搜档网
当前位置:搜档网 › 基于粒子聚合重采样的移动机器人蒙特卡洛定位

基于粒子聚合重采样的移动机器人蒙特卡洛定位

基于粒子聚合重采样的移动机器人蒙特卡洛定位
基于粒子聚合重采样的移动机器人蒙特卡洛定位

扫地机器人原理及实现

扫地机器人结构及控制系统设计 自动清扫机器人是当今服务机器人领域一个热门的研究方向。从理论和技术上讲,自动清扫机器人比较具体地体现了移动机器人的多项关键技术,具有较强的代表性,从市场前景角度讲,自动清扫机器人将大大降低劳动强度、提高劳动效率,适用于宾馆、酒店、图书馆、办公场所和大众家庭。因此开发自动清扫机器人既具有科研上的挑战性又具有广阔的市场前景。 家用智能清扫机,包括计算机、传感器、电机与动力传动机构、电源、吸尘器、电源开关、操作电位计等,在清扫机的顶部共设有三个超声波距离传感器;清扫机底部前方边沿安装有5个接近开关,接近开关与超声波距离传感器一起,构成清扫机测距系统;清扫机装有两台直流电机;在清扫机的底部安装有吸尘器机构。自动清扫机器人的功能是自动完成房间空旷地面尤其是家居空旷地面的清扫除尘任务,打扫前,要把房间里的物体紧靠四周墙壁,腾出空旷地面。清扫机完成的主要功能:能自动走遍所以可进入的房间,可以自动清扫吸尘,可在遥控和手控状态下清扫吸尘。 本文所介绍的自动清扫机器人的总体布局方案如图1所示,前后两轮为万向轮,左右两轮为驱动轮。驱动轮设计采用两轮独立且各由两台步进电动机驱动的转向方式,通过控制左右两轮的速度差来实现转向。考虑到机器人实际应用的实用性,本驱动系统设计成一个独立的可方便替换的模块,当机器人驱动系统发生故障时,只需简单步骤就可以对驱动部分进行替换。同时为了机器人能够灵活的运动,从动轮选用万向轮。 下图为自动清扫机的三维立体图:

自动清扫机器人车箱体采用框架式结构。从下至上分隔成三个空间:第一层装配各运动部件的驱动电机、传动机构;第二层为垃圾存储空间;第三层装配机器人控制系统、接线板、

轮式移动机器人结构设计论文

轮式移动机器人的结构设计 摘要:随着机器人技术在外星探索、野外考察、军事、安全等全新的领域得到日益广泛的采用,机器人技术由室内走向室外,由固定、人工的环境走向移动、非人工的环境。本课题是机器人设计的基本环节,能够为后续关于机器人的研究提供有价值的平台参考和有用的思路。 本文介绍了已有的机器人移动平台的发展现状和趋势,分析操作手臂常用 的结构和工作原理,根据选定的方案对带有机械臂的全方位移动机器人进行本 体设计,包括全方位车轮旋转机构的设计、车轮转向机构的设计和机器人操作 臂的设计。要求全方位移动机构转向、移动灵活,可以快速、有效的到达指定 地点;机械臂操作范围广、运动灵活、结构简单紧凑且尺寸小,可以快速、准 确的完成指定工作。设计完成后要分析全方位移动机构的性能,为后续的研究 提供可靠的参考和依据。 关键字:机器人移动平台操作臂简单快速准确

Structure design of wheeled mobile robots Abstract:with the robot technology in an alien exploration, field survey, military and security new areas to be increasingly widely adopted, robot technology by indoor, outdoor by fixed, to move towards artificial environment, the artificial environment. This topic is the basic link, robot design for the follow-up about robots can provide valuable reference and useful ideas platform. This article summarizes the existing robot mobile platform development status and trends of operating the arm structure and principle of common, According to the selected scheme of mechanical arm with ontology omni-directional mobile robots designed, including the design of all-round wheel rotating mechanism, wheel steering mechanism of design and the design of robot manipulator. Request to change direction, move the omni-directional mobile institution, can quickly and effectively flexible the reaches the specified location; Mechanical arm operation scope, sports flexible, simple and compact structure and size is small, can quickly and accurately completed tasks. The design is completed to analyze the performance of the omni-directional mobile institutions for subsequent research, provide reliable reference and basis. Keywords: Robot mobile platform manipulator simple accurate and quick

