搜档网
当前位置:搜档网 › 化石沟铜矿地质地球物理特征及找矿模型

化石沟铜矿地质地球物理特征及找矿模型

化石沟铜矿地质地球物理特征及找矿模型
化石沟铜矿地质地球物理特征及找矿模型

铜矿特征及找矿标志

铜矿特征及找矿标志 一、铜矿地质概述 铜系典型的亲硫元素,在自然界中主要形成硫化物,只有在强氧化条件下形成氧化物,在还原条件下可形成自然铜。 目前,在地壳上已发现铜矿物和含铜矿物约计250多种,主要是硫化物及其类似的化合物和铜的氧化物、自然铜以及铜的硫酸盐、碳酸盐、硅酸盐类等矿物。其中,能够适合目前选冶条件可作为工业矿物原料的有16种: 自然元素:自然铜(含铜近100%),一般见于硫化矿床的氧化带。在陆相玄武岩的气孔或裂隙中常见到自然铜的产出,但能构成工业规模的自然铜矿床却极其罕见。不过,美国元古代变质的玄武质火山岩系中,却产有以自然铜为主的基韦诺超大型铜矿,成为了铜矿床的特例。在我国,湖南麻阳铜矿也是一个以自然铜为主的铜矿床,只是其类型为砂岩型,规模为中型。 铜的硫化物:黄铜矿(含铜34.6%,括号指铜含量,下同)、斑铜矿(63.3%)、辉铜矿(79.9%)、铜蓝(66.5%)、方黄铜矿(23.4%)、黝铜矿(46.7%)、砷黝铜矿(52.7%)、硫砷铜矿(48.4%)。但辉铜矿和斑铜矿可以是原生成矿作用的产物,亦可为氧化次生富集的产物。若为次生氧化作用的产物,则辉铜矿可为烟灰状,且多与孔雀石等矿物共生。 铜的氧化物:赤铜矿(88.8%)、黑铜矿(79.9%);铜的硫酸盐、碳酸盐和硅酸盐矿物:孔雀石(57.5%)、蓝铜矿(55.3%)、硅孔雀石(36.2%)、水胆矾(56.2%)、氯铜矿(59.5%)。它们均为原生铜矿物或含铜高的岩石经氧化作用形成的。 目前选冶铜矿物的原料主要是黄铜矿、辉铜矿、斑铜矿、孔雀石等。按选冶技术条件,将铜矿石以氧化铜和硫化铜的比例划出三个自然类型。即硫化矿石,含氧化铜小于10%;氧化矿石,含氧化铜大于30%;混合矿石,含氧化铜10%--30%。 铜矿床的类型主要有:斑岩型铜矿、铜镍硫化物型铜矿、块状硫化物型铜矿、层状铜矿(火山岩型铜矿、砂、页、砾岩型铜矿、碳酸盐型铜矿)、矽卡岩型铜矿和热液脉型铜矿。 二、找矿标志 1、氧化铜矿物。由于原生铜矿物、含铜高的蚀变岩石、古炼铜渣易于氧化,形成格外醒目的翠绿色孔雀石(俗称铜绿)、天蓝色的蓝铜矿(俗称石青)、赤红的赤铜矿、烟灰状的辉铜矿、靓蓝色的斑铜矿等,它们是很好的找铜矿标志。 2、特征植物。如长江中下游地区的牙刷草和云南开紫花具紫红茎的葡匐草,是很好的找铜矿植物。 3、蚀变组合。如青盘岩化-黄铁绢英岩化-泥化-钾化-硅化、红层(火山红层或砂页岩红层)中的退色化等都是很好的找铜标志。 3、火山机构、细碧-角斑质火山凝灰岩、喷流沉积岩(铁锰硅质岩、铁碧玉岩、层纹状硅质岩)、红层中的浅色砂(砾)岩、矽卡岩、超基性岩、中-中酸性斑岩、迭层石硅质细腻白云岩、含炭的火山凝灰岩层等都是找铜的最好对象。 4、对于斑岩铜矿,一般它是大吨位低品位的矿床,一直是人们寻找的主要对象。特别值得一提的是:寻找斑岩铜矿一要看其是否具备露采条件,二要关注其是否具有次生富集带,三要看其是否伴生有较高的金、银、钼元素。如果不便露采又不具高品位的次生富集带,且金、银、钼含量低的话,则因其品位过低而成为呆矿,暂难为人们所利用,因其占用大量的勘查资金,可使矿业公司陷入困境。 5、铜元素的化探异常及其与钼、金、银、铅、锌、铁、锰等综合异常。 6、物探异常。激电(高极化)、电阻率(低电阻)、重力(高重力)可直接反映出铜矿体的存在,磁法异常可圈出火山机构、中-中酸性岩体接触带、超基性岩带来,重力低可圈出

地球物理课程设计报告样本

《地球物理测井》课程设计 指导老师 专业地质学 班级 姓名 学号

一、课程设计目的: 通过对《地球物理测井》基本理论与方法的学习,对某实际测井资料进行岩性划分与评价、储层识别、物性评价及含油气性评价。获得常规测井资料分析的一般方法,目的是巩固课堂所学的的理论知识,加深对测井解释方法的理解,会用所学程序设计语言完成设计题目的程序编写,利用现有绘图软件完成数据成图,对所得结果做分析研究。 二、课程设计的主要内容: 1.运用所学的测井知识识别某油田裸眼井和套管井实际测井资料。 2.使用井径、自然伽马和自然电位划分砂泥岩井段划分渗透层和非渗透层。 3.根据密度、声波和中子孔隙度测井的特点,在渗透层应用三孔隙度测井曲线求出储层的平均孔隙度。 4.根据划分出的渗透层,读出裸眼井和生产井储层电阻率值。 5.根据阿尔奇公式计算裸眼井原始含油饱和度和剩余油饱和度。 6.根据开发过程中含油饱和度的变化,确定储层含油性的变化,并判断该储层的性质。 三、基本原理: (一)岩性划分 岩性是指岩石的性质类型等,包括细砂岩、粉砂岩、粗砂岩等,同时还包括碎屑成分、填隙物、粒间孔发育、颗粒分选、颗粒磨圆度、接触关系、胶结类型等方面。通过划分岩性和分析岩心资料总结岩性规律,其研究主要依据岩心资料,地质资料和测井资料等。通过分析取心井的岩心资料和地质资料以及测井曲线的响应特征来识别岩性,并建立在取心井上的泥质含量预测解释模型。一般常用岩性测井系列的自然伽马GR、自然电位SP、井径CAL 曲线来识别岩性。 1 定性划分岩性是利用测井曲线形态特征和测井曲线值相对大小,从长期生产实践中积累起来的划分岩性的规律性认识。首先掌握岩性区域地质的特点,如井剖面岩性特征、基本岩性特征、特殊岩性特征、层系和岩性组合特征及标准层特征等。其次,要通过钻井取心和岩屑录井资料与测井资料作对比分析,总结出用测井资料划分岩性的地区规律。表1为砂泥岩剖面上主要岩石测井特征。 岩性自然电位自然伽马微电极电阻率井径声波时差 泥岩泥岩基线高值低、平值低、平值大于钻头 直径 大于300 页岩近于泥岩基线高值低、平值低、平值较泥 岩高大于钻头 直径 大于300 粉砂岩明显异常中等值中等正幅度 差异低于砂岩小于钻头 直径 260-400 砂岩明显异常(Cw≠ Cmf)低值明显正幅度 差异 中等到高,致 密砂岩高 小于钻头 直径 250-450(幅度较 为稳定)

