搜档网
当前位置:搜档网 › 电厂变电站GPS时钟同步系统

电厂变电站GPS时钟同步系统

电厂变电站GPS时钟同步系统
电厂变电站GPS时钟同步系统

电厂/变电站GPS时钟同步系统

烟台赤龙电子高科有限公司

目录

一、系统概述 (2)

二、对时方式和NTP协议简介 (3)

三、电厂/变电站时间同步系统设计方案 (5)

四、系统特点 (9)

五、系统设备规格型号及介绍 (10)

六、设备工作条件及技术指标 (17)

七、典型应用 (20)

八、相关检测 (21)

九、公司简介 (22)

第一部分系统概述

一、建设时钟同步系统的重要性

随着电厂、变电站自动化水平的提高,电力系统对时钟统一对时的要求愈来愈迫切,有了统一精确的时间,既可实现全厂(站)各系统在GPS时间基准下的运行监控和事故后的故障分析,也可以通过各开关动作、调整的先后顺序及准确时间来分析事故的原因及过程。统一精确的时间是保证电力系统安全运行,提高运行水平的一个重要措施。

二、时钟同步系统的优越性

电厂(站)的时钟同步是一件十分重要的基础工作,现在电厂(站)大多采用不同厂家的计算机监控系统、DCS分布式控制系统、自动化及线路微机保护装置、故障录波装置、电能量计费系统、电液调速系统DEH、SCADA系统及各种输煤PLC、除灰PLC、化水PLC、脱硫PLC等,以前的时间同步大多是各设备提供商采用各自独立的时钟,而各时钟因产品质量的差异,在对时精度上都有一定的偏差,从而使全厂各系统不能在统一时间基准的基础上进行数据分析与比较,给事后正确的故障分析判断带来很大隐患。

如今,人们已经充分意识到时间统一的重要性。但是,统一时钟并不是单纯地并用GPS 时钟设备。目前,人们普遍采用一台小型GPS接收机,提供多个RS232端口,用串口电缆逐一连接到各个计算机,实现时间同步。但事实上,这种同步方式的缺点是,使用的电缆长度不能过长;服务器的反应速度、客户机的延迟都直接影响对时精度。而且各电厂(站)往往有不同的装置需要接收时钟同步信号,其接口类型繁多,如RS-232/422/485串行口、脉冲、IRIG-B码、DCF77格式接口等;装置的数量也不等,所以在实际应用中常感到GPS 装置的某些类型接口数量不够或缺少某种类型的接口,其结果就是电厂中有些装置不能实现时钟同步,或者需要再增加一台甚至数台GPS装置,而这往往受到资金不足或没有安装位置等限制。若各系统实施统一GPS时钟同步方案,就可实现全厂(站)各系统在统一GPS时间基准下的运行监控和事故后的故障分析,大大提高了电厂(站)系统的安全稳定性。因此采用GPS时钟同步系统比采用传统的GPS同步设备有着明显的优势,也是技术发展的必然趋势。

第二部分对时方式和NTP协议简介

一、对时方式

目前,国内的同步时间主要以GPS时间信号作为主时钟的外部时间基准信号。现在各时钟厂家大多提供硬对时、软对时、编码对时三种方式,我公司的时间同步产品除了提供以上三种对时方式外,还可提供先进的NTP网络对时方式,大大提高了产品的技术含量及系统的完整性。以下是各对时方式的介绍:

1、硬对时(脉冲节点)

主要有秒脉冲信号(lpps,即每秒 1个脉冲)和分脉冲信号门(1ppm,即每分1个脉冲)。秒脉冲是利用GPS所输出的lpps方式进行时间同步校准,获得与 UTC同步的时间准确度较高,上升沿的时间准确度不大于lus。分脉冲是利用GPS所输出的lppm方式进行时间同步校准,获得与UTC同步的时间准确度较高,上升沿的时间准确度不大于3us,这是国内外保护常用的对时方式。另外通过差分芯片将lpps转换成差分电平输出,以总线的形式与多个装置同时对时,同时增加了对时距离,由 lpps几十米的距离提高到差分信号1km左右。

用途:对国产故障录波器、微机保护、雷电定位系统、行波测距系统对时。

故障录波装置分别由不同的厂家生产;保护装置国内以南自股份、南瑞、许继、阿继及四方公司的产品为主。

2、软对时(串口报文)

串口校时的时间报文包括年、月、日、时、分、秒,也可包含用户指定的其他特殊内容,例如接收 GPS卫星数、告警信号等,报文信息格式为ASCll码或BCD码或十六进制码。如果选择合适的传输波特率,其精确度可以达到毫秒级。串口校时往往受距离限制,RS-232口传输距离为30 m,RS-422口传输距离为 150 m,加长后会造成时间延时。

用途:对电能量记费系统、输煤PLC、除灰PLC、化水PLC、脱硫PLC、自动化装置、控制室时钟对时。

3、编码对时

编码时间信号有多种,国内常用的有IRIG(Inter-range Instrumentatlon group)和DCF77(Deutsche,long wave signal,Frankfurt,77.5 kHZ)两种。IRIG串行时间码共有6种格式,即A,B,D,E,G,H。其中B码应用最为广泛,有调制和非调制两种。调制IRIG-B输出的帧格式是每秒输出1帧,每帧有100个代码,包含了秒段、分段、小时段、日期段等信号。非调制IRIG-B信号是一种标准的TTL电平,用在传输距离不大的场合。

为了提高对时精度,一般采用硬对时和软对时相结合的方式,即装置通过串口获取年、月、日、时、分、秒等信息,同时,通过脉冲信号精确到毫秒、微秒,对于有编码对时口(例如 IRIG-B)的装置优先采用编码对时。

用途:给某些进口保护或故障录波器对时。如GE公司的保护、ABB公司的保护、HATHAWAY 的故障录波器、ALSTOM公司的保护、惠安公司的自动化装置、莱姆公司的BEN5000故障录波器、SEL公司的保护、西门子设备等。

4、NTP网络对时

Network Time Protocol(NTP)是用来使计算机时间同步化的一种协议,它可以使计算机对其服务器或时钟源(如石英钟,GPS等等)做同步化,提供高精准度的时间校正(LAN上与标准间差小于1毫秒,WAN上几十毫秒),且可采用加密确认的方式来防止恶毒的协议攻击。

用途:给电厂的MIS系统、SIS厂级监控信息系统、工程师站及需要网络对时的系统进行对时。

二、NTP协议简介

NTP(Network Time Protocol)是由美国德拉瓦大学的David L. Mills教授于1985年提出,除了可以估算封包在网络上的往返延迟外,还可独立地估算计算机时钟偏差,从而实现在网络上的高精准度计算机校时,它是设计用来在Internet上使不同的机器能维持相同时间的一种通讯协定。时间服务器(time server)是利用NTP的一种服务器,通过它可以使网络中的机器维持时间同步。在大多数的地方,NTP可以提供1-10ms的可信赖性的同步时间源和网络工作路径。

NTP(Network Time Protocol)协议自1985年创立至今,已发展为全球通用的一种计算机对时方式。它利用一种独特的算法,将网络的延时、网络的阻塞有效地通过复杂的“算法”对客户机时钟予以修正。据科学统计,小型的计算机网络,NTP的对时精度可以达到1ms。可以肯定地说,NTP网络对时是一种更为先进、更为可靠的时间同步方式,并且距离不受任何限制。

第三部分电厂/变电站时钟同步系统方案设计

一、引用技术标准

华东电网时间同步系统技术规范(QB/HD01-2002)

上海电网GPS同步时间系统技术原则和运行管理规定

时统装置通用规范(GJB2242-1994)

B时间码接口终端(GJB2991-1997)

IRIG-B标准(200-89)和IEEE Std 1344-1995

船用全球定位系统(GPS)接收通用技术条件(GB/T15527-1995)

平衡电压数字接口电路的电气特性(GB 11014—90)

远动设备和系统:术语(IEC 870-5-3)(GB/T 14429—1993)

远动设备和系统:接口(电气特性)(GB/T 16435—1996)

远动设备和系统:性能要求(GB/T 17463—1998 )

工业过程测量和控制装置的电磁兼容性(GB/T 13926—1992)

二、方案设计

1、概述

目前电力系统中的时间同步方式是以全球定位系统(GPS)导航卫星发送的无

线标准时间信号为统一时钟信号源,再由统一时钟信号源向电网中各类装置提供

标准时间。民用GPS给出的是世界协调时(UTC),加 8 h后,即转换为北京时间,

精度可达到微秒级。

根据有关技术规范,结合各电厂的实际情况和我们以往的工程经验,我们提出组屏式GPS 时钟统一系统对时方案。在电厂、变电站主控制室及机组监控室,500KV、220KV继电保护小室分别安装一面GPS时钟同步系统屏,时钟同步系统屏配置的GPS卫星同步时钟提供各种时间同步信号用于实现电厂(站)内计算机监控系统、保护装置、故障录波器、事件顺序记录装置、安全自动装置、远动RTU及各级能量管理系统、用电负荷管理系统、通信网监控系统、电能量记费系统、电网频率按秒考核系统、功角测量装置、线路故障行波测距装置、雷电定位装置、调度录音电话、各类信息管理系统MIS、DCS系统、及各种输煤PLC、除灰PLC、化水PLC、脱硫PLC等的时间同步,使电厂(站)内各设备具有统一的时间基准。

