搜档网
当前位置:搜档网 › 二阶常微分方程边值问题

二阶常微分方程边值问题

二阶常微分方程边值问题
二阶常微分方程边值问题

实验结果与分析:差分法结果如下:

常微分方程边值问题与不动点定论文

目录 引言 (1) 1预备知识 (2) 定义1.1(奇异Sturm-Liouville边值问题的正解) (2) 引理1.1.1 (2) 定义1.2(凸集的概念) (3) 定义1.3锥的定义 (3) 定义1.4(全连续算子的概念) (3) 1.5 (常微分边值问题的定义) (4) 定义1.6混合单调算子得定义) (4) 2 常微分方程边值问题正解得存在性 (5) 2.1 奇异Sturm-Liouville常微分边值问题的正解存在在 (5) 子 (8) 2.2 一类二阶边值问题的存在性 (9) 3一类混合单调算子应用 (11) 3.1一类混合单调算子的存在唯一性?........................ 错误!未定义书签。 3.2 求常微分边值问题的例题 (13) 结束语 (15) 参考文献 (15) 致 (16)

常微分方程边值问题与不动点定 (数学与统计学院 11级数学与应用数学2班)指导教师:攀峰 引言 从历史上看在有了微积分这个概念以后,紧接着出现了常微分方程。发展初期是属于“求通解”得时代,当人们从初期的热潮中结束要从维尔证明了卡帝方程中是一定不会存在一般性的初等解的时候开始的,并且柯西紧接着又提出了初值问题,常微分方程开始从重视“求通解”转向重视“求定解”的历史时代。 大学我们都学习了常微分方程这门学科,如果要研究它的定解问题,我们首先就会知道是常微分方程的初值问题。然而,在科学技术、生产实际问题中,我们还是提出了另一类定解问题-边值问题。对于常微分方程边值问题,伟大的科学家最早在解决二阶线性微分方程时,提出了分离变量法。[]1.在牛顿时期,科学家们已经提出过常微分的边值问题,牛顿也对常微分边值问题进行过研究,并且在1666年10月牛顿已经在这个领域取得了很大的成就,但是由于种种原因当时并没有整理成论文,所以没有及时出版。但在1687年他终于把在常微分方程上研究的成果发表了,虽然不是在数学著作中,却是他的一本力学著作中(《自然哲学的数学原理》)。 在微积分刚创立时期,雅克.伯努利来自瑞士的科学家提出了远著文明的问题-悬链线问题,紧着的地二年著名数学家莱布尼兹就给出了正确的解答,通过对绳子上个点受力分析,建立了以下方程 这个方程满足的定解条件是y(a)=α;y(b)=β.这是一个典型的常微分方程的边值问题。从这开始,常微分边值问题已经是科学家研究微分方程是不可或缺的工具,我就简单列举几个例子:(比如种族的生态系统;梁的非线性震动)等。对于怎么研究它,

二次微分方程的通解

教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将 y e rx 代入方程 y py qy 0 得 (r 2 pr q )e rx 0 由此可见 只要r 满足代数方程r 2 pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2 pr q 0叫做微分方程y py qy 0的特征方程 特征方程 的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无 关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0 )()2(121111=++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的 两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关 的实数形式的解 函数y 1e ( i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e ( i )x e x (cos x i sin x ) y 1y 22e x cos x ) (2 1cos 21y y x e x +=βα y 1y 22ie x sin x ) (21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为

二阶常微分方程解

第七节 二阶常系数线性微分方程 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线 性微分方程及其求解方法。先讨论二阶常系数线性齐 §7.1 二阶常系数线性齐次方程及其求 22dx y d +p dx dy +qy = 0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y 2 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22 dx y d ,dx dy ,y 各乘 以常数因子后相加等于零,如果能找到一个函数y ,

