南于水稻基冈组较小、易于转化及与其他禾本科植物基因组的同线性和共线性等特点,一直被作为禾本科植物基因组研究的模式作物。水稻基因组测序的完成及种质资源的基因组重测序,为水稻功能基因组研究奠定了基础。现综述我国水稻基因组测序和功能基因组研究历史,重点介绍了近年来在水稻基因组序列分析中获得的几项最新的研究结果。 关键词:水稻;基因组测序;功能基因组;研究历史;基因组学;研究进展 The recent progress in rice genomics research Abstract: With the completion of genome sequencing ofthe model plant-- Arabidopsis and rice,more and more researches on plant genomics emerge in recent years. Rice i s one of the most important crops in the world, raised nearly half of the world popul ation. At the same time in south rice Keegan group is smaller, with linear and linear features such as easy transformation and other gramineous plant genome, has been use d as a model crop for plant genome research of Gramineae. Genome sequencing and germplasm resources the rice genome sequencing completed laid the foundation for ric e functional genomics research. This article reviews the history and function of our ge nome sequencing of rice genome research, introduces several latest research results in recent years in the analysis of rice genome sequences. 前言 基因组是1924年提出用于描述生物的全部基因和染色体组成的概念,是研究生物基因结构与功能的学科,是在遗传学的基础上发展起来的一门现代生物技术前沿科学,也是现代分子生物学和遗传工程技术所必要学科,是当今生物学研究领域最热门、最有生命力、发展最快的前沿科学之一。基因组学的主要任务是研究探索生物基因结构与功能,生物遗传和物理图谱构建,建立和发展生物信息技术,为生物遗传改良及遗传病的防治提供相关技术依据。 进入21 世纪,随着全球化、市场化农业产业发展和全球贸易一体化格局的逐步形成,我国种业正面临前所未有的严峻挑战,主要表现在:依靠传统育种技术难以大幅度提高粮食单产;土地资源短缺,农业环境污染日益突出;种质资源发掘、基因组育种技术亟需创新等。水稻不仅是重要的粮食作物,由于其基因组较小且与其他禾本科作物基因组存在共线性,以及具有成熟高效的遗传转化体系,已成为作物功能基因组研究的模式植物。因此,水稻基因组研究对发展现代农作物育种技术、提升种业国际竞争力和保障粮食有效供给具有重大战略意义。 基因组研究主要包括三个层次:①结构基因组学,以全序列测序为目标,构建高分辨率的以染色体重组交换为基础的遗传图谱和以DNA 的核苷酸序列为基础的物理图谱。②功能

