搜档网
当前位置:搜档网 › 搅拌摩擦焊实验报告

搅拌摩擦焊实验报告

搅拌摩擦焊实验报告
搅拌摩擦焊实验报告

搅拌摩擦焊实验报告

1. 实验目的

(1) 了解搅拌摩擦焊的基本原理;

(2) 了解搅拌摩擦焊的设备及其工艺流程;

(3) 初步了解焊接工艺参数对搅拌摩擦焊焊缝成形的影响。

2. 实验概述

搅拌摩擦焊方法与常规摩擦焊一样。搅拌摩擦焊也是利用摩擦热与塑性变形热作为焊接热源。不同之处在于搅拌摩擦焊焊接过程是由一个圆柱体或其他形状(如带螺纹圆柱体)的搅拌针(welding pin)伸入工件的接缝处,通过焊头的高速旋转,使其与焊接工件材料摩擦,从而使连接部位的材料温度升高软化。同时对材料进行搅拌摩擦来完成焊接的。焊接过程如图所示。在焊接过程中工件要刚性固定在背垫上,焊头边高速旋转,边沿工件的接缝与工件相对移动。焊头的突出段伸进材料内部进行摩擦和搅拌,焊头的肩部与工件表面摩擦生热,并用于防止塑性状态材料的溢出,同时可以起到清除表面氧化膜的作用。

在焊接过程中,搅拌针在旋转的同时伸入工件的接缝中,旋转搅拌头(主要是轴肩)与工件之间的摩擦热,使焊头前面的材料发生强烈塑性变形,然后随着焊头的移动,高度塑性变形的材料逐渐沉积在搅拌头的背后,从而形成搅拌摩擦焊焊缝。搅拌摩擦焊对设备的要求并不高,最基本的要求是焊头的旋转运动和工件的相对运动,即使一台铣床也可简单地达到小型平板对接焊的要求。但焊接设备及夹具的刚性是极端重要的。搅拌头一般采用工具钢制成,焊头的长度一般比要求焊接的深度稍短。应该指出,搅拌摩擦焊缝结束时在终端留下个匙孔。通常这个匙孔可以切除掉,也可以用其它焊接方法封焊住。针对匙孔问题,已有伸缩式搅拌头研发成功,焊后不会留下焊接匙孔。

焊接过程中也不需要其它焊接消耗材料,如焊条、焊丝、焊剂及保护气体等。唯一消耗的是焊接搅拌头。

同时,由于搅拌摩擦焊接时的温度相对较低,因此焊接后结构的残余应力或变形也较熔化焊小得多。特别是Al合金薄板熔化焊接时,结构的平面外变形是非常明显的,无论是采用无变形焊接技术还是焊后冷、热校形技术,都是很麻烦

的,而且增加了结构的制造成本。

搅拌摩擦焊主要是用在熔化温度较低的有色金属,如Al、cu等合金。这和搅拌头的材料选择及搅拌头的工作寿命有关。当然,这也和有色金属熔化焊接相对困难有关,迫使人们在有色金属焊接时寻找非熔化的焊接方法。对于延性好、容易发生塑性变形的黑色材料,经辅助加热或利用其超塑性,也有可能实现搅拌摩擦焊,但这就要看熔化焊和搅拌摩擦焊哪个技术经济指标更合理来决定。

搅拌摩擦焊在有色金属的连接中已获得成功的应用,但由于焊接方法特点的限制,仅限于结构简单的构件,如平直的结构或圆筒形结构的焊接,而且在焊接过程中工件要有良好的支撑或村垫。原则上,搅拌摩擦焊可进行多种位置焊接,如平焊,立焊,仰焊和俯焊;可完成多种形式的焊接接头,如对接、角接和搭接接头,甚至厚度变化的结构和多层材料的连接,也可进行异种金属材料的焊接。

另外,搅拌摩擦焊作为一种固相焊接方法,焊接前及焊接过程中对环境的污染小。焊前工件无需严格的表面清理准备要求,焊接过程中的摩擦和搅拌可以去除焊件表面的氧化膜,焊接过程中也无烟尘和飞溅.同时噪声低。由于搅拌摩擦焊仅仅是靠焊头旋转并移动,逐步实现整条焊缝的焊接,所以比熔化焊甚至常规摩擦焊更节省能源。

由于搅拌摩擦焊过程中热输入相对于熔焊过程较小,接头部位不存在金属的熔化,是一种固态焊接过程,在合金中保持母材的冶金性能,可以焊接金属基复合材料、快速凝固材料等采用熔焊会有不良反应的材料。其主要优点如下:

(1)焊接接头热影响区显微组织变化小.残余应力比较低,焊接工件不易变形;

(2)能一次完成较长焊缝、大截面、不同位置的焊接.接头高:

(3)操作过程方便实现机械化、自动化,设备简单,能耗低,功效高,对作业环境要求低:

(4)无需添加焊丝,焊铝合金时不需焊前除氧化膜,不需要保护气体,成本低;

(5)可焊热裂纹敏感的材料,适合异种材料焊接:

(6)焊接过程安全、无污染、无烟尘、无辐射等。

搅拌摩擦焊也存在一定的缺点:焊接工件必须刚性固定,反面应有底板;焊接结束搅拌探头提出工件时,焊缝端头形成一个键孔,并且难以对焊缝进行修补:工具设计、过程参数和机械性能数据只在有限的合金范围内可得:在某种情况下,如特殊领域中要考虑腐蚀性能、残余应力和变形时,性能需进一步提高才可实际应用;对板材进行单道连接时,焊速不是很高:搅拌头的磨损消耗太快等。

3. 实验内容

(1) 了解搅拌摩擦焊的基本原理与工艺过程;

(2) 改变工艺参数(搅拌头转速、焊接速度等)进行搅拌摩擦焊实验,材料为铝合金板材;

(3) 对实验后焊缝外表形貌与焊接的工艺参数(搅拌头转速、焊接速度等)的关系进行分析。

4. 实验步骤与注意事项

(1) 理解实验原理:

焊接开始, 当搅拌头的特形指棒全部挤入板件时, 由于摩擦热, 特形指棒周围的金属迅速被加热,并形成了很薄的热塑性金属层, 为了分析方便, 取焊接时特形指棒的任一横截来进行分析。当搅拌头沿着焊件的接缝向前运动时, 在搅拌头的后边就形成了空腔, 由于背面垫板和正面轴肩的密封作用, 在搅拌头转动摩擦力的作用下, 搅拌头前边不断形成的热塑性金属挤压流动, 转移到了搅拌头的后边, 填满了后边的空腔, 空腔的产生与填满几乎同时发生。实际上, 搅拌摩擦焊是一个空腔不断产生、并将空腔填满的一个连续过程, 由于搅拌头的高速旋转,空腔的产生与空腔填满在瞬间完成。这样焊缝区的金属被挤压、摩擦加热, 发生了塑性变形、金属挤压流动转移、扩散和再结晶,就形成了搅拌摩擦焊的焊缝[1]。

(2) 领取待焊板材,用砂纸去除待焊部位的氧化膜,并用无水乙醇清洗;