《机器人技术及应用》综合习题

《机器人技术及应用》综合 习题 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

《机器人技术及应用》综合习题 一、判断 1.机器人是在科研或工业生产中用来代替人工作的机械装置。(对) 2. 19世纪60年代和20世纪70年代是机器人发展最快、最好的时期,这期间的各项研究发明有效地推动了机器人技术的发展和推广。(错) 3. 对于机器人如何分类,国际上没有制定统一的标准,有的按负载量分,有的按控制方式分,有的按自由度分,有的按结构分,有的按应用领域分。(对) 4. 所谓特种机器人就是面向工业领域的多关节机械手或多自由度机器人。(错) 5. 机器人机械本体结构的动作是依靠关节机器人的关节驱动,而大多数机器人是基于开环控制原理进行的。(错) 6. 机器人各关节伺服驱动的指令值由主计算机计算后,在各采样周期给出,由主计算机根据示教点参考坐标的空间位置、方位及速度,通过运动学逆运算把数据转变为关节的指令值。(对) 7. 为了与周边系统及相应操作进行联系与应答,机器人还应有各种通信接口和人机通信装置。(对) 8. 轮式机器人对于沟壑、台阶等障碍的通过能力较高。(错) 9. 为提高轮式移动机器人的移动能力,研究者设计出了可实现原地转的全向轮。(对) 10. 履带式机器人是在轮式机器人的基础上发展起来的,是一类具有良好越障能力的移动机构,对于野外环境中的复杂地形具有很强的适应能力。(对) 11. 腿式(也称步行或者足式)机构的研究最早可以追溯到中国春秋时期鲁班设计的木车马。(对) 12. 机器人定义的标准是统一的,不同国家、不同领域的学者给出的机器人定义都是相同的。(错) 13. 球形机器人是一种具有球形或近似球形的外壳,通过其内部的驱动装置实现整体滚动的特殊移动机器人。(对) 14. 可编程机器人可以根据操作员所编的程序,完成一些简单的重复性操作,目前在工业界已不再应用。(错) 15. 感知机器人,即自适应机器人,它是在第一代机器人的基础上发展起来的,具有不同程度的“感知”能力。(对) 16. 第三阶段机器人将具有识别、推理、规划和学习等智能机制,它可以把感知和行动智能化结合起来,称之为智能机器人。(对) 17. 工业机器人的最早研究可追溯到第一次大战后不久。(错) 18. 20世纪50年代中期,机械手中的液压装置被机械耦合所取代,如通用电气公司的“巧手人”机器人。(错)

移动机器人定位系统设计方案

移动机器人定位--传感器和技术 摘要 确切的了解车辆的位置是移动机器人应用的一个基本问题。在寻找解决方案时,研究人员和工程师们已经开发出不同的移动机器人定位系统、传感器以及技术。本文综述了移动机器人定位相关技术,总结了七种定位系统:1.里程法;2.惯性导航;3.磁罗盘;4.主动引导; 5.全球定位系统; 6.地标式导航和 7.模型匹配。讨论了各自的特点,并给出了现有技术的例子。 移动机器人导航技术正在蓬勃发展,正在开发更多的系统和概念。因为这个原因,本文给出的各种例子只代表各自的种类,不表示作者的倾向。在文献上可以发现许多巧妙的方法,只是限于篇幅,本文不能引用。 1。介绍 摘要概述了该技术在传感器、系统、方法和技术的目标,就是在一个移动机器人的工作环境中被找到。在测量文献中讨论这个问题,很明显,不同方法的基准比较是困难的,因为缺乏公认的测试标准和规的比较。使用的研究平台大不相同,用于不同的方法的关键假设也大不相同。再进一步,困难源自事实上不同的系统是处在其发展的不同阶段。例如,一个系统已经可以商业化;而另一个系统,也许有更好的性能,却只能实验室条件下作有限的测试。正是由于这些原因,我们一般避免比较甚至判断不同系统或技术的表现。在这篇文章里,我们也不考虑自动引导车(AGV)。AGV使用磁带、地下的引导线、或地面上的彩色条纹在作引导。这些小车不能自由设计路径,不能改变自己的道路,那样它们无法响应外部传感器输入(如避障)。然而,感兴趣的读者可能会在[Everett, 1995]找到AGV引导技术调查。 也许最重要的移动机器人定位文献的阅读结果,正是到目前为止,并没有真正完美的解决问题的方案。许多局部的解决办法大致分为两组:绝对的和相对的位置测量。因为缺乏一种完善的方法,开发移动机器人通常结合两种方法,从每个小组选一个方法。这些方法可以进一步分为以下七类: I:相对位置的测量(也称为Dead-reckoning) 1。里程法 2。惯性导航 II:绝对位置测量(基于参考的系统) 3。磁罗盘 4。主动发射引导 5。全球定位系统 6。地标式导航 7。模型匹配

一种全向移动机器人的实现

一种全向移动机器人 的实现 --------------------------------------------------------------------------作者: _____________ --------------------------------------------------------------------------日期: _____________

机械电子学 学院:机电工程学院 专业:机械设计及理论 班级:研1501 学号: 姓名:鹿昆磊 指导教师:李启光 日期: 2016年5月13日 一种全向移动机器人的设计

