搜档网
当前位置:搜档网 › 直线、平面平行与垂直的判定与性质(证明题详细讲解)

直线、平面平行与垂直的判定与性质(证明题详细讲解)

直线、平面平行与垂直的判定与性质(证明题详细讲解)
直线、平面平行与垂直的判定与性质(证明题详细讲解)

直线、平面平行与垂直的判定及其性质

7. 在四棱锥P-ABCD中,四边形ABCD是梯形,AD∥BC,∠ABC=90°,平面PAB⊥平面ABCD,

(1)求证:PA⊥平面ABCD;

(2)若平面PAB平面PCD l

=,问:直线l能否与平面ABCD平行?

请说明理由.

【解析】(1)因为∠ABC=90°,AD∥BC,所以AD⊥AB.

而平面PAB⊥平面ABCD,且平面PAB平面ABCD=AB,

所以AD⊥平面PAB, 所以AD⊥PA.

同理可得AB⊥PA.

由于AB、AD?平面ABCD,且AB AD=A,所以PA⊥平面ABCD.

(2)(方法一)不平行.

证明:假定直线l∥平面ABCD,

由于l?平面PCD,且平面PCD平面ABCD=CD, 所以l∥CD.

同理可得l∥AB, 所以AB∥CD.

这与AB和CD是直角梯形ABCD的两腰不平行相矛盾,

故假设错误,所以直线l与平面ABCD不平行.

(方法二)因为梯形ABCD中AD∥BC,

所以直线AB与直线CD相交,设AB CD=T.

由T∈CD,CD?平面PCD得T∈平面PCD.

同理T∈平面PAB.

即T为平面PCD与平面PAB的公共点,于是PT为平面PCD与平面PAB的交线.

所以直线l与平面ABCD不平行.

8. 如图,在三棱柱111ABC A B C -中,11,,AB BC BC BC AB BC ⊥⊥=,,,E F G 分别为线段1111,,AC AC BB 的中点,求证:

(1)平面ABC ⊥平面1ABC ; (2)//EF 面11BCC B ;

(3)GF ⊥平面11AB C 【解析】(1)

BC AB ⊥

11BC BC AB

BC B

⊥=

BC ∴⊥平面1ABC BC ?平面ABC

∴平面ABC ⊥平面1ABC

(2)

111,AE EC A F FC ==,1//EF AA ∴

11//BB AA 1//EF BB ∴

11EF BCC B ?面∴//EF 面11BCC B ;

(3)连接EB ,则四边形EFGB 为平行四边形

11

11111111

11

11

BE FG A C EB AC FG AC BC ABC B C ABC B C B C B C C ⊥∴⊥⊥∴⊥∴⊥∴⊥=面面,

GF ∴⊥平面11AB C 。

A

B C

A 1

B 1

C 1

E F

G

A

B C

A 1

B 1

C 1

E

F

G

9. 在四棱锥O -ABCD 中,底面ABCD 为菱形,OA ⊥平面ABCD ,E 为OA 的中点,F 为BC 的中点,求证:

(1)平面BDO ⊥平面ACO ; (2)EF//平面OCD.

【解析】证明:⑴∵OA ⊥平面ABCD ,BD ?平面ABCD ,所以OA BD ⊥, ∵四边形ABCD 是菱形,∴AC BD ⊥,又OA AC A =,

∴BD ⊥平面OAC ,

又∵BD ?平面OBD ,∴平面BDO ⊥平面ACO . ⑵取OD 中点M ,连接EM,CM ,则1

,2

ME AD ME AD =‖, ∵四边形ABCD 是菱形,∴//,AD BC AD BC =, ∵F 为BC 的中点,∴1

,2

CF AD CF AD =‖, ∴,ME CF ME CF =‖.

∴四边形EFCM 是平行四边形,∴//EF CM , 又∵EF ?平面OCD ,CM ?平面OCD . ∴EF ‖平面OCD .

D

A

B

C

F

E O

M

10. 如图l ,等腰梯形ABCD 中,AD ∥BC ,AB=AD ,∠ABC=600,E 是BC 的中点.如图2,将△ABE 沿AE 折起,使二面角B —AE —C 成直二面角,连结BC ,BD ,F 是CD 的中点,P 是棱BC 的中点. (1)求证:AE ⊥BD ; ’

(2)求证:平面PEF ⊥平面AECD ; (3)判断DE 能否垂直于平面ABC?并说明理由.

【解析】(1)连接BE ,取AE 中点M ,连接,BM DM .

在等腰梯形ABCD 中,AD ∥BC ,AB=AD ,60ABC ?

∠=,E 是BC 的中点

ABE ∴?与ADE ?都是等边三角形 ,BM AE DM AE ∴⊥⊥

,,BM

DM M BM DM =?平面BDM AE ∴⊥平面BDM

BD ?平面BDM A E B D ∴⊥. (2)连接CM 交EF 于点N ,连接PN

ME ∥FC ,且ME =FC ∴四边形MECF 是平行四边形 N ∴是线段CM 的中点 P 是线段BC 的中点 PN ∴∥BM

A

B

D

E

图1

图2

B

D

A

C

P

Q

N

M

O

A

C

D

B

P

M

Q BM ⊥平面AECD PN ∴⊥平面AECD .

PN ?平面PEF PEF AECD ∴⊥平面平面

(3)DE 与平面ABC 不垂直.

证明:假设DE ⊥平面ABC , 则DE AB ⊥ BM ⊥平面AECD B M D E

∴⊥ AB BM B =,,AB BM ?平面ABE DE ∴⊥平面ABE

DE AE ∴⊥,这与60AED ∠=矛盾 DE ∴与平面ABC 不垂直.