水稻基因组进化的研究进展

水稻基因组进化的研究进展 水稻是世界上重要的粮食作物之一,养活着全世界近一半的人口。同时南于水稻基冈组较小、易于转化及与其他禾本科植物基因组的同线性和共线性等特点,一直被作为禾本科植物基因组研究的模式作物。水稻是第一个被全基因组测序的作物,目前栽培稻2个亚种全基因组测序工作已经完成:粳稻品种日本晴(Nipponbare)通过全基因组鸟枪法和逐步克隆法被测序,籼稻品种扬稻6号(9311)通过全基因组鸟枪法被测序。除核基因组外,水稻叶绿体和线粒体基因组也于1989年和2002年分别被测序。水稻2个亚种的全基因组测序完成,一方面开启了植物比较基因组学的大门,另一方面为人们在基冈组水平上鉴定出所有水稻基因并分析其功能奠定了基础,同时也使得人们对植物进化的认识,尤其是对禾本科植物进化的了解,逐步从系统分类和分子标记水平进入到了基因组序列水平。许多研究者通过对水稻基因组序列的分析,利用生物信息学工具,对水稻在基因组水平上的进化进行了大量研究。 1 水稻及其他禾本科植物基因组的古多倍体化过程 水稻是典型的二倍体植物,其核基因组中共有12条染色体。在水稻基因组被完整测序之前,人们就已经采用分子标记、DNA重复元件等方法探究水稻基因组的古多倍体化(polyploidization)过程,并发现了一些重复的染色体片段。随着水稻基因组测序计划的完成,越来越多的证据表明水稻基因组曾发生过全基因组复制(whole genome duplication),即古多倍体化过程。 Golf等利用鸟枪法完成了粳稻品种日本晴全基因组的测序工作,并利用同义替换率分布方法(Ks- based age distribution)提出水稻基因组可能发生过一次全基因组复制过程。此后多家研究机构和一些研究者对水稻基因组中的重复片段进行了研究,虽然得出的结论不尽相同,但均发现水稻基因组中存在大量的重复片段。根据所采用方法和参数的不同,这些重复片段占整个水稻基因组的15%~62%。Yu 等在水稻基因组中发现了18对大的重复片段,大约占整个基因组的65.7%。其中17对重复片段形成的时间很相近,发生在禾本科物种分化之前;最近的一次片段复制事件发生在水稻11和12号染色体之间,在禾本科物种分化之后。 水稻基因组被测序之后,许多科研机构对基因组数据进行了详尽的注释。其中应用比较广泛的是美国基因组研究院(the institute for genome research,TIGR)和日本农业生物科学研究所(national in- stitute of agrobiological sciences,NIAS)的水稻基因组注释信息。TIGR根据其注释的结果和基因相似性矩阵(gene homology matrix,GHM)方法,检测到大量染色体间的重复片段,这些重复片段几乎覆盖了整个水稻基因组。TIGR水稻基因组注释数据库从第4版开始便增加了对片段重复的注释,该分析是利用DAGChainer程序进行的,重复片段采用100 kb和500 kb 2种参数模型进行了染色体片段的基因共线性分析(图1),这是全基因组复制的有力证据。根据复制片段上同源基因的分子进化分析,估计全基因组复制发生在大约7 000万年前,在禾本科物种分化之前。此外,Zhang等利用TIGR更新的数据进行分析,采用同义替换率分布方法检测到另一次更古老的(单、双子叶植物分化前)基因组复制事件,说明水稻基因组至少经历了2次全基因组复制过程。 全基因组复制或多倍体化是植物尤其是禾本科作物物种形成和进化过程中非常重要的事件,大部分开花植物在进化过程中均经历了多倍体化过程。基因组加倍后,再经历所谓的二倍体化过程(diploidization),进化成当代的二倍体物种,并造成大量重复片段中基因的重排和丢失。Salse等研究发现基因组复制事件对禾本科植物的物种形成和演变具有重要作用。他们认为禾本科植物的祖先物种是一个基因组内包含5条染色体的物种,在进化过程中,首先在距今5 000~7 000万年前经基因组复制产生了10条染色体;此后,在基因组内发生了2次染色体置换和融合而形成了12条中间态染色体。以这12条中间态染色体为基础,逐渐分化出水稻、小麦、玉米和高粱的基因组,其中水稻基因组保留了原有的12条中间态染色体,而小麦、玉米和高粱均又发生了染色体丢失和融合才形成了现有的基因组。水稻全基因组复制片段是至今为止在动、植物基因组中发现的最为清晰、完整的基因组复制的遗迹。水稻之所以保存这么完整,一方面是水稻基因组保持了12条中间态染色体的基本形态,另一方面可能与水稻基因组相对较稳定有关。 2水稻籼粳2个亚种的分化 水稻是世界上最重要的粮食作物之一,在其11 500多年的栽培历史中,因适应不同的农业生态环境而产生了丰富的遗传多样性和明显的遗传分化。长期以来,基于形态性状、同工酶以及对一些化合物不同反应的研究,把亚洲栽培稻(Oryza sativa L.)分为籼稻(indica)和粳稻(japonica)2个亚种。其中籼亚种耐湿耐热,主要适应于热带和亚热带等低纬度地区,而粳亚种则耐寒耐弱光,适应于高纬度和高海拔地区种植。这2个亚种间不仅产生了生殖隔离的基因库,还在形态特征、农艺性状和生理生化反应等方面存在明显的差异。近期群体