(3) 装卡板材,用压板、螺栓将两块待焊板材固定在卡具底座上,保证焊接过程中它们不会发生移动;

(4) 通过对刀,使搅拌针与待焊板材的表面恰好接触;

(5) 在机床的数控操作系统中设置焊接参数(搅拌头旋转速度、焊接速度和下压量),参数设置好之后可以进行焊接;

(6) 观察焊缝的外观,分析焊接参数对于焊缝成形的影响。

5. 实验结果

5.1 搅拌摩擦加工试验参数:

转速W=600RPM,焊速=100mm/min,下压量=0.2mm。Zn粉(400目)填充在两块搭接2024铝合金之间的沟槽中,重复焊接两次。

显微硬度试验参数:

加载力:100g,加载时间:5s,位置:从左向右每隔1mm打一次硬度,覆盖区域从母材→焊核区→母材。硬度试验结果如下表:

光学显微镜照片:

放大50倍

说明:中间灰色部分为焊核区,由于Zn的耐酸腐蚀没有铝好。深黑色部分为未焊合的孔洞。因此,搅拌摩擦加工2次没有足够的塑性应变使铝和锌充分混合均匀并产生了大量的孔洞缺陷。从硬度结果也可以看出,此时焊核区的硬度并没有升高。

5.2 搅拌摩擦加工试验参数:

转速W=600RPM,焊速=100mm/min,下压量=0.2mm。Zn粉(400目)填充在两块搭接2024铝合金之间的沟槽中,重复焊接四次。

显微硬度试验参数:

加载力:100g,加载时间:5s,位置:从左向右每隔1mm打一次硬度,覆盖区域从母材→焊核区→母材。硬度试验结果如下表:

光学显微镜照片:

放大50倍

说明:中间灰色部分为焊核区,均匀性较重复加工2次的相比稍好,焊核区底部还有孔洞缺陷。从硬度试验结果看出焊核区硬度分布极不均匀,最高到133HV,最低53.5HV,说明此工艺下重复加工4次仍没有使焊核区均匀。

5.3 搅拌摩擦加工试验参数:

转速W=600RPM,焊速=100mm/min,下压量=0.2mm。Zn粉(400目)填充在两

块搭接2024铝合金之间的沟槽中,重复焊接六次。

显微硬度试验参数:

加载力:100g,加载时间:5s,位置:从左向右每隔1mm打一次硬度,覆盖区域从母材→焊核区→母材。硬度试验结果如下表:

光学显微镜照片:

放大50倍

放大1000倍

说明:中间灰色部分为焊核区,重复加工6次后,均匀性较好没有孔洞缺陷。从硬度试验结果看出焊核区硬度升高到80HV左右,且均匀性较好。在高倍光镜下可以看出,焊核区内弥散分布着第二相颗粒,需进一步做试验确定该颗粒的成分和结构。

5.4 搅拌摩擦加工试验参数:

转速W=1200RPM,焊速=100mm/min,下压量=0.2mm。Zn粉(400目)填充在两块搭接2024铝合金之间的沟槽中,重复焊接四次。

显微硬度试验参数:

加载力:100g,加载时间:5s,位置:从左向右每隔1mm打一次硬度,覆盖区域从母材→焊核区→母材。硬度试验结果如下表:

光学显微镜照片:

放大50倍

放大1000倍

说明:中间灰色部分为焊核区,提高转速至1200rpm后重复加工4次后,均匀

性很好没有孔洞缺陷,有“洋葱环”的出现。从硬度试验结果看出焊核区硬度升高到80HV左右,且均匀性较好。在高倍光镜下可以看出,焊核区内弥散分布着第二相颗粒,需进一步做试验确定该颗粒的成分和结构。

在低转速600rpm下,需要重复加工6次才能使焊核区的铝和锌混合均匀,在高转速1200rpm下,重复加工4次也能使焊核区混合均匀。锌加入铝中后会有细小的第二相出现,提高铝基体的硬度。

6. 实验结果分析

6.1 不同转速对搅拌摩擦焊焊缝的影响[2]

从焊缝的外观来看,在转速较低时, 不能形成搅拌摩擦焊的焊缝, 搅拌头的后边是一条沟槽, 随着搅拌头转速升高, 沟槽的宽度减小, 当搅拌头转速升高一定的值时(第一临界值), 沟槽消失, 焊缝外观成形良好, 继续增加转速, 焊缝外观也没有明显的变化, 但解剖发现焊缝的外观虽然成形良好, 但焊缝中有孔洞, 随着转速的再升高, 孔洞逐渐减小, 当转速升高到一定的值时(第二临界值)孔洞消

失。

6.2 不同转速对抗拉强度的影响

在焊缝表面闭合良好时, 随着转速的提高, 接头的抗拉强度升高, 当转速升高到一定值后, 接头与母材等强。其原因是, 搅拌头转速较低时, 由转速高低与接头中孔洞大小之间的关系所决定; 随着转速升高, 当焊缝中的空洞消失形成致密的焊缝时, 由于加工硬化, 接头中的强度比母材略高, 拉伸强度试验时, 从母材断裂, 焊缝中硬度也稍高于母材。

7. 思考题

7.1 结合所学专业知识,解释为什么搅拌摩擦焊相比传统熔焊更适于焊接铝合金?

搅拌摩擦焊(FSW)实践证明是非铁金属连接工艺,它没有母材熔化、填充金属和保护气体。因为它是固态连接工艺,搅拌摩擦焊消除了传统熔焊本身存在的大多数与再凝固相关的副作用。对于铝合金,搅拌摩擦焊能避免熔焊中固有的高温,所以能连接Al和不相似的铝合金或其它包括铜、铅、锌和镁的金属合金。它能消除脆性金属间混合物产生的副作用。

7.2 哪些材料不适合采用搅拌摩擦焊焊接,为什么?请举出一两例。

我认为由于搅拌摩擦焊的焊头在高速旋转情况下会产生高温,受到焊头热硬性的影响,有较高强度和硬度且熔点较高的材料不适合搅拌摩擦焊,如耐热钢。另外,我认为延展率过高的材料(如橡胶、塑料等)也无法进行搅拌摩擦焊,因为在旋转摩擦的过程中,这些材料会粘在焊头上使焊接无法继续进行。

7.3 比较搅拌摩擦焊和摩擦焊的异同点。

摩擦焊是指,在压力作用下,通过待焊界面的摩擦使界面及其附近温度升高,材料断面达到热塑性状态,伴随着材料产生塑性流变,通过界面的分子扩散和再结晶而实现焊接的固态焊接方法。而搅拌摩擦焊实质上是摩擦焊的一种。摩擦焊技术经过长年的发展,已经发展出很多种摩擦焊接的分类:摩擦螺柱焊、摩擦堆焊、第三体摩擦焊、嵌入摩擦焊、惯性摩擦焊、搅拌摩擦焊、径向摩擦焊、线性摩擦焊和摩擦叠焊等。