摘要:轮式机器人作为移动机器人中的重要分支之一,由于其承载能力强、定位精度高、能源利用率高、控制简单等优点,长久以来一直受到国内外研究人员的关注。移动机器人的研宄涉及到控制理论、计算机技术和传感器技术等多门学科。因此,对轮式移动机器人进行研宄具有一定的意义。本文对四轮独立驱动和转向移动机器人的机械结构设计、运动学以及控制程序设计进行了分析研宄。 关键词:移动机器人;四轮独立驱动和转向; As one of the important branch of mobile robotics, wheel mobile robot has long been paid attention to by the research people at home and abroad for its high load ability, positioning accuracy, high efficiency, simple control, etc. Mobile robot has close relation to many technologies such as control theory, computer technology, sensor technology, etc. Therefore, research on the mobile robot has important significance. KEYWORDS: Mobile Robot; Four Wheel Drive and Steering; 0 前言 机器人技术的发展对人类社会产生了深渊的影响。首先,机器人被使用在那控需要重复劳动的场合,它不仅能够很好的胜任人类的工作,还可以更有效、快捷地完成工作任务。其次,在一些危险、有毒等场合,机器人也被用来代替人类去完成相应的工作。最后,机器人被运用在那些人类暂时无法到达的地方,例如深海、空间狭窄等地方。 陆地移动机器人大致分为轮式移动机器人、腿式移动机器人、履带式移动机器人、跳跃式移动机器人等几种。其中轮式移动机器人以其承载能力强、驱动和控制简单、移动方便、定位精准、能源利用率高、现有研宄成果较多等良好的表现更受科研人员热捧,许多科研人员纷纷加入其中作进一步研究、探索。 本文使用45度麦克纳姆轮,四轮独立驱动形式工作,在平面内可以实现3自由度运动,它非常适合工作在空间狭窄、有限、对机器人的机动性要求高的场合中[1]。 1 工作原理 单独的麦克纳姆轮无法实现全方位移动,需要多个( 至少4个) 才能组成全方位移动平台。因此,有必要对全方位移动平进行运动学分析,以便为全方位移动平台控制算法提供理论依据。 图1是一种麦克纳姆轮,典型的采用4个麦克纳姆轮的全方位移动平台如图2所示,图中车轮斜线表示轮缘与地面接触辊子的偏置角度,滚子可以实现2自由度的运动,一个是绕车轴旋转的运动和一个绕滚子轴向的旋转运动。 以移动平台中心O点为原点建立 全局坐标系, 相对地面静止; 是车轮 i中心。在平面上,全方位移动平台具有 3 个自由度,其中心点O 速度车轮绕轮轴转动的角速度是,车轮中心的速度是,辊子速度是。 图1 麦克纳姆轮

轮式移动机器人结构设计开题报告

毕业设计(论文)开题报告 题目轮式移动机器人的结构设计 专业名称机械设计制造及其自动化 班级学号 学生姓名 指导教师 填表日期2011 年 3 月 1 日

一、毕业设计(论文)依据及研究意义: 随着机器人技术在外星探索、野外考察、军事、安全等全新的领域得到日益广泛的采用,机器人技术由室内走向室外,由固定、人工的环境走向移动、非人工的环境。移动机器人已经成为机器人研究领域的一个重要分支。在军事、危险操作和服务业等许多场合得到应用,需要机器人以无线方式实时接受控制命令,以期望的速度、方向和轨迹灵活自如地移动。其中轮式机器人由于具有机构简单、活动灵活等特点尤为受到青睐。按照移动特性又可将移动机器人分为非全方位和全方位两种。而轮式移动机构的类型也很多,对于一般的轮式移动机构,都不能进行任意的定位和定向,而全方位移动机构则可以利用车轮所具有的定位和定向功能,实现可在二维平面上从当前位置向任意方向运动而不需要车体改变姿态,在某些场合有明显的优越性;如在较狭窄或拥挤的场所工作时,全方位移动机构因其回转半径为零而可以灵活自由地穿行。另外,在许多需要精确定位和高精度轨迹跟踪的时候,全方位移动机构可以对自己的位置进行细微的调整。由于全方位轮移动机构具有一般轮式移动机构无法取代的独特特性,对于研究移动机器人的自由行走具有重要意义,成为机器人移动机构的发展趋势。基于以上所述,本文从普遍应用出发,设计一种带有机械手臂的全方位运动机器人平台,该平台能够沿任何方向运动,运动灵活,机械手臂使之能够执行预定的操作。本文是机器人设计的基本环节,能够为后续关于机器人的研究提供有价值的平台参考和有用的思路。 二、国内外研究概况及发展趋势 2.1 国外全方位移动机器人的研究现状 国外很多研究机构开展了全方位移动机器人的研制工作,在车轮设计制造,机器人上轮子的配置方案,以及机器人的运动学分析等方面,进行了广泛的研究,形成了许多具有不同特色的移动机器人产品。这方面日本、美国和德国处于领先地位。八十年代初期,美国在DARPA的支持下,卡内基·梅隆大学(Carnegie Mellon university,CUM)、斯坦福(Stanford)和麻省理工(Massachusetts Institute of Technology,MIT)等院校开展了自主移动车辆的研究,NASA下属的Jet Propulsion Laboratery(JPL)也开展了这方面的研究。CMU机器人研究所研制的Navlab-1和Navlab-5系列机器人代表了室外移动机器人的发展方向。德国联邦国防大学和奔驰公司于二十世纪九十年代研制成VaMoRs-P移动机器人。其车体采用奔驰500轿车。传感器系统包括:4个小型彩色CCD摄像机,构成两 组主动式双目视觉系统;3个惯性线性加速度计和角度变化传感器。SONY公司1999年推