2、系统组成

时钟同步系统由主时钟、时间信号传输通道、时间信号用户设备接口(扩展装置)组成。主时钟一般设在电厂(站)的控制中心,包括标准机箱、接收模块、接收天线、电源模块、时间信号输出模块等。对于电厂、变电站,考虑其重要性,

整个电厂、变电站配置2台HY-N系列网络时间服务器(主时钟)或HY-Z系列主时钟,一主一备,2台主时钟以冗余热备模式工作,完成GPS卫星信号的接收、处理,及向时间扩展设备提供标准同步时间信号(RS422电平方式IRIG-B)。

◆每台主时钟同时具有接收另一台主时钟的IRIG-B时间信息功能,达到两台主时钟之间能够互为备用。正常情况下,主时钟的时间信号接收单元独立接收GPS卫星发送的时间基准信号;当某一主时钟的时间信号接收单元发生故障时,该主时钟能自动切换到另一台主时钟的时间信号接收单元接收到的时间基准信号,实现时间基准信号互为备用,切换时间小于

0.5秒,切换时主时钟输出的时间同步信号不会出错。

◆主时钟与时间扩展设备之间采用光纤连接,以IRIG-B来传送GPS时间信息。信号扩展装置的时间基准信号输入包括两路IRIG-B输入。当信号扩展装置只接一路IRIG-B输入时,该路输入可以是IRIG-B输入1,也可以是IRIG-B输入2。信号扩展装置接入两路IRIG-B时码输入时,以IRIG-B输入1作为该扩展装置的外部时间基准,IRIG-B(DC)输入2作为后备。扩展时钟向故障录波装置、继电保护装置、机组控制系统(DCS)、脱硫控制系统、水、煤、灰渣控制点等提供对时信号接口。同时网络时间服务器还可提供1~3个NTP网络接口,以满足MIS及SIS等系统的网络对时需要。

◆主时钟及时间扩展设备所有时间同步信号输出时,在电气上均相互隔离。输出的时间同步信号可满足秒(1PPS)、分(1PPM)、时(1PPH)、IRIG-B、空接点、DCF77、串口以及NTP网络接口等方式。

◆主时钟及时间扩展设备具有工作状态指示、告警显示和告警信号输出功能。告警信号的电接口类型为继电器空接点,接点耐压>250V DC。

◆主时钟及时间扩展设备具有时间显示功能,运行状态下显示时、分、秒。

◆主时钟及时间扩展设备可根据需要配置恒温晶振内部守时功能。当接收到外部时间基准信号时,被外部时间基准信号同步;当接收不到外部时间基准信号时,切换到内部守时,保持一定的走时准确度,使主时钟或扩展装置输出的时间同步信号仍能保持一定的准确度。当外部时间基准信号接收恢复时,自动切换到正常状态工作,切换时间小于0.5S,切换时时钟输出的时间同步信号不会出错。

◆可采用两路直流电源供电,任何一路电源消失,主时钟及信号扩展装置仍保持正常工

作。

◆ 组屏式结构可以根据用户需要比较方便地扩展时间信号输出量,而且不会影响整个系统的正常工作。时钟屏采用2260*800*600标准机柜或根据实际情况定制。柜体前后开门。前门采用玻璃门,后门采用双开门,以方便线缆的连接。机柜底部装有公共接地铜排。屏内预留足够标准的插槽、面板和接线端子排,以满足将来不同时间信号输出接口数量的扩展要求;所有时间输出信号全部接入柜内的端子排上。

3、网络拓扑图:

(1) 电厂时钟同步系统

(2)变电站时钟同步系统

方案一:

在主控室主时钟柜设两台HY-Z 系列主时钟或一台HY-Z 系列双GPS 主时钟,互为热备用,当主接收单元发生故障时,自动切换至备用接收单元,从而保证系统的可靠性。在220kV 和550kV 下放的继保小室内各设1套HY-K 系列扩展时钟,其时间信号取自主时钟经主备切换后的时间信号(通过光纤以IRIG -B 时码方式输入),各小室负责本室二次设备的对时,包括软对时、硬对时(1pps 、1ppm 、差分信号)、编码对时(IRIG-B 、DCF77)。

扩展时钟 扩展时钟 扩展时钟 扩展时钟 扩展时钟

主备网络时间服务器

交换机

数据库服务器 MIS 系统及SIS 系统网络对时

方案二:

在500kV和 220kV下放的继保小室内各设1套HY-Z系列主时钟,负责本小室二次设备的对时,包括软对时、硬对时(1pps、lppm、差分信号)、编码对时(IRIG-B、DCF77)。保护小室主时钟的时间信号接收单元除了接收本小室的GPS时间信号外,还接收另一小室的GPS 时间信号作为备用的标准时间源输人(通过光纤以IRIG-B时码方式输入),当一个小室的时间信号接受单元出现问题时(例如跟踪不到卫星、天线受损等),自动切换到另一小室GPS上,获取标准时间信号,保证本小室对时信号正常输出。另外,在主控室设一套HY-K系列扩展时钟,时间信号接收单元分别从两台主时钟获取时间信号,互为备用,自动切换,完成对本室设备的对时。

两台GPS主时钟布置在不同的地点,通过光缆连接,构成互备系统,可降低因雷击而损坏主时钟的概率,并且主备切换分散到各小室,由各小室时间信号接收单元来完成,一个小室的切换单元故障,不影响其他小室,系统可靠性更高。

第四部分系统特点

◆专业厂家,专业品质

我公司自1992年开始专业致力于时钟同步产品的研发和应用,引用先进的生

产技术及生产设备,在全国率先采用先进的表面贴片技术,产品性能稳定可靠。电厂/变电站时钟同步系统方案选用的网络时间服务器、主时钟和时钟扩展设备,均采用我公司的产品,目前用户遍布全国各地,可靠性和稳定性不言而喻。

◆时钟同步精度高

由于采用专用授时用GPS模块,时钟同步精度可达100ns。

◆主时钟和扩展时钟都冗余热备,可靠性高

◆先进的NTP网络对时

现代化程度极高的发电厂、变电站,无论是设备的运行维护、数据业务的传输,还是办公自动化等,都将离不开网络管理。因此,网络对时势在必行。由于RS232对时精度有限,尤其受串口电缆长度制约,实际安装使用有着极大不便。而NTP协议对于网络阻塞和网络时延可以通过“算法”有效地予以修正,因此,我们建议尽量采用NTP协议(RJ45口),通过TCP/IP的方式对计算机设备进行对时。NTP(Network Time Protocol)产品已经是非常成熟的产品。如果用户使用的是Windows9X系统,只要安装一个小小的免费后台程序(如Nettime 等),就能实现时间同步;如果用户使用的是UNIX或WINDOWS NT系统,已经捆绑了NTP协议,只要设置一下系统即可实现自动对时。

◆双网口备份,运行更可靠

GPS网络时间服务器具有两个独立的网络接口,可设置不同网段的两个独立IP地址,在其中一个网络接口损坏的情况下,可启用另一个接口,提高了系统的可用性和可靠性。

◆专用GPS防雷,保护更彻底

在厂区防雷保护范围内, GPS天线电缆带防雷保护,可以避免感应雷进入GPS主时钟,从而保证设备安全正常地运行。

◆技术全面

GPS时钟同步系统支持硬对时(脉冲节点PPS、PPM、PPH)、软对时(串口报文)、编码对时(IRIG-B、DCF77)和网络NTP对时,可以满足国内外不同设备的对时接口要求。

第五部分系统设备规格型号及介绍针对时间同步系统,我公司提供以下型号设备可供选择:

具体设备型号请按以下型号选配说明进行配置:

H Y-Z8222A O M

1 2 3 4 5 6 7 8 9

1、“HY”表示公司恒宇品牌缩写。

2、“N”表示网络时间服务器,“Z”表示GPS时间同步主时钟,“K”表示GPS时间同步扩展时钟。

3、第一位数字为内部守时功能代码。“8”为带恒温晶振内部守时功能,高可靠型;“6”为GPS内部守时功能,标准型。

4、第二位数字为热备代码。“0”为不带IRIG-B码时间基准备份功能,“1”为带IRIG-B码时间基准备份功能,“2”为带双GPS模块备份功能。

5、第三位数字为设备外形尺寸代码。“1”为标准1U机箱,“2”为标准2U机箱。

6、第四位数字为输出口数量代码。“1”为单网口输出(HY-N系列)或4~20路输出,“2”为双网口输出(HY-N系列)或24~40路输出,“3”为三网口输出(HY-N系列)或42~64路输出。

7、“A”表示带PPS/PPM/PPH/IRIG-B(DC)/DCF77/串口输出。

8、“O”表示带光纤级连口。(注:需要光纤连接时,也可不用光纤级连口,可选择单独配置光纤转换器进行连接。)

9、“M”表示带IRIG-B(AC)输出。

设备介绍:

(一)HY-N8000系列网络时间服务器

1、设备简介

◆HY-N8000系列网络时间服务器采用标准NTP协议,实时将局域网内部各计算机的时间

同步至卫星标准时间。带IRIG-B码时间基准备份功能,如果主服务器无GPS信号,可接收备份服务器的时间信号,如果主备服务器都无信号,可选择恒温晶振内部守时,守时精度优于7×10-9(0.42μs/分钟)。

◆ 1-3个独立IP地址的10/100M网络接口,同时支持1-3个独立的网络校时。

◆支持秒脉冲/IRIG-B/RS-232C/RS485输出。

◆支持光纤或同轴电缆输出GPS时间信息,可和扩展时钟组成电网时间同步系统。

◆客户端支持WINDOWS9X、WINDOWS NT/2000/XP/2003、LINUX、UNIX、SUN SOLARIS等UNIX

类操作系统和CISCO的路由器及交换机。

2、设备结构

HY-N8000系列网络时间服务器(主时钟)照片:

前面板:

后面板:

(二)HY-Z8000系列冗余热备主时钟

1、设备简介

HY-Z8000系列GPS 卫星时间同步主时钟主要用来接收GPS (全球定位系统)卫星信号或接收IRIG-B (RS422)时间基准信号,并向信号扩展装置提供时间基准信号。它具有TTL 脉冲电平测试口和内部守时功能。如果GPS 信号出错时,可以使用外接IRIG-B 信号来获得时间基准信号,实现时间基准信号互为备用,切换时间小于0.5秒,切换时主时钟输出的时间同步信号不会出错。如果这两种信息都不正确,本装置通过内部时钟来输出时间信号。恒温晶振内部守时精度优于7×10-9(0.42μs/分钟)。

2、设备结构

采用标准2U 工业机箱,经防磁处理,其外形尺寸为:447mm (宽)×89mm (高)×230mm

通过光纤输出至扩展时钟

通过同轴电缆输出至扩展时钟

NTP 网络接口

HY-N8000 GPS 网络时间服务器

(深)。

前面板形式如下:

1 2 3 4 5 6 7 8

(1)液晶显示窗口,显示年、月、日、时、分、秒。

(2)POWER: 电源指示灯,接通电源即亮。

(3)PPS: 秒脉冲指示灯,每秒闪亮。

(4)(5)TIME SOURCE:指示本机当前时间基准信号来源,包括“GPS”、“IRIG-B”两个指示灯。如果“GPS”指示灯亮,说明本机当前是接收GPS卫星信号来获取时间信息,如果“IRIG-B”指示灯亮,说明本机当前是接收IRIG-B信号来获取时间信息,如果两个灯都不亮,则本机是靠内部时钟来维持时间信息。

(6)(7)CHANNEL WATCH:监视本机接收时间信号是否正常,如果“GPS”指示灯亮,则说明本机接收不到同步后的GPS卫星信号,如果“IRIG-B ”指示灯亮,则说明本机接收不到IRIG-B信号。

(8)RESET: 复位键,按一下此键,时钟复位。

液晶显示窗口显示标准的北京时间,按RESET键时钟复位。对于主钟来说,当GPS与B 时间码都能同时正常接收时,优选GPS时间源,B码时间自动撤消。当GPS不能正常接收时,自动进入搜索接收B码,提取标准时间。如果两种时间源都无法正常接收,则采用内部时钟作为时间源。

后面板说明:

2 3 4 5 6 7 8 9 10

(1)电源开关

(2)保险丝管座

(3)电源接入端子

(4) IRIG-B 码输出,8路RS-422电平的IRIG-B 、4路TTL 电平的IRIG-B 和4路正弦调制的IRIG-B 。

(5)24路PPS\PPM\PPH\DCF77\串口(RS232\485)输出,可根据需要任意组合。

(6)监视本机运行状态的告警接点输出,包括电源消失告警、GPS 信号消失告警、IRIG-B 信号消失告警以及本装置自检异常告警。

(7)PPS/PPM(TTL)测试接口

(8)双机热备IRIG-B (RS-485)码输入输出接口

(9)5路ST 多模光纤IRIG-B 码输出。

(10)GPS 天线输入。

(三)HY-K8000系列扩展时钟

1、设备简介

HY-K 系列扩展时钟通过接收主时钟的时间信号以对设备进行对时,带IRIG-B 码时间基准备份功能,如果主时钟无GPS 信号,可接收备份主时钟的时间信号,如果主备时钟都无信号,可选择恒温晶振内部守时,守时精度优于7×10-9

(0.42μs/分钟)

。扩展时钟扩1

展时钟可以扩展出最多64路时间信号,输出PPS/PPM/ DCF77/串口(RS232/485)/ IRIG-B(DC)/IRIG-B(AC)等时间信息,其中IRIG-B(AC)最多支持32路,其它方式可任意组合输出。

2、设备结构

采用标准2U工业机箱,经防磁处理,其外形尺寸为:447mm(宽)×89mm(高)×230mm (深)。

前面板形式如下:

1 2 3 4 5 6 7 8

(1)液晶显示窗口,显示年、月、日、时、分、秒。

(2)POWER: 电源指示灯,接通电源即亮。

(3)PPS: 秒脉冲指示灯,每秒闪亮。

(4)(5)TIME SOURCE:指示本机当前时间基准信号来源,包括“IRIG-B1”、“IRIG-B2”两个指示灯。如果“IRIG-B1”指示灯亮,说明本机当前是接收IRIG-B1信号来获取时间信息,如果“IRIG-B2”指示灯亮,说明本机当前是接收IRIG-B2信号来获取时间信息。

(6)(7)CHANNEL WATCH:监视本机接收时间信号是否正常,如果“IRIG-B1”指示灯亮,则说明本机接收不到IRIG-B1信号,如果“IRIG-B1”指示灯亮,则说明本机接收不到IRIG-B2信号。

(8)RESET: 复位键,按一下此键,时钟复位。

液晶显示窗口显示标准的北京时间,按RESET键时钟复位,按SWITCH键切换显示窗口,时钟初上电工作时,默认IRIG-B1码为当前工作时间信道,当IRIG-B1信道有异常时,自动切换到IRIG-B2信道,此时IRIG-B1红灯亮。当两灯都亮时,说明两信道都有问题,此时采用内部自走时。

HY-K系列扩展时钟后面板图:

1 2 3 4 4 5 6 7 8

(1)电源开关

(2)保险丝管座

(3)电源接入端子

(4)扩展装置输出节点,支持PPS\PPPPH\IRIG-B\DCF77\串口(RS232\485)输出,其中IRIG-B(AC)最多支持32路输出,其他输出方式可任意组合,最多输出64路。

(5)监视本扩展装置运行状态的告警接点输出,包括电源消失告警、IRIG-B1信号消失告警、IRIG-B2信号消失告警以及本装置自检异常告警。

(6)PPS/PPM(TTL)测试接口。

(7)IRIG-B1和IRIG-B2光纤B码ST输入接口。

第六部分设备工作条件及技术指标

一、工作条件

1、装置环境条件

◆工作温度:-5 ~+55℃

◆贮存温度: -40 ~ +60 ℃

◆湿度:5%~95%,不结露

2、电源

◆交流供电: 220V ±20%或110V±20% 47Hz ~63Hz

◆直流供电: 220V ±20%或110V±20%

3、抗干扰

◆在雷击过电压、一次回路操作、开关场故障、二次回路操作及其它强干扰作用下,

装置不误动作。

◆装置快速瞬变干扰试验、高频干扰试验、辐射电磁场干扰试验、冲击电压试验和

绝缘试验应符合标准GB/T13926-1992(工业过程测量和控制装置的电磁兼容性)

二、技术指标

1、GPS接收器

◆接收频率:1575.42MHz

◆接收灵敏度:捕获〈-130dBm,跟踪〈-130dBm。

◆同时跟踪:正常状态下可同时跟踪8~12颗GPS卫星

装置冷起动时不小于4颗卫星,装置热起动时不小于1颗卫星。

◆捕获时间:装置冷起动时小于20min,装置热起动时小于2min。

2、功耗:≤15W

3、平均无故障间隔时间

(MTBF)≥50000小时,主时钟平均维修时间(MTTR)一般不大于30分,使用寿命不少于10年。正常使用条件下无须维护。

4、输出时间与协调世界时(UTC)时间同步准确度:≤1μs

带GPS驯服恒温晶振守时功能,时间保持单元的时钟准确度优于7×10-9(0.42μs/分钟)。

5、时间同步信号电接口

◆ IRIG-B(AC)调制信号接口

载波频率:1kHz

信号幅值峰-峰值:高:3-12V可调,低:符合3:1调制比要求。

输出阻抗:600欧姆,变压器隔离输出。

同步准确度:≤14μs

◆ IRIG-B(DC)直流偏置信号接口

准时上升沿的时间准确度≤1μs

◆时标脉冲输出

1) 1PPS脉冲信号

准时沿:上升沿,上升时间≤50ns;上升沿的时间准确度≤1μs;

脉冲宽度: 200ms。

2) 1PPM脉冲信号

准时沿:上升沿,上升时间≤150ns;上升沿的时间准确度≤3μs;

脉冲宽度: 200ms。

3) 1PPH脉冲信号

准时沿:上升沿,上升时间≤1us;上升沿的时间准确度≤3μs;

脉冲宽度: 200ms,

空接点允许外接电压:250V。

◆时间报文

接口标准: RS-232C

数据位:8位,起始位:1位,停止位:1位,校验位:无

输出报文格式:

<S><T>D D D D D D D D D D D D D D D<A>

↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑

同桢时时分分秒秒日日月月年年年年校标

步头十个十个十个十个十个千百十个验准

标位位位位位位位位位位位位位位字时

志节结

其中,与秒脉冲(PPS)的前沿对齐,装置收到卫星信号则发送S,装置失步就停发S。

串口通信速率:300bps、600bps 、1200bps、2400bps、4800bps、9600bps可选。

报文发送时间方式:每秒输出、每分输出一次(帧)或应答方式输出可选.