拌摩擦焊方法与常规摩擦焊一样。搅拌摩擦焊也是利用摩擦热与塑性变形热作为焊接热源。不同之处在于搅拌摩擦焊焊接过程是由一个圆柱体或其他形状

(如带螺纹圆柱体)的搅拌针(welding pin)伸入工件的接缝处,通过焊头的高速旋转,使其与焊接工件材料摩擦,从而使连接部位的材料温度升高软化。同时对材料进行搅拌摩擦来完成焊接的。焊接过程如图所示。在焊接过程中工件要刚性固定在背垫上,焊头边高速旋转,边沿工件的接缝与工件相对移动。焊头的突出段伸进材料内部进行摩擦和搅拌,焊头的肩部与工件表面摩擦生热,并用于防止塑性状态材料的溢出,同时可以起到清除表面氧化膜的作用。

在焊接过程中,搅拌针在旋转的同时伸入工件的接缝中,旋转搅拌头(主要是轴肩)与工件之间的摩擦热,使焊头前面的材料发生强烈塑性变形,然后随着焊头的移动,高度塑性变形的材料逐渐沉积在搅拌头的背后,从而形成搅拌摩擦焊焊缝。搅拌摩擦焊对设备的要求并不高,最基本的要求是焊头的旋转运动和工件的相对运动,即使一台铣床也可简单地达到小型平板对接焊的要求。但焊接设备及夹具的刚性是极端重要的。搅拌头一般采用工具钢制成,焊头的长度一般比要求焊接的深度稍短。应该指出,搅拌摩擦焊缝结束时在终端留下个匙孔。通常这个匙孔可以切除掉,也可以用其它焊接方法封焊住。针对匙孔问题,已有伸缩式搅拌头研发成功,焊后不会留下焊接匙孔。

参考文献:

[1] 陈杰,张海伟,刘德佳等. 我国搅拌摩擦焊技术的研究现状与热点分析[J]. 电焊机,2011, 41(10): 92-97.

[2] 张田仓,郭德伦,陈沁刚等. 铝合金搅拌摩擦焊技术研究[J]. 机械工程学报,2011, 38(2): 127-130.

搅拌摩擦焊焊机操作规程示范文本

搅拌摩擦焊焊机操作规程 示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

搅拌摩擦焊焊机操作规程示范文本使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1.打开电闸; 2.按下遥控器上的紧急停止按钮; 3.打开控制柜上电源开关,三个灯都亮,说明电源正 常,否则关闭电源开关,检查有关开关和保险丝,直到检 测出问题并修复为止; 4.启动操纵台上的电源开关,电源指示灯亮,给控制柜 送电; 5.按控制柜上F4(手动)按钮,出现一个红色条框。 正常情况没有向下的白色箭头,如果有按向下↓按钮,查看 错误情况; 6.如果没有问题,打开遥控器上的红色按钮,这时主轴 电机通电,工作灯亮;

7.进行编程或采用已有的程序; 8.在进行搅拌头位置调整时,向窗口方向为X+,向窗口的反方向为X—;向文件柜方向为Y+,向文件柜反方向为Y—;向上为Z+,向下为Z—; 9.焊接结束后首先按下遥控器上的红色按钮,然后计算机关机,关闭操纵台上的电源开关,关闭控制柜上电源开关,关闭电闸。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

第三章 搅拌摩擦焊

第三章搅拌摩擦焊(Friction Stir Welding 缩写为FSW) 1. 搅拌摩擦焊的基本原理是什么? 它是利用带有特殊形状的硬质搅拌指棒的搅拌头旋转着插入被焊接头,与被焊金属摩擦生热,通过搅拌摩擦,同时结合搅拌头对焊缝金属的挤压,使接头金属处于塑性状态,搅拌指棒边旋转边沿着焊接方向向前移动,在搅拌头的压力作用下,热塑性金属从其前端向后部塑性流动,从而形成致密的金属间结合,实现材料的连接。 简要说法:“非消耗搅拌工具,顶锻挤压连接面形成焊缝” 2. 搅拌头由哪几部分组成?各由什么材料制成?有何作用? (一)搅拌头由特殊形状的搅拌指棒和轴肩组成。 (二)日本采用了SUS440 (三)搅拌头的轴肩的作用: (1)可以保证搅拌指棒插入的深度; (2)轴肩与被焊材料的表面紧密接触,防止处于塑性状态的母材表面的金属排出而造成的损失和氧化; (3)与母材表面摩擦生热,提供部分焊接所需要的搅拌摩擦热。 3. 搅拌摩擦焊具有哪些特点? 最主要是固相焊,无熔化缺陷等 4. 搅拌摩擦焊主要焊接哪些金属材料? 5. 搅拌指棒的尺寸大小根据什么来决定? 被焊母材厚度 7. 搅拌摩擦焊的热输入是如何定义的? 即1mm 焊缝长度的搅拌头的转数。 比值越大,说明对母材的热输入越大 8. 在搅拌摩擦焊焊接时,对搅拌头中心与焊缝中心线以及接头精度有何要求?为什么? 接头间隙在0.5mm以下,搅拌头的中心位置大致允许偏差2.0mm。 9. 搅拌摩擦焊焊接接头由哪几个区域组成?它的断口呈何形状组织?为什么? (1)搅拌摩擦焊焊接接头依据金相组织的不同分为四个区域。即图中A区为母材,B区为热影响区(HAZ),C区为塑性变形和局部再结晶区(TMAZ),D区(焊核)即焊缝中心区为完全再结晶区 (2)圆柱状和焊点状:焊核细小等轴晶;强烈塑性变形特征;洋葱环特征等

搅拌摩擦焊焊机操作规程简易版

The Daily Operation Mode, It Includes All The Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify Management Process. 编订:XXXXXXXX 20XX年XX月XX日 搅拌摩擦焊焊机操作规程 简易版

搅拌摩擦焊焊机操作规程简易版 温馨提示:本操作规程文件应用在日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 1.打开电闸; 2.按下遥控器上的紧急停止按钮; 3.打开控制柜上电源开关,三个灯都亮,说明电源正常,否则关闭电源开关,检查有关开关和保险丝,直到检测出问题并修复为止; 4.启动操纵台上的电源开关,电源指示灯亮,给控制柜送电; 5.按控制柜上F4(手动)按钮,出现一个红色条框。正常情况没有向下的白色箭头,如果有按向下↓按钮,查看错误情况; 6.如果没有问题,打开遥控器上的红色按钮,这时主轴电机通电,工作灯亮;

7.进行编程或采用已有的程序; 8.在进行搅拌头位置调整时,向窗口方向为X+,向窗口的反方向为X—;向文件柜方向为Y+,向文件柜反方向为Y—;向上为Z+,向下为Z—; 9.焊接结束后首先按下遥控器上的红色按钮,然后计算机关机,关闭操纵台上的电源开关,关闭控制柜上电源开关,关闭电闸。 该位置可填写公司名或者个人品牌名 Company name or personal brand name can be filled in this position