11. 如图,在四棱锥ABCD P -中,底面ABCD 中为菱形,

60=∠BAD ,Q 为AD 的中点。

(1) 若PD PA =,求证:平面⊥PQB 平面PAD ;

(2) 点M 在线段PC 上,tPC PM =,试确定实数t 的值,使得PA ‖平面

MQB 。

【解析】(1)连BD ,

四边形ABCD 菱形 AD AB ∴=,

60=∠BAD

∴为正三角形ABD ?中点为AD Q

BQ AD ⊥∴

PD PA = Q 为AD 的中点,∴ PQ AD ⊥

又BQ

PQ Q =

PQB AD 平面⊥∴,PAD AD 平面?

PAD PQB 平面平面⊥∴

(2)当3

1

=

t 时,使得PA ‖MQB 平面,连接AC 交BQ 于N ,交BD 于O ,则O 为BD 的中点,又 BQ 为ABD ?边AD 上中线,∴N 为正三角形ABD 的中心,令菱形ABCD 的边长为a ,则a AN 3

3=

,a AC 3=。

PA ‖MQB 平面 PAC PA 平面? MN MQB PAC =平面平面

PA ∴‖MN

3

1333===a a

AC AN PC PM 即:PC PM 31= 31=t 。

12. 如图,四边形ABCD 是菱形,PA ⊥平面ABCD ,M 为PA 的中点. (Ⅰ)求证:PC ∥平面BDM ;

(Ⅱ)若PA =AC =2,BD =32,求直线BM 与

平面PAC 所成的角.

【解析】(Ⅰ)设AC 与BD 的交点为O ,连结OM. 因为四边形ABCD 是菱形,则O 为AC 中点.

又M 为PA 的中点,所以OM ∥PC. 因为OM 在平面BDM 内,所以PC ∥平面BDM. (Ⅱ)因为四边形ABCD 是菱形,则BD ⊥AC. 又PA ⊥平面ABCD ,则PA ⊥BD. 所以BD ⊥平面PAC.

所以∠BMO 是直线BM 与平面PAC 所成的角. 因为PA ⊥平面ABCD ,所以PA ⊥AC. 在Rt △PAC 中,因为PA =AC =

2,则PC =2.

又点M 与点O 分别是PA 与AC 的中点,则MO =21

PC =1.

又BO =21BD =3,在Rt △BOM 中,tan ∠BMO

BO MO =

∠BMO =60°.

故直线BM 与平面PAC 所成的角是60°.

13. 一个棱柱的直观图和三视图(主视图和俯视图是边长为a 的正方形,左视图是直角边长为a 的等腰三角形)如图所示,其中M 、N 分别是AB 、AC 的中点,G 是DF 上的一动点.

(Ⅰ)求证:;AC GN ⊥(Ⅱ)求三棱锥F MCE -的体积; (Ⅲ)当FG GD =时,证明//AG 平面FMC .

主视图

侧视图

俯视图

a

a

a

M A N

B

C

D

E

F G

【解析】(Ⅰ)由三视图可知,多面体是直三棱柱,两底面是直角边长为a 的等腰直角三角形,侧面ABCD ,

CDFE 是边长为a 的正方形.

连结DN , 因为,FD CD FD AD ⊥⊥, 所以,FD ⊥面ABCD FD ⊥AC 又AC DN ⊥, 所以,AC ⊥面GND , GN ?面GND 所以GN AC ⊥ (Ⅱ)

E FMC AD

F BCE F AMCD E MBC

V V V V ----=--

=11

33BCE AMCD MBC

S CD FD S EC S ???-?-?

11111()2322322a a a a a a a a a a =??-?+??-????=3

16a .

另解:

31111

3326E FMC M CEF CEF V V AD S a a a a --?==

?=???=

(Ⅲ)连结DE 交FC 于Q ,连结QG

因为,,G Q M 分别是,,FD FC AB 的中点,所以GQ //1

2CD

, AM //1

2CD

,所以,AM //GQ ,AMGQ 是平行四边形

AG ∥QM ,AG ?面FMC ,MQ ?面FMC 所以,AG //平面FMC .

14. 如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的

倍,P 为侧棱SD 上的点。

(1)求证:AC ⊥SD ;

(2)若SD ⊥平面PAC ,在SC 上取一点E ,使

,连接BE ,求证:BE ∥平面PAC.

M A N

B

C

D

E

F G

Q

【解析】(1)连BD,设AC交BD于O ,由题意。

在正方形ABCD 中,,

所以,得.

(2)由,知,在等腰三角形SCD中,

可解得.

在上取一点,使,所以,

连BN ,在中知,

O 又由于,故平面,

得.

直线与平面平行练习题

直线与平面平行练习题 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

直线与平面平行的判定练习题 一、选择题 1.(课本习题改编)若P 为异面直线b a ,外一点,则过P 且与b a ,均平行的平面( ) A .不存在 B .有且只有一个 C .可以有两个 D .有无数多个 2.在正方体1111D C B A ABCD -中,棱长为N M a ,,分别为B A 1和AC 上的点,3 21a AN M A ==,则MN 与平面C C BB 11的位置关系是( ) A .相交 B .平行 C .垂直 D .不能确定 二、填空题 1.下列命题中正确的是 . ①若直线a 不在α内,则α//a ; ②若直线l 上有无数个点不在平面α内,则α//l ; ③若直线l 与平面α平行,则l 与α内的任意一条直线都平行; ④如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行; ⑤若l 与平面α平行,则l 与α内任何一条直线都没有公共点; ⑥平行于同一平面的两直线可以相交. 2.给出下列四个命题: ①若一条直线与一个平面内的一条直线平行,则这条直线与这个平面平行; ②若一条直线与一个平面内的两条直线平行,则这条直线与这个平面平行; ③若平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行; ④若两条平行直线中的一条与一个平面平行,则另一条也与这个平面平行. 其中正确命题的个数是 个. 3.(课本改编题)已知不重合的直线b a ,和平面α, ①若αα?b a ,//,则b a //;②若αα//,//b a ,则b a //;③若α?b b a ,//,则α//a ; ④若α?a b a ,//,则α//b 或α?b ,上面命题中正确的是 (填序号).