串行数据通道接口RS-232/RS485

接口RS-232电气特性符号GB/T6107-2000(ITU-T建议V.28);

接口RS-422电气特性符号GB-11014-90(CCITT建议V.11);

接口RS-485电气特性符号EIA/485(CCITT建议V.28)。

注:规约可定制。

◆NTP网络接口

网络接口:最多支持3个10/100自适应以太网接口;RJ-45

网络协议:

·NTP v2, v3 & v4 (RFC1119& 1305)

·NTP broadcast mode

·SNTP Simple Network Time Protocol (RFC2030)

·MD5 Authentication (RFC 1321)

·Telnet (RFC854)

·SNMP(RFC1157)

时间服务功能:

IEEE1588精密时钟同步协议测试技术

1引言 以太网技术由于其开放性好、价格低廉和使用方便等特点,已经广泛应用于电信级别的网络中,以太网的数据传输速度也从早期的10M提高到100M,GE,10GE。40GE,100GE正式产品也将于2009年推出。 以太网技术是“即插即用”的,也就是将以太网终端接到IP网络上就可以随时使用其提供的业务。但是,只有“同步的”的IP网络才是一个真正的电信级网络,才能够为IP网络传送各种实时业务与数据业务的多重播放业务提供保障。目前,电信级网络对时间同步要求十分严格,对于一个全国范围的IP网络来说,骨干网络时延一般要求控制在50ms之内,现行的互联网网络时间协议NTP (NetworkTimeProtocol),简单网络时间协议SNTP(SimpleNetwork Time Protocol)等不能达到所要求的同步精度或收敛速度。基于以太网的时分复用通道仿真技术(TDM over Ethernet)作为一种过渡技术,具有一定的以太网时钟同步概念,可以部分解决现有终端设备用于以太网的无缝连接问题。IEEE 1588标准则特别适合于以太网,可以在一个地域分散的IP网络中实现微秒级高精度的时钟同步。本文重点介绍IEEE 1588技术及其测试实现。 2IEEE1588PTP介绍 IEEE1588PTP协议借鉴了NTP技术,具有容易配置、快速收敛以及对网络带宽和资源消耗少等特点。IEEE1588标准的全称是“网络测量和控制系统的精密时钟同步协议标准(IEEE1588Precision Clock Synchronization Protocol)”,简称PTP(Precision Timing Protocol),它的主要原理是通过一个同步信号周期性的对网络中所有节点的时钟进行校正同步,可以使基于以太网的分布式系统达到精确同步,IEEE 1588PTP时钟同步技术也可以应用于任何组播网络中。 IEEE1588将整个网络内的时钟分为两种,即普通时钟(OrdinaryClock,OC)和边界时钟(BoundaryClock,BC),只有一个PTP通信端口的时钟是普通时钟,有一个以上PTP通信端口的时钟是边界时钟,每个PTP端口提供独立的PTP通信。其中,边界时钟通常用在确定性较差的网络设备(如交换机和路由器)上。从通信关系上又可把时钟分为主时钟和从时钟,理论上任何时钟都能实现主时钟和从时钟的功能,但一个PTP通信子网内只能有一个主时钟。整个系统中的最优时钟为最高级时钟GMC(Grandmaster Clock),有着最好的稳定性、精确性、确定性等。根据各节点上时钟的精度和级别以及UTC(通用协调时间)的可追溯性等特性,由最佳主时钟算法(Best Master Clock)来自动选择各子网内的主时钟;在只有一个子网的系统中,主时钟就是最高级时钟GMC。每个系统只有一个GMC,且每个子网内只有一个主时钟,从时钟与主时钟保持同步。图1所示的是一个典型的主时钟、从时钟关系示意。

国家电网公司_时钟同步标准

ICS XX. XX Q/GDW 国家电网公司企业标准 Q/GDW XXX.1-200X 电网时间同步系统技术规范Technical Specification for Time Synchronism System of Grid (征求意见稿) 2008年01月 200X-XX-XX发布200X-XX-XX实施 国家电网公司发布

前言 目前,我国电网各厂站和调度控制中心主站大多配备了以GPS为主的分散式时间同步系统,各网、省公司也出台了相应的技术规范。但由于缺少统一技术要求和配置标准,也缺乏时钟同步和时间精度检测的有效手段,现有时间同步系统配置不尽相同,运行情况也不够稳定,部分时钟设备时间精度不能满足要求。由调度自动化系统、变电站自动化系统、故障录波装置和安全自动装置等电力二次系统或设备提供的事件记录数据,存在时间顺序错位,难以准确描述事件顺序,不能给电网事故分析提供有效的技术支持。 为了规范、指导我国电网时间同步系统的设计、建设和生产运行,满足电网事故分析的要求,特制订《电网时间同步系统技术规范》。 《电网时间同步系统技术规范》根据国内外涉及时间统一技术的有关标准、规范和要求,本着“资源整合,信息共享”的原则,结合我国电网的工程实践和时间同步系统的现状制订而成,其要点如下: 规范时间同步系统结构、功能和技术要求; 规范调度主站、变电站的时间同步系统配置标准; 规范时间同步系统电气接口和信号类型; 统一IRIG-B 时码实现电力二次设备与时间同步系统的对时; 结合技术的发展,构建基于地面时钟源的电网时间同步系统。 本标准由国家电网公司生产技术部提出。 本标准由国家电网公司科技部归口。 本标准由江苏省电力公司江苏电力调度通信中心负责起草,国家电网公司国家电力调度通信中心、江苏省电力设计院、江苏省电力试验研究院、中国电力科学研究院、上海电力调度通信中心等单位参加编制。 本标准的主要起草人:

浅析智能变电站高精度时钟同步方法 杨富栋

浅析智能变电站高精度时钟同步方法杨富栋 发表时间:2018-03-14T10:29:13.807Z 来源:《电力设备》2017年第29期作者:杨富栋[导读] 摘要:近年来,IEC61850的标准得到进一步完善,关于智能变电站的同步时钟精度与稳定性能带来了更高的要求。 (国网烟台供电公司山东烟台 264000) 摘要:近年来,IEC61850的标准得到进一步完善,关于智能变电站的同步时钟精度与稳定性能带来了更高的要求。为符合智能变电站更大的对时精准度需要与适应智能变电站的时钟同步系统本身的特征,本文综合了智能变电站对时钟同步的实际需要与参照的IEC61850相关标准,探讨了智能变电站的卫星时钟同步的几种方法。为进一步研究智能变电站与电网时间统一技术打下了基础。 关键词:智能变电站;IEEE1588; DPSM;随着我国社会经济的发展,人们对智能变电站的建设也得到了进一步地发展。其中高精度的时钟同步方法得到了相关研究人员的关注与重视。应当具备下以的原则:建设统一的同步对时的系统,时钟的同步网一定要符合智能变电站关于时精度的要求,时钟同步系统要有效地应用网络同步技术,支持NTP/SNTP, IEEE1588等同步技术等。本文针对智能变电站精度时钟的同步方法进行较为详细地阐述。 一、关于智能变电站的构成以及特征第一,从智能电网的构成上分析,智能变电站是智能电网的发电、输电、变电、配电、用电和调度等几个环节衔接的重要平台,作为智能电网变换电压、接受以及分配电能、调节电压与控制电力方向的主要电力设施。它既是智能电网安全运行的关键,又是信息流、电力流以及业务流的交汇点,对于建设优化的智能电网有着极大的意义。第二,智能变电站其结构大体划分三个层面:战控层、间隔层与过程层。第三,智能变电站的设计与建设一定要符合我国当前智能电网信息化、数字化等发展要求,以提升变电站的自动化程度。 二、智能变电站的时钟同步方法的重要性与精度要求第一,重要性分析:IEC61850的指标在不断地更新与完善,智能变电站关于同步时钟的精准度与稳定性能也有了更高的要求。建设适宜的智能变电站的精确网络时钟同步系统可以提升变电站设备的时间同步精度、集成程度、运行安全性,减少系统的成本,提升工作效率,且可以保障变电站的安全可靠等相关性能。能明显降低因系统时钟的不同步产生的很大损失,为推动中国智能电网的建设有着重大作用。第二,时钟同步精度要求。智能变电站测量、控制和保护等自动化设备对时间同步精度的要求各不相同,例如同步向量测量、故障定位、IED同步采样要求对时精度为微妙级;而故障录波、时间顺序记录、变电站之间的同步实验要求对时精度为毫秒级。 三、智能变电站时钟同步的几种方法(一)GPS卫星时钟的同步方法当前变电站广泛采样GPS授时系统为站中的网络时钟来源,其可靠性与自主性无法获得保障。所以,本文构建了智能变电站卫星时钟同步统一系统模型这个模型里各个智能变电站作为一个时间的节点,各个节点有其独立的卫星同步的时钟源,担负着本节点中全部电力设备的时间同步,且经过通信网和其它厂站端或上级的调度机构互相监测时间的同步性,若某个时间节点时间的同步时钟失效以后,则借助通信网里的同步时间信息保持同步。智能变电站的卫星同步时钟能够同时接受GPS卫星时钟与北斗卫星时钟为站中的时间基准源;依据卫星时钟无累计的误差与晶振时钟无随机误差的特征,应用GPS卫星时钟、北斗卫星时钟以及晶振时钟比较法进行分析,产生了高精度的同步时钟源。可以提升了智能变电站同步时钟源的精度与可靠性能。(二)SNTP+IEEE1588的网络时钟同步方法依据智能变电站中的站控层、间隔层以及过程层关于时钟同步精度与功能的标准,应用分层同步的方式,在站级总线网络应用SNTP 的协议对时,在过程层的总线网应用IEEE1588协议对时,这一方法应用了北斗/GPS时钟组成的双模授时系统和晶振时钟融合而成的高精度同步时钟为站中时间同步网络的时钟源。卫星时钟和世界标准时间保持高度的同步,为变电站带来稳定且精确的时间指标。站中时钟同步网应用对独立总线的网络结构设计方案,两层子网分别进行时间同步。因站级总线网络对时精度要求不高,因此在站级网络里能够接入专门的SNTP服务器来同步站级网络上的各种设备。过程层要求同步精度达到亚微秒级,所以采用IEEE 15 8 8协议来实现过程总线的网络同步,在过程总线网络中接入专门的IEEE 15 8 8主时钟(Master Clock)和支持边界时钟(Boundary Clock)的交换机。边界时钟先与主时钟进行时间同步,然后自己扮演主时钟去同步过程层的设备。为提升时钟同步网络的可靠性,又给出了SNTP+IEEE 1588变电站时钟同步网络的冗余方法构成图。系统接入两套北斗/GPS和晶振时钟融合授时系统。另外,配置两套SNTP服务器和IEEE1588主时钟互为备用,时钟同步网络采用双总线冗余方式。备用时钟同步网络在线监测工作时钟同步网络,当工作网络出现故障时,自动进行冗余切换。(三)IEEE 1588网络时钟同步方法应用单一的IEEE 1588网络时钟协议为全站网络时钟的同步方式。由北斗/GPS时钟构成的双模授时系统和晶振时钟融合生为高精度同步时钟为IEEE1588时钟同步网的时钟源。这一时钟源为系统的跟时钟节点安装于服务器里。卫星时钟与世界标准时间保持高度地同步,为变电站带来稳定且精确的时间标准。站中的时钟同步网应用全站总线的网络构成同步方法,全站接入很多边界时钟同步于IEEE1588主时钟,与此同时又对从时钟独立来授时,进而达到整个智能变电站的时间同步。在时钟源的工作异常或者站中某个节点时钟失步时,其各个节点能够实现互备授时,就是旁路节点能够作为主时钟向时钟失步节点发送全新的同步信号源。另外,为提升智能电网的时间同步的精度度,站外应用了电力通信SDH恺装电缆达到和调度中心以及相近变电站间的时间同步。经过在站间网络时钟同步线路中安设的透明时钟,一定程度上降低了因长距离的传输带来的网络延迟。提升了广域同步网的授时精准度,进而达到了整个智能电网的时间同步。结束语: IEEE1588的时钟同步方法应用的是全站唯一的总线网构成,这种方法与IEC61850的标准时间同步模型是一致的。IEEE1588应用最佳主时钟的算法,自动对最佳时钟的节点作出选择,达到每个节点之间的互备授时。这种方法既提升了智能变电站的时钟同步网的准确率与安全性能,又符合了广域网的时钟同步精度的相关标准。然而它的协议正在研究与健全过程中,其技术以及经济方面尚未成熟,故这种方法的成本很高。因此,现阶段智能变电站能够将SNTP+IEEE1588时钟同步当作一种过渡的方法。在其时钟的同步协议得到不断地进步之下,IEEE1588时钟同步方法一定会成为智能变电站时钟同步系统的主体方法。参考文献:

同步时钟技术建议书讲解学习

南水北调东线一期工程山东段调度运行 管理系统 同步时钟子系统 技术建议书 上海泰坦通信工程有限公司 2012 年3月

本次投标我方严格按照技术规范书的要求,提出以下适合技术规范书要求的详细的方案建议书: 本次工程拟定在干线公司和穿黄现地管理处(备调中心)各配置一套同步时 钟设备,作为区域基准钟LPR作为全网主备用基准钟LPR。每套配置为双GPS 接收系统+BITS设备。设备选型为美国Brilliant公司的GPS接收机ST2000、美国Symmetricom公司的TPIU和TimeProvider1100。干线公司和穿黄现地管理处(备调中心)的传输设备从时钟同步设备上引接同步时钟信号。其他节点的传输设备从线路侧提取同步时钟信号。 单个站点设备连接示意图如下: 一、本次投标方案的几大特点 1.为干线公司和穿黄现地管理处配置的GPS具有BesTime专利技术,可以有效地削弱SA的干扰,相比其它GPS产品,这种性能确保了同步网的安全与稳定, 避免在特殊环境下美国对GPS的干扰; 2.为干线公司和穿黄现地管理处配置的GPS具有SSM功能,这对避免全网“定时环”具有非常重要的意义; 3.本次投标的BITS设备特别方便运行维护,设备开通后,无论需要更换卡板, 还是需要插入卡板,都不需要专业工程师到场,新卡板自动从设备获取运行参数;4.本次投标的BITS设备特别方便运行维护,用户可将每一个端口的使用情况储 存在卡板中,不需要固定的维护终端; 二、本次投标售后服务的特别承诺 本次投标采用的主设备全部为进口设备。尽管Symmetricom公司是全球最有实力

的、也是唯一一家专业的同步厂商,但考虑到设备维修需要返回工厂,前后周期 较长,本次投标特别承诺,我公司已有备品备件,在遇到故障报告后,我公司免 费提供备品备件,并确保48小时内恢复设备正常运行。待故障板卡经工厂维修返 回后换回借给的备品备件。 三、设备详细配置 干线公司和穿黄现地管理处各配置如下设备: GPS1---ST2000,内置高性能晶体钟,独立设备,有SSM GPS2---TPIU --- 内置高性能晶体钟,独立设备,有SSM BITS---TimeProvider1100,双加强型铷钟,四路输入,32路冗余输出,有SSM ST2000 TPIU TimeProvider1100外观 TimeProvider1100

电力时钟同步系统解决方案

电力GPS时钟同步系统解决方案 北京创想京典科技发展有限公司 科 技 领先铸就最佳

什么是时间? 时间是一个较为抽象的概念,爱因斯坦在相对论中提出:不能把时间、空间、物质三者分开解释,"时"是对物质运动过程的描述,"间"是指人为的划分。时间是思维对物质运动过程的分割、划分。 在相对论中,时间与空间一起组成四维时空,构成宇宙的基本结构。时间与空间都不是绝对的,观察者在不同的相对速度或不同时空结构的测量点,所测量到时间的流逝是不同的。广义相对论预测质量产生的重力场将造成扭曲的时空结构,并且在大质量(例如:黑洞)附近的时钟之时间流逝比在距离大质量较远的地方的时钟之时间流逝要慢。现有的仪器已经证实了这些相对论关于时间所做精确的预测,并且其成果已经应用于全球定位系统。另外,狭义相对论中有“时间膨胀”效应:在观察者看来,一个具有相对运动的时钟之时间流逝比自己参考系的(静止的)时钟之时间流逝慢。 就今天的物理理论来说时间是连续的,不间断的,也没有量子特性。但一些至今还没有被证实的,试图将相对论与量子力学结合起来的理论,如量子重力理论,弦理论,M理论,预言时间是间断的,有量子特性的。一些理论猜测普朗克时间可能是时间的最小单位。

什么是时间? 根据斯蒂芬·威廉·霍金(Stephen William Hawking)所解出广义相对论中的爱因斯坦方程式,显示宇宙的时间是有一个起始点,由大霹雳(或称大爆炸)开始的,在此之前的时间是毫无意义的。而物质与时空必须一起并存,没有物质存在,时间也无意义。

卫星时钟系统为什么含有精确的时间信息? 地球本身是一个不规则的圆,加上地球自转和公转的误差,如果仅仅依靠经度、纬度、海拔高度三个参数来定位的偏差会很大,所以 引入了一个时间参数,每个卫星都内置了一个高稳定度的原子钟!

GPS时钟操作说明

InnoClock 系列 GPS母钟功能及操作指南 功能特点: 独有特色 ?支持农历 ?双机热备份功能(选项) ?支持远程操作维护(选项) ?服务器校时软件支持SNTP协议 12通道GPS卫星接收,锁定迅速; 可设置时区; 可设置延时,用于补偿传输延时,或与CCTV时间对齐,范围前后±99.99s; 1U 19”标准机箱,年、月、日、星期、农历、时、分、秒显示; 国标内嵌时码电视信号输出; 输出时间信号包括公历(年、月、日、星期、时、分、秒),农历(月,日); 内置高稳温补晶振,年漂移小于1ppm,提供极高的自守时精度(选项); 输出接口RS-232或RS422,可用于子钟校时、计算机网络校时,传输距离几百米至几千米; 可以提供多种方便灵活的传输方式,包括无线及电力线等; 提供计算机网络校时软件,支持标准SNTP协议; 大容量蓄电池,在主电源掉电的情况下,还可输出时码480小时(选项)。 操作指南 1)开机说明 设备通电前,接入GPS接收天线,设备方可正常运行。 2)时区调整 时区调整功能通过面板右侧的按键完成。 操作分为三步:1、按一下设置键,观察左侧小数码管显示 “01”右侧大数码管显示时区,系统默 认设置为“东八区”; 2、通过增加和减少键调整时区,若