移动机器人定位与地图创建(SLAM)方法

自主移动机器人同时定位与地图创建(SLAM)方法1.引言: 机器人的研究越来越多的得到关注和投入,随着计算机技术和人工智能的发展,智能自主移动机器人成为机器人领域的一个重要研究方向和研究热点。移动机器人的定位和地图创建是自主移动机器人领域的热点研究问题。对于已知环境中的机器人自主定位和已知机器人位置的地图创建已经有了一些实用的解决方法。然而在很多环境中机器人不能利用全局定位系统进行定位,而且事先获取机器人工作环境的地图很困难,甚至是不可能的。这时机器人需要在自身位置不确定的条件下,在完全未知环境中创建地图,同时利用地图进行自主定位和导航。这就是移动机器人的同时定位与地图创建(SLAM) 问题,最先是由SmithSelf 和Cheeseman在1988年提出来的,被认为是实现真正全自主移动机器人的关键。SLAM问题可以描述为:机器人在未知环境中从一个未知位置开始移动,在移动过程中根据位置估计和传感器数据进行自身定位,同时建造增量式地图。在SLAM中,机器人利用自身携带的传感器识别未知环境中的特征标志,然后根据机器人与特征标志之间的相对位置和里程计的读数估计机器人和特征标志的全 局坐标。这种在线的定位与地图创建需要保持机器人与特征标志之间的详细信息。近几年来,SLAM的研究取得了很大的进展,并已应用于各种不同的环境,如:室内环境、水下、室外环境。 2.SLAM的关键性问题 2.1地图的表示方式 目前各国研究者已经提出了多种表示法,大致可分为三类:栅格表示、几何信息表示和拓扑图表示,每种方法都有自己的优缺点。

栅格地图表示法即将整个环境分为若干相同大小的栅格,对于每个栅格各指出其中是否存在障碍物。这种方法最早由Elfes和Moravec提出,而后Elfes进行了进一步的研究。它的优点在于创建和维护容易,尽量的保留了整个环境的各种信息,同时借助于该地图,可以方便地进行自定位和路径规划。缺点在于:当栅格数量增大时(在大规模环境或对环境划分比较详细时),对地图的维护行为将变得困难,同时定位过程中搜索空间很大,如果没有较好的简化算法,实现实时应用比较困难。 几何信息地图表示法是指机器人收集对环境的感知信息,从中提取更为抽象的几何特征,例如线段或曲线,使用这些几何信息描述环境。该方法更为紧凑,且便于位置估计和目标识别。几何方法利用卡尔曼滤波在局部区域内可获得较高精度,且计算量小,但在广域环境中却难以维持精确的坐标信息。但几何信息的提取需要对感知信息作额外处理,且需要一定数量的感知数据才能得到结果。 拓扑地图抽象度高,特别在环境大而简单时。这种方法将环境表示为一张拓扑意义中的图(graph),图中的节点对应于环境中的一个特征状态、地点。如果节点间存在直接连接的路径则相当于图中连接节点的弧。其优点是: (1)有利于进一步的路径和任务规划, (2)存储和搜索空间都比较小,计算效率高, (3)可以使用很多现有成熟、高效的搜索和推理算法。 缺点在于对拓扑图的使用是建立在对拓扑节点的识别匹配基础上的,如当环境中存在两个很相似的地方时,拓扑图方法将很难确定这是否为同一点。 2.2不确定信息的描述