目前最先进的焊接工艺——搅拌摩擦焊

目前最先进的焊接工艺,搅拌摩擦 焊,你知道原理吗 搅拌摩擦焊是由英国焊接技术研究所于1991年发明的新型焊接技术,其原理如下图所示。 一根安装在主轴上的形状为蜗杆形式的搅拌针在一定压力下被插入焊缝位置,搅拌针的长度一般要比焊缝深度略浅,以此来保证主轴的轴肩能紧贴被焊接的工件表面。当工件与搅拌针和轴肩摩擦生热,焊缝附近的材

料会因受热产生严重的塑性变形,但是,并不是熔化,只是成为一种“半流体”的状态,随着主轴带动搅拌针沿着焊缝的走向进给,搅拌针不断把已经处于“半流体”状态的材料搅拌到身后,当主轴离开后,这些材料将冷却固化,从而形成一条稳定的焊缝。 大家都知道,以铝合金和镁合金为代表的轻质合金是航空航天器的主要结构材料之一。然而这些轻质合金的可焊性都非常差,传统的各种熔焊工艺都无法从根本上杜绝热裂纹、气孔和夹渣等这些焊接缺陷的产生,需要靠操作者具有非常高超的技术和工艺才能保证焊接质量。并且,熔焊的高温会产生大量热量和有毒的烟气,这对操作者的身体健康也造成了很大的威胁。而搅拌摩擦焊的出现从根本上解决了这一系列问题。 其次,相较于传统熔焊工艺在焊缝附近形成重新铸造形态,搅拌摩擦焊由于主轴会给被焊接的工件部位施加一个很大的压力,所以在焊缝附近得到的是锻造形态,这种锻造形态组织比铸造形态组织致密得多,因而焊接后零件的机械性能也比传统熔焊工艺做出来的好得多。 而搅拌摩擦焊最大的优势体现在其本质是把机械能转化成焊接所需要的热能,所以可以用特定的公式相当准确的计算出焊接热及其引发的工件热变形的量,从而为事前的补偿和事后的纠正提供了几乎不依赖操作者经验的定量的依据,这是任何一种传统焊接工艺都望尘莫及的。

搅拌摩擦焊接质量控制

搅拌摩擦焊焊接质量控制 摘要:搅拌摩擦焊接技术是针对焊接性差的铝、镁合金而开发出的一种新型固相连接技术,由英国焊接研究所于1991年开发的专利技术。可以有效地避免氧化和蒸发,焊后冷却过程中不出现热裂纹,焊缝区晶粒得到细化,优化了接头各项性能,同时焊接过程不需要填充金属,不产生火花、飞溅、烟雾、弧光等,是一种高效、优质、简单、无污染的焊接工艺。介绍了搅拌摩擦焊接的原理、焊接工艺特点、搅拌摩擦焊的最新发展情况及其应用。利用搅拌摩擦焊焊接方法对7075铝合金进行焊接实验,在焊接参数为:转速——800r/min、焊接速度75mm/min的情况下得到了良好的组织结构,显微硬度的实验表明焊后其维氏硬度值的分布趋势沿焊缝中心基本对称。 关键词:搅拌摩擦焊接;7075铝合金;焊接参数;焊接质量控制 Research on friction stir welding A bstract: Friction stir welding (FSW) is a new solid welding technique for aluminum and magnesium alloys invented and patented by The Welding Institute, UK in 1991, which can avoid the problems existing in the other welding methods. It is an efficient, energy saving, simple and environmental-friendly technique, which can efficiently avoid oxidation and evaporation without heat flaw in the cooling process after welding. FSW can get optimized various performance of joint without any sparkle, plash, smog or arc. No filling metal is needed in the welding process. This paper simply introduce the principles, the process, emphasize introduces recent development an application of the friction stir welding. Using friction stir welding method of 7075 aluminum alloy welding experiment, the welding parameters for welding speed: speed -- 800r/min, 75mm/min cases got good organization structure, microhardness tests indicate that after welding the Vivtorinox hardness distribution trend along the seam center symmetry. Keywords: FSW; 7075 Al alloy; Welding parameters; Welding quality control

ISO 25239-2 2011 搅拌摩擦焊 铝 焊接接头的设计(中文版)

ISO 25239-2:2011 搅拌摩擦焊—铝 第2部分::焊接接头的设计狮子十之八九译 目录 前言 引言 1 范围 2 引用标准(略) 3 名词和术语 4 设计的要求 4.1 文件 4.2 接头的设计 4.3 附加的信息

ISO(国际标准化组织)是一个世界范围内的国家标准学会(ISO成员组织)的联合体。制定国际标准的工作经由ISO技术委员会归口负责。每个成员组织开发一个项目,由此便形成一个技术委员会,此成员组织有权代表该技术委员会。国际组织、政府与非政府机构协同ISO共同参与工作。ISO针对于电工标准化所有事宜和国际电工委员会(IEC)紧密合作。 本文件的起草符合ISO/IEC 指令中第2部分的相关规则。 由技术委员会通过国际标准草案提交成员国投票表决,需要得至少75%参加表决的成员国的同意,才能作为国际标准正式发布。 ISO25239-2是由国际焊接学会制订的,国际焊接学会已被ISO理事会批准为焊接领域的国际标准化机构。 ISO25239(总的的题目:搅拌摩擦焊—铝)系列标准有以下部分组成: ——第1部分:术语 ——第2部分:焊接接头的设计 ——第3部分:焊接操作工的资质 ——第4部分:焊接工艺评定 ——第5部分:质量和检验的要求 对于ISO25239的本部分的任何官方问题,应通过您所在国家标准委员会递交给ISO秘书处。

焊接广泛应用于工程结构制造。在第二十世纪后半叶以来,熔化焊接工艺(其中熔化指母材和通常是填充金属的熔化),主导了大量结构的焊接。在1991年,韦恩托马斯(Wayne Thomas)在TWI发明的摩擦搅拌焊接(FSW),其原理是固相连接技术(不熔化)。 随着FSW应用日益增加,产生了制订国际标准的需求,以确保其能以最有效的方式进行焊接,并在所有的操作方面进行合理的控制。本国际标准着重于铝的搅拌摩擦焊,因为在出版时,搅拌摩擦焊的大多数商业应用与铝有关。例如轨道车辆、消费品、食品加工设备、航空航天结构和船舶。 本系列标准包括以下部分: 第1部分:规定了FWS的术语 第2部分;规定了铝焊接接头的设计要求 第3部分:规定了焊接操作工的资质的要求 第4部分:规定了铝的焊接工艺评定的要求。焊接工艺规程(WPS)提供相关参数,以满足焊接操作和焊接过程中的质量控制。在质量体系标准中,焊接被认为是一个特殊过程。质量体系标准通常要求此特殊过程按照书面的工艺规程进行。冶金偏差是一个特殊的问题。由于在目前的技术水平下不可能对机械性能进行无损检测,因此在WPS投入实际生产之前,建立了一套焊接工艺评定的规则。ISO25239的这一部分定义了这些规则。 第5部分:规定了制造商使用FSW工艺生产特定质量的铝产品的能力的方法。它定义了特定的质量要求,但没有规定特定产品的质量要求。焊接结构在生产和维护过程中应有效的避免严重问题的出现。为了实现这一目标,应从设计阶段开始、从材料的选择、制造和检验各方面进行控制。例如,不合理的设计会造成产品在车间、现场或维护过程中严重的制造困难和昂贵的成本。不正确的材料选择会导致焊接问题,如裂纹。必须编制正确的焊接工艺,以避免缺欠。为了确保制造高质量的产品,管理人员应该了解潜在的问题来源,并建立适当的质量和检验工艺。其过程应进行监督,以确保焊接质量。