水稻不同生育时期的划分

水稻不同生育时期的划分 一、生育时期的划分:生育时期可从形态、生长和发育、生理特征的角度分为几个时段。 (1)从形态和田间诊断角度分期 幼苗期:包括萌动、发芽、三叶等时期。 分蘖期:包括始期、盛期、末期(最高分蘖期)以及决定穗数关键时期的有效分蘖终止期。 穗分化期(长穗期):包括穗分化各期、拔节期以及外观看到剑叶鞘膨鼓时的孕穗期。 结实期(成熟期) 包括抽穗开花期、乳熟期、蜡熟期、黄熟期和完熟期。 栽培上插秧稻又分秧田期和本田期,幼苗期和分蘖期的一部分在秧田期完成,但习惯上称秧田期为幼苗期,插秧后有一段缓秧过程叫返青期,其后再开始分蘖。

(2)从发育角度分期 可分为营养生长期、生殖生长期。这是以茎尖质的转变—穗原基开始(穗首分化)分化为标志分期的。 (3)从器官的生长发育角度分期 可分为营养生长期、营养生长生殖生长并进期、生殖生长期。各以穗原始体开始分化和抽穗开花期为界。 (4)从生理角度分期 可分为营养生长期、生殖生长期、结实期。这是以产量形成生理为根据的。即营养生长期主要形成供给器官,即吸收器官根和光合器官(源器官)叶;生殖生长期主要形成收容器官(库)颖花和支持器官(流)茎;结实期主要是光合物质和矿物质通过茎流向收容器官库被贮藏起来。为利用方便,常把分蘖期称前期,穗分化期称中期,结实(成熟)期为后期。 2. 常用生育时期的定义及标准: (1)生育期:指种子萌动到新的种子成熟所经历的日期。 (2)营养生长期:是指植株营养器官根、茎、叶的生长阶段,一般是从种子萌发到幼穗分化以前。这一阶段包括出苗期、分蘖期和拔节期。 (3)生殖生长期:是指植物生殖器官幼穗、花、种子的生长阶段,一般是从幼穗分化开始到新种子的形成。这一阶段包括孕穗期、抽穗期、开花期和成熟期。 (4)苗期:以幼芽露青50%开始,一直到插秧,整个秧田期为苗期。对于旱育苗,黑龙江省水稻苗期一般为4月中下旬至5月中下旬。 立针期:第1片完全叶尚未展开时,稻苗呈针状,称为立针期。

2013-138水稻功能基因组研究进展与发展展望

中国农业科技导报,2013,15(2):1-7 Journal of Agricultural Science and Technology 一收稿日期:2013-02-28;接受日期:2013-03-29 一基金项目:国家863计划项目(2012AA10A303;2012AA10A304)资助三 一作者简介:肖景华,副教授,博士,主要从事水稻功能基因组学研究三E-mail:xiaojh@https://www.sodocs.net/doc/d413693583.html, 水稻功能基因组研究进展与发展展望 肖景华,一吴昌银,一张启发 (作物遗传改良国家重点实验室,国家植物基因研究中心(武汉),华中农业大学,武汉430070)摘一要:水稻是重要的粮食作物也是功能基因组研究的模式植物三近年来水稻功能基因组研究发展迅速,技术和资源平台不断完善和拓展,大批重要功能基因被分离鉴定三高通量基因组新技术开始被应用于水稻育种三回顾了水稻功能基因组研究的发展历程,在对国内外研究现状总结基础上,围绕 稻2020 研究计划对未来水稻发展方向进行了展望三关键词:水稻;功能基因组; 稻2020 doi :10.3969/j.issn.1008-0864.2013.02.01 中图分类号:S511一一一文献标识码:A一一一文章编号:1008-0864(2013)02-0001-07 The Progress and Perspective of Rice Functional Genomics Research XIAO Jing-hua,WU Chang-yin,ZHANG Qi-fa (National Key Laboratory of Crop Genetic Improvement,National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University,Wuhan 430070,China) Abstract :Rice is a staple food crop and model system for genomic research among cereal plants.There has been rapid advances in rice funciotnal genomic research in the last decade including development of technological and resource platforms and the isolation of functional genes.High-throughput genomic technologies have been used in rice breeding.This review gave a glimpse on the progress made in rice functional genomics research,and the perspective of rice development direction in the future around a goal referred to as Rice 2020 :a call for an international coordinated effort in rice functional genomics. Key words :rice;functional genomics; Rice 2020 一一水稻是世界和我国三大主要粮食作物之一,全球超过半数以上的人口以稻米为主粮三水稻在我国和全球粮食安全以及可持续发展中具有极其重要的地位和作用三水稻在农作物中基因组最小,并与玉米二大麦及小麦等其他禾本科粮食作物存在广泛的共线性,已成为禾谷类作物基因组研究的模式植物三此外,水稻中有高效成熟的遗传转化体系,拥有丰富的种质资源,研究历史悠久三自1998年启动国际水稻基因组测序计划以来,水稻基因组和功能基因组研究取得了巨大的进展三伴随着新一代高通量二高精度测序技术的发展,水稻功能基因组学的研究正不断深入,并开始推动作物遗传育种理念和育种技术手段的革新三 1一植物功能基因组发展现状与趋势 水稻和拟南芥分别是单子叶和双子叶基因组研究的模式植物三拟南芥全基因组测序于2000年底完成(The Arabidopsis Genome Initiative 2000),2001年国际上启动了拟南芥功能基因组研究计划(Arabidopsis 2010),目标是揭示全部基因的功能,全面阐明拟南芥的生物学基础三拟南芥全基因组测序的完成和功能基因组计划的实施,极大的推动了植物功能基因组学的发展,为重要农作物基因组研究提供了研究方法和研究策略三