某铅锌矿地质特征、成矿及找矿标志

某铅锌矿地质特征、成矿及找矿标志 [摘要]文章主要针对某铅锌矿区地质特征、成矿原因及找矿标志进行了探讨。 【关键词】铅锌矿;成矿模式;矿床成因;找矿标志 1、矿床地质特征 1.1 区域地质概况 某矿区岩体是一面积较大的酸性侵入岩基,地层出露有中三迭统杂谷脑组(T2Z)、上三迭统如年各组(T3r)、第四系(Q)等,除局部地段有扭曲外,地层总体走向NNW,倾向NE。位于牦牛沟一卡子复式向斜构造的西翼,次级褶皱主要有背斜及热桑山向斜;主要断裂属北西向的炉霍一道孚一康定断裂带与北东向的木居断裂的组成部分。 1.2 矿体特征 通过地质勘探,区内共圈出3条工业矿体,即西矿带I号矿体和东矿带Ⅱ、Ⅲ号矿体,3条矿体大致平行产出,自上盘至下盘分别为Ⅲ、Ⅱ和I号矿体。 I号矿体为矿区主矿体,矿体走向长1150m,自7勘探线至12勘探线以南,厚度平均231TI,走向NW,倾角37°,矿体总体向西侧伏、侧伏角10°~15°;矿体赋存于喜山期折多山碱长花岗岩体的含矿碎裂花岗岩相带(r53-Tr2)中,矿体产状与含矿层产状基本一致,顶板为花岗糜棱岩、碎裂花岗岩。矿体顶板与围岩多由断裂破碎带分开,底板界线不清晰,通过试样分析成果确定。矿体沿倾向分支现象明显,矿体总体厚度变薄,倾角变小。 Ⅱ号及Ⅲ号矿体分布在矿区东侧,赋存于三叠系中统杂谷脑组角岩层(T2Z-HS)中,两条矿体均规摸小,延深不大。 1.3 构造特征 矿区内构造以断层为主,褶皱次之,节理发育。矿区断裂较为发育,属于区域北西一南东向压扭性炉霍一道孚一康定断裂带构造体系所派生的一系列不同力学性质所产生的不同方向断层;节理、裂隙,构成矿区基本构造格架,这些不同性质、不同序次的构造都与矿体的形成和矿物组分富集密切相关。北西向压扭性断裂破碎带是主要断裂,位于矿区东部I矿带上盘,沿山岩体东部边缘展布,纵贯矿区,规模较大;主要将大山岩体边缘相细粒黑云母花岗岩挤压呈糜棱结构,形成了花岗糜棱岩带,由于受强烈的区域挤压、扭裂作用,使糜棱岩带蚀变具强

勘查地质找矿标志

4.3.1矿产勘查地质条件 矿产勘查的工作对象是矿床和矿体。找矿是矿产勘查的简称。一个矿床的形成往往是各种地质因素综合作用的结果。矿床的形成和分布规律是受到一定地质因素所控制。因此,在矿产勘查工作中,把这些控制矿床形成和分布的各种地质因素称为矿产勘查地质条件。 矿产勘查地质条件主要有:岩浆岩、地质构造、地层、岩相古地理、岩性,变质作用、地球化学、风化、地貌条件等。 (1)岩浆岩条件:矿床的物质来源(特别是内生矿床)的重要方面是由岩浆活动所提供的。一定类型矿床的形成及分布与一定类型的岩浆活动有关。因此,在矿产勘查中,某些岩浆岩体的存在,可以作为预测与其有关的矿床的地质条件。 a.与基性、超基性岩有关的矿床:与其有关的金属矿产主要有铬、镍、钴、铂、钛、铜、铁等;非金属矿产有金刚石、石棉、滑石、冰洲石等;与碱性超基性岩有关的矿产有铌、钽、铈族稀土、磷灰石、金云母等。 b.与中酸性、酸性岩有关的矿床:与中酸性、酸性岩有关的矿产种类很多,如钨、锡、钼、铜、铅、锌、金、银、铁、铀等矽卡岩矿床或热液矿床。 c.与碱性岩有关的矿床:岩石化学成分Na2O+K2O﹥Al2O3的岩浆岩即称为碱性岩。碱性岩体岩性复杂,通常产于深断裂带中。与碱性岩有关的矿产有铌、钽、锆、铪、铀、钍、铝:和稀土等,且多为岩浆矿床。 d.与火山岩有关的矿床:火山岩为岩浆岩条件的一个特殊条件。火山岩型铁矿仅次于沉积变质和风化壳型而位于第三。与火山有关的矿产有铁、