其22dx y d ,dx dy ,y 之间只相差一个常数因子,这样的函 数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx y =e rx (其中r 为待定常数) 将y =e rx ,dx dy =re rx ,22dx y d =r 2e rx 代入方程 (7.1) 得 r 2e rx +pre rx +qe rx = 0 或 e rx (r 2+pr +q )= 因为e rx ≠ 0 r 2 +pr +q = 由此可见,若 r r 2+pr +q = 0 (7.2) 的根,那么e rx 就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1) 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2 有三种可能的情况,下面 (1)若特证方程(7.2)有两个不相等的实根r 1,r 2,此时e r 1x ,e r2x 是方程(7.1)

常微分方程边值问题的数值解法

第8章 常微分方程边值问题的数值解法 引 言 第7章介绍了求解常微分方程初值问题的常用的数值方法;本章将介绍常微分方程的边值问题的数值方法。 只含边界条件(boundary-value condition)作为定解条件的常微分方程求解问题称为常微分方程的边值问题(boundary-value problem). 为简明起见,我们以二阶边值问题为 则边值问题(8.1.1)有唯一解。 推论 若线性边值问题 ()()()()()(),, (),()y x p x y x q x y x f x a x b y a y b αβ'''=++≤≤?? ==? (8.1.2) 满足 (1) (),()p x q x 和()f x 在[,]a b 上连续; (2) 在[,]a b 上, ()0q x >, 则边值问题(8.1.1)有唯一解。 求边值问题的近似解,有三类基本方法: (1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解; (2) 有限元法(finite element method);

(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。 差分法 8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法 设二阶线性常微分方程的边值问题为 (8.2.1)(8.2.2) ()()()(),,(),(), y x q x y x f x a x b y a y b αβ''-=<

二阶常微分方程的解法及其应用.

目录 1 引言 (1) 2 二阶常系数常微分方程的几种解法 (1) 2.1 特征方程法 (1) 2.1.1 特征根是两个实根的情形 (2) 2.1.2 特征根有重根的情形 (2) 2.2 常数变异法 (4) 2.3 拉普拉斯变化法 (5) 3 常微分方程的简单应用 (6) 3.1 特征方程法 (7) 3.2 常数变异法 (9) 3.3 拉普拉斯变化法 (10) 4 总结及意义 (11) 参考文献 (12)

二阶常微分方程的解法及其应用 摘要:本文通过对特征方程法、常数变易法、拉普拉斯变换法这三种二阶常系数常微分方程解法进行介绍,特别是其中的特征方程法分为特征根是两个实根的情形和特征根有重根的情形这两种情况,分别使用特征值法、常数变异法以及拉普拉斯变换法来求动力学方程,现今对于二阶常微分方程解法的研究已经取得了不少成就,尤其在二阶常系数线性微分方程的求解问题方面卓有成效。应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 关键词:二阶常微分方程;特征分析法;常数变异法;拉普拉斯变换

METHODS FOR TWO ORDER ORDINARY DIFFERENTIAL EQUATION AND ITS APPLICATION Abstract:This paper introduces the solution of the characteristic equation method, the method of variation of parameters, the Laplasse transform method the three kind of two order ordinary differential equations with constant coefficients, especially the characteristic equation method which is characteristic of the root is the two of two real roots and characteristics of root root, branch and don't use eigenvalue method, method of variation of constants and Laplasse transform method to obtain the dynamic equation, the current studies on solution of ordinary differential equations of order two has made many achievements, especially in the aspect of solving the problem of two order linear differential equation with constant coefficients very fruitful. Application of the theory of ordinary differential equations has made great achievements, however, the existing theory it is still far from meeting the need, needs further development, to make the discipline theory more perfect. Keywords:second ord er ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform 1 引言 数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程

二阶常微分方程解

二阶常微分方程解

————————————————————————————————作者: ————————————————————————————————日期:

第七节 二阶常系数线性微分方程 的解法 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。 §7.1 二阶常系数线性齐次方程及其求解方法 设给定一常系数二阶线性齐次方程为 ?? 22 dx y d +p dx dy +qy=0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22dx y d ,dx dy ,y 各乘以 常数因子后相加等于零,如果能找到一个函数y,其