抗旱水稻种子转基因成分检测技术研究

抗旱水稻种子转基因成分检测技术研究 邓汉超1,2 刘玉琛3 邓国标3,4 刘 晋1,2 陈惠芳1,2 杨启鹏1,2 周向阳1,2(1深圳市农业科技促进中心,深圳 518040;2农业部农作物种子质量监督检验测试中心(深圳),广东深圳 518040; 3深圳市作物分子育种研究院,深圳 518107;4广东省龙门县卫生和计划生育局,惠州 516800) 摘要:利用组织研磨仪快速处理水稻种子样品,采用高通量的磁珠纯化系统提取样本DNA,提取的核酸通过紫外吸收检测其纯度,应用普通PCR检测方法和实时荧光PCR方法对水稻内源基因SPS、靶基因ATAF1进行检测。结果表明,普通PCR方法和实时荧光PCR方法均表现快速、准确、特异性高的特点。 关键词:普通PCR;实时荧光PCR;转基因 转基因作物的大量种植和推广同时对转基因生物的检测技术提出要求,发达国家的转基因及相关检测技术远远超过发展中的国家。美国、加拿大等国已有近百种转基因食品上市,并且他们的目标是把大量的转基因食品出口到发展中国家[1-3]。在这些正式获批进行生产和贸易的产品之外,更有数目众多的品种处于试验阶段或未经正常手续进入市场,我国已经加入WTO,正在面临着转基因产品贸易和安全监测的挑战。同时随着商品化转基因生物的种类不断增加,转基因生物本身的安全性以及它们对人类健康和生态环境的潜在威胁成为国际社会和广大民众广泛关注的热点问题之一[4-6];包括我国在内的越来越多的国家制定并实施了转基因食品的强制标识制度。因此,转基因产品的科学管理和应用需要得到转基因产品及其成分检测技术的支持。追踪转基因生物研发动态,研发相适应的检测技术,制定相应的检测标准,是转基因生物安全监管的重要措施。本文以转抗旱基因ATAF1水稻种子为材料,初步建立外源基因的普通PCR和实时荧光PCR检测方法。 1 材料与方法 1.1 材料 本实验室获得的转ATAF1基因水稻70株,种子保存于本实验室种子低温低湿储藏库中备用。 主要仪器和试剂:MP组织研磨仪(24样)、Themo磁珠核酸自动提取纯化仪(96样)、Omega核 基金项目:转基因新品种培育重大专项(2009ZX08001-023B);深圳市技术创新项目(CXZZ20120614165508810) 通信作者:刘晋酸提取试剂盒、Premix Ex Taq酶、Neno1000紫外分光光度计、BIO-RAD iCycler PCR扩增仪、ABI7500实时荧光PCR扩增仪、RAININ edp3 plus排枪(12通道)等。 1.2 方法 1.2.1 样品处理 水稻种子取5粒,置于2mL离心管中,放入1粒陶瓷珠,加入500μL Buffer SLX Minus裂解液(Omega 核酸提取试剂盒)或500μL 2% CTAB 裂解液,浸泡数小时后采用MP组织研磨仪设置震荡速度4.0 M/s、震荡时间30s,震荡粉碎5 6次,备用。 1.2.2DNA的提取 磁珠自动提取法:粉碎样品在65℃水浴1h,其间上下颠倒2 3次。12000r/min离心10min。取上清200μL于深孔96平板、800μL Buffer PHB于深孔96平板、800深孔96平板、100深孔96平板、一个Tip按照表1依次加入Omega 核酸提取试剂盒中的试剂。启动Themo磁珠核酸自动提取纯化系统,根据系统提示依次放入上述试剂板。当DNA提取完毕,取出5号板,将DNA保存在-20℃下备用。 表1 磁珠核酸自动提取纯化系统物品 板类型板序号内容物试剂量 A1磁珠/Lysis Buffer3/样品20μL/500μL/200μL A2Buffer PHB800μL A3SPM Buffer800μL A4SPM Buffer800μL B5Elution Buffer100μL A6Tip Loading Plate