必修二第2章 2.2.1直线与平面平行的判定

§2.2 直线、平面平行的判定及其性质 2.2.1直线与平面平行的判定 【课时目标】1.理解直线与平面平行的判定定理的含义.2.会用图形语言、文字语言、符号语言准确描述直线与平面平行的判定定理,并知道其地位和作用.3.能运用直线与平面平行的判定定理证明一些空间线面关系的简单问题. 1.直线与平面平行的定义:直线与平面______公共点. 2.直线与平面平行的判定定理: ______________一条直线与________________的一条直线平行,则该直线与此平面平行.用符号表示为____________________________. 一、选择题 1.以下说法(其中a,b表示直线,α表示平面) ①若a∥b,b?α,则a∥α; ②若a∥α,b∥α,则a∥b; ③若a∥b,b∥α,则a∥α;

④若a∥α,b?α,则a∥b. 其中正确说法的个数是() A.0B.1C.2D.3 2.已知a,b是两条相交直线,a∥α,则b与α的位置关系是() A.b∥αB.b与α相交 C.b?αD.b∥α或b与α相交 3.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是() A.平行B.相交 C.平行或相交D.AB?α 4.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC和平面DEF的位置关系是() A.平行B.相交 C.在内D.不能确定 5.过直线l外两点,作与l平行的平面,则这样的平面() A.不存在B.只能作出一个 C.能作出无数个D.以上都有可能 6.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有() A.4条B.6条C.8条D.12条 二、填空题 7.经过直线外一点有________个平面与已知直线平行. 8.如图,在长方体ABCD-A1B1C1D1的面中: (1)与直线AB平行的平面是________; (2)与直线AA1平行的平面是______; (3)与直线AD平行的平面是______. 9.在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与过点A,E,C的平面的位置关系是______. 三、解答题 10.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱BC、C1D1的中点.求证:EF∥平面BDD1B1.

立体几何中的向量方法(一)——证明平行与垂直

立体几何中的向量方法(一)——证明平行与垂直 1.直线的方向向量与平面的法向量的确定 (1)直线的方向向量:在直线上任取一非零向量作为它的方向向量. (2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为???? ? n ·a =0,n ·b =0. 2.用向量证明空间中的平行关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. (2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =x v 1+y v 2. (3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1 ∥u 2. 3.用向量证明空间中的垂直关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( ) (2)平面的单位法向量是唯一确定的.( ) (3)若两平面的法向量平行,则两平面平行.( ) (4)若两直线的方向向量不平行,则两直线不平行.( ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( ) (6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( ) 1.下列各组向量中不平行的是( )

直线与平面、平面与平面平行的判定(附答案)

直线与平面、平面与平面平行的判定 [学习目标] 1.理解直线与平面平行、平面与平面平行判定定理的含义.2.会用图形语言、文字语言、符号语言准确描述直线与平面平行、平面与平面平行的判定定理,并知道其地位和作用.3.能运用直线与平面平行的判定定理、平面与平面平行的判定定理证明一些空间线面关系的简单问题. 知识点一直线与平面平行的判定定理 语言叙述符号表示图形表示 平面外一条直线与此平面内的一条直线平 行,则该直线与此平面平行 ?? ? ?? a?α b?α a∥b ?a∥α 思考若一条直线平行于一个平面内的一条直线,则这条直线和这个平面平行吗? 答根据直线与平面平行的判定定理可知该结论错误. 知识点二平面与平面平行的判定定理 语言叙述符号表示图形表示 一个平面内的两条相交直线与另一个平 面平行,则这两个平面平行 ?? ? ?? a?α,b?α a∩b=A a∥β,b∥β ?α∥β 思考如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面也平行吗?答不一定.这条直线与另一个平面平行或在另一个平面内. 题型一直线与平面平行的判定定理的应用 例1如图,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、 DA的中点. 求证:(1)EH∥平面BCD; (2)BD∥平面EFGH. 证明(1)∵EH为△ABD的中位线, ∴EH∥BD.

∵EH?平面BCD,BD?平面BCD, ∴EH∥平面BCD. (2)∵BD∥EH,BD?平面EFGH, EH?平面EFGH, ∴BD∥平面EFGH. 跟踪训练1在四面体A-BCD中,M,N分别是△ABD和△BCD的重心,求证:MN∥平面ADC. 证明如图所示,连接BM,BN并延长,分别交AD,DC于P,Q两 点,连接PQ. 因为M,N分别是△ABD和△BCD的重心, 所以BM∶MP=BN∶NQ=2∶1. 所以MN∥PQ. 又因为MN?平面ADC,PQ?平面ADC, 所以MN∥平面ADC. 题型二面面平行判定定理的应用 例2如图所示,在三棱柱ABC-A1B1C1中,点D,E分别是BC与B1C1的中点.求证:平面A1EB∥平面ADC1. 证明由棱柱性质知, B1C1∥BC,B1C1=BC, 又D,E分别为BC,B1C1的中点, 所以C1E綊DB,则四边形C1DBE为平行四边形, 因此EB∥C1D, 又C1D?平面ADC1, EB?平面ADC1, 所以EB∥平面ADC1. 连接DE,同理,EB綊BD,