22dx y d ,dx dy ,y之间只相差一个常数因子,这样的函数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y=e r x (其中r 为待定常数)来试解 将y =e rx ,dx dy =re r x,22dx y d =r 2e r x 代入方程(7.1) 得 r 2e rx +pre rx +qerx =0 或 e r x(r 2+pr+q )=0 因为e rx ≠0,故得 ? r 2 +pr +q=0 由此可见,若r 是二次方程 ?? r 2+pr +q=0 (7.2) 的根,那么e r x就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1)的特征方程。 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。 (1)若特证方程(7.2)有两个不相等的实根r 1, r 2,此时e r 1x ,e r2x 是方程(7.1)的两个特解。

常微分方程组(边值)

常微分方程组边值问题解法 打靶法Shooting Method (shooting.m ) %打靶法求常微分方程的边值问题 function [x,a,b,n]=shooting(fun,x0,xn,eps) if nargin<3 eps=1e-3; end x1=x0+rand; [a,b]=ode45(fun,[0,10],[0,x0]'); c0=b(length(b),1); [a,b]=ode45(fun,[0,10],[0,x1]'); c1=b(length(b),1); x2=x1-(c1-xn)*(x1-x0)/(c1-c0); n=1; while (norm(c1-xn)>=eps & norm(x2-x1)>=eps) x0=x1;x1=x2; [a,b]=ode45(fun,[0,10],[0,x0]'); c0=b(length(b),1); [a,b]=ode45(fun,[0,10],[0,x1]'); c1=b(length(b),1) x2=x1-(c1-xn)*(x1-x0)/(c1-c0); n=n+1; end x=x2; 应用打靶法求解下列边值问题: ()()??? ????==- =010004822y y y dx y d 解:将其转化为常微分方程组的初值问题

()????? ? ?????==-==t dx dy y y y dx dy y dx dy x 0011221 048 命令: x0=[0:0.1:10]; y0=32*((cos(5)-1)/sin(5)*sin(x0/2)-cos(x0/2)+1); 真实解 plot(x0,y0,'r') hold on [x,y]=ode45('odebvp',[0,10],[0,2]'); plot(x,y(:,1)) [x,y]=ode45('odebvp',[0,10],[0,5]'); plot(x,y(:,1)) [x,y]=ode45('odebvp',[0,10],[0,8]'); plot(x,y(:,1)) [x,y]=ode45('odebvp',[0,10],[0,10]'); plot(x,y(:,1))

第十一章 常微分方程边值问题的数值解法汇总

第十一章 常微分方程边值问题的数值解法 工程技术与科学实验中提出的大量问题是常微分方程边值问题.本章将研究常微分方程边值问题的数值求解方法.主要介绍三种边界条件下的定解问题和两大类求解边值问题的数值方法,打靶法算法和有限差分方法. 11.1 引言 在很多实际问题中都会遇到求解常微分方程边值问题. 考虑如下形式的二阶常微分方程 ),,(y y x f y '='', b x a <<, (11.1.1) 在如下三种边界条件下的定解问题: 第一种边界条件: α=)(a y , β=)(b y (11.1.2) 第二种边界条件: α=')(a y , β=')(b y (11.1.2) 第三种边界条件: ? ? ?=-'=-'101 0)()()()(b b y b y a a y a y βα, (11.1.13) 其中0 0, ,00000>+≥≥b a b a . 常微分方程边值问题有很多不同解法, 本书仅介绍打靶方法和有限差分方法. 11.2 打靶法 对于二阶非线性边值问题 ()()().,,βα==≤≤'=''b y a y b x a y y x f y ,,, (11.2.1) 打靶法近似于使用初值求解的情况. 我们需要利用一个如下形式问题初值解的序列: ()()v a w a w b x a w w x f w ='=≤≤'='')(,,,,,α, (11.2.2) 引进参数v 以近似原边界值问题的解.选择参数k v v =,以使: ()()β==∞ →b y v b w k k ,lim , (11.2.3)