机器人技术及应用综合习题

《机器人技术及应用》综合习题 一、判断 1.机器人是在科研或工业生产中用来代替人工作的机械装置。(对) 2. 19世纪60年代和20世纪70年代是机器人发展最快、最好的时期,这期间的各项研究发明有效地推动了机器人技术的发展和推广。(错) 3. 对于机器人如何分类,国际上没有制定统一的标准,有的按负载量分,有的按控制方式分,有的按自由度分,有的按结构分,有的按应用领域分。(对) 4. 所谓特种机器人就是面向工业领域的多关节机械手或多自由度机器人。(错) 5. 机器人机械本体结构的动作是依靠关节机器人的关节驱动,而大多数机器人是基于开环控制原理进行的。(错) 6. 机器人各关节伺服驱动的指令值由主计算机计算后,在各采样周期给出,由主计算机根据示教点参考坐标的空间位置、方位及速度,通过运动学逆运算把数据转变为关节的指令值。(对) 7. 为了与周边系统及相应操作进行联系与应答,机器人还应有各种通信接口和人机通信装置。(对) 8. 轮式机器人对于沟壑、台阶等障碍的通过能力较高。(错) 9. 为提高轮式移动机器人的移动能力,研究者设计出了可实现原地转的全向轮。(对) 10. 履带式机器人是在轮式机器人的基础上发展起来的,是一类具有良好越障能力的移动机构,对于野外环境中的复杂地形具有很强的适应能力。(对) 11. 腿式(也称步行或者足式)机构的研究最早可以追溯到中国春秋时期鲁班设计的木车马。(对) 12. 机器人定义的标准是统一的,不同国家、不同领域的学者给出的机器人定义都是相同的。(错) 13. 球形机器人是一种具有球形或近似球形的外壳,通过其内部的驱动装置实现整体滚动的特殊移动机器人。(对) 14. 可编程机器人可以根据操作员所编的程序,完成一些简单的重复性操作,目前在工业界已不再应用。(错) 15. 感知机器人,即自适应机器人,它是在第一代机器人的基础上发展起来的,具有不同程度的“感知”能力。(对) 16. 第三阶段机器人将具有识别、推理、规划和学习等智能机制,它可以把感知和行动智能化结合起来,称之为智能机器人。(对) 17. 工业机器人的最早研究可追溯到第一次大战后不久。(错) 18. 20世纪50年代中期,机械手中的液压装置被机械耦合所取代,如通用电气公司的“巧手人”机器人。(错) 19. 一般认为Unimate和Versatran机器人是世界上最早的工业机器人。(对) 20. 1979年Unimation公司推出了PUMA系列工业机器人,它是全电动驱动、关节式结构、多中央处理器二级微机控制,可配置视觉感受器、具有触觉的力感受器,是技术较为先进的机器人。(对) 1. 刚体的自由度是指刚体具有独立运动的数目。(对) 2. 机构自由度只取决于活动的构件数目。(错) 3. 活动构件的自由度总数减去运动副引入的约束总数就是该机构的自由度。(对) 4. 机器人运动方程的正运动学是给定机器人几何参数和关节变量,求末端执行器相对于参考坐标系的位置和姿态。(对) 5. 机器人运动方程的逆运动学是给定机器人连杆几何参数和末端执行器相对于参考坐标系的位姿,求机器人实现此位姿的关节变量。(对) 6. 机械臂是由一系列通过关节连接起来的连杆构成。(对) 7. 对于机械臂的设计方法主要包括为2点,即机构部分的设计和内部传感器与外部传感器的设计。(错) 8. 球面坐标型机械臂主要由一个旋转关节和一个移动关节构成,旋转关节与基座相连,移动关节与末端执行器连接。(对) 9. 为提高轮式移动机器人的移动能力,研究者设计出了可实现原地转的全向轮。(对) 10. 履带式机器人是在轮式机器人的基础上发展起来的,是一类具有良好越障能力的移动机构,对于野外环境中的复杂地形具有很强的适应能力。(对) 11. 腿式(也称步行或者足式)机构的研究最早可以追溯到中国春秋时期鲁班设计的木车马。(对) 12. 刚体在空间中只有4个独立运动。(错) 13. 球形机器人是一种具有球形或近似球形的外壳,通过其内部的驱动装置实现整体滚动的特殊移动机器人。(对) 14. 在机构中,每一构件都以一定的方式与其他构件相互连接,这种由两个构件直接接触的可动连接称为运动副。(错) 15. 运动副可以根据其引入约束的数目进行分类,引入一个约束的运动副称为二级副。(错) 16.通过面接触而构成的运动副,称为低副;通过点或线接触而构成的运动副称为高副。(对) 17. 两个构件之间只做相对转动的运动副称为移动副。(错) 18. 构成运动副的两个构件之间的相对运动若是平面运动则称为平面运动副,若为空间运动则称为空间运动副。(对) 19. 在平面机构中,每个构件只有3个自由度。每个平面低副(转动副和移动副)提供1个约束,每个平面高副提供2

轮式移动机器人结构设计开题报告

一、毕业设计(论文)依据及研究意义: 随着机器人技术在外星探索、野外考察、军事、安全等全新的领域得到日益广泛的采用,机器人技术由室内走向室外,由固定、人工的环境走向移动、非人工的环境。移动机器人已经成为机器人研究领域的一个重要分支。在军事、危险操作和服务业等许多场合得到应用,需要机器人以无线方式实时接受控制命令,以期望的速度、方向和轨迹灵活自如地移动。其中轮式机器人由于具有机构简单、活动灵活等特点尤为受到青睐。按照移动特性又可将移动机器人分为非全方位和全方位两种。而轮式移动机构的类型也很多,对于一般的轮式移动机构,都不能进行任意的定位和定向,而全方位移动机构则可以利用车轮所具有的定位和定向功能,实现可在二维平面上从当前位置向任意方向运动而不需要车体改变姿态,在某些场合有明显的优越性;如在较狭窄或拥挤的场所工作时,全方位移动机构因其回转半径为零而可以灵活自由地穿行。另外,在许多需要精确定位和高精度轨迹跟踪的时候,全方位移动机构可以对自己的位置进行细微的调整。由于全方位轮移动机构具有一般轮式移动机构无法取代的独特特性,对于研究移动机器人的自由行走具有重要意义,成为机器人移动机构的发展趋势。基于以上所述,本文从普遍应用出发,设计一种带有机械手臂的全方位运动机器人平台,该平台能够沿任何方向运动,运动灵活,机械手臂使之能够执行预定的操作。本文是机器人设计的基本环节,能够为后续关于机器人的研究提供有价值的平台参考和有用的思路。 二、国内外研究概况及发展趋势 2.1 国外全方位移动机器人的研究现状 国外很多研究机构开展了全方位移动机器人的研制工作,在车轮设计制造,机器人上轮子的配置方案,以及机器人的运动学分析等方面,进行了广泛的研究,形成了许多具有不同特色的移动机器人产品。这方面日本、美国和德国处于领先地位。八十年代初期,美国在DARPA的支持下,卡内基·梅隆大学(Carnegie Mellon university,CUM)、斯坦福(Stanford)和麻省理工(Massachusetts Institute of Technology,MIT)等院校开展了自主移动车辆的研究,NASA下属的Jet Propulsion Laboratery(JPL)也开展了这方面的研究。CMU机器人研究所研制的Navlab-1和Navlab-5系列机器人代表了室外移动机器人的发展方向。德国联邦国防大学和奔驰公司于二十世纪九十年代研制成VaMoRs-P移动机器人。其车体采用奔驰500轿车。传感器系统包括:4个小型彩色CCD摄像机,构成两 组主动式双目视觉系统;3个惯性线性加速度计和角度变化传感器。SONY公司1999年推