铜、铅、锌、金、银、汞、铀、稀土、金刚石、沸石、明矾石、叶腊石等。 (2)岩浆岩的空间分布条件: 1)岩体的规模及形态:对基性、超基性和碱性岩体来说,通常岩体规模越大,矿床可能越大。中酸性侵入岩体的规模往往是中小型的与成矿关系密切。 2)岩体形成深度:中酸性、酸性的侵入岩体不同的冷凝深度,有不同的矿化情况。深成相以伟晶岩矿床为主,浅成相则以矽卡岩型矿床及热液矿床形成为主。 3)岩体剥蚀深度:为数众多的热液矿床和矽卡岩型矿床,产于中酸性侵入岩体的顶部及其附近的围岩中,当剥蚀程度浅,未及岩体顶部时,是找铅、锌、汞、锑等低温矿床有希望地区。当剥蚀程度中等,达到岩体顶部,岩体呈岛状分布时,各种变质作用较强烈,是找寻各种热液矿床和矽卡岩型矿床的有利地区,中酸性岩体大面积出露,剥蚀深度很深时,对找矿一般不利。 4)矿床与岩体的空间位置: a.产于岩浆岩体内部的矿床:主要是分布于超基性、基性、碱性岩体中的矿床,也有一些铜、钨、锡矿床分布于中酸性岩体中。 b.产于岩体与围岩接触带及其附近的矿床:多为在成因上与中酸性岩体有关的矽卡岩型矿床、高温热液矿床。其矿体一般分布在岩体接触带及附近的构造或岩性有利部位。矿种繁多,如铁、铜、铅、锌、钨、锡、锂、铍等黑色金属,有色金属和稀有金属矿床。

第六章综合地质地球物理方法解析

第六章综合地质地球物理方法 第一节不同勘探阶段的综合地质地球物理方法 一、成矿远景预测阶段 矿产勘查中要解决的首要问题是到什么地方去找矿,为此首先要选择成矿的远景靶区。地质、地球物理及地球化学人员通过地质调查与地球物理、地球化学测量获得的资料研究区域的构造、矿源层、成矿规律、成矿环境和成矿条件,预测成矿的远景区。 (一)地质任务 1.成矿的地质前提研究 在评价固体矿产成矿区的远景时,要研究岩浆控制条件、地层条件、岩性条件、地球化学条件及地貌条件等。其中主要的是岩浆、构造和地层控制条件,而区域和深部地质构造是控制全局的。已知与超基性岩紧密相关的矿床有铬、铂、金刚石和磷灰石等;与基性岩共生的矿床有钛磁铁矿和硫化镍矿;与中性和酸性火成岩有关的矿床有钨、锡、钼、铜、铅、锌、金、铀与石英等。区域性和深部地质构造控制着成矿区、成矿带、矿田和矿床的位置。在成矿区的划分时,区域性和深部地质构造有很重要的作用。断裂带是岩浆侵入的通道,褶皱与大断裂交叉处往往是控制成矿的远景区。在评价内生矿区时,岩浆和构造控制是主要的;而在评价海相沉积矿床时,地层及构造控制则是主要的。前寒武纪是最古老和规模最大的鞍山式铁矿的成矿时期;震旦纪是宣化式铁矿的成矿时期;上泥盆纪是宁乡式铁矿的成矿期;奥陶纪是灰岩侵蚀面上的中石炭纪底部的山西式铁矿的成矿期;二叠纪是涪陵式铁矿的成矿期。铀矿、锰矿、铜矿、铝土矿等都受地层控制;有些内生矿床受不透水盖层的控制,如汞矿。锑矿、多金属矿。 2.含矿性标志 在确定成矿远景区时,除了要考虑成矿的地质前提外,远景区内还应有含矿性标志存在。凡能直接间接证明被评价地区地下存在着矿产的任何地质、地球化学、地球物理或其他因素, 都可算作含矿性标志。成矿作用的直接标志有:○1天然或人工露头(矿产露头)上的矿产显示;○2有用矿物和元素的原生晕和分散晕区;○3有用矿物和元素的次生机械晕、岩石化学、水化学、气体和生物化学晕、晕区和分散流;○4地球物理异常;○5古探矿遗迹和矿产标志。成矿作用的间接标志包括:○1蚀变的近矿围岩;○2矿化的矿物和伴生元素;○3历 史地理和其他间接资料。 (二)地质、地球物理与地球化学综合预测成矿远景区 矿产在地壳中的分布受各种成矿条件的控制,不同类型矿床,其成矿控制条件不同,研究的重点也不同,如内生矿床着重研究岩浆岩、构造以及围岩岩性条件,沉积矿床应着重研究地层、岩性、岩相和构造条件,风化矿床还应研究风化作用条件,对各类砂矿主要研究地貌条件,对变质矿床要研究变质作用条件。 1.地质、遥感与物探结合查明构造条件

找矿潜力分析样板

找矿潜力分析(参考): 1、成矿区带:本区处于。。。。成矿带,具形成金、银多金属矿的良好地质条件。 2、本区成矿条件分析。如地层矿元素背景值高、岩浆岩广泛分布、构造发育、热液蚀变强、有利成矿部位。 3、发现有工作价值的物、化探异常,简介:如分布情况、规模、变化趋势或连续情况、异常值高、套合好。经查证可能会发现新的矿体。 4、成矿事实。已发现。。。矿体(带),控矿破碎带规模大、矿体控制程度低,进一步控制会扩大矿床规模。 5、类比。。。典型矿床,本区与之有相同的成矿地质背景(或处于同一成矿带),简述其地层、构造、岩浆岩、矿床类型和特征,与本区相似。有形成大中型矿的地质条件。 立项依据,在找矿前景分析的基础上,说明有必要工作,与找矿前景分析有所不同。列上几点,不要罗嗦。可补充研究价值,如有必要加强本区成矿条件和成矿规律的研究,了解本区域矿化分带和矿化富集特征,建立找矿模型,指导区内找矿。另外可补充政策性的规划或导向。

成果与认识: 3、岩浆岩 4、变质岩 5、地球化学特征 6、典型矿床特征 7、控矿因素和找矿标志 8、找矿前景分析 (1)调查区地处东昆仑北部Fe、Pb、Zn、Cu、Co、W、Sn、Au成矿亚带。区内分布的晚三叠世鄂拉山组上存在银多金属的成矿事实,在晚三叠世鄂拉山组地层中圈出8条蚀变破碎带,在其中见有较好的银、铅矿体。该套火山岩沿北西向断裂延入调查区。已发现的兴海县鄂拉山口铜铅锌矿点、兴海县在日北沟铜铅锌矿点和都兰扎麻山南坡银多金属矿床等,均产于鄂拉山组火山岩地层中。该火山岩地层成矿条件有利,加之断裂构造发育,热液蚀变强烈,形成本区良好的成矿地质条件。 (2)调查区经1/5水系沉积物测量,发现数个有工作价值的水系综合异常。经对HS6、HS11、HS12三个异常的初步查证,均已发现银、金多金属矿体,目前作进一步控制。由于本区矿产勘查工作程度低,调查区内的其余HS3、HS7、HS17异常尚未查证。这些异常分布处均已发现矿化破碎蚀变带,成矿条件有利,有较大找矿潜力。 (3)那更康切尔沟银多金属矿目前经预查,发现矿化带3条。经对Ⅰ号矿带的调查控制,发现数条银矿体和金矿化体。但工作程度低,