其中),(k v x w 定义为初值问题(11.2.2)在k v v =时的解,同时()x y 定义为边值问题(11.2.1)的解. 首先定义参数0v ,沿着如下初值问题解的曲线,可以求出点),(αa 对应的初始正视图 ()()v a w a w b x a w w x f w ='=≤≤'='')(,,,,,α. (11.2.4) 如果),(0v b w 不严格收敛于β,那么我们选择1v 等值以修正近似值,直到),(0v b w 严格逼近β. 为了取得合适的参数k v ,现在假定边值问题(11.2.1)有唯一解,如果),(v x w 定义为初始问题(11.2.2)的解,那么v 可由下式确定: 0),(=-βv b w . (11.2.5) 由于这是一个非线性方程,我们可以利用Newton 法求解.首先选择初始值0v ,然后由下式生成序列 ),)(()),((111----- =k k k k v b dv dw v b w v v β,此处),(),)(( 11--=k k v b dv dw v b dv dw , (11.2.6) 同时要求求得),)(( 1-k v b dv dw ,因为),(v b w 的表达式未知,所以求解这个有一点难度;我们只能得到这么一系列的值。 ,,,),(),(),(),(1210-??k v b w v b w v b w v b w 假如我们如下改写初值问题(11.2.2),使其强调解对x 和v 的依赖性 ()()v v a w v a w b x a v x w v x w x f w ='=≤≤'=''),(,),(),,(,,,,α,(11.2.7) 保留初始记号以显式与x 的微分相关.既然要求当k v v =时),)((v b dv dw 的值,那么我们需要求出表达式(11.2.7)关于v 的偏导数.过程如下: )),(),,(,(),(v x w v x w x v f v x v w '??=?''? ),()),(),,(,()),(),,(,(v x v w v x w v x w x w f v x v x w v x w x x f ??'??+??'??= ) ,()),(),,(,(v x v w v x w v x w x w f ?'?''??+ 又因为x 跟v 相互独立,所以当b x a ≤≤上式如下;

二阶常系数齐次线性微分方程求解方法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数 非齐次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将y e rx 代入方程 y py qy 0 得 (r 2pr q )e rx 0 由此可见 只要r 满足代数方程r 2pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2pr q 0叫做微分方程y py qy 0的特征方程 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111 =++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关的实数形式的解 函数y 1e (i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e (i )x e x (cos x i sin x ) y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 2 2ie x sin x )(21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为 y e x (C 1cos x C 2sin x )

二阶常微分方程解

二阶常微分方程解 Document number:BGCG-0857-BTDO-0089-2022

第七节 二阶常系数线性微分方程 的解法 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。 § 二阶常系数线性齐次方程及其求解方法 设给定一常系数二阶线性齐次方程为 2 2dx y d +p dx dy +qy =0 其中p 、q 是常数,由上节定理二知,要求方程的通解,只要求出其任意两个线性无关的特解y 1,y 2就可以了,下面讨论这样两个特解的求法。 我们先分析方程可能具有什么形式的特解,从方程的形式上来看,它 的特点是2 2dx y d ,dx dy ,y 各乘以常数因子后相加等于零,如果能找到一个函数y ,其2 2dx y d ,dx dy ,y 之间只相差一个常数因子,这样的函数有可能是方程的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y =e rx (其中r 为待定常数)来试解

将y =e rx ,dx dy =re rx ,2 2dx y d =r 2 e rx 代入方程 得 r 2e rx +pre rx +qe rx =0 或 e rx (r 2 +pr +q )=0 因为e rx ≠0,故得 r 2+pr +q =0 由此可见,若r 是二次方程 r 2+pr +q =0 的根,那么e rx 就是方程的特解,于是方程的求解问题,就转化为求代数方程的根问题。称式为微分方程的特征方程。 特征方程是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。 (1)若特证方程有两个不相等的实根r 1,r 2,此时e r 1x ,e r2x 是方程的两个特解。 因为 x r x r 2 1e e =e x )r r (21-≠常数 所以e r1x ,e r2x 为线性无关函数,由解的结构定理知,方程的通解为 y =C 1e r1x +C 2e r2x (2)若特征方程有两个相等的实根r 1=r 2,此时p 2-4q =0,即 有r 1 =r 2 =2 p -,这样只能得到方程的一个特解y 1 =e r 1x ,因此,我

常微分方程组(边值)