台式搅拌摩擦焊设备项目可行性研究报告完整立项报告

台式搅拌摩擦焊设备项目可行性研究报告完整立项报告 中咨国联出品

目录 第一章总论 (9) 1.1项目概要 (9) 1.1.1项目名称 (9) 1.1.2项目建设单位 (9) 1.1.3项目建设性质 (9) 1.1.4项目建设地点 (9) 1.1.5项目负责人 (9) 1.1.6项目投资规模 (10) 1.1.7项目建设规模 (10) 1.1.8项目资金来源 (12) 1.1.9项目建设期限 (12) 1.2项目建设单位介绍 (12) 1.3编制依据 (12) 1.4编制原则 (13) 1.5研究范围 (14) 1.6主要经济技术指标 (14) 1.7综合评价 (16) 第二章项目背景及必要性可行性分析 (18) 2.1项目提出背景 (18) 2.2本次建设项目发起缘由 (20) 2.3项目建设必要性分析 (20) 2.3.1促进我国台式搅拌摩擦焊设备产业快速发展的需要 (21) 2.3.2加快当地高新技术产业发展的重要举措 (21) 2.3.3满足我国的工业发展需求的需要 (22) 2.3.4符合现行产业政策及清洁生产要求 (22) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (22) 2.3.6增加就业带动相关产业链发展的需要 (23) 2.3.7促进项目建设地经济发展进程的的需要 (23) 2.4项目可行性分析 (24) 2.4.1政策可行性 (24) 2.4.2市场可行性 (24) 2.4.3技术可行性 (24) 2.4.4管理可行性 (25) 2.4.5财务可行性 (25) 2.5台式搅拌摩擦焊设备项目发展概况 (25) 2.5.1已进行的调查研究项目及其成果 (26) 2.5.2试验试制工作情况 (26) 2.5.3厂址初勘和初步测量工作情况 (26)

搅拌摩擦焊接头缺陷检测与修复方法

搅拌摩擦焊接头缺陷检测与修复方法 中图分类号:T341 文献标识码:A 文章编号:1009-914X(2017)11-0048-01 1 缺陷的检测方法 铝合金搅拌摩擦焊接头缺陷具有紧贴、细微、取向复杂等特点,增加了缺陷无损检测的难度,目前的检测方法主要有:超声检测、射线探伤、涡流探伤、激光干涉等检测方法。 1.1 超声检测法 超声检测技术是基于声波在材料中的传播路径与材料的均匀性有关,当声波的传播路径上出现缺陷时,就会改变原来的传播特性,产生反射、折射和波形转换。超声检测技术是目前应用于搅拌摩擦焊接头缺陷检测的一种理想的无损检测方法,也是应用最广泛的一种方法,具有灵敏度和检出率高、缺陷定位准确等优点。超声波定性检测缺陷的方法主要有波形判别法、回波相位法、频谱分析法、超声C和B 扫描法等[1]。 刘松平[2]等人研究了利用超声反射法检测搅拌摩擦焊缝区不同取向的缺陷。通过计算分析超声波在焊缝区的声波入射角、缺陷取向和缺陷紧贴性对声波反射的影响,确定入射声波的角度变化范围,通过改变入射角获取入射声波在缺

陷处的最佳声学反射方向,提高入射声波对不同取向缺陷的检出能力。检测结果表明,该法可以有效地检出铝合金搅拌摩擦焊缝区不同取向焊接缺陷,是解决搅拌摩擦焊缝区微细和紧贴型缺陷无损检测的一种可行的方法。另外,利用高分辨率超声波在缺陷的反射回波信号波形(即频谱)的不同,还可以区分缺陷的性质或类型。 徐蒋明[3]等人通过超声波检测中的前后扫查和左右扫 查获取缺陷的超声波回波动态波形,分别描述了铝合金搅拌摩擦焊焊缝的包铝陷入缺陷、隧道孔缺陷和未焊透缺陷的动态波形特点,并分析了各缺陷动态波形形成的原因。结果表明三种缺陷左右扫查的动态波形相似;隧道孔缺陷的前后扫查动态波形具有自身特征,而包铝陷入缺陷和未焊透缺陷的前后扫查动态波形具有光滑平面反射体的前后扫查的动态 波形特征,需要辅助以其他手段来区分这两种缺陷并对其定性。 1.2 X射线检测法 X射线检测方法基于射线束穿过缺陷区引起的能量衰减原理,利用合理感光材料或用记录仪器记录这种能量衰减,以灰(黑)度变化来评定缺陷的存在。 刘松平[4]等人利用X射线成功的探测了3mm厚铝合金板内预制的孔洞缺陷,但是相比超声检测的方法,X射线的检测能力有限,特别是针对搅拌摩擦焊缝中的微细和紧贴型

几种新型搅拌摩擦焊技术

几种新型搅拌摩擦焊技术 搅拌摩擦焊技术自1991年问世以来就倍受业界瞩目,特别是1996年搅拌摩擦焊被成功应用于宇航结构件的焊接以后,在制造业掀起了技术研究、发展和推广应用的热潮[1-3]。 双轴肩自适应搅拌摩擦焊技术 搅拌摩擦焊作为一种先进的固相连接技术,已经在造船、航空航天、轨道交通等领域获得了广泛的应用。但是在一些特殊的加工过程中需要搅拌摩擦焊设备提供较大的焊接力,同时要求在焊接过程中对待焊零件进行严格装夹(包括背部的刚性支撑),这给某些特殊结构形式下实施FSW造成了困难,如大直径火箭贮箱环缝结构的焊接等。而双轴肩自适应搅拌摩擦焊(Self-ReactingPin Tool,SRPT)技术成功地解决了上述问题。 1 原理 双轴肩自适应搅拌摩擦焊是通过上下轴肩夹持作用加紧工件,下轴肩代替了常规搅拌摩擦焊的垫板装置。搅拌针与驱动装置及下轴肩相连,这样既可调节加载载荷又可调整下轴肩的位置。且上轴肩与单独的驱动轴相连,这种上下轴肩单独控制的方式使得自适应系统得以实现,并且使上下轴肩的顶锻力反向相等,整个工件在垂直板件方向所受合力为零。由于SRPT采用了两个轴肩的模式,提高了焊缝背部的热输入,可以预防和降低焊缝背部缺陷。 与常规 FSW 相比,SRPT有两个独立控制的轴肩;常规FSW焊件背面需要配套的刚性支撑垫板,而SRPT焊件背面则不需要;常规FSW被焊工件需要严格的装夹,焊件需要被垂直及侧向压紧,而 SRPT大大简化了装夹机构;常规FSW焊缝背部常常是整个焊件的薄弱环节,SRPT由于下轴肩的产热减小了从焊缝表面到背部的温度梯度,降低了焊缝的热损耗,提高了热效率,因此可以很好地消除焊缝背部未焊透等缺陷。 2 试验验证与工程应用 Edwards 等[4]成功地应用双轴肩自适应搅拌摩擦焊技术对薄板铝合金进行了焊接,试验表明:在薄板焊接领域此技术可以实现1.8mm及更薄的铝合金型材的焊接;焊接速度可以达到1m/min以上;对2mm厚A l6061铝合金的试验表明,焊缝强度系数可达88%,而且强度系数还可以进一步提高。 TWI的研究表明[5]:双轴肩技术可以在较低的轴向顶锻力下焊接25mm厚的铝板;此项技术可以提供完全焊透的焊缝,不会出现未焊透和其他根部缺陷。 复合热源搅拌摩擦焊技术