线面平行与垂直的证明题

线面平行与垂直的证明1:如图,在棱长为1的正方体ABCD-A1B1C1D1中. (1)求证:AC⊥平面B1BDD1; (2)求三棱锥B-ACB1体积. 2:如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点. 求证:(1)PA∥平面BDE;(2)平面PAC⊥平面BDE. D1 C1 B1 A1 C D B A

3:如图:在底面是直角梯形的四棱锥S —ABCD 中, ∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1,2 1 AD . (Ⅰ)求四棱锥S —ABCD 的体积; (Ⅱ)证明:平面SBC ⊥平面SCD . 4:已知多面体ABCDFE 中, 四边形ABCD 为矩形,AB ∥EF ,AF ⊥BF ,平面ABEF ⊥平面ABCD , O 、M 分别为AB 、FC 的中点,且AB = 2,AD = EF = 1. (Ⅰ)求证:AF ⊥平面FBC ; (Ⅱ)求证:OM ∥平面DAF .

5:.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是P C的中点,作EF⊥PB交PB于点F. (1)证明PA//平面EDB;(2)证明PB⊥平面EFD; 6:已知正方形ABCD和正方形ABEF所在的平面相交于AB,点M,N分别在AC和BF上,且 AM=FN. C

求证:MN ‖平面BCE. 7:如图,正方体1111D C B A ABCD -中,棱长为a (1)求证:直线//1B A 平面1ACD (2)求证:平面1ACD ⊥平面D BD 1;

8:如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点, 求证:(1) FD∥平面ABC (2) AF⊥平面EDB. 9:如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点, (1)求证:平面A B1D1∥平面EFG; (2)求证:平面AA1C⊥面EFG.

空间几何——平行与垂直证明

c c ∥∥b a b a ∥?一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那 么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β b a a =??βαβ α∥b a ∥? b a b a ////??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα∥?a β ∥a ?b ∥a b a αα??α ∥a ?

《直线与平面平行的判定》教案

直线与平面平行的判定 教学目标 1.知识目标 ⑴进一步熟悉掌握空间直线与平面的位置关系; ⑵理解并掌握直线与平面平行的判定定理、图形语言、符号语言、文字语言; ⑶灵活运用直线与平面的判定定理,把“线面平行”转化为“线线平行”。 2.能力训练 ⑴掌握由“线线平行”证得“线面平行”的数学证明思想; ⑵进一步培养学生的观察能力、空间想象力与类比、转化能力,提高学生的逻辑推理能力。 3.德育渗透 ⑴培养学生的认真、仔细、严谨的学习态度; ⑵建立“实践——理论——再实践”的科学研究方法。 教学重点 直线与平面平行的判定定理 教学难点 直线与平面平行的判定定理的应用 教学方法 启发式、引导式、观察分析、理论联系实际 教具 模型、尺、多媒体设备 教学过程 (一) 内容回顾 师:在上节课我们介绍了直线与平面的位置关系,有几种?可将图形给以什么作为划分的标准? 直线与平面平行 直线与平面相交 直线在平面内 //a α a α ?{} a A α=I

(二)新课导入 1、如何判定直线与平面平行 师:请同学回忆,我们昨天就是受用了什么方法证明直线与平面平行?有直线在平面外能不能说明直线与平面平行? 生:借助定义,说明直线与平面没有公共点。 师:判断直线与平面有没有公共点,需要将直线与平面延展开瞧它们有没有交点,但延展判断并不方便灵敏,那就需要我们挖掘一种新的判定方法。我们来瞧瞧生活中的线面平行能给我们什么启发呢? 若将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l 与 书本所在的平面具有怎样的位置关系? 师:您们能用自己的话概括出线面平行的判定定理不? 生:如果平面外一条直线与这个平面内的一条直线平行, 那么这条直线与这个平面平行。 2、分析判定定理的三种语言 师:定理的条件细分有几点? 生:线在平面外,线在平面内,线线平行 (师生互动共同整理出定理的图形语言、符号语言、文字语言) 图形语言 符号语言 文字语言 线线平行, 则线面平行。 (三)例题讲解 师:如果要证明线面平行,关键在哪里? 生:在平面内找到一条直线,证明线线平行。 例1 已知:如图空间四边形ABCD 中,E 、F 分别就是AB 、AD 的中点。求证:EF ∥平面BCD 。 证明:连结BD AE = EB ? EF ∥BD AF =FD EF ?平面BCD ?EF ∥平面BCD BD ?平面BCD 着重强调:①要证EF ∥平面BCD,关键就是在平面BCD 中找到与EF 平行的直线; ②注意证明的书写,先说明图形中增加的辅助点与线,证明步骤严谨。 例2 如图,正方体ABCD -A 1B 1C 1D 1中,E 为DD 1的中点,证明BD 1∥平面AEC 。 观察 l b a αααα////a b a b a ??? ? ?? ??