常微分方程组边值问题解法 打靶法Shooti ng Method (shoot in g.m ) % 丁靶法求常微分方程的边值问题 function [x,a,b ,n]=shooti ng(fu n, xO,x n, eps) if nargin<3 eps=1e-3; end x1=x0+ra nd; [a,b]=ode45(fu n, [0,10],[0,x0]'); c0=b(le ngth(b),1); [a,b]=ode45(fu n, [0,10],[0,x1]'); c1=b(le ngth(b),1); x2=x1-(c1-x n)*(x1-x0)/(c1-c0); n=1; while (no rm(c1-x n)>=eps & no rm(x2-x1)>=eps) x0=x1;x 仁x2; [a,b]=ode45(fu n,[ 0,10],[0,x0]'); cO=b(le ngth(b),1); [a,b]=ode45(fu n,[ 0,10],[0,x1]'); c1= b(le ngth(b),1) x2=x1-(c1-x n)*(x1-x0)/(c1-c0); n=n+1; end x=x2; 应用打靶法求解下列边值问题: y 10 0 解:将其转化为常微分方程组的初值问题

命令: xO=[O:O.1:1O]; y0=32*((cos(5)-1)/si n( 5)*si n(x0/2)-cos(x0/2)+1); plot(xO,yO,'r') hold on [x,y]=ode45('odebvp',[0,10],[0,2]'); plot(x,y(:,1)) [x,y]=ode45('odebvp',[0,10],[0,5]'); plot(x,y(:,1)) [x,y]=ode45('odebvp',[0,10],[0,8]'); plot(x,y(:,1)) [x,y]=ode45('odebvp',[0,10],[0,10]'); plot(x,y(:,1)) dy i dx y 2 dy 2 dx y i 0 y 4 y o dy dx X0 真实解 30 ' 12^4567^9 10

二阶常系数齐次线性微分方程的通解证明教学提纲

二阶常系数齐次线性微分方程的通解证明

二阶常系数齐次线性微分方程的通解证明 来源:文都教育 在考研数学中,微分方程是一个重要的章节,每年必考,其中的二阶常系数齐次线性微分方程是一个基本的组成部分,它也是求解二阶常系数非齐次线性微分方程的基础,但很多同学对其求解公式不是十分理解,做题时也感到有些困惑,为了帮助大家对其通解公式有更深的理解和更牢固的掌握,文都网校的蔡老师下面对它们进行一些分析和简捷的证明,供考研的朋友们学习参考。 一、二阶常系数齐次线性微分方程的通解分析 通解公式:设0y py qy '''++=,,p q 为常数,特征方程02=++q p λλ的特征根为 12,λλ,则 1)当12λλ≠且为实数时,通解为1212x x y C e C e λλ=+; 2)当12λλ=且为实数时,通解为1112x x y C e C xe λλ=+; 3)当12,i λλαβ=±时,通解为12(cos sin )x y e C x C x αββ=+; 证:若02=++q p λλ的特征根为12,λλ,则1212(),p q λλλλ=-+ =,将其代入方程0y py qy '''++=中得1212()y py qy y y y λλλλ''''''++=-++= 212212()()()0y y y y y y y y λλλλλλ'''''''=---=---=, 令2z y y λ'=-,则11110x dz z z z z c e dx λλλ'-=? =?=,于是121x y y c e λλ'-=,由一阶微分方程的通解公式得 221212()()()1212[][]dx dx x x x y e c e e dx C e c e dx C λλλλλλ----??=+=+?? (1)

(整理)二阶常系数线性微分方程的解法word版.