搅拌摩擦焊的工艺参数

Trans. Nonferrous Met. Soc. China 22(2012) 1064í1072 Correlation between welding and hardening parameters of friction stir welded joints of 2017 aluminum alloy Hassen BOUZAIENE, Mohamed-Ali REZGUI, Mahfoudh AYADI, Ali ZGHAL Research Unit in Solid Mechanics, Structures and Technological Development (99-UR11-46), Higher School of Sciences and Techniques of Tunis, Tunisia Received 7 September 2011; accepted 1 January 2011 Abstract: An experimental study was undertaken to express the hardening Swift law according to friction stir welding (FSW) aluminum alloy 2017. Tensile tests of welded joints were run in accordance with face centered composite design. Two types of identified models based on least square method and response surface method were used to assess the contribution of FSW independent factors on the hardening parameters. These models were introduced into finite-element code “Abaqus” to simulate tensile tests of welded joints. The relative average deviation criterion, between the experimental data and the numerical simulations of tension-elongation of tensile tests, shows good agreement between the experimental results and the predicted hardening models. These results can be used to perform multi-criteria optimization for carrying out specific welds or conducting numerical simulation of plastic deformation of forming process of FSW parts such as hydroforming, bending and forging. Key words: friction stir welding; response surface methodology; face centered central composite design; hardening; simulation; relative average deviation criterion 1 Introduction Friction stir welding (FSW) is initially invented and patented at the Welding Institute, Cambridge, United Kingdom (TWI) in 1991 [1] to improve welded joint quality of aluminum alloys. FSW is a solid state joining process which was therefore developed systematically for material difficult to weld and then extended to dissimilar material welding [2], and underwater welding [3]. It is a continuous and autogenously process. It makes use of a rotating tool pin moving along the joint interface and a tool shoulder applying a severe plastic deformation [4]. The process is completely mechanical, therefore welding operation and weld energy are accurately controlled. B asing on the same welding parameters, welding joint quality is similar from a weld to another. Approximate models show that FSW could be successfully modeled as a forging and extrusion process [5]. The plastic deformation field in FSW is compared with that in metal cutting [6í8]. The predominant deformation during FSW, particularly in vicinities of the tool, is expected to be simple shear, and parallel to the tool surface [9]. When the workpiece material sticks to the tool, heat is generated at the tool/workpiece contact due to shear deformation. The material becomes in paste state favoring the stirring process within the thermomechanically affected zone, causing a large plastic deformation which alters micro and macro structure and changes properties in polycrystalline materials [10]. The development of the mechanical behavior model, of heterogeneous structure of the welded zone, is based on a composite material approach, therefore it must takes into account material properties associated with the different welded regions [11]. The global mechanical behavior of FSW joint was studied through the measurement of stress strain performed in transverse [12,13] and longitudinal [14] directions compared with the weld direction. Finite element models were also developed to study the flow patterns and the residual stresses in FSW [15]. B ased on all these models, numerical simulations were performed in order to investigate the effects of welding parameters and tool geometry on welded material behaviors [16] to predict the feasibility of the process on various shape parts [17]. Corresponding author: Mohamed-Ali REZGUI; E-mail: mohamedali.rezgui@https://www.sodocs.net/doc/d45503127.html, DOI: 10.1016/S1003-6326(11)61284-3

近现代最伟大的发明之一——搅拌摩擦焊

搅拌摩擦焊接夹具助推工业自动化 宁波友智机械科技有限公司,是专业从事创新型环保节能设备、自动化夹具的高新技术企业;致力于为客户提供优质的机械自动化整体解决方案,特别是搅拌摩擦焊接夹具的技术支持,可根据不同客户的需求,进行自主设计、生产,近日,宁波某上市公司向我司采购搅拌摩擦焊机及夹具三套。 免费的三维实体夹具模型设计,提供工业自动化整体解决方案,将最好的服务带给每位客户。 搅拌摩擦焊接技术在新能源汽车领域的应用。为达到汽车轻量化的目的,汽车中的多个位置需要铝合金,但各个位置所需铝合金的种类不同,对其焊接性及焊接方法的适应性要求比较高。在传统焊接中,焊接后容易出现焊接质量缺陷,变形难控制等问题。搅拌摩擦焊接能够有效地避免这些问题,焊接后的产品性能优异,被广泛认为是焊接铝及其合金的最佳连接方式,在汽车制造工业中有着广泛的应用前景。 目前,搅拌摩擦焊接主要是用于底盘、驱动电机外壳、控制模组、副车架、车门车窗、电池水冷板、散热器、导电杆等部位的焊接,也将在未来新能源汽车制造中占据更大的适用空间。

搅拌摩擦焊接以其绿色焊接的形象走入人们的视野,凭借其强大的焊接能力以及快速便捷的焊接方式,为智能工业的实现,做出了极大的贡献。搅拌摩擦焊接技术的实现,在降低成本方面,具有显著的优势,其焊接本身只需要消耗搅拌焊头,这样一来,大大地减少了焊接过程中所花费的其他费用。而焊头根据质量不同,其本身消耗也不同,但是据了解,平均搅拌焊头能运行的距离大概在1200米左右,而焊头本身的成本是相当低的。 工业自动化工程,推动的是整体的自动化服务,从而更好地解放人力,也能在一定程度上提升加工的精细度,随着搅拌摩擦焊接技术在新能源汽车领域得到广泛应用,而我司,在不断的业务发展过程中,也针对搅拌摩擦焊接技术,融合公司本身成熟的夹具设计技术,研发、设计了搅拌摩擦焊接夹具,为您提供整体的搅拌摩擦焊接解决方案。 以下是友智制造的搅拌摩擦焊接夹具,其满足当代工业自动化的需求。