华铜铜矿地质特征及其找矿标志

华铜铜矿地质特征及其找矿标志 【摘要】华铜矿是一座典型的矽卡岩型矿床,矿体产出在距接触带一定范围内,受接触带构造控制明显,接触带凹部是矿体产出的主要部位,特别是水平凹部与垂直凹部交汇部位矿体厚度大,品位富,成矿规律明显,找矿标志清晰,对该区找矿具有指导意义。 【关键词】矽卡岩地质特征矿体蚀变成矿规律找矿标志 华铜铜矿位于辽宁省瓦房店境内,濒临渤海,是一座开采历史悠久的老矿山。据史料记载,早在1900年当地居民开采沙金,以后发现金矿脉。日本帝国主义侵略我国东北后,先后对华铜北大山大黑脉金矿、南山地表磁铁矿及北山接触带铜矿进行掠夺性开采。解放后,在党的领导下,人民政府积极恢复生产,矿山获得新生并进行地质勘探工作。矿体赋存于花岗岩与围岩接触带构造处,受接触带构造控制,是一座以铜为主的多金属矽卡岩型中型矿床,钙镁矽卡岩分布广泛,矽卡岩矿物多达30余种,金属矿物组合具多样化,成矿呈多期性多阶段性,具典型的矽卡岩型矿床特征。 1 矿床地质 华铜矿位于华北地台东侧营口-宽甸古隆起西端,东西向构造带的复州向斜北翼与营口背斜衔接部位。矿区出露的地层主要为早元古界大石桥组白云质大理岩,盖县组片岩和震旦系永宁组碎屑岩,其中,大石桥组白云质大理岩与矿化关系最为密切,是成矿的有利赋矿围岩。区内构造发育,有早期的东西向构造体系,稍晚期的北西向构造体系及晚期的北东向构造体系。东西向构造体系控制了辽河群地层的分布,北西向构造仅使作为盖层的盖县组片岩产生明显褶皱,北东向构造体系最为发育,控制了矿区东侧大型岩浆岩体的侵入,同时也控制了铜、铅锌、金等金属矿化活动。区内岩浆活动强烈,主要为燕山晚期的花 岗岩,斑状花岗岩及花岗闪长岩,其中斑状花岗岩与成矿关系密切[1-3],在岩体与辽河群白云质大理岩接触部形成矽卡岩型铜矿(图1)。 2 矿体地质特征 华铜矽卡岩型铜矿赋存在斑状花岗岩及斑状花岗岩与辽河群大石桥组白云质大理岩的正接触带上,接触面凹部是控矿的主要构造,赋存在接触面凹部的储量占总储量95%以上,尤以水平凹部与垂直凹部交汇处是最有利的成矿部位(图2、图3)。工业矿体主要分布在大理岩一侧的接触带及离接触带200m范围内,200m以外矽卡岩化及矿化明显减弱。矿化带北部近东西向,向东转为近南北向,呈半弧形,在长达3700m的矿化带上发现大小矿体215条,成群、成带出现,矿床延深大,地表向下垂深达900m。 2.1 矿体形态、规模、产状

[Petrel]地质建模我们需要考虑些什么

[Petrel]地质建模我们需要考虑些什么?(二) 如果你对于地球物理感兴趣,你可以继续看二、三、四,否则我建议你等两天直接看五。 速度前奏 由井的分层到地震剖面的时间,我们是通过一种叫做“人工合成地震记录(Synthetics)”的技术来建立井点处的时间与深度的对应关系的。 这张图算是相对比较标准的作对比的剖面。不过你比较经常看到的是下面的两种:

其实这个标着b)的图上的井对应的东西不叫人工合成地震记录,而叫做垂直地震剖面(VSP,Vertical Seismic Profile),就是在井眼上像我们做地震一样做那么一遍(详细机理我们就不说了,你可以搜搜相关的词),这样我们就有机会把这两种不同的地震数据放在一起来比较一下了,因为它们都是地震而且位置也重合,它们的相似度肯定很高,这个过程就是“标定”。所谓“标定”,就是把地震剖面的时间和井上的深度一一对应起来。我这里只想告诉你的是Synthetics其实就是模拟的VSP。这跟我们通过声波曲线来解释孔隙度的过程有些类似,但是这个过程似乎更加成熟了一些。现在有些地方甚至不再怎么测VSP测井,而是直接利用人工合成地震记录来替代真实的井眼处地震记录来进行“标定”。 如果可以继续用开车去东来顺这个例子,VSP就是真的开一辆车,拿一个秒表在标志性建筑前计时,一直到达东来顺为止;Synthetics则相当于你在电脑游戏空间内模拟了一个数字化北京,在其中理论性的开一个车,也到处拿个秒表去卡到达标志性建筑的时间。 而在标志建筑物前计时的过程我们称之为“Checkshot”。Checkshot,就是你跑拉力赛,有一些必须经过的点会给你的车拍照,以避免你抄近路。在地球物理学家那里就是时间-深度对应关系的意思。如果一个井或者一个工区你有了Checkshot就意味着这口井或者这个工区都可以同时在时间域和空间域内被你识别到。换言之,你在垂向上有两种坐标,一种标米,一种标毫秒。 对于我们地质学家来说,Checkshot就是一扇窗户,透过它你将看到一个扭曲世界中的真实——对于地球物理学家来说,非常非常真实。 如果你有了Checkshot,那么其实你就等于说有了一连串的 时间1 深度1 时间2 深度2 时间3 深度3 : :