第八章 8.4讲 第四节 二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)

的通解. 2.线性相关、线性无关的概念 设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 2 2 sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若 =21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且 ≠=x y y tan 2 1 常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子,

(完整版)二阶常微分方程边值问题的数值解法毕业论文

二阶常微分方程边值问题的数值解法 摘要 求解微分方程数值解的方法是多种多样的,它本身已形成一个独立的研究方向,其要点是对微分方程定解问题进行离散化.本文以研究二阶常微分方程边值问题的数值解法为目标,综合所学相关知识和二阶常微分方程的相关理论,通过对此类方程的数值解法的研究,系统的复习并进一步加深对二阶常微分方成的数值解法的理解,为下一步更加深入的学习和研究奠定基础. 对于二阶常微分方程的边值问题,我们总结了两种常用的数值方法:打靶法和有限差分法.在本文中我们主要探讨关于有限差分法的数值解法.构造差分格式主要有两种途径:基于数值积分的构造方法和基于Taylor展开的构造方法.后一种更为灵活,它在构造差分格式的同时还可以得到关于截断误差的估计.在本文中对差分方法列出了详细的计算步骤和Matlab

程序代码,通过具体的算例对这种方法的优缺点进行了细致的比较.在第一章中,本文将系统地介绍二阶常微分方程和差分法的一些背景材料.在第二章中,本文将通过Taylor展开分别求得二阶常微分方程边值问题数值解的差分格式.在第三章中,在第二章的基础上利用Matlab求解具体算例,并进行误差分析. 关键词:常微分方程,边值问题,差分法,Taylor展开,数值解

The Numerical Solutions of Second-Order Ordinary Differential Equations with the Boundary Value Problems ABSTRACT The numerical solutions for solving differential equations are various. It formed an independent research branch. The key point is the discretization of the definite solution problems of differential equations. The goal of this paper is the numerical methods for solving second-order ordinary differential equations with the boundary value problems. This paper introduces the mathematics knowledge with the theory of finite difference. Through solving the problems, reviewing what have been learned systematically and understanding the ideas and methods of the finite difference method in a deeper layer, we can establish a foundation for the future learning.

Matlab求解常微分方程边值问题的方法

Matlab 求解常微分方程边值问题的方法:bvp4c 函数 常微分方程的边值问题,即boundary value problems ,简称BVP 问题,是指表达形式为 (,)((),())0'=??=?y f x y g y a y b 或(,,)((),(),)0'=??=? y f x y p g y a y b p 的方程组(p 是未知参数),在MA TLAB 中使用积分器bvp4c 来求解。 [命令函数] bvp4c [调用格式] sol=bvp4c(odefun,bcfun,solinit,options,p1,p2,…) sol 为一结构体,sol.x 、sol.y 、sol.yp 分别是所选择的网格点及其对应的y(x)与y'(x)数值; bvp4c 为带边值条件常微分方程积分器的函数命令;odefun 为描述微分方程组的函数文件;bcfun 为计算边界条件g(f(a),f(b),p)=0的函数文件;solinit 为一结构体,solinit.x 与solinit.y 分别是初始网格的有序节点与初始估计值,边界值条件分别对应a=solinit.x(l)和b=solinit.x(end); options 为bvpset 命令设定的可选函数,可采用系统默认值;p1, p2…为未知参数。 例 求常微分方程0''+=y y 在(0)2=y 与(4)2=-y 时的数值解。 [解题过程] 仍使用常用方法改变方程的形式: 令1=y y ,21'=y y ,则原方程等价于标准形式的方程组1221 ?'=??'=-??y y y y ; 将其写为函数文件twoode.m ; 同时写出边界条件函数对应文件twobc.m ; 分别使用结构solinit 和命令bvp4c 确定y-x 的关系; 作出y-x 的关系曲线图。 [算例代码] solinit =bvpinit(linspace(0,4,5),[1 0]); % linspace(0,4,5)为初始网格,[1,0]为初始估计值 sol=bvp4c(@twoode,@twobc,solinit); % twoode 与twobc 分别为微分方程与边界条件的函数,solinit 为结构 x=linspace(0,4); %确定x 范围 y=deval(sol,x); %确定y 范围 plot(x,y(1,:)); %画出y-x 的图形 %定义twoode 函数(下述代码另存为工作目录下的twoode.m 文件) function dydx= twoode(x,y) %微分方程函数的定义 dydx =[y(2) -abs(y(1))]; %定义twobc 函数(下述代码另存为工作目录下的twobc.m 文件) function res= twobc(ya,yb); %边界条件函数的定义 res=[ya(1);yb(1)+2];

相关主题