需调整为“西几区”则一直按“减少键”; 3、时区调整完,按确认键进行参数保存。 3)延时调整 延时调整功能通过面板右侧的按键实现。 操作分为三步: 1、按两下设置键,观察左侧小数码管显示 “02”右侧大数码管显示延时参数,系 统默认设置为“00 00”; 2、通过增加和减少键调整延时,当右侧大 数码管显示“00 00”时,按增加键系统 将进行“正延时”调整。按减少键系统 将进行“负延时”调整。最小调整单位 为“10毫秒延时调整范围:“+99.99秒”; 3、延时调整完,按确认键进行参数保存。 4)右侧三个指示灯的功能说明 红灯:电源指示灯。 设备采用交流电和电池两种方式供电,在交流电断电时,由电池提供电源(此时面板日期时间不 显示)。交流断电时电源指示灯熄灭。若电池不能正常工作,则指示灯闪烁。 绿灯:运行指示灯。 用于双机热备份时时码输出指示。单机工作 时长亮。 当设备输出时码时,绿灯亮,没有时码输出时, 绿灯灭。 黄灯:GPS信号锁定灯; 当GPS信号锁定时,黄灯亮。未锁定时,黄等灭。 软件安装说明 如果该设备用于计算机网络校时,则需要在服务器安装校时软件,该软件随设备赠送。 1)软件功能说明: 随设备光盘包含两个软件:Clock.exe和 NetTime-2b1a.exe。其中Clock.exe用于从串口取 GPS母钟时间对本地计算机进行校时;

传输系统中的时钟同步技术

传输系统中的时钟同步技术同步模块是每个系统的心脏,它为系统中的其他每个模块馈送正确的时钟信号。因此需要对同步模块的设计和实现给予特别关注。本文对影响系统设计的时钟特性进行了考察,并对信号恶化的原因进行了评估。本文还分析了同步恶化的影响,并对标准化组织为确保传输质量和各种传输设备的互操作性而制定的标准要求进行了探讨。摘要:网络同步和时钟产生是高速传输系统设计的重要方面。为了通过降低发射和接收错误来提高网络效率,必须使系统的各个阶段都要使用的时钟的质量保持特定的等级。网络标准定义同步网络的体系结构及其在标准接口上的预期性能,以保证传输质量和传输设备的无缝集成。有大量的同步问题,系统设计人员在建立系统体系结构时必须十分清楚。本文论述了时钟恶化的各种来源,如抖动和漂移。本文还讨论了传输系统中时钟恶化的原因和影响,并分析了标准要求,提出了各种实现技巧。基本概念:抖动和漂移抖动的一般定义可以是“一个事件对其理想出现的短暂偏离”。在数字传输系统中,抖动被定义为数字信号的重要时刻在时间上偏离其理想位置的短暂变动。重要时刻可以是一个周期为 T1 的位流的最佳采样时刻。虽然希望各个位在 T 的整数倍位置出现,但实际上会有所不同。这种脉冲位置调制被认为是一种抖动。这也被称为数字信号的相位噪声。在下图中,实际信号边沿在理想信号边沿附近作周期性移动,演示了周期性抖动的概念。图 1.抖动示意抖动,不同于相位噪声,它以单位间隔 (UI) 为单位来表示。一个单位间隔相当于一个信号周期 (T),等于 360 度。假设事件为 E,第 n 次出现表示为 tE[n] 。则瞬时抖动可以表示为:一组包括 N 个抖动测量的峰到峰抖动值使用最小和最大瞬时抖动测量计算如下:漂移是低频抖动。两者之间的典型划分点为 10 Hz。抖动和漂移所导致的影响会显现在传输系统的不同但特定的区域。抖动类型根据产生原因,抖动可分成两种主要类型:随机抖动和确定性抖动。随机抖动,正如其名,是不可预测的,由随机的噪声影响如热噪声等引起。随机抖动通常发生在数字信号的边沿转换期间,造成随机的区间交叉。毫无疑问,随机抖动具有高斯概率密度函数 (PDF),由其均值 (μ) 和均方根值 (rms) (σ) 决定。由于高斯函数的尾在均值的两侧无限延伸,瞬时抖动和峰到峰抖动可以是无限值。因此随机抖动通常采用其均方根值来表示和测量。图 2.以高斯概率密度函数表示的随机抖动对抖动余量来讲,峰到峰抖动比均方根抖动更为有用,因此需要把随机抖动的均方根值转换成峰到峰值。为将均方根抖动转换成峰到峰抖动,定义了随机抖动高斯函数的任意极限 (arbitrary limit)。误码率 (BER) 是这种转换中的一个有用参数,其假设高斯函数中的瞬时抖动一旦落在其强制极限之外即出现误码。通过下面两个公式,就可以得到均方根抖动到峰到峰抖动的换算。 3[!--empirenews.page--] 由公式可得到下表,表中峰到峰抖动对应不同的 BER 值。确定性抖动是有界的,因此可以预测,且具有确定的幅度极限。考虑集成电路 (IC) 系统,有大量的工艺、器件和系统级因素将会影响确定性抖动。占空比失真 (DCD) 和脉冲宽度失真(PWD) 会造成数字信号的失真,使过零区间偏离理想位置,向上或向下移动。这些失真通常是由信号的上升沿和下降沿之间时序不同而造成。如果非平衡系统中存在地电位漂移、差分输入之间存在电压偏移、信号的上升和下降时间出现变化等,也可能造成这种失真。图 3,总抖动的双模表示数据相关抖动 (DDJ) 和符号间干扰 (ISI) 致使信号具有不同的过零区间电平,导致每种唯一的位型出现不同的信号转换。这也称为模式相关抖动 (PDJ)。信号路径的低频截止点和高频带宽将影响 DDJ。当信号路径的带宽可与信号的带宽进行比较时,位就会延伸到相邻位时间内,造成符号间干扰 (ISI)。低频截止点会使低频器件的信号出现失真,而系统的高频带宽限制将使高频器件性能下降。7 正弦抖动以正弦模式调制信号边沿。这可能是由于供给整个系统的电源或者甚至系统中的其他振荡造成。接地反弹和其他电源变动也可能造成正弦抖动。正弦抖动广泛用于抖动环境的测试和仿真。不相关抖动可能由电源噪声或串扰和其他电磁干扰造成。考虑抖动对数字信号的影响时,需要将整个确定性抖动和随机抖动考虑在内。确定性抖动和随机抖动的总计结果将产生另外一种概率分布

GPS时钟同步原理简介

GPS时钟同步原理 1.有关时间的一些基本概念 时间(周期)与频率 互为倒数关系,两者密不可分,时间标准的基础是频率标准,所以有人把晶体振荡器叫‘时基振荡器’。钟是由频标加上分频电路和钟面显示装置构成的。 四种实用的时间频率标准源(简称钟) ◆晶体钟 ◆铷原子钟 ◆氢原子钟 ◆铯原子钟 常用的时间坐标系 时间的概念包含时刻(点)和时间间隔(段)。时系(时间坐标系)是由时间起点和时间尺度单位--秒定义(又分地球秒与原子秒)所构成。常用的时间坐标系: ◆世界时(UT) ◆地方时 ◆原子时(AT) ◆协调世界时(UTC) ◆ GPS时 定时、时间同步与守时

◆定时:是指根据参考时间标准对本地钟进行校准的过程);授时(指采用适当的手段 发播标准时间的过程); ◆时间同步:是指在母钟与子钟之间时间一致的过程,又称时间统一或简称时统); ◆守时:是指将本地钟已校准的标准时间保持下去的过程,国内外守时中心一般都采 用由多台铯原子钟和氢原子钟组成的守时钟组来进行守时,守时钟组钟长期运行性能表现最好的一台被定主钟(MC)。 2.GPS时间是怎样建立的 为了得到精密的GPS时间,使它的准确度达到<100ns(相对于UTC(USNO/MC)): ◆每个GPS卫星上都装有铯子钟作星载钟; ◆ GPS全部卫星与地面测控站构成一个闭环的自动修正系统; ◆采用UTC(USNO/MC)为参考基准。 3.GPS定位、定时和校频的原理 GPS定位原理 是基于精确测定GPS信号的传输时延(Δt),以得到GPS卫星到用户间的距离(R)R=C×Δt ----------------------- [1](式中C为光速)同时捕获4颗GPS卫星,解算4个联立方程,可给出用户实时时刻(t)和对应的位置参数(x、y、z)共4个参数。R={(Xs- Xu)2+(Ys-Yu)2+(Zs-Zu)}1/2 ---- [2](式中Xs、Ys、Zs为卫星的位置参数;Xu、Yu、Zu为用户的的位置参数)。 GPS定时原理 基于在用户端精确测定和扣除GPS时间信号的传输时延(Δt),以达到对本地钟的定时与校准。GPS定时准确度取决于信号发射端、信号在传输过程中和接收端所引入的误差,主要误差有:

时钟同步技术在变电站中的应用讨论

时钟同步技术在变电站中的应用讨论 发表时间:2017-08-04T11:11:24.363Z 来源:《电力设备》2017年第11期作者:高金索[导读] 摘要:我国电力科技伴随着科技发展而有了很大的进步,变电站在电力系统中有着重要的地位,变电站的运行状况与电力系统有着紧密的联系,所以,完善变电站方面的管理极为重要。 (国网江苏省电力公司宿迁供电公司 223800) 摘要:我国电力科技伴随着科技发展而有了很大的进步,变电站在电力系统中有着重要的地位,变电站的运行状况与电力系统有着紧密的联系,所以,完善变电站方面的管理极为重要。近些年来,变电站在自动化领域越来越先进,在变电站自动化的进程中对各方面在时间上的要求也越加精准,时钟同步技术对时间上的精准程度能够满足这一要求,所以,时钟同步技术引用进变电站自动化中有着至关重要的作用。 关键词:变电站;变电站自动化;时钟同步技术 电力技术发展至今,其自动化进程已经得以长足的发展,电力系统的各项设置在时钟基准方面的需求越来越重要,时钟同步技术能够全时段对精准的时间信息输出给用户,时钟同步技术再准确度上有着较高的成效,时钟同步技术融嵌入变电站技术上,能够保证变电站之间保持时间的一致性和准确性,对变电站保持正常良好的状态下运行。 1 时钟同步技术上的优势 现实中变电站所运用的各种系统以及所采用的各项装置是来源于不同的公司或厂家,因此在时钟上的设计上会出现不同程度上的差异,所以在对时上会出现一定程度上的误差现象,以至于出现在同一时刻的基点上变电站的各系统输出的数据不能进行合理的分析和对比,这对于事后故障分析排除工作带来很大的不便。变电站对时钟同步技术上的采用有着不可忽略的优势,它能确保变电站出现故障后各个系统输出的数据在相同的时间基点上。时钟同步信号在提供精准的时间上协同变电站自动化设备正常良好的运行,当系统发生异常状况时,可以有力保证事件顺序记录上在时间上的精准度,从而使得对故障的判断上更具有时效性和准确性,有效的保障了电力系统处于良好的运行状态中。 2 时钟同步系统的简单论述及原理 2.1时钟同步系统的简单论述 时钟同步系统经过接受卫星信号,再利用CPU中央处理环节对卫星信号进行科学规范化的转换,转换成电力系统所需求的时间信息,然后给予时间信息反馈出来。 2.2时钟同步系统原理 时钟同步系统主要有三种对时方式构成,首先是串行同步输出对时方式,它是将时间信息以串行数据流的形式进行反馈出来的,该种形式的对时方式相较于复杂,在收到时间信息后加以出路,转化过程中所需时间上相对较长,该情况下会造成时间对时上一定程度上的影响,所以,串行同步数据反馈形式对时主要功能在于时间标记上的添加。其次是脉冲同步输出对时,该技术是通过时间同步,在特定的时间上提供出一个精确的脉冲,当接受设施感应到脉冲反馈的信号后,设备将进行自动方式对时,从而实现避免各个系统上的误差现象的出现,由于脉冲同步输出的形式是不能对时间进行直接反馈,一旦提供时间的源头出现错误,得到时间信息的设备便会以错误的进行。然后是IRIG—B码输出对时方式是以二进码十进位方式对时间上的反馈,每次时间反馈有上百个脉冲,所提供的时间信号是秒、分、时等,IRIG—B码输出对时的方式是相较于其他方式具有准确度高,更为标准化的优势。 3 时钟同步技术嵌入变电站电力系统中 3.1 时钟同步技术的运用 时钟同步系统在近些年的发展中拥有编码对时、硬对时、网络NTP技术上的支持,时钟同步系统能够很好的与变电站的多数设备进行完美的组合。时钟对时接口有RS232串口输出、RS485串口输出、秒脉冲1PPS输出等不同输出方式的情况。为维护变电站电自动化系统能够精准有效的运行,有大部分的装置需要嵌入时钟同步系统中进行对时,增加了装置的接口类型也不统一,所以,在现实工作中,通常会结合利用多样式对时端口方式。以下对11万伏变电站改造为题,探究与剖析时钟同步技术的运用。将时钟同步系统屏在变电站高压室和保护室进行科学组合,然后装备上拥有接收功能、卫星信号处理功能以及反馈标准同步时间信号等功能一个标准化的同步主时钟。一旦主时钟接接收到时间同步系统反馈出的基准信号时,设备将依据基准信号完成对时工作,当主时钟未能获取到时间同步系统反馈出的基准信号后,将自行走时,并以标准化的形式走时,时间基准进入正常状态下,主时钟便会自觉进行对时。该变电站改造为以互联网为组网的形式,一些设置只有RS232接口和RS485接口,而新安装的主变线路控制装置等相关的装置都是IRIC—B接口。在变电站革新上,采用IRIG —B码反馈信息对时,选用RVVP两芯屏蔽通讯电缆,其中加用1表示,减用2表示,按次序将各设备连接上时钟同步系统的IRIG—B输出端口;因为部分陈旧设备没有IRIC—B端口,仅有RS232接口,所以,将这些设备与时钟同步系统的RS232端口相连接;11万伏变电站故障录波器没有IRIG—B码,依次将秒脉冲和分脉冲链接空接点,最终完成硬接点对时。 3.2时钟同步系统工作中的注意事项 为保证时钟同步系统可以稳定良好的运作,确保时钟同步系统的功的性能都满足相关要求,一定做到时钟同步系统上日常保养与维护工作。员工要制定科学的检测维修计划,按计划周期性的对时钟同步系统进行检测,在进行周期性的检测时,第一要查勘显示屏幕上的天线信号,第二将显示屏幕中锁定的卫星数目进行查看,检测完毕一切正常的情况下,用显示屏幕上的时间与每个装置显示的时间进行时间校对,进而保证进行对时系统的每个设备能够安全良好的运行。时钟同步系统按计划定期监测,确保系统在运行中保持良性工作状态。时钟同步系统在工作中还应该对屏中嵌入监视设备,然后对时钟同步系统的进行实时的监视,发现系统出现异常状况,及时发出故障报警信号,让维修人员对故障进行快速抢修,以此确保时钟同步系统安全运作。 4 结语 时钟同步系统将变电站的自动化系统的设备可以拥有一致标准的时间,保障了变电站在工作中的安全性,所以,电力企业应从自身的情况出发,对时钟同步系统进行科学的利用,从而确保变电站能够正常工作。 参考文献 [1]郭威.GPS时钟同步技术在变电站电力自动化中的应用[J].黑龙江科技信息,2014,(8).

电力系统时钟同步综合解决系统(1)

一、建设时钟同步系统的重要性 随着电厂、变电站自动化水平的提高,电力系统对时钟统一对时的要求愈来愈迫切,有了统一精确的时间,既可实现全厂(站)各系统在GPS 时间基准下 的运行监控和事故后的故障分析,也可以通过各开关动作、调整的先后顺序及准 确时间来分析事故的原因及过程。统一精确的时间是保证电力系统安全运行,提 高运行水平的一个重要措施。 二、时钟同步系统的优越性 电厂(站)的时钟同步是一件十分重要的基础工作,现在电厂(站)大多采用不同厂家的计算机监控系统、DCS 分布式控制系统、自动化及线路微机保护装置、故障录波装置、电能量计费系统、电液调速系统DEH 、SCADA 系统及各种输煤PLC 、除灰PLC 、化水PLC 、脱硫PLC 等,以前的时间同步大多是各设备提供商采用各自独立的时钟,而各时钟因产品质量的差异,在对时精度上都有一定的偏差,从而使全厂各系统不能在统一时间基准的基础上进行数据分析与比较,给事后正确的故障分析判断带来很大隐患。 如今,人们已经充分意识到时间统一的重要性。但是,统一时钟并不是单纯地并用GPS 时钟设备。目前,人们普遍采用一台小型GPS 接收机,提供多个RS232端口,用串口电缆逐一连接到各个计算机,实现时间同步。但事实上,这种同步方式的缺点是,使用的电缆长度不能过长;服务器的反应速度、客户机的延迟都直接影响对时精度。而且各电厂(站)往往有不同的装置需要接收时钟同步信号,其接口类型繁多,如RS-232/422/485串行口、脉冲、IRIG-B 码、DCF77格式接口 等;装置的数量也不等,所以在实际应用中常感到GPS 装置的某些类型接口数量不够或缺少某种类型的接口,其结果就是电厂中有些装置不能实现时钟同步,或者需要再增加一台甚至数台GPS 装置,而这往往受到资金不足或没有安装位置等限制。若各系统实施统一GPS 时钟同步方案,就可实现全厂(站)各系统在统一GPS 时间基准下的运行监控和事故后的故障分析,大大提高了电厂(站)系统的安全稳定性。因此采用GPS 时钟同步系统比采用传统的GPS 同步设备有着明显的优势,也是技术发展的必然趋势。 第二部分 对时方式和NTP 协议简介 一、对时方式 目前,国内的同步时间主要以GPS 时间信号作为主时钟的外部时间基准信 号。现在各时钟厂家大多提供硬对时、软对时、编码对时三种方式,我公司的时 间同步产品除了提供以上三种对时方式外,还可提供先进的NTP 网络对时方式, 大大提高了产品的技术含量及系统的完整性。以下是各对时方式的介绍: 1、硬对时(脉冲节点) 主要有秒脉冲信号(lpps ,即每秒 1 个脉冲)和分脉冲信号门(1ppm ,即每分1个脉冲)。秒脉冲是利用GPS 所输出的lpps 方式进行时间同步校准,获得与 UTC 同步的时间准确度较高,上升沿的时间准确度不大于lus 。分脉冲是利用GPS 所输出的lppm 方式进行时间同步校准,获得与UTC 同步的时间准确度较高,上升沿的时间准确度不大于3us ,这是国内外保护常用的对时方式。另外通过差分芯片将lpps 转换成差分电平输出,以总线的形式与多个装置同时对时,同时增加了对时距离,由 lpps 几十米的距离提高到差分信号1km 左右。 用途:对国产故障录波器、微机保护、雷电定位系统、行波测距系统对时。 故障录波装置分别由不同的厂家生产;保护装置国内以南自股份、南瑞、许继、阿继及四方公司的产品为主。 2、软对时(串口报文) 串口校时的时间报文包括年、月、日、时、分、秒,也可包含用户指定的其他特殊内容,例如接收 GPS 卫星数、告警信号等,报文信息格式为ASCll 码或BCD 码或十六进制码。如果选择合适的传输波特率,其精确度可以达到毫秒级。串口校时往往受距离限制,RS-232口传输距离为30 m , RS-422口传输距离为 150 m ,加长后会造成时间延时。 用途:对电能量记费系统、输煤PLC 、除灰PLC 、化水PLC 、脱硫PLC 、自动化装 置、控制室时钟对时。 3、编码对时 编码时间信号有多种,国内常用的有 IRIG (Inter -range Instrumentatlon group )和DCF77(Deutsche ,long wave signal ,Frankfurt ,77.5 kHZ )两种。IRIG 串行时间码共有6种格式,即A ,B ,D ,E ,