立体几何平行与垂直经典证明题

N M P C B A 新课标立体几何常考证明题汇总 考点:证平行(利用三角形中位线),异面直线所成的角 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若BD=23,AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 考点:线面垂直,面面垂直的判定 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 考点:线面平行的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 考点:线面垂直的判定 4、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 考点:线面平行的判定(利用平行四边形),线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 考点:线面平行的判定(利用平行四边形) 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 考点:线面垂直的判定,三角形中位线,构造直角三角形 8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且2 2 EF AC =, 90BDC ∠=,求证:BD ⊥平面ACD 考点:三垂线定理 9、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的 A E D 1 C B 1 D C B A A H G F E D C B A E D B C S D C B A A 1 A B 1 C 1 C D 1 D G E F D 1 O D B A C 1 B 1 A 1 C

直线与平面平行的判定和性质经典练习及详细答案

直线、平面平行的判定及其性质 1. 下列命题中,正确命题的是 ④ . ①若直线l 上有无数个点不在平面α内,则l ∥α; ②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行; ③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点. 2. 下列条件中,不能判断两个平面平行的是 (填序号). ①一个平面内的一条直线平行于另一个平面 ②一个平面内的两条直线平行于另一个平面 ③一个平面内有无数条直线平行于另一个平面 ④一个平面内任何一条直线都平行于另一个平面 答案 ①②③ 3. 对于平面α和共面的直线m 、n ,下列命题中假命题是 (填序号). ①若m ⊥α,m ⊥n ,则n ∥α ②若m ∥α,n ∥α,则m ∥n ③若m ?α,n ∥α,则m ∥n ④若m 、n 与α所成的角相等,则m ∥n 答案 ①②④ 4. 已知直线a ,b ,平面α,则以下三个命题: ①若a ∥b ,b ?α,则a ∥α; ②若a ∥b ,a ∥α,则b ∥α; ③若a ∥α,b ∥α,则a ∥b . 其中真命题的个数是 . 答案 0 5. 直线a //平面M ,直线b ? /M ,那么a //b 是b //M 的 条件. A .充分而不必要 B.必要而不充分 C.充要 D.不充分也不必要 6. 能保证直线a 与平面α平行的条件是 A.b a b a //,,αα?? B.b a b //,α? C.c a b a c b //////,,,αα? D.b D b C a B a A b ∈∈∈∈?,,,,α且BD AC = 7. 如果直线a 平行于平面α,则 A.平面α内有且只有一直线与a 平行 B.平面α内无数条直线与a 平行 C.平面α内不存在与a 平行的直线 D.平面α内的任意直线与直线a 都平行 8. 如果两直线a ∥b ,且a ∥平面α,则b 与α的位置关系 A.相交 B.α//b C.α?b D .α//b 或α?b 9. 下列命题正确的个数是

立体几何平行证明题复习过程

立体证明题(2) 1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥ 平面ACE. (1)求证:AE⊥平面BCE; (2)求二面角B﹣AC﹣E的余弦值. 2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP=. (1)求证:平面EFP⊥平面ABFE; (2)求二面角B﹣AP﹣E的大小.

3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且 PA=PD=AD,若E、F分别为PC、BD的中点. (Ⅰ)求证:EF∥平面PAD; (Ⅱ)求证:EF⊥平面PDC. 4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°. (1)求证:AB⊥CD; (2)求二面角D﹣AB﹣C的正切值. 5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD. (1)求证:平面PAD⊥平面PBD; (2)求二面角A﹣PB﹣C的余弦值.

6.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ; (Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值. 7.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,∠DAB 为直角,AB ∥CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点. (Ⅰ)证明:AB ⊥平面BEF ; (Ⅱ)若PA= ,求二面角E ﹣BD ﹣C . 8.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC=4,点M 为PC 中点. (1)求证:DM ⊥平面PBC ; (2)若点E 为BC 边上的动点,且λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为 3 2 ?若存在,求出实数λ的值;若不存在,请说明理由.

立体几何中平行与垂直证明方法归纳

c c ∥∥b a b a ∥?本文档系统总结归纳了立体几何中平行与垂直证明方法,特别适合于高三总复习时对学生构建知识网络、探求解题思路、归纳梳理解题方法。是一份不可多得的好资料。 一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β a b a =?? βαβ α ∥b a ∥?b a b a //// ??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα ∥?a β ∥a ?α αββ////∩??b a P b a b a =α β//?α β b a P b ∥a b a αα ??α ∥a ?

直线与平面平行的判定定理

§2.2.1 直线与平面平行的判定 一、学习目标: (1)理解并掌握直线与平面平行的判定定理; (2)进一步培养学生观察、发现的能力和空间想象能力; 二、学习重点与难点 重点:直线与平面平行的判定定理及应用。 难点:直线与平面平行的判定定理的探索及应用。 三、教学过程 (一)知识准备、新课引入 α 提问2:今天我们针对直线与平面平行的位置关系进行探究。根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。 (二)探求判定定理 1、直观感知 提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗? 2、动手实践 教师取出预先准备好的直角梯形泡沫板演示: 当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以的感觉, 当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象是 3、探究思考 (1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢? (2)如果平面外的直线a与平面α内的一条直线b平行,那么直线a与平面α平行吗?

4、归纳确认: 直线和平面平行的判定定理: 文字语言: 图形语言: 符号语言: 简单概括:(内外)线线平行 线面平行 温馨提示: 作用:判定或证明线面平行。 关键:在平面内找(或作)出一条直线与面外的直线平行。 思想:空间问题转化为平面问题 5、思考:你能否尝试证明一下线面平行判定定理? (三)应用定理,巩固与提高 例1:已知:空间四边形ABCD 中,E 、F 分别是AB 、AD 试判断EF 与平面BCD 的关系,并予以证明 变式:空间四边形ABCD 中,E 、F 分别是AB 、AD 上的点, 且AE= 31AB ,AF=3 1AD 求证:EF ∥平面BCD . A B C D E F

立体几何中平行与垂直的证明(整理好)