水稻转座子研究进展

植物学通报Chinese Bulletin of Botany 2007, 24 (5): 667?676, https://www.sodocs.net/doc/d413693583.html, 收稿日期: 2006-11-08; 接受日期: 2007-04-09基金项目: 国家自然科学基金(No. 30471066) * 通讯作者。E-mail: gao -dongying@https://www.sodocs.net/doc/d413693583.html, .专题介绍. 水稻转座子研究进展 高东迎*, 何冰, 孙立华 江苏省农业科学院粮食作物研究所, 南京 210014 摘要 转座子是植物基因组的重要组成部分, 对于研究植物基因组进化等具有重要意义。随着水稻全基因组测序计划的开展和完成, 水稻转座子研究取得了极大进展, 目前已经在水稻基因组中发现了几乎所有类型的转座子, 约占水稻基因组的35%。在正常情况下, 大多数水稻转座子不具有转座活性, 但是在特定的条件下(如组织培养或辐射等), 水稻基因组中沉默的转座子可以被激活, 从而可能导致插入突变并影响基因的表达。在水稻中已鉴定出6个有活性的转座子, 其中Tos17已被应用到水稻功能基因组研究中。转座子序列的新的分子标记转座子展示(transposon display, TD)现已被开发, 并在水稻遗传作图和遗传分化研究中得到应用。 关键词 基因表达, 水稻, 转座子, 转座子展示 高东迎, 何冰, 孙立华 (2007). 水稻转座子研究进展. 植物学通报 24, 667?676. 转座子(transposable elements 或 transposons)是指基因组中那些能够移动或复制自己并整合到新位点的DNA 片段(Curcio and Derbyshire, 2003), 其对于研究植物基因组的组成、进化和基因的表达调控等都具有重要意义(Feschotte et al., 2002)。水稻是世界重要粮食作物, 禾本科植物分子生物学研究的模式植物。近年来, 水稻转座子研究受到越来越多学者的重视, 并已取得较大进展。本文将对水稻转座子研究所取得的一些新进展进行归纳。 1 水稻基因组中转座子的种类 传统观念认为, 水稻基因组中不存在转座子, 但随着水稻分子生物学的发展, 特别是水稻全基因组测序的开展和完成, 科学家们意外发现, 在水稻基因组中不仅有转座子,而且几乎包括所有类型转座子(Mao et al., 2000;Turcotte et al., 2001; Jiang et al., 2004b; International Rice Genome Sequencing Project, 2005)。转座子约占水稻基因组组成的35%, 其中第1类转座子(Class I, 也称反转录转座子)和第2类转座子(Class II, 也称DNA 转座子)分别占19.4%和14.0%, 但从数目上讲,第2类转座子要远多于第1类转座子, 这是因为第2类转座子包括了大量微小转座子 (表1)(International Rice Ge-nome Sequencing Project, 2005)。现对水稻的主要类型转座子介绍如下。 1.1 MITEs 微小反向重复转座子(miniature inverted repeat trans-posable element, MITEs)是水稻基因组中数量最多的一类转座子, 大约有90 000个(Jiang et al.,2004b)。MITEs 为非自主DNA 类转座子, 但是其序列小(一般为100-500 bp)且拷贝高, 具有插入位点偏爱性, 使得其与一般非自主DNA 类转座子又有明显不同。由于MITEs 不编码转座酶(transposase), 其分类主要依据非编码区的相似性, 如MITEs 的末端反向重复(terminal inverted repeats, TIRs)及其插入到基因组后所形成的2-3 bp 的同向重复序列(target site duplications, TSDs)。根据这个标准, 大多数水稻MITE 被分为Tourist (3 bp 的TSD,