乌腊德铁铜矿地质特征及找矿标志

中国地质大学(武汉)远程与继续教育学院 本科毕业论文(设计)指导教师指导意见表 学生姓名:学号:专业:资源勘查工程 毕业设计(论文)题目:乌腊德铁铜矿地质特征及找矿标志 指导教师意见:(请对论文的学术水平做出简要评述。包括选题意义;文献资料的掌握;所用资料、实验结果和计算数据的可靠性;写作规范和逻辑性;文献引用的规范性等。还须明确指出论文中存在的问题和不足之处。) 毕业论文设计整体的结构完整,各部分基本符合写作规范,论文的选题很好,具有现实意义,所提出的乌腊德铁铜矿地质特征和结论能为该地区的矿藏研究提供参考和借鉴作用,在全文结构中,搜先强调地质特征,然后对问题进行深入分析,最后得出结论,全文体现专业特色要求,但论证的深度还不够。 指导教师结论:合格(合格、不合格) 指导教师 所在单位兰州工业学院指导时间9.16 姓名

中国地质大学(武汉)远程与继续教育学院 本科毕业设计(论文)评阅教师评阅意见表 学生姓名:学号:专业:资源勘查工程 毕业设计(论文)题目:乌腊德铁铜矿地质特征及找矿标志 评阅意见:(请对论文的学术水平做出简要评述。包括选题意义;文献资料的掌握;所用资料、实验结果和计算数据的可靠性;写作规范和逻辑性;文献引用的规范性等。还须明确指出论文中存在的问题和不足之处。) 论文通过简要介绍乌腊德铁铜矿床的区域地质特征、矿床地质特征等,初步探讨了矿床成因类型和找矿标志,并指出矿床类型为典型的矽卡岩型铁铜矿床,且此类矿化应在东昆仑地区找矿工作中应重视。 全文结构较完整,层次较清晰,语言较流畅,然而,全文格式有待规范;论文的摘要和结论部分较一致,应修改;地层和构造不能作为找矿标志;矿床成因的研究有待加强。 修改意见:(针对上面提出的问题和不足之处提出具体修改意见。评阅成绩合格,并可不用修改直接参加答辩的不必填此意见。) 1)完善论文格式; 2)修改论文的摘要; 3)地层和构造不能作为找矿标志; 4)加强对矿床成因的研究。 毕业设计(论文)评阅成绩(百分制): 75 评阅结论:同意答辩(同意答辩、不同意答辩、修改后答辩) 评阅人姓名所在单位资源学院评阅时间2014-10-1

SIMS锆石U-Pb定年方法-中国科学院地质与地球物理研究所

SIMS锆石U-Pb定年方法 用于U-Pb年龄测定的样品(号码)用常规的重选和磁选技术分选出锆石。将锆石样品颗粒和锆石标样Plésovice (Sláma et al., 2008) (或TEMORA, Black et al., 2004)和Qinghu (Li et al., 2009)粘贴在环氧树脂靶上,然后抛光使其曝露一半晶面。对锆石进行透射光和反射光显微照相以及阴极发光图象分析,以检查锆石的内部结构、帮助选择适宜的测试点位。样品靶在真空下镀金以备分析。 U、Th、Pb的测定在中国科学院地质与地球物理研究所CAMECA IMS-1280二次离子质谱仪(SIMS)上进行,详细分析方法见Li et al. (2009)。锆石标样与锆石样品以1:3比例交替测定。U-Th-Pb同位素比值用标准锆石Plésovice (337Ma, Sláma et al., 2008(或TEMORA (417Ma, Black et al., 2004))校正获得,U含量采用标准锆石91500 (81 ppm, Wiedenbeck et al., 1995) 校正获得,以长期监测标准样品获得的标准偏差(1SD = 1.5%, Li et al., 2010)和单点测试内部精度共同传递得到样品单点误差,以标准样品Qinghu (159.5 Ma, Li et al., 2009) 作为未知样监测数据的精确度。普通Pb校正采用实测204Pb值。由于测得的普通Pb含量非常低,假定普通Pb主要来源于制样过程中带入的表面Pb污染,以现代地壳的平均Pb同位素组成(Stacey and Kramers, 1975)作为普通Pb组成进行校正。同位素比值及年龄误差均为1σ。数据结果处理采用ISOPLOT软件(文献)。 参考文献 Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbel, I.H., Korsch, R.J., Williams, I.S., Foudoulis, Chris., 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol., 205: 115-140. Ji?í Sláma, Jan Ko?ler, Daniel J. Condon, James L. Crowley, Axel Gerdes, John M. Hanchar, Matthew S.A. Horstwood, George A. Morris, Lutz Nasdala, Nicholas Norberg, Urs Schaltegger, Blair Schoene, Michael N. Tubrett , Martin J. Whitehouse, 2008. Ple?ovice z ircon —A new natural reference material for U

矿体地质特征及找矿标志

矿体地质特征及找矿标志 一、区内含金地质体特征本区位于井冈山—陈山隆褶断束的西南端,万洋山—诸广山隆起区东缘;遂川—抚州断裂带的北西侧。区内岩浆活动强烈,主要为加里东晚期花岗闪长岩、斜长花岗岩和燕山期花岗岩,分布于矿区北部边缘,呈北西西的腰形展布,岩性以花岗闪长岩、黑云母二长花岗岩等为主。岩体围岩为中、上寒武统地层。岩体内部相以花岗闪长岩为主,边缘相以黑云母花岗岩为主。岩体外接触带硅化、钾化、绿泥石化等发育。加里东晚期岩浆呈岩株状产出,侵入接触关系明显且形成较宽的热接触变质晕。基底出露地层主要有上寒武统水石群(€ 3sh),中寒武统高滩群(€ 2gt), 下奥陶统爵山沟组 (01j),盖层为中泥盆统跳马涧组(D2t), 其不整合于基底及花岗岩之上。 本区主体构造为北西—南东向的金竹山复向斜,其核部地层为爵山沟组、两翼地层为水石群,其轴面向南西倒转。出露的断裂构造较发育,主要以北东向、北西向两组断裂为主,见图1。其中F1-1 为区域性断裂,属压扭性质,控制矿区构造。北西向断裂有两条:即北部长坑—源坑洞断裂带和中部锡坑—石角里断歹u d+f;裂带。 构造表现形式为硅化破碎带、石英脉或蚀变(挤压)破碎带等,具膨胀、分支、尖灭、再现现象,构造内及两侧发育硅化、绿泥石化、黄铁矿化、黄铜矿化、褐铁矿化、碳酸盐化及碳化等。该类断裂构造是区内主要含矿构造。断裂构造中硅化、黄铁矿化、黄铜矿化及碳化发育,草林地区金矿点即受该类构造控制。