工业机器人技术与应用试卷A

《工业机器人技术与应用》试卷(A ) 一、填空(每空1分,共30分) 1.按照机器人的技术发展水平,可以将工业机器人分为三代 ___ _ ___ 机器 人、 ____ __ _ 机器人和 ___ ____ 机器人。 2.机器人行业所说的四巨头是__________ 、 __________ 、 __________ 、__________。 3.机器人常用的驱动方式主要有_____ _ ____、 ____ __和______ ____ 三种基本类型。 4.一般来说,机器人运动轴按其功能可划分为 __ ____ 、 _ 和工装轴,________ 和工装轴统称 _______。 5.从结构形式上看,搬运机器人可分为 __________ 、 __________ 、 __________ 、 __________ 和关节式搬运机器人。 6.码垛机器人工作站按进出物料方式可分为 __ ___ 、 _____ __ 、___ __ __ 和四进四出等形式。 7.装配机器人常见的末端执行器主要有__ ___ 、 _____ __ 、___ __ __ 和 。 8.弧焊系统是完成弧焊作业的核心装备,主要由 、送丝机、 和气瓶等组成。 9.目前工业生产应用中较为普遍的涂装机器人按照手腕构型分主要有两种: 涂装机器人和 涂装机器人,其中 手腕机器人更适合用于涂装作业。 二、判断(每题2分,共20分) ( )1.涂装机器人的工具中心点( TCP )通常设在喷枪的末端中心处。 ( )2.一个完整的点焊机器人系统由操作机、控制系统和点焊焊接系统几部分组 成。 ( )3. 工业机器人是一种能自动控制,可重复编程,多功能、多自由度的操作机。 ( )4.工业机器人的腕部传动多采用 RV 减速器,臂部则采用谐波减速器。 ( )5.在直角坐标系下,机器人各轴可实现单独正向或反向运动。 ( )6.当机器人发生故障需要进入安全围栏进行维修时,需要在安全围栏外配备 安全监督人员以便在机器人异常运转时能够迅速按下紧急停止按钮。 ( )7.示教时,为爱护示教器,最好戴上手套。 ( )8.机器人示教时,对于有规律的轨迹,原则上仅需示教几个关键点。 ( )9.离线编程是工业机器人目前普遍采用的编程方式。 ( )10.根据车间场地面积,在有利于提高生产节拍的前提下,搬运机器 人工作站可采用 L 型、环状、“品”字、“一”字等布局。 三、选择(每题2分,共20分) 1.通常所说的焊接机器人主要指的是( )。 ①点焊机器人;②弧焊机器人;③等离子焊接机器人;④激光焊接机器人 A. ①② B. ①②④ C. ①③ D. ①②③④ 2.工业机器人一般具有的基本特征是( )。 ①拟人性;②特定的机械机构;③不同程度的智能;④独立性;⑤通用性 A. ①②③④ B. ①②③⑤ C. ①③④⑤ D. ②③④⑤ 3.按基本动作机构,工业机器人通常可分为( )。 ①直角坐标机器人;②柱面坐标机器人;③球面坐标机器人;④关节型机器人 A. ①② B. ①②③ C. ①③ D. ①②③④ 4.操作机是工业机器人的机械主体,是用于完成各种作业的执行机构。它主要哪由几部分组成( ) ①机械臂;②驱动装置;③传动单元;④内部传感器 A. ①② B. ①②③ C. ①③ D. ①②③④ 5.工业机器人常见的坐标系有( )。 ①关节坐标系;②直角坐标系;③工具坐标系;④用户坐标系 A. ①② B. ①②③ C. ①③④ D. ①②③④ 6.对工业机器人进行作业编程,主要内容包含( )。 ①运动轨迹;②作业条件;③作业顺序;④插补方式 A. ①② B. ①②③ C. ①③ D. ①②③④ 7.依据压力差不同,可将气吸附分为( )。 ①真空吸盘吸附 ②气流负压气吸附 ③挤压排气负压气吸附 A. ①② B. ①③ C. ②③ D. ①②③ 8.搬运机器人作业编程主要是完成( )的示教。 ①运动轨迹 ②作业条件 ③作业顺序 A. ①② B. ①③ C. ②③ D. ①②③ 9.涂装条件的设定一般包括( )。 ①涂装流量;②雾化气压;③喷幅(调扇幅)气压;④静电电压;⑤颜色设置表 A. ①②⑤ B. ①②③⑤ C. ①③ D. ①②③④⑤ 班级 姓名 学号 ---------------------------------------------密-------------------------------------封---------------------------------线----------------------------------------- -封