水稻防旱抗旱技术word精品文档4页

水稻防旱抗旱技术 水稻大田期防旱抗旱对策对受旱的稻田,宜采用节水灌溉方法。 首先,要满足移栽后的缓苗水,之后应先湿润灌溉,田面不留水层,待水量充足后再采取浅水灌溉; 其次,要满足孕穗水,因为孕穗期是水稻一生中需水的临界期,对干旱最为敏感,此期如受旱会引起大量颖花败育,从而减少总颖花数和花粉粒发育不全,使其抽穗后不能受精而成为空壳,直接影响产量和质量。 抓紧中耕、及时追肥 天旱时,如田面尚未完全干涸,就要抓紧中耕除草。这样既有利于根系发育,减少蒸发,增强水稻的耐旱力,又可防止田里的杂草争夺水分及养料。另外,高温干旱也影响水稻的吸肥能力,致使水稻生育受抑制,因此应结合中耕灌水,抓紧追施氮肥及复合肥。如苗数不足,灌水后叶片转色不明显,叶色仍偏黄,应增加用肥量,后期应施好穗粒肥。灌水较晚的地块,应先施恢复生长肥,再重施粒肥,以减少颖花退化,促进灌浆结实。 有条件的地区可使用防旱剂,可减少水分蒸发率70%~80%。没条件的地区可以利用青草或稻草等均匀铺在稻行间,既可以减少蒸发,又可以供给稻苗一定养分,以利生长。 加强病虫防治。受旱水稻的生育进程都有不同程度的推迟,生育滞后,抵抗力弱,因此应加强病虫监测和防治。 水稻控制灌溉技术水稻控制灌溉是指水稻移栽后,田面保持5~25毫米薄水层返青活苗,在返青以后的各个生育时期,田面不再建立灌溉水层,以根层土壤含水量作为控制指标,确定灌水时间和灌水定额。土壤水分控制上限为饱和含水率,下限则视水稻不同生育阶段,分别取土壤饱和含水率60%~70%。 “薄、浅、湿、晒”灌溉技术 水稻“薄、浅、湿、晒”灌溉,是根据水稻移栽后各生育期的需水特性和要求进行灌溉排水,为水稻生长创造良好的生态环境,达到节水、增产的目的。即薄水插秧、浅水返青,分蘖前期湿润,分蘖后期晒田,拔节孕穗期回灌薄水,抽穗开花期保持薄水,乳熟期湿润,黄熟期湿润落干。这种灌溉技术简明,也易于理解掌握,是节水灌溉的好方法。 晚稻抗旱保苗五措施 对受旱晚稻,除了千方百计开辟水源之外,可对禾苗采取一些相应的管理措施,减少灾害损失。笔者建议试行以下五种方法抗旱保苗。 一、节水灌溉,促根下扎 水稻在多水多肥的情况下,地上部分生长速度快,在少水少肥时根系生长加速,向土壤深处下扎。水稻插秧后返青分蘖时期遇干旱,禾苗整体生长受影响,但根的生长快于地上部分的生长。因而,我们可因势利导,促进根系深入土层,既可吸收深处的水分,又可为旱象解除后的禾苗迅速生长打好根系基础。在农谚中有“禾干扁草,后发也好”的说法。扁草期也不是越干越好,这段时间节约用水,避免干旱危害的具体灌溉方法有两种: 一是湿润灌溉 灌溉时前水不见后水,维持土壤湿润,既保持了水稻的生长,又节省用水。在管理得当的情况下,水稻可不减产(有的试验表明还可增产),用水可节约60%以上。 二是间歇灌溉 在水利条件更差的地方,在水稻穗分化(水稻最不耐旱的是孕穗打苞期)前采用这种办法,每次灌水时间视水量的多少,可间歇7-10天,待到下雨后再复水,仍可获得较高

相关主题