D 1 B 1D A B C E 1A 1C 立体几何中平行与垂直的证明 姓名 例1.已知正方体ABCD —A 1B 1C 1D 1, O 是底ABCD 对角线的交点. 求证:(1)C 1O//平面AB 1D 1; (2)A 1C ⊥平面AB 1D 1. 【变式一】如图,在长方体1111D C B A ABCD -中,1,11>==AB AA AD ,点E 在棱AB 上移动。 求证:E D 1⊥D A 1; 【变式二A 】如图平面ABCD ⊥平面ABEF , ABCD 是正方形,ABEF 是矩形,且,22 1== AD AF G 是EF 的中点,(1)求证平面AGC ⊥平面BGC ; (2)求空间四边形AGBC 的体积。

B C A D E F M C 1 B 11B A 【变式二B 】. 如图,在直三棱柱111ABC A B C -中,8AB =,6AC =,10BC =,D 是BC 边的中点.(Ⅰ)求证: 1AB A C ⊥; (Ⅱ)求证:1A C ∥ 面1AB D ; 【变式三】如图组合体中,三棱柱111ABC A B C -的侧面11ABB A 是圆柱的轴截面,C 是圆柱底面圆周上不与A 、B 重合一个点. (Ⅰ)求证:无论点C 如何运动,平面1A BC ⊥平面1A AC ; (Ⅱ)当点C 是弧AB 的中点时,求四棱锥111A BCC B -与圆柱的体积比. 【变式四】如图,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点,且BF ⊥平面ACE . (1)求证:AE ⊥BE ; (2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN ∥平面DAE.

直线与平面 平面与平面平行练习题

2019年05月14日xx 学校高中数学试卷 学校:___________姓名:___________班级:___________考号:___________ 一、选择题 1.下列命题中正确的是(?? ) A.若直线l 平行于平面α内的无数条直线,则//l α B.若直线a 在平面α外,则//a α C.若直线//,a b b α?,则//a α D.若直线//,a b b α?,则a 平行于平面α内的无数条直线 2.已知 m 、n 是两条不重合的直线, α、β是两个不重合的平面,有下列命题: ①若//m α,则 m 平行于平面α内任意一条直线; ②若//,,m n αβαβ??,则//m n ; ③若//,//,//m n m n αβ,则//αβ; ④若//,m αβα?,则//m β. 其中真命题的个数是(?? ) A.0?????????? B.1?????????? C.2?????????? D.3 3.已知,m n 表示两条直线, ,αβ表示两个平面,则下列命题正确的是(?? ) A.若//,//,//m m n αβα,则//n β B.若//,//,//m n αβαβ则//m n C.若//,,m n αβαβ??,则//m n D.若//,//,m n m αβ交,αβ于,?A B 两点, n 交,αβ于,?C D 两点,则四边形ABDC 是平行四边形 4.空间中,下列命题正确的是(?? ) A.若//,//a b a α,则//b α B.若//,//,,a b a b ααββ??,则//βα C.若//,//b αβα,则//b β D.若//,a αβα?,则//a β 5.有下列结论:①若平面//α平面β,平面//β平面γ,则平面//α平面γ;②过平面外一条直线有且只有一个平面与已知平面平行;③平面外的两条平行线中,如果有一条和平面平行,那么另一条也和这个平面平行;④如果一条直线与两个平行平面中的一个相交,那么它与另一个平面必相交.其中正确的是(?? ) A.①②③????? B.②③④????? C.①③④????? D.①②③④ 二、解答题 6.如图所示,在三棱锥P ABQ -中, ,,,D C E F 分别是,,,AQ BQ AP BP 的中点, PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH . 求证: //AB GH . 7.如图,在正方体1111ABCD A B C D -中,点1P BB ∈ (P 不与B 、1B 重合). 11,PA A B M PC BC N ?=?=. 求证: //MN 平面ABCD . ? 8.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形, M 为PC 的中点,在DM 上任取一点G ,过点G 、A 、P 作平面交平面DMB 于GH .证明: //PA GH 9.如图,四边形ABCD 与ADEF 均为平行四边形, ,,M N G 分别是,,AB AD EF 的中点.

直线与平面平行的判定和性质同步练习.doc.docx

高二下9.3 直线与平面平行的判定和性质同步练习 基础练习 1.给出下列四个命题: ①若一直线与一个平面内的一条直线平行,则这直线与这个平面平行. ②若一直线与一平面内的两条直线平行,则这直线与这个平面平行. ③若平面外的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行. ④若两条平行直线中的一条与一个平面平行,则另一条也与这个平面平行. 其中正确命题的个数是(). A . 0B. 1C. 2D. 3 2.梯形 ABCD 中, AB∥ CD ,AB平面,CD平面,则直线 CD 与平面内的直 线的位置关系只能是(). A .平行B.平行或异面 C.平行或相交D.异面或相交 3.( 1)若直线 a、 b 均平行于平面a,那么 a 与 b 的位置关系是 __________; (2)若直线 a∥ b,且 a∥平面,则 b 与的位置关系是 __________; (3)若直线 a、 b 是异面直线,且 a∥,则 b 与的关系是 __________ . 4.如图 9-空间四边形ABCD 中, E 是边 AB 上的一点,求作过C、E 的一个平面,使对角线 BD 平行于这个平面,并说明理由. 图 9-5.在正方体ABCD -A1B1C1D1中,E、F 分别为A1C1和CC1的中点,求证:直线A1C ∥平面 B1EF . 综合练习 1.直线与平面平行的充要条件是这条直线与平面内的(). A.一条直线不相交 2.给出以下命题,不正确的是(). A.如果两条平行线中的一条与一个平面相交,那么另一条也和这个平面相交 B.如果直线 a 和直线 b 平行,那么直线 a 平行于经过 b 的所有的平面 C.如果 a 和 b 是异面直线,那么经过 a 有且只有一个平面与直线 b 平行