几种新型搅拌摩擦焊技术

48 航空制造技术·2008 年第21 期 搅拌摩擦焊技术自1991年问世 以来就倍受业界瞩目,特别是1996年搅拌摩擦焊被成功应用于宇航结构件的焊接以后,在制造业掀起了技术研究、发展和推广应用的热潮[1-3]。双轴肩自适应搅拌 摩擦焊技术 搅拌摩擦焊作为一种先进的固几种新型搅拌摩擦焊技术 New Types of Friction Stir Welding Technology 大连交通大学 韩文妥 许鸿吉 北京航空制造工程研究所 李 光 董春林 栾国红 经过多年的发展和实践,新型的搅拌摩擦焊技术层出不穷,涉及领域广泛,其中最具代表性和创新性的新型搅拌摩擦焊技术有:双轴肩自适应搅拌摩擦焊技术、复合热源搅拌摩擦焊接技术、动态控制低应力无变形搅拌摩擦焊技术和双头搅拌摩擦焊技术。 韩文妥 大连交通大学与北京航空制造工 程研究所联合培养硕士研究生。从事 搅拌摩擦焊方面的研究。参与项目:“十一五”重点项目“新型精密焊接技术与装备研究”;航空基金重点项目“搅 拌摩擦焊应力与变形规律研究”、“飞机 整体结构件搅拌摩擦焊综合强度性能 基础研究” 等。相连接技术,已经在造船、航空航天、轨道交通等领域获得了广泛的应用。但是在一些特殊的加工过程中需要搅拌摩擦焊设备提供较大的焊接力,同时要求在焊接过程中对待焊 零件进行严格装夹(包括背部的刚性 支撑),这给某些特殊结构形式下实施F S W 造成了困难,如大直径火箭贮箱环缝结构的焊接等。而双轴肩自适应搅拌摩擦焊(Self-Reacting Pin Tool,SRPT)技术成功地解决了上述问题。 1 原理 双轴肩自适应搅拌摩擦焊是通过上下轴肩夹持作用加紧工件, 下轴肩代替了常规搅拌摩擦焊的垫板装置。搅拌针与驱动装置及下轴肩相 连, 这样既可调节加载载荷又可调整下轴肩的位置。且上轴肩与单独的驱动轴相连,这种上下轴肩单独控制的方式使得自适应系统得以实现,并且使上下轴肩的顶锻力反向相等, 整个工件在垂直板件方向所受合力为 零。由于S R P T 采用了两个轴肩的模式,提高了焊缝背部的热输入,可以预防和降低焊缝背部缺陷。 与常规F S W 相比,S R P T 有两个独立控制的轴肩;常规F S W 焊件背面需要配套的刚性支撑垫板,而S R P T 焊件背面则不需要;常规F S W 被焊工件需要严格的装夹,焊件需要被垂直及侧向压紧,而S R P T 大大简化了装夹机构;常规F S W 焊缝背部常常是整个焊件的薄弱环节,S R P T 由于下轴肩的产热减小了从焊缝表面到背部的温度梯度,降低了焊缝的热损耗,提高了热效率,因此可以很好地消除焊缝背部未焊透等缺陷。 2 试验验证与工程应用 Edwards 等[4]成功地应用双轴肩自适应搅拌摩擦焊技术对薄板铝合金进行了焊接,试验表明:在薄板焊接领域此技术可以实现1.8m m 及

搅拌摩擦焊技术应用现状和发展趋势

万方数据

搅拌摩擦焊接过程中,接头温度峰值始终处于材料熔化点以下(约为材料熔点的0.8),不会出现材料熔化,从而避免了常规熔焊工艺中因熔化一凝固现象的存在所造成的各种焊接缺陷。所以,搅拌摩擦焊是一种固相焊接技术。接头材料在高温软化状态下,由于搅拌 图1 搅拌摩擦焊基本原理及工艺过程 头的挤压而形成牢固的锻造细晶组织(与此不同的是,熔焊接头通常为晶粒粗大的铸造组织)。与其他焊接方法相比,搅拌摩擦焊具有以下特点: (1)搅拌摩擦焊是一种固相连接技术,接头性能优 异。 (2)焊前不需要开坡口,可以节省焊前准备工时。(3)焊接过程中不需要保护气,也不需要填充材料。 (4)焊接过程容易实现自动化,可以实现全位置焊 接,接头质量一致性好。 (5)焊接热输入小,从而导致焊接变形小、接头残 余应力水平低,是一种低应力,小变形焊接技术。 (6)焊接过程中无飞溅、无弧光,无辐射,是一种绿色焊接技术。 (7)焊接效率高、能耗低,是一种高效焊接技术。搅拌摩擦焊技术的这一系列特点使其对于以铝合金为代表的轻金属结构焊接具有非常重要的意义,在航空、航天、船舶、列车、汽车以及电力、电子等领域具有非常广阔的应用前景。 :.搅拌摩擦焊技术应用现状 搅拌摩擦焊作为一种轻合金材料连接的优选焊接 E口!唑堡笙!塑壁董皇塑型 参磊加工热加工 www,machinist.com,cn 技术,已经从技术研究迈向高层次的工程化和工业化应用阶段,如在美国的宇航制造工业、北欧的船舶制造工业和日本的高速列车制造等领域,搅拌摩擦焊技术都得到了广泛应用。搅拌摩擦焊技术1995年(通过申请专 利)进入中国,但是这项技术在中国真正获得发展却是在2002年以后——中心成立以来的这几年时间,它是以 中国自主研制的第一台专机搅拌摩擦焊设备的交付使用为标志的。2002年以来,搅拌摩擦焊技术已被迅速推广到国内的航空、航天、船舶、电力、电子以及汽车等领域,并在几十种产品型号中得到应用。 1.搅拌摩擦焊技术在航天型号产品研制中的应用 由于轻量化的需要,航天领域大量采用了铝合金 结构——最适合采用搅拌摩擦焊技术,从而使搅拌摩擦 焊技术最早在火箭、航天飞机等宇航产品中得到推广。国内则是首先在一些火箭、导弹等新型号武器装备研制中采用了搅拌摩擦焊技术,并配备了中国搅拌摩擦焊中 心自主研制的搅拌摩擦焊专机设备。 出于减重、减少成本和提高性能等方面的考虑, 我国导弹武器舱段的设计拟由原来的防锈铝(女115A06铝合金)改为高强铝合金(女IILYl2),但是这些材料采用熔焊的方法很难实现焊接,整体成形的成本又很 高,因此迫切需要像搅拌摩擦焊这样的新型固相焊接技术。 2004~2005年,中国搅拌摩擦焊中心与某航天制 造基地合作开展了这方面的研究,分别对与导弹武器整体舱段制造的纵缝连接,环缝连接等进行了应用开发,试制了多个型号的产品(图2所示为工艺验证模拟结构 件)并成功试飞。目前,搅拌摩擦焊技术已准备用于相 关军工产品的工业化生产。 万方数据

搅拌摩擦焊焊机操作规程(最新版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 搅拌摩擦焊焊机操作规程(最新 版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

搅拌摩擦焊焊机操作规程(最新版) 1.打开电闸; 2.按下遥控器上的紧急停止按钮; 3.打开控制柜上电源开关,三个灯都亮,说明电源正常,否则关闭电源开关,检查有关开关和保险丝,直到检测出问题并修复为止; 4.启动操纵台上的电源开关,电源指示灯亮,给控制柜送电; 5.按控制柜上F4(手动)按钮,出现一个红色条框。正常情况没有向下的白色箭头,如果有按向下↓按钮,查看错误情况; 6.如果没有问题,打开遥控器上的红色按钮,这时主轴电机通电,工作灯亮; 7.进行编程或采用已有的程序; 8.在进行搅拌头位置调整时,向窗口方向为X+,向窗口的反方

向为X—;向文件柜方向为Y+,向文件柜反方向为Y—;向上为Z +,向下为Z—; 9.焊接结束后首先按下遥控器上的红色按钮,然后计算机关机,关闭操纵台上的电源开关,关闭控制柜上电源开关,关闭电闸。 云博创意设计 MzYunBo Creative Design Co., Ltd.