1、泥盆系中统跳马涧组; 2、奥陶系下统爵山沟组; 3、寒武系上统水石群; 4、加里东晚期花岗岩; 5、石英脉; 6、硅化破碎带; 7、实测、推测地质界线;8、实侧不整合界线;9、断裂及编号; 10、地层及断裂产状;11、倒转地层产状 二、区内金矿体矿化特征 (一)矿化类型及特征。综合草林成矿带多个岩金矿区情况,根据金矿石产出形式状态,可将区内的矿石金矿化分为两种类型,即石英脉型和蚀变破碎带型。 1.石英脉型金矿化特征。石英脉型金矿体其特点是矿脉规模小,长度5—20 米,厚度4—15 厘米,呈细脉状、透镜状或团块状分布,矿脉具分支复合现象,矿化极不均匀,也不连续。金矿化品位较高,为3.8-45 克/ 吨,最高品位可达101.92 克/ 吨。矿石矿物主要有黄铁矿、磁黄铁矿、方铅矿、毒砂、闪锌矿及少量的黄铜矿。脉石矿物有石英及少量绿泥石、绢云母、方解石等。 2.蚀变破碎带型金矿化特征。蚀变破碎带金矿化产在北西向的破碎蚀变断裂带中。其特点是矿体(化)规模较大,长度50-120 米,宽度0.2-1.5 米,矿体(化)的形态呈透镜状或带状,品位一般为4.5-25.2 克/ 吨,最高品位可达79.6 克/吨。金银矿物以银金矿、金银矿和自然银为主。矿石矿物主要有黄铁矿、方铅矿、闪锌矿,少量磁黄铁矿、黄铜矿、毒砂,脉石矿物有石英、绿泥石、方解石等。金银矿物中含金量在75%以下,含银量25%以上。矿石构造以网脉状和角砾状为主,结构为半自形粒状或他形粒状。金银矿物分布在石英脉中及石英脉

地质地球物理模型可视化与3D建模国内外研究现状

地质地球物理模型可视化与3D建模国内外研究现状 最早的地质体3D可视化建模软件诞生于西方。其发展的一般历程如下:早在70年代初西方矿业界就将三维造型技术应用于地质、矿业领域。早期的采矿计算机辅助设计阶段是底下三维可视化技术的萌芽和孕育阶段。之后,随着计算机技术的不断更新和三维造型技术的不断进步,三维造型技术也不断吸取先进技术,在地质领域中的应用也不断得到扩展。80年代末图像仿真技术和三维GIS 技术的发展,推动了地下三维可视化技术发展,一大批地下三维软件系统被开发应用;90年代初期,开发了大量基于UNIX且用于工作站环境的软件系统。90年代中期以来,随着微机性能的提高,一些地下真三维建模软件开始一直到Windows操作系统和微机环境。 20世纪80年代以来,三维地学可视化系统应用于地质建模在国外已经变得非常普遍,以美国、加拿大、英国为代表的西方国家相继推出了多种代表性的地学可视化建模软件,如Earth Vision新型地质体建模软件、GeoViz地球物理三维可视化应用软件及3Dseis三维地震分析系统等。 我国科学计算可视化技术的研究始于90年代初期。由于数据可视化所处理的数据量非常庞大,生成图像的算法又比较复杂,过去常常需要使用巨型计算机和高档图形工作站,因而,数据可视化开始都在国家级研究中心、高水平的大学、大公司的研究开发中心进行研究和应用。近年来,随着计算机功能的提高、各种图形显卡以及可视化软件的发展,可视化技术已扩展到科学研究、工程、军事、医学等各个领域。随着本世纪以来矿业的复兴以及GIS热潮在中国兴起,一些GIS软件开发商开始开发通用的三维GIS软件,而一些大型矿业集团也联合一些高等院校或科研机构开始开发专门的地质体三维可视化建模软件。目前我国具有独立自主版权的三维地质模拟软件有北京理正软件设计研究院开发的“地理信息系统——地质专题”。近年来国家自然科学基金委员会大力支持地学可视化研究,先后资助了“复杂地质体的三维建模和图形显示研究”、“油储地球物理理论与三维地质图像成图方法”、“地学时空信息动态建模及可视化研究与应用”等项目。1996年中国科学院地球物理研究所(现为中国科学院地质与地球物理研究所)与胜利石油管理局在国家自然科学基金会重点项目“复杂地质体”中,开始追踪研究GOCAD。长春科技大学在阿波罗公司TITANGIS上开发了GeoTransGIS三维GIS,主要用于建立中国乃至全球岩石圈结构模型的三维信息。石油大学开发的RDMS、南京大学与胜利油田合作开发的SLGRAPH都是用于三维石油勘探数据可视化。中国地质大学开发的三维可视化信息系统GeoView可实现真三维地学信息管理、处理、计算分析与评价决策支持。 但从总体上来说,我们国内的水平与国外先进水平还有差距。现在国内石油公司、地球物理公司等单位普遍使用的地质建模软件大都是从国外引进的并以Land-mark公司和GeoQuest公司的解释系统居多。因此,组织力量开发可视化商业软件,并通过市场竞争,促使其逐步成熟,已成为当务之急。