基于 ROS 平台的移动机器人的设计与运动仿真

基于ROS 平台的移动机器人的设计与运动仿真摘要:ROS 究竟是如何工作的呢?ROS 中每一套算法是独立的一个包,包与包之间的数据交换主要采用TCP/IP 协议(对用户隐藏,用户需要发布或订阅主题以提供或取得数据),采用这种形式是由于ROS 的算法包是由全世界不同的个人,学校或实验室贡献的,这样做可以降低耦合性,如果一个node 崩溃不会影响到其他。基于ROS 这个平台,有助于提高开发设计的效率及降低成本。本论文主要阐述了基于ROS 平台移动机器人设计的基本原理和方法,并对移动机器人进行了运动仿真,得到其运动轨迹和控制方法,为后续项目的进一步研究打下了一定的基础。 0引言 ROS 被称为机器人操作系统,其实ROS 充当的是通信中间件的角色,即在已有操作系统的基础上搭建了一整套针对机器人系统的实现框架。ROS 还提供一组实用工具和软件库,用于维护、构建、编写和执行可用于多个计算平台的软件代码。 值得一提的是,ROS 的设计者考虑到各开发者使用的开发语言不同,因此ROS 的开发语言独立,支持C++,Python 等多种开发语言。因此,除了官方提供的功能包之外,ROS 还聚合了全世界开发者实现的大量开源功能包,如思岚科技(SLAMTEC)就发布了针对其 自主研发的激光雷达RPLIDAR 的ROS 功能包rplidar_ros。这些开源功能包与ROS 一起构成了强大的开源生态环境。 ROS 的系统结构设计也颇有特色,ROS 运行时是由多个松耦合的进程组成,每个进程ROS 称之为节点(Node),所有节点可以运行在一个处理器上,也可以分布式运行在多个处理器上。在实际使用时,这种松耦合的结构设计可以让开发者根据机器人所需功能灵活添加各个功能模块。 1理论分析 1.1控制电机转动 电机的控制我们分为两部分,一部分为电机转动方向的控制,另一个为电机转速的控制。电机转动的方向我们用两个MCU 引脚来控制,假如PIN_A=1,PIN_B=0 时,电机正转; PIN_A=0,PIN_B=1 时,电机反转;PIN_A=0,PIN_B=0 时,电机停止。电机速度的控制则需要一个PWM 输出引脚,我们通过控制输出不同的PWM 值来控制电机转动的速度。

六自由度机器人结构设计

六自由度机器人结构设计、 运动学分析及仿真 学科:机电一体化 姓名:袁杰 指导老师:鹿毅 答辩日期: 2012.6 摘要 近二十年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获 得应用。我国在机器人的研究和应用方面与工业化国家相比还有一定的差距,因此 研究和设计各种用途的机器人特别是工业机器人、推广机器人的应用是有现实意义 的。 典型的工业机器人例如焊接机器人、喷漆机器人、装配机器人等大多是固定在 生产线或加工设备旁边作业的,本论文作者在参考大量文献资料的基础上,结合项 目的要求,设计了一种小型的、固定在AGV 上以实现移动的六自由度串联机器人。 首先,作者针对机器人的设计要求提出了多个方案,对其进行分析比较,选择

其中最优的方案进行了结构设计;同时进行了运动学分析,用D-H 方法建立了坐标变换矩阵,推算了运动方程的正、逆解;用矢量积法推导了速度雅可比矩阵,并计算了包括腕点在内的一些点的位移和速度;然后借助坐标变换矩阵进行工作空间分析,作出了实际工作空间的轴剖面。这些工作为移动式机器人的结构设计、动力学分析和运动控制提供了依据。最后用ADAMS 软件进行了机器人手臂的运动学仿真,并对其结果进行了分析,对在机械设计中使用虚拟样机技术做了尝试,积累了 经验。 第1 章绪论 1.1 我国机器人研究现状 机器人是一种能够进行编程,并在自动控制下执行某种操作或移动 作业任务的机械装置。 机器人技术综合了机械工程、电子工程、计算机技术、自动控制及 人工智能等多种科学的最新研究成果,是机电一体化技术的典型代表,是当代科技发展最活跃的领域。机器人的研究、制造和应用正受到越来越多的国家的重视。近十几年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获得应用。 我国是从 20 世纪80 年代开始涉足机器人领域的研究和应用的。1986年,我国开展了“七五”机器人攻关计划。1987 年,我国的“863”计划将机器人方面的研究列入其中。目前,我国从事机器人的应用开发的主要是高校和有关科研院所。最初我国在机器人技术方面的主要