直线与平面平行平面与平面平行综合练习题

第3题?如图,已知点P是平行四边形ABCD所在平面外的一点,E , F分别是PA , BD上的点且PE:EA BF : FD,求证:EF// 平面PBC . 答案:证明:连结AF并延长交BC于M .连结PM , 答案:证明:如图,分别在AB和CD上截取AE AE- , DF D-F-,连接EE i , FF i , EF . 第1题 ? 已知I a, I m, 答案:证明: I m m/m// a a// b i a同理m/b 第2 题 ? 已 知:I b, a//,a// A.a//b B.a C. a , b相交但不垂直 D.a , ,则a与b的位置关系是( A ) b b异面 I b,且m//,求证:a// b. ??? AD// BC , BF FD MF PE BF MAF,又由已知EA 7D PE MF EA FA 由平面几何知识可得EF// PM,又EF PBC , PM 平面PBC , ??? EF// 平面PBC . 第4题.如图,长方体ABCD A1B1C1D1中,E i F i是平面AG上的线段,求证: E-i F1// 平面AC .

???长方体AC i的各个面为矩形, D i F i平行且等于DF故四边形AE E i A , DFF1D1为平行四边形.??? EE i平行且等于AA , F F i平行且等于DD i . 二EE i平行且等于FF i四边形EFF i E i为平行四边形,巳印/ EF . t EF 平面ABCD , E-i F-i 平面ABCD , 二E i F i〃平面ABCD . 第5题.如图,在正方形ABCD中,B D的圆心是A,半径为AB , BD是正方形ABCD的对角线,正方形以AB 所在直线为轴旋转一周.则图中I ,n,川三部分旋转所得几何体的体积之比为 第6题.如图,正方形 PA, (1) (2) ABCD的边长为i3,平面ABCD夕卜一点P到正方形各顶点的距离都是i3, M , N分别是 PM : MA BN : ND 5: 8 . DB上的点,且 求证:直线MN//平面PBC ; 求线段MN的长. C D ??? A i E i平行且等于AE , t AAi平行且等于DD i, i:i:i 2 / iO

直线与平面平行的判定定理教案设计

直线与平面平行的判定定理教案设计 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

§2.2.1 直线与平面平行的判定 (选自人教A版必修②第二章第二节第一课时) 一、教材分析 本节教材选自人教A版数学必修②第二章第二节第一课时,主要内容是直线与平面平行的判定定理的探究与发现、归纳概括、练习与应用。它是在前面已学空间点、线、面的位置关系的基础上,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。学线面平行判定是三大平行判定(线线平行、线面平行、面面平行)的核心,也是高考的高频考点之一,学好线面平行对后续学习面面平行及三大垂直的判定与性质等内容,具有良好的示范作用,同时,它在立体几何学习中起着承上启下的作用,具有重要的意义与地位。本节课的学习对培养学生空间想象能力与逻辑推理能力起到重要作用。线面平行的判定蕴含的数学思想方法主要有数形结合与化归与转化思想。 二、学情分析 本节课的教学对象是高一的学生,他们具备一定的由形象思维转化为逻辑思维的能力。学生在此前已经学习了直线与直线平行的性质及判定、直线与平面平行的定义,对直线与平面平行有了一定的认识,这些都为学生学习本节课做了准备。同时,由于本节课与生活实际相结合,学生的学习兴趣、参与度会比较大。但是由于学生处于学习空间立体几何的初始阶段,学习立体几何所具备的语言表达及空间感与空间想象能力不够,特别是对线面平行(空间立体)转化为线线平行(平面)的化归与转化思想,这是学生首次接触的思想方法,应加以必要的强化与引导。 三、教学目标 (一)知识技能目标 (1)理解直线与平面平行的判定定理并能进行简单应用; (2)培养学生观察、发现问题的能力和空间想象能力。 (二)过程方法目标

直线与平面平行测试题1

直线、平面平行的判定及其性质 测试题(有详解) A 一、选择题 1.下列条件中,能判断两个平面平行的是( ) A .一个平面内的一条直线平行于另一个平面; B .一个平面内的两条直线平行于另一个平面 C .一个平面内有无数条直线平行于另一个平面 D .一个平面内任何一条直线都平行于另一个平面 2.E ,F ,G 分别是四面体ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是 A .0 B .1 C .2 D .3 3. 直线,a b c ,及平面αβ,,使//a b 成立的条件是( ) A .//,a b αα? B .//,//a b αα C .//,//a c b c D .//,a b ααβ= 4.若直线m 不平行于平面α,且m ?α,则下列结论成立的是( ) A .α内的所有直线与m 异面 B .α内不存在与m 平行的直线 C .α内存在唯一的直线与m 平行 D .α内的直线与m 都相交 5.下列命题中,假命题的个数是( ) ① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤ a 和b 异面,则经过b 存在唯一一个平面与α平行 A .4 B .3 C .2 D .1 6.已知空间四边形ABCD 中,,M N 分别是,AB CD 的中点,则下列判断正确的是( ) A .()12MN AC BC ≥+ B .()12 MN AC BC ≤+ C .()12 MN AC BC =+ D .()12MN AC BC <+ 二、填空题 7.在四面体ABCD 中,M ,N 分别是面△ACD ,△BCD 的重心,则 四面体的四个面中与MN 平行的是________. 8.如下图所示,四个正方体中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得到AB//面MNP 的图形的序号的是 ①②③④ 9.正方体ABCD -A 1B 1C 1D 1中,E 为DD 1中点,则BD 1和平面ACE 位置关系是 . 三、解答题 侧棱长是 10.如图,正三棱柱111C B A ABC -的底面边长是2,