三维大比例尺找矿预测模型在地质找矿中的应用

三维大比例尺找矿预测模型在地质找矿中的应用 介绍了了三维大比例尺找矿预测模型的建立流程及方法。地质找矿三维预测方法的应用,可以为大比例尺矿产预测,尤其是矿区深部及外围的预测,提供一种新的工作思路和手段,具有较高的推广与应用价值。 标签:三维找矿预测模型大比例尺地质找矿 1引言 随着我国多年的矿产开发,依靠单一的地质调查很难进行找矿工作,找矿模式必须采用多元信息集成的方式才能有效进行。矿产勘查中,通常将中小比例尺成矿预测所圈定的找矿有利地段称为“找矿远景区”,而将大比例尺的称为“找矿靶区”。在进行调查区详查或者在某矿区进行资源量二次详查的时候,预测区面积通常很小,有时只有几平方千米。如何在大比例尺下进行快速有效找矿的方法值得探讨。 2三维矿产资源评价 三维矿产资源评价主要是通过研究地质体在地表以下可能的分布及规律,推断地质体可能的赋存部位,从而达到定位预测和定量预测的目的。三维矿产资源评价工作流程如图1。 2.1资料收集及建库 资源评价时,查明立体结构中成矿地质条件是关键一步,地质、矿产、物探、化探、遥感等二维信息向三维转换的支撑是成矿地质体,只有把成矿地质体的控矿条件搞清楚,才能正确地认识各控矿要素在物探、化探、遥感等方面的反映,从而建立起正确的三维综合预测模型,更好地指导找矿预测。 区域地质背景资料主要包括区域地质、地球物理、地球化学、遥感、矿产方面的数据,典型矿床包括矿床普查、勘探时形成的钻探资料、地球物理测量、地球化学分析数据、岩矿分析数据等,要根据不同软件的格式要求分类、建库。 2.2三维矿床模型建立 三维矿床模型实际上是一个综合的模型,包括:三维地表模型、三维地质体(钻孔)模型、三维地球物理模型、三维地球化学模型、三维成矿流体分析模型等。三维矿床模型的建立,使得矿床及其各类空间相关的信息得以直观地表达与综合处理,从而全面地提高矿产预测的效益率与准确度。 三维地表模型是指从地形图上提取地表等高线信息,并建立数字地形模型,使工作区的地质信息、地表影像真实地得以再现,用以确定地形地貌、地层剥离

地球物理相关院士风采

地球物理相关院士风采
曾融生院士
固体地球物理学家,中科院院士。1924年出生,福建平潭人。1946 年毕业于厦门大学数理系。从1958年开始利用地震波方法研究地壳 结构,开创了中国地球深部构造探测的研究工作,著有《固体地球物 理学导论》 一书。 在中国首次应用地震面波的相速度来研究地壳构造, 发现1974年5月云南昭通大震的多重性, 从而对大地震的破裂过程有 了新的认识。在地球动力学研究中,提出张性盆地和盆地中强震发生 的统一动力学模式,以及印度一欧亚大陆碰撞过程的新模式。1980 年当选为中国科学院院士(学部委员)。
丁国瑜院士
地质学家,中科院院士。?年出生,河北高阳人。1952年北京大学地 质系毕业。1959年获苏联莫斯科地质勘探学院副博士学位。长期从事新 构造、地震构造和地震危险性预测研究。在建立我国地震监测、分析预 报系统方面作了大量开创性工作。提出了我国地壳现代破裂网络与地震 活动关系的模型, 率先编制了中国活断层滑动速率图和现代板内运动图, 并主编了中国活断层图集。在活动构造、古地震、活断层习性、活断层 分段以及这些方面的研究成果在许多重大工程地震危险性评价中的应用 作出了贡献。 1980年当选为中国科学院院士(学部委员) ,1985年
当选为第三世界科学院院士。 。
马宗晋院士
马宗晋,1955年毕业于北京地质学院普查系,1961年中国科学院地 质研究所研究生毕业。他是地质学家、减灾专家和全球构造的探索者, 节理构造定性分析、 渐进式地震预报模式和全球三大构造系统的创立者。 曾获首届李四光地质科学奖,国家级有突出贡献的中青年科学家。现为 中国地震局地质研究所名誉所长,国家科技部国家计委国家经贸委自然 灾害综合研究组组长,1991年当选为中国科学院学部委员。
陈运泰院士

深度剖析矿床类型及找矿预测地质模型

深度剖析 矿床类型及找矿预测地质模型 叶天竺

沉积作用有关矿床 砂岩型铜矿、铀矿、碳酸盐岩容矿的非岩浆后生热液型铅锌矿床、热水沉积型铅锌矿等。 砂岩型铜矿 砂岩型铜矿床主要的矿化样式图(1) A. 海/陆相型:A1:海相砂岩浸染薄层式(甘肃天鹿铜矿);A2:陆相三角洲分流河道层状式 (沅麻盆地九曲湾铜矿床);B:岩性/岩相组合层状型:B1:砂岩/泥岩组合式(楚雄盆地大村铜矿、新疆拜城滴水铜矿);B2:砂岩透水层式(六苴、郝家河铜矿);C:不整合面型:C1:角度不整合面式(会理大铜厂铜矿床);C2:平行不整合面式(新疆萨热克铜矿床);

砂岩型铜矿床主要的矿化样式图(2) D:褶皱层状型:D1背斜式(六苴、郝家河铜矿);D2向斜式(格衣乍、思茅盆地登海山 铜矿);E:断层脉型:E1:显性断层式(白秧坪铜(钴)矿);E2:隐蔽断裂式(郝家河铜矿);

F:组合型:F1:砂岩/碳酸盐岩界面+不整合面+断裂式(兰坪盆地白龙厂、衡阳盆地柏坊铜矿床);F2:倒转背斜+逆(冲)断层式(兰坪盆地金满、连城、水泄铜矿);F3:褶皱+断裂式(上层下脉式)(楚雄郝家河、兰坪白洋厂铜矿);F4:砂岩/碳酸盐岩界面+断层式(楚雄盆地 大村、新疆拜城滴水铜矿)。 陆相砂岩型铜矿找矿预测地质模型 砂岩型铀矿床

层间氧化带型铀矿床剖面分带 1—透水砂质岩石;2—隔水泥岩;3—完全氧化带;4—弱氧化带(黄绿色蚀变带);5—弱氧化带(褪色蚀变带);6—氧化还原过渡带(含铀黑-沥青铀矿的铀矿体);7—氧化朱过渡带(无明显沥青铀矿矿化的铀矿体);8—还原带;9—层间水运动方向 砂岩型铀矿矿化样式图