时钟同步技术概述

作为数字通信网的基础支撑技术,时钟同步技术的发展演进始终受到通信网技术发展的驱动。在网络方面,通信网从模拟发展到数字,从TDM网络为主发展到以分组网络为主;在业务方面,从以TDM话音业务为主发展到以分组业务为主的多业务模式,从固定话音业务为主发展到以固定和移动话音业务并重,从窄带业务发展到宽带业务等等。在与同步网相关性非常紧密的传输技术方面,从同轴传输发展到PDH,SDH,WDM和DWDM,以及最新的OTN和PTN技术。随着通信新业务和新技术的不断发展,其同步要求越来越高,包括钟源、锁相环等基本时钟技术经历了多次更新换代,同步技术也在不断地推陈出新,时间同步技术更是当前业界关注的焦点。 2、时钟技术发展历程 时钟同步涉及的最基本技术包括钟源技术和锁相环技术,随着应 用需求的不断提高,技术、工艺的不断改进,钟源技术和锁相环 技术也得到了快速的演进和发展。 (1) 钟源技术

时钟振荡器是所有数字通信设备的基本部件,按照应用时间的先后,钟源技术可分为普通晶体钟、具有恒温槽的高稳晶振、原子钟、芯片级原子钟。 一般晶体振荡器精度在nE-5~nE-7之间,由于具有价格便宜、尺寸小、功耗低等诸多优点,晶体振荡器在各个行业和领域中得到广泛应用。然而,普通晶体钟一般受环境温度影响非常大,因此,后来出现了具有恒温槽的晶体钟,甚至具有双恒温槽的高稳晶体钟,其性能得到很大改善。随着通信技术的不断发展,对时钟精度和稳定性提出了更高的要求,晶体钟源已经难以满足要求,原子钟技术开始得到应用,铷钟和铯钟是其中最有代表性的原子钟。一般来说,铷钟的精度能达到或优于nE-10的量级,而铯钟则能达到或优于1E-12的量级。 然而,由于尺寸大、功耗高、寿命短,限制了原子钟在一些领域的应用,芯片级原子钟有望解决这个难题。目前民用的芯片级原子钟基本上处于试验阶段,其尺寸只有立方厘米量级,耗电只有百毫瓦量级,不消耗原子,延长了使用寿命,时钟精度在nE-10量级以上,具有很好的稳定性。芯片级原子钟将在通信、交通、电力、金融、国防、航空航天以及精密测量等领域有着广泛的应用前景。 (2) 锁相环技术 锁相环技术是一种使输出信号在频率和相位上与输入信号同步的电路技术,即当系统利用锁相环技术进入锁定状态或同步状态后,系统的震荡器输出信号与输入信号之间相差为零,或者保持为常数。锁相环路技术是时钟同步的核心技术,它经历了模拟锁相环

基于GPS的控制系统时间同步

基于GPS 的控制系统时间同步 金刚平,徐欣圻 (中国科学院国家天文台南京天文光学新技术研究所,南京 210042) 摘 要:介绍如何利用G PS 接收器获取准确的UT C 时间,在分布式实时操作系统QNX 下,实现系统时间和UT C 的一致。同时讨论了如何建立网络时间服务器,通过执行网络时间 同步算法,实现局域网内不同计算机之间的时间同步。最后文章给出在具体应用中的实例。 关键词:G PS;QNX;时间服务器 中图分类号:TP311 文献标识码:A 文章编号:1000-2162(2002)04-0030-05 0 前 言 目前,G PS (G lobal P osition System )在导航和定位方面得到了广泛的应用,同时在授时领域,也开始利用G PS 来获取准确的UT C (C oordinated Universal T ime )时间。在国家九五重大科学工程LAMOST (Large Sky Area Multi -objects Fiber S pectroscopic T elescope )望远镜的控制系统中,为了实施精确跟踪天体目标,需要一个准确的UT C 时间。同时,处于控制系统局域网内部的其他计算机也需要和UT C 时间同步。因此,我们决定采用G PS 来构建时标系统,并利用网络通讯把得到的准确的UT C 时间发布到整个网络中,以实现整个控制系统时间同步[1]。 1 时间同步的必要性 建立时间服务器,实现网络内计算机之间时间同步的必要性在于: 数据分析:在网络应用中,我们从不同的网络节点计算机获取数据。通常在数据包里面,包含有数据到达的时间信号。但只有实现了网络内的时间同步,才可以利用时间戳来获取这些数据之间的关系。 对时间敏感的交易:在股票和货币类对时间比较敏感的交易中,这些活动经常发生在不同的城市,时间的准确性对交易的顺利进行影响很大。 网络安全:很多的局域网安全系统都是基于各个通讯终端的准确时间戳。有一些安全系统通过测试网络延迟来决定是否终止交易。 在实时控制领域:例如我们正在研制的国家重大科学工程项目LAMOST 控制系统便是典型一例,其分布式控制局域网内部的时间同步,对于实现精确的协调控制,其作用是不言而喻的。 收稿日期:2002-05-28 作者简介:金刚平(1975-),男,安徽桐城人,南京天文光学新技术研究所助理研究员,硕士; 徐欣圻(1944-),男,江苏无锡人,南京天文光学新技术研究所研究员,博士生导师. 2002年12月 第26卷第4期安徽大学学报(自然科学版)Journal of Anhui University Natural Science Edition December 2002V ol.26N o.4

智能变电站IEEE1588时钟同步冗余技术研究

第43卷第20期电力系统保护与控制 Vol.43 No.20 2015年10月16日 Power System Protection and Control Oct. 16, 2015 智能变电站IEEE1588时钟同步冗余技术研究 李俊刚1,2,刘 星2,张爱民1,张 杭1,耿英三1,魏 勇 2 (1.西安交通大学电气工程学院,陕西 西安 710049;2.许继电气,河南 许昌 461000) 摘要:针对智能变电站时钟同步系统现状,提出了基于IEEE1588的时钟同步系统冗余方案。在分析IEEE1588的实现原理及其特点的基础上,提出了单钟方案、双钟互备方案和双钟双扩展方案。重点对双钟互备方案进行了阐述,并详细分析了时钟冗余切换原理和过程。同时,进一步对双钟互备方案在变电站单网和双网模式下,不同网络方案对时钟冗余造成的影响进行了研究。 关键词:IEEE1588;变电站;时钟冗余;网络方案 Research on redundant technology of IEEE1588 clock synchronization system in smart substation LI Jungang1, 2, LIU Xing2, ZHANG Aimin1, ZHANG Hang1, GENG Yingsan1, WEI Yong2 (1. School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; 2. XJ Electric Corporation Limited, Xuchang 461000, China) Abstract: Aiming at the present situation of smart substation clock synchronization system, this paper proposes the redundancy scheme of clock synchronization system based on IEEE1588. By analyzing the realization principle and characteristics of IEEE1588, a single clock scheme, double clock backup scheme and dual clock double extension scheme are proposed. The double clock backup scheme is emphasized, and the clock redundancy switching principle and process are detailed. At the same time, the double clock backup scheme in substation single network and dual network mode, and the effects of different network schemes on clock redundancy are studied. Key words: IEEE 1588; substation; clock redundancy; network scheme 中图分类号:TM764 文章编号:1674-3415(2015)20-0097-05 0 引言 智能变电站设计和建设过程中,可靠性方面的要求极为重要。冗余配置作为提高可靠性的主要措施之一,在变电站中得到广泛应用,诸如:保护装置冗余和通信网络冗余。然而时钟系统作为变电站控制系统的决策前提,其重要性不言而喻。但是,时钟系统的冗余设计一直停留在较浅的层面,对时钟信号的传输以及处理过程中的冗余研究,很少有文献加以研究。 目前,智能变电站时钟同步系统采用多种方式实现,如NTP、IRIG-B、GPS等。IEEE1588时钟同步与这些方式相比,其不仅能以标准的方式实现亚微妙的时钟同步,还能实现不同系统的兼容和互操作[1-7]。这些特质适合很多电力业务的拓展,能很好地满足电力系统的需求。因此,基于IEEE1588的时钟同步方式在智能变电站中具有较好的应用前景[8-11],而如何做好智能变电站IEEE1588时钟同步系统的冗余亟待研究。 1 IEEE1588时钟冗余系统 智能变电站中IEEE1588时钟同步系统冗余设计中,其方案大致有三种:单钟方案、双钟互备方案、双钟双扩展方案。虽然,其时钟同步系统有多种冗余方式,但是从设计难度和可靠性程度而言,如图1所示,最适合智能变电站需求的即为双钟互备方案。 在时钟冗余系统中,存在一个主时钟和备用时钟。当主时钟与外部同步源(如GPS)同步时,主时钟输出PTP时间同步信息,而备用时钟不输出PTP 时间同步信息。当主时钟与外部同步源(如GPS)失去同步时,不再输出PTP时间同步信息,由备用时钟输出PTP时间同步信息给自动化设备进行校时。一旦主时钟装置与外部同步源(如GPS)恢复同步

相关主题