空间几何平行与垂直证明

空间几何平行与垂直证明 线面平行 方法一:中点模型法 例:1.已知在四棱锥P-ABCD 中,ABCD 为平行四边形, E 为PC 的中点. 求证:PA//平面BDE 练习: 1.三棱锥_P ABC 中,P A A B A C ==,120BAC ∠= ,P A ⊥平面A B C , 点E 、F 分别为线段P C 、B C 的中点, (1)判断P B 与平面A E F 的位置关系并说明理由; (2)求直线P F 与平面P A C 所成角的正弦值。 P A B C D E C B

2.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AD ⊥CD .DB 平分∠ADC ,E 为PC 的中点,AD =CD . (1)证明:PA ∥平面BDE ; (2)证明:AC ⊥平面PBD . 3.已知空间四边形ABCD 中,E,F,G,H 分别为 AB,BC,CD,DA 的中点. 求证:AC//平面EFG. 4.已知空间四边形ABCD 中,E,F,G,H 分别为AB,BC,CD,DA 的中点. 求证:EF //平面BGH. 方法二:平行四边形法 例:1.已知在四棱锥P-ABCD 中,ABCD 为平行四边形,E 为PC 的中点,O 为BD 的中点. 求证:OE //平面ADP A B C D E F G H A B C D E F G H P A B C D E O

2.正方体1111ABC D A B C D -中,,E G 分别是11,BC C D 中点. 求证://E G 平面11BD D B 练习 1.如图,在四棱锥O A B C D -中,底面A B C D 四边长为1的菱形, M 为O A 的中点,N 为B C 的中点 证明:直线MN ‖平面O C D ; 2.在四棱锥P-ABCD 中,底面四边形ABCD 是平行四边形,E,F 分别是AB ,PD 的中点. 求证://A F 平面PC E 3.已知正方体ABCD —A 1B 1C 1D 1,O 是底ABCD 对角线的交点. 求证:(1)C 1O//平面AB 1D 1; G E D 1 C 1 B 1 A 1A D C B O A M D C B N P B C D A E F D 1O D B A C 1 B 1 A 1 C

高中数学-直线与平面平行判定和性质

高中数学-立体几何典型例题一 例1 简述下列问题的结论,并画图说明: (1)直线?a 平面α,直线A a b =I ,则b 和α的位置关系如何? (2)直线α?a ,直线a b //,则直线b 和α的位置关系如何? 分析:(1)由图(1)可知:α?b 或A b =αI ; (2)由图(2)可知:α//b 或α?b . 说明:此题是考查直线与平面位置关系的例题,要注意各种位置关系的画法与表示方法. 典型例题二 例2 P 是平行四边形ABCD 所在平面外一点,Q 是PA 的中点,求证://PC 平面BDQ . 分析:要证明平面外的一条直线和该平面平行,只要在该平面内找到一条直线和已知直线平行就可以了. 证明:如图所示,连结AC ,交BD 于点O , ∵四边形ABCD 是平行四边形 ∴CO AO =,连结OQ ,则OQ 在平面BDQ 内, 且OQ 是 APC ?的中位线, ∴OQ PC //. ∵PC 在平面BDQ 外, ∴//PC 平面BDQ . 说明:应用线面平行的判定定理证明线面平行时,关键是在平面内找一条直线与已知直线平行,怎样找这一直线呢? 由于两条直线首先要保证共面,因此常常设法过已知直线作一平面与已知平面相交,如果能证明已知直线和交线平行,那么就能够马上得到结论.这一个证明线面平行的步骤可以总结为: 过直线作平面,得交线,若线线平行,则线面平行. 典型例题三

例3 经过两条异面直线a ,b 之外的一点P ,可以作几个平面都与a ,b 平行?并证明你的结论. 分析:可考虑P 点的不同位置分两种情况讨论. 解:(1)当P 点所在位置使得a ,P (或b ,P )本身确定的平面平行于b (或a )时,过P 点再作不出与a ,b 都平行的平面; (2)当P 点所在位置a ,P (或b ,P )本身确定的平面与b (或a )不平行时,可过点P 作a a '//,b b //'.由于a ,b 异面,则a ',b '不重合且相交于P .由于P b a =''I ,a ',b '确定的平面α,则由线面平行判定定理知:α//a ,α//b .可作一个平面都与a ,b 平行. 故应作“0个或1个”平面. 说明:本题解答容易忽视对P 点的不同位置的讨论,漏掉第(1)种情况而得出可作一个平面的错误结论.可见,考虑问题必须全面,应区别不同情形分别进行分类讨论. 典型例题四 例4 平面外的两条平行直线中的一条平行于这个平面,那么另一条直线也平行于这个平面. 已知:直线b a //,//a 平面α,α?b . 求证:α//b . 证明:如图所示,过a 及平面α内一点A 作平面β. 设c =βαI , ∵α//a , ∴c a //. 又∵b a //, ∴c b //. ∵α?b ,α?c , ∴α//b . 说明:根据判定定理,只要在α内找一条直线b c //,根据条件α//a ,为了利用直线和平面平行的性质定理,可以过a 作平面β与α相交,我们常把平面β称为辅助平面,它可以起到桥梁作用,把空间问题向平面问题转化. 和平面几何中添置辅助线一样,在构造辅助平面时,首先要确认这个平面是存在的,例如,本例中就是以“直线及直线外一点确定一个平面”为依据来做出辅助平面的. 典型例题五 例5 已知四面体ABC S -的所有棱长均为a .求: (1)异面直线AB SC 、的公垂线段EF 及EF 的长; (2)异面直线EF 和SA 所成的角. AB SC 、分析:依异面直线的公垂线的概念求作异面直线的公垂线段,进而求出其距离;对于异面直线所成的角可 采取平移

相关主题