金属矿产地质形成条件与找矿标志分析与找矿标志探索

金属矿产地质形成条件与找矿标志分析与找矿标志探索 发表时间:2018-08-10T16:20:06.073Z 来源:《科技中国》2018年6期作者:魏海平张世勇 [导读] 摘要:现如今,随着各种高新技术的迅猛发展与创新,我国对于地球上的事物的了解越来越全面与深刻。尤其是对于在地球上存留时间很久的矿产更有着深入的研究。与此同时,相关的矿产地质学说逐渐被提出了, 摘要:现如今,随着各种高新技术的迅猛发展与创新,我国对于地球上的事物的了解越来越全面与深刻。尤其是对于在地球上存留时间很久的矿产更有着深入的研究。与此同时,相关的矿产地质学说逐渐被提出了,并以此为基础,建立起了一系列寻找矿产的方案与途径。故本文就针对金属矿产地质形成条件进行探讨,并在其找矿探索的过程中,针对不同的找矿标志进行阐述。 关键词:金属矿产;地质形成;找矿标志 前言:金属矿产是我国工业与经济发展过程中需要的重要矿产资源,对我国的经济健康发展有着举足轻重的作用。但金属矿产地质是需要在很多的因素促使下才能形成,而且这个过程极其漫长;与此同时,从发现、开采到运用矿产的整个过程也是极其繁琐复杂的。所以,为了使我国的经济工业发展能够有足够的金属资源来支撑,就需要我国对金属矿产进行科学有效的运用,对金属矿产地质形成条件进行更深层次的研究,还要明确好找矿标志,才能使相关人员对金属矿产的寻找有迹可循,提高寻找矿产的效率,从而使金属矿产更好的为我国的国民经济服务。 1.金属矿产的类型和地质形成的条件找矿产 1.1 接触变质的作用 在岩浆进行上侵的活动的过程中,会与地质表面内的其他变质进行接触,而且在接触的过程中,由于压力与温度一系列因素的变化,并且会与其他变质在接触时发生各种各样的物理变化与化学变化,使其发生了变质现象。经过变质现象后会出现许多不同的矿物质,就比如我们都熟悉的硅酸物、钙以及碳酸物皆是变质物质。各种变质物又经过矿化作用形成我们熟悉的铜矿、铁矿与煤炭等矿物质。 1.2 风化的作用 风化的作用具体是指对地质表面的岩石与矿体产生效果的一个重要的常见因素。风化作用大致又可分为化学风化,生物风化以及物理风化三个种类,这三种风化作用都能够对地表上的岩石进行分离作用,从而使得某些金属物质逐渐富集而形成矿床。而矿床在经过长时间的接触变质与热液作用等各种复杂漫长的地质形成条件下,就会形成许多不同类型的金属矿产,比如稀土、铁以及银等金属矿物。而这些物质的形成离不开风化的作用[1]。 1.3 热液作用 热液作用同样是形成金属矿产必不可少的一个因素。热液又被称为汽水热液,是水通过一系列的地质作用下所形成的高温热汽溶液。热液又可分为变质成因热液、大气水热液、建造水热液以及浆成因热液四种主要类型。尽管这四种主要热液的金属离子与特殊性能有差别,但他们都有同一个功能属性,就是在运动过程中能够与地质中的变质物质发生相应的化学变化,使得在进行不同的化学反应下,不同的金属化合物之间进行不同程度与效果的结合沉淀,从而形成各式各样的矿物质。正是因为这个共同点才使得他们都能作为热液,起到形成金属矿产的用途。与此同时,热液中往往还含有金属元素。所以在其与海水接触被冷却后,产生的大部分物质是热液硫化物,即我们所说的金属硫化物,而且这些物质就是海水中常见的矿产形成的主要物质。 2金属矿产的找矿标志 2.1 间接性找矿标志 围岩蚀变就是间接性找矿标志之一,具体是指在岩浆中的热液形成的岩石 ,而且他的分布范围比矿床要广泛的多,非常容易被发现,所以,在实际岩石勘测工作中,相关研究人员经可以利用它进行找矿工作。具体来说,不同的形貌与结构的围岩蚀变,其中蕴含的物质与矿产有很大的差异,如石英岩化、硅石等矿物,在这些的不同围岩的帮助下,可以帮助相关科研人员找到不同的矿产。因此在对金属岩石勘查的实际过程中,在不同的围岩蚀变的引导下,可以顺利地找到不同的金属矿产,极大的提高了寻找矿产的效率,便于金属矿产的开发的正常进行。 除了观察围岩的不同形貌与构造能够帮助相关科研人员找到金属矿产,另外,还可以根据围岩颜色的不同,也可以找到不同类型的金属矿产。比如,围岩是蓝绿色的或白色的等其他类型的颜色,往往能够体现出它们周围存在的矿体种类。相关勘察专业工作人员在进行了多次的勘测工作后,对于不同颜色的围岩,已具备相应判断不同矿产的能力。如红色土层或是蓝绿高岭石层周围是铬矿床的可能性相对要大一些,这一点充分展示了矿围岩是寻找金属矿石的重要标志。在围岩的帮助下,能够在最快时间内寻找到金属矿产。从而使得勘测工作能进行的更为顺利。 3.2直接找矿标志 直接性的找矿标志具体是指,在直接用可以肉眼看到可能存在的矿产的迹象与地点的指示下,相关专业人员去实地寻找矿产,这是一个常用的勘测矿产的方式。一般来说,金属矿质的直接性的找矿标志是指铁帽、矿体露天部分以及风化体现等多种类型。而且大多数情况下,这些都是由直接暴露在地标外面的找矿标志体现,就比如原生矿体以及被氧化矿体的露头就是最常见的直接找矿标志。虽然这两种露天矿体给矿产的寻找带来了直接性的参考与指导,但在这两种找矿标志的帮助下找到的矿产,是否符合相关的开发条件、开发价值以及他的保护价值等方面的了解,还需要相关专业人员进行诸多的商榷与更深入的研究下才能进行相应的验证,才能对所发现的矿产进行专门的研究。只有这样,才能使得矿产的价值能够最大限度的利用[2]。 直接找矿标志也需要经过很长的时间下才能形成,比如风化壳的形成就是在风化的作用下,铁、镍等不活波的化学元素残余与堆积而逐渐形成的矿产氧化物,并且这些矿产氧化物又堆积在矿床表面,使得它们成为寻找矿产的最直接矿产标志。可以帮助相关科研人员寻找金属矿石。与此同时,利用风化壳与基性岩以及酸性岩石之间的关系来进行相应的研究工作,可以有效的对所发现的矿产处是否存在镍矿、稀土矿及铁矿等进行判断,使得开发工作能够有针对性的进行[3]。 结语: 总的来说,对金属矿产或是其他类型的矿产在进行准确的寻找过程中,只是一味地遵循前人的经验与方法是难以提高矿产勘查的准确率与精确性的。所以,就要要求相关人员根据已有的寻找方法与经验为基础,在实际寻找金属矿产的过程中,对相应的矿产找矿标志进行最大化的利用与综合性的考虑与商榷,再去寻找金属矿产。这样一来能够极大的提高寻找金属矿产的精确性与准确率,使得实时勘测过程

相关主题