机器人技术及其应用结课论文

大学 机 器 人 技 术 及 应 用 结 课 论 文

智能引领未来 摘要: 智能引领未来,机器人能力将远胜人类,这不是梦想;未来的机器人也能自主的学习和思考,工作能力将远远超过人类,能承担大量人类所不能及的工作,进一步推动智能科学的发展,促进社会的进步,促进经济的高速增长,而实现智能化必须依靠强有力的硬件系统,就机器人而言,其身上集成了多种处理器、存储器与大量的传感器,设想,当这些器件不断地走向高端化、微型化、进一步集成化,那么机器人的处理速度将进一步提高,质量与体积将大大减小,机器人将越来越”聪明“。 关键词: 机器人、智能、硬件系统、高端化、集成化、微型化、聪明。 引言: 现在的机器人与人类比较起来,机器人不能自主学习与自主思考,缺乏情感,必须需要接收人的命令才能执行相关命令,或者事先就把各种命令存储到机器人的大脑中,有需要的时候就执行命令。随着集成电路的飞速发展,处理器、存储器、传感器等电子元件的高端化、微型化、集成化,机器人的处理速度将大大提高,质量与体积将大大减轻,机器人会变得越来越”聪明“。 集成电路前景优越 芯片即集成电路产业是国民经济和社会发展的战略性、基础性、先导性产业,在计算机、消费类电子、网络通信、汽车电子等几大领域起着关键作用,是全球主要国家或地区抢占的战略制高点,尤其是发达国家在这一领域投入了大量创新资源,竞争日趋激烈。 随着技术的不断进步,新的元件结构和材料上的变革都将对机器人的发展战略起到决定作用。在晶圆代工产业,14nm/16nm的FinFET器件已取得了一定的发展。拥有较低泄漏率和更高速度的低功率晶体管备受瞩目。3DNAND使平面NAND 降到20nm以下,创造出外形更小巧、位密度更高的产品。 为了改进3D设备的性能,未来的逻辑芯片和晶圆代工设备的解决方案需要采用选择性外延与高k金属栅电极材料加工工艺,以提高晶体管的速度,降低泄漏率。低功耗、高性能的晶体管则能丰富移动设备的功能,同时延长电池寿命, 3DNAND需要HAR蚀刻、阶梯绘图、多层堆叠沉积和高选择性硬模等技术的支持,从而在小巧的外形空间内实现高密度存储,这对智能化设备,如对机器人来说简直就是如虎添翼啊! 随着LED产业发展越来越趋于健康和理性,LED领域设备需求也更多来自于新工艺、新技术的驱动,而非简单生产规模的扩张,比如倒装芯片与高压芯片被认为是目前最具有发展前景的LED芯片技术,而这两种技术也带动了深槽刻蚀设备和金属反射层镀膜设备等新设备、新工艺的需求。除此之外,还有AlN镀膜设备、高亮度红黄光芯片刻蚀设备等设备的需求。 集成电路引导未来生活 一张0.5毫米厚的世博会门票,其“真实面目”是个集成电路产品。门票里装了RFID芯片,当门票靠近读卡机时,门票上的线圈会感应出电流,电流便驱

工业机器人技术与应用》试卷a

《工业机器人技术与应用》试卷 (A ) 一、填空(每空1分,共30分) 1.按照机器人的技术发展水平,可以将工业机器人分为三代 ___ _ ___ 机器 人、 ____ __ _ 机器人和 ___ ____ 机器人。 2.机器人行业所说的四巨头是__________ 、 __________ 、 __________ 、__________。 3.机器人常用的驱动方式主要有_____ _ ____、 ____ __和______ ____ 三种基本类型。 4.一般来说,机器人运动轴按其功能 可划分为 __ ____ 、 _ 和工装轴,________ 和工装轴统称 _______。 5.从结构形式上看,搬运机器人可分为 __________ 、 __________ 、 __________ 、 __________ 和关节式搬运机器人。 6.码垛机器人工作站按进出物料方式可 分为 __ ___ 、 _____ __ 、___ __ __ 和四进四出等形 式。 7.装配机器人常见的末端执行器主要有__ ___ 、 _____ __ 、___ __ __ 和 。 8.弧焊系统是完成弧焊作业的核心装 备,主要由 、送丝机、 和气瓶等组成。 9.目前工业生产应用中较为普遍的涂装 机器人按照手腕构型分主要有两种: 涂 装 机 器 人 和 涂装机器人,其中 手腕机器人更适合用于涂装作业。 二、判断(每题2分,共20分) ( )1.涂装机器人的工具中心点 ( TCP )通常设在喷枪的末端中心处。 ( )2.一个完整的点焊机器人系统 由操作机、控制系统和点焊焊接系统几部分组成。 ( )3. 工业机器人是一种能自动控制,可重复编程,多功能、多自由度的操作机。 ( )4.工业机器人的腕部传动多采 用 RV 减速器,臂部则采用谐波减速器。 班级 姓名 学号

四足仿生移动机器人结构设计

毕业设计说明书 作者:学号: 系:机械工程学院 专业:机械设计制造及其自动化 题目:四足仿生移动机器人结构设计 指导者:副教授 评阅者:

目次 1 概述 ................................................ 错误!未定义书签。 1.1 绪论........................................... 错误!未定义书签。 1.2 国内外研究现状及关键技术....................... 错误!未定义书签。 1.3 本课题主要研究内容............................. 错误!未定义书签。 2 四足仿生移动机器人的结构设计原则及要求 ............... 错误!未定义书签。 2.1 四足仿生移动机器人的总体方案确定............... 错误!未定义书签。 2.2 机器人机械结构及传动设计....................... 错误!未定义书签。 3 电机的确定 .......................................... 错误!未定义书签。 3.1 各关节最大负载转矩计算......................... 错误!未定义书签。 3.2 机器人驱动方案的对比分析及选择................. 错误!未定义书签。 3.3 驱动电机的选择................................. 错误!未定义书签。 4. 带传动设计 .......................................... 错误!未定义书签。 4.1 各参数设计及计算............................... 错误!未定义书签。 4.2 带型选择及带轮设计............................. 错误!未定义书签。5工作装置的强度校核.................................... 错误!未定义书签。 5.1 轴的强度校核................................... 错误!未定义书签。 5.2 轴承的选型..................................... 错误!未定义书签。结论 ................................................. 错误!未定义书签。参考文献 ............................................ 错误!未定义书签。致谢 ................................................. 错误!未定义书签。

相关主题