搅拌摩擦焊的原理及其应用

搅拌摩擦焊的原理及其应用 摘要:摩擦焊是利用焊件接触面之间的相对摩擦运动和塑性变形所产生的热量使接触面及附近区域的材料达到热塑性状态,通过两侧材料间的相互扩散和动态再结晶而完成焊接,文章分析了搅拌摩擦焊的工作原理,并论述了其相关的应用。 关键词:搅拌摩擦焊焊接变形焊接工艺 引言 搅拌摩擦焊是英国焊接研究所发明的新型固态塑化焊接技术,是世界焊接技术发展史上自发明到工业应用时间跨度最短并且发展最快的一项连接技术。搅拌摩擦在材料的熔点以下进行,属于固相焊接,因此可以避免熔化焊所产生的气孔、裂纹、变形和氧化等问题。更重要的是焊接加热温度低,使焊接接头软化程度得到减轻,性能得到改善。 搅拌摩擦焊在国外铝合金车体制造方面得到了一定的应用,日本、法国、德国、瑞典等国车辆制造商己经采用搅拌摩擦焊技术制造列车车体,焊接接头性能得到改善,效果良好。国内搅拌摩擦焊在铁道车辆制造方面的应用尚属空白。文章分析了搅拌摩擦焊的工作原理,并论述了其相关的应用。 1 搅拌摩擦焊的工作原理及特点 搅拌摩擦焊接时,搅拌头一边高速旋转,一边沿着焊接方向前进,焊接过程中,搅拌头轴肩与被焊工件表面摩擦产生热量使工件达到塑性状态,塑性状态的金属在搅拌头旋转压力的挤压作用下,沿搅拌针从前进侧被搅拌到后退侧,随着搅拌头的移动,高度塑性变形的金属流向搅拌头的后部,冷却后形成焊缝。在实际工作中,搅拌摩擦焊的焊核由于受到搅拌头的高速旋转挤压作用,该区原始的组织晶粒被搅拌破碎,同时在轴肩与母材摩擦产生的热作用下,发生动态再结晶,由母材轧制状组织变为细小的等轴晶。热机械影响区在搅拌头的高速旋转作用下发生明显塑性变形,受到的摩擦热低于焊核,不足以使组织发生再结晶,因此只发生部分长大。热影响区在热循环作用下,组织晶粒发生二次长大,该区组织明显粗化,甚至比母材还粗大。焊接时搅拌头缓慢插入母材中,摩擦头的轴肩与板材的表面紧密接触并压入一定深度。焊接时摩擦头高速旋转并沿待焊板材的接缝向前运动。摩擦头的轴肩、搅拌针与试件摩擦生热,产生的摩擦热使搅拌针周围金属处于热塑性状态。在摩擦搅拌过程中轴肩一方面提供了大部分的摩擦热,另一方面轴肩的下压作用防止了塑性状态金属的溢出,搅拌针前方塑性状态下的金属在摩擦头的驱动下向后方流动。在搅拌头的摩擦搅拌作用下,搅拌针周围的材料形成塑性层,从而形成了搅拌摩擦焊焊缝,使待焊件焊为一个整体。同时,因为搅拌摩擦焊焊接温度在铝合金熔点以下,使其与普通熔化焊有不同的本质,相应地带来了一系列优点:

ISO 25239-5 2020 搅拌摩擦焊 铝 质量和检验要求(中文版)

ISO 25239-5:2020 搅拌摩擦焊—铝 第5部分:质量和检验要求 狮子十之八九译 目录 前言 引言 1 范围 2 引用标准(略) 3 名词和术语 4 质量要求 4.1 概述 4.2 焊接人员 4.3 检验和试验人员 4.4 设备 4.5 焊接工艺规程 4.6 搅拌摩擦焊搅拌头 4.7 焊接接头的准备与装配 4.8 预热温度和道间温度的控制 4.9 点固焊 4.10焊接 4.11焊后热处理 4.12检验和试验 4.13标识和可追溯性 附录A(标准)缺欠、试验和检验、验收要求和ISO6520-1代码文献(略)

ISO(国际标准化组织)是一个世界范围内的国家标准学会(ISO成员组织)的联合体。制定国际标准的工作经由ISO技术委员会归口负责。每个成员组织开发一个项目,由此便形成一个技术委员会,此成员组织有权代表该技术委员会。国际组织、政府与非政府机构协同ISO共同参与工作。ISO针对于电工标准化所有事宜和国际电工委员会(IEC)紧密合作。 本文件的制订和进一步修订程序在ISO/IEC 指令中第1部分中有描述,须特别注意针对不同类型的ISO文件,有不同的审批标准。本文件的起草符合ISO/IEC 指令中第2部分的相关规则(https://www.sodocs.net/doc/d45503127.html,/directives)。 请注意本文件有些部分可能涉及专利权。ISO不识别这些专利权。关于制订该文件所涉专利权的细节,见ISO 专利声明清单(见https://www.sodocs.net/doc/d45503127.html,/patent)。 本文档中使用的任何商业名称都是为了方便用户而提供的信息,而不是一种认可。 关于标准的自愿性质、ISO特定术语的含义以及与符合性评估有关的表达的含义,以及关于ISO 在技术性贸易壁垒(TBT)中遵守世界贸易组织(WTO)原则的信息,见https://www.sodocs.net/doc/d45503127.html,/iso/foreword.html。 ISO 25239-1由IIW国际焊接学会起草,该学会已被批准为国际标准化机构,第三委员会,电阻焊,固态焊接及相关连接工艺,在焊接领域,通过与欧洲标准化委员会(CEN)技术委员会CEN/TC 121《焊接及相关工艺》的合作,ISO理事会根据ISO与CEN之间的技术合作协议(维也纳协议)。 此第二版代替失效的第一版(ISO 25239-5:2011),此版本有技术性修改。 与上一版相比,主要变化如下: —附录A中增加了评估焊接质量的三种不同验收等级的定义; —表A.1中增加了以下缺欠:角度偏差、接头区域变形、表面破裂空腔、固体夹杂、接头残余和多重缺陷;—无损检测和目视检测人员的要求符合ISO 17637 ISO 25239系列标准的所有部分可在ISO网页搜索。 对于本标准的任何官方问题,应通过您所在国家标准委员会递交给ISO/TC44/SC10的秘书处。这些机构列表见https://www.sodocs.net/doc/d45503127.html,。

相关主题