搜档网
当前位置:搜档网 › 硅基材料改性聚氨酯的概述

硅基材料改性聚氨酯的概述

硅基材料改性聚氨酯的概述
硅基材料改性聚氨酯的概述

四川大学

创新实验论文

论文题目:硅基材料改性聚氨酯皮革涂饰剂概述

专业:轻化工程

年级:2009级

学生姓名:黄凯

学号:0943092070

指导教师:李正军

硅基材料改性聚氨酯皮革涂饰剂概述

黄凯* 指导教师:李正军

*(四川大学轻纺与食品学院09级制革2班)

摘要:以皮革涂饰用聚氨酯为对象,综述了有机硅和纳米材料改性聚氨酯的方法及性能,

并详细阐述了其应用情况。

关键词:纳米材料;有机硅;涂饰;改性;应用

A Review on Polyurethane Modified with Silica Based Materials

HUANG Kai* the mentor: LI Zheng-jun

(*College of Light Industry and Food,Sichuan university,610065,China)

Abstract:Basing on polyurethane in leather finishing, summarizes the

Nano-materials and properties of Organosilicone - modified PU,and the polyurethane’s application was introduced.

Key words:Nano-materials, Organosilicone, finishing, modification, application

1引言

聚氨酯又称为聚氨基甲酸酯, 是一种新型的具有独特性能和多方面用途的高分子聚合物。它由二元或多元异氰酸酯与二元或多元醇化合物作用而成,并以其光亮、丰满、耐磨耗,成膜性能好、富有弹性、耐低温、耐曲挠、手感好等优点, 位于四大皮革涂饰成膜材料(酪素、丙烯酸、硝化纤维、聚氨酯)之首。但是,溶剂型聚氨酯虽性能稳定,但其中含有机溶剂易燃、易爆、有毒、污染环境、成本高。水性聚氨酯无毒,节能、成本低、无污染,但物理性能不及溶剂型聚氨酯,同时因为引入了亲水性离子基团,致使其涂饰的皮革耐水性较差,因而同样需要多种材料对其进行内交联或者外交联改性,以满足人们皮革材料日益严格的物理化学性能需求。目前,纳米材料和有机硅是改性聚氨酯的热门材料,它们对聚氨酯的交联改性,克服了单一高分子材料性能缺陷,促进了皮革涂饰剂的极大进步。

2纳米材料改性聚氨酯

2.1 改性原理及方法

纳米粒子具有巨大的比表面积和特殊的表面特性, 如表面效应、小尺寸效应、光学效应、量子尺寸效应等特殊性质, 可以使材料获得新的功能。由于目前使用的水性聚氨酯涂层材料普遍固含量较低, 丰满度、硬度、耐磨性、耐候性、初期强度等很难达到溶剂型涂膜的效果,

而纳米粒子对提高聚合物树脂的耐老化性、耐磨性、耐光性等性能具有特殊效果。一般的纳米粒子采用机械共混法或原位聚合法将无机纳米粒子分散在涂料或树脂中, 制备的纳米树脂或涂料也不能使纳米粒子均匀分散, 容易引起相分离, 对涂料或树脂的性能提高不大。采用有机- 无机杂化技术和分子组装技术, 使部分纳米粒子在水性树脂的合成过程中原位组装在有机树脂主链上, 部分纳米粒子作为交联点形成网状结构, 制备结构可控的纳米改性水性聚氨酯涂层材料。纳米改性水性聚氨酯涂层材料可以将无机纳米粒子的机械强度、硬度、耐磨性、热稳定性和聚氨酯聚合物的弹性及易加工等特点完美结合, 提高涂层的综合性能。

与传统的聚氨酯涂层材料相比, 具有更好的机械性能, 并能显著提高涂层的硬度、耐磨性、热稳定性及耐水性。

2.2 应用实例及改性后的优势

以水性聚氨酯为基体材料, 利用高分子纳米微胶囊化技术实现对无机TiO2 等微粒进行有效的原位包封, 涂膜机械强度、韧性和抗老化性提高, 加工性能改善。将纳米氧化铝(Al2O3 )和纳米氧化铟锡( ITO)加入到水性聚氨酯树脂中, 改善水性聚氨酯涂膜的耐磨性能和隔热性能。纳米硅氧化物的引入, 可以显著改善聚氨酯漆膜表面硬度、热稳定性、耐候性及耐水和耐有机溶剂性。施永建等利用丙烯酸改性水性聚氨酯合成了综合性能优异的水性PUA, 以此为成膜物, 以纳米Al2O3 为填料, 采用共混法制得了耐磨性能优异的纳米Al2O3 复合涂料; 改用纳米ITO 为填料则制得了具有良好隔热性能的纳米复合涂料。纳米CaCO3 改性水性聚氨酯提高涂饰层的耐色变和耐老化性能、提高涂层的遮盖力、提高涂料流平性、柔韧性及涂层光泽、硬度、防静电性能等, 同时可以使涂层具有自洁和杀菌能力.

3 有机硅改性聚氨酯

3.1 改性原理及材料

有机硅材料是分子结构中含有硅元素高分子合成材料,主链是一条Si - O - Si 链交替组成的稳定骨架,有机基团与硅原子相连形成侧基。由于有机硅这种特殊结构和组成,使它具有好的耐热,耐侯,电绝缘性能,阻燃性和憎水性,但也有不足之处,如机械强度、附着力、耐溶剂性能、需要高温烘烤固化等问题。聚氨酯耐高温、热老化性能欠佳,而有机硅具有良好的耐高温、热老化性能,用有机硅改性聚氨酯,在保持有机硅树脂许多原有优良性质基本不变的前提下,可提高有机硅的附着力、耐磨性、耐候性及耐化学药品性,可在常温下干燥。

改性聚氨酯用的有机硅化合物主要是含有羟基封端的羟烃基硅烷或有机硅低聚物,硅烷偶联剂等。其中羟烃基硅烷主要用途之一是制取羟烃基硅油,羟烃基硅油是利用羟烃基的反应活性在合成聚氨酯过程中与原料中所带的官能团( - NCO) 反应,从而将聚硅氧烷链段引入相应的树脂结构中,从而改进后者的耐热性、耐寒性、憎水性及生物相容性等。另外带有活性端基的聚硅氧烷与端异氰酸酯的化合物或预聚体通过加成聚合和扩链反应,可制成有机硅改性聚氨酯。

3.2 合成方法

3.2.1 预聚法

将段异氰酸酯基化合物加入到溶剂中,然后在氮气的保护下加入聚硅氧烷低聚物升温一段时间,调整温度后再加入溶于极性溶剂的扩链剂,保温一段时间,使反应完全。

3.2.2 半凝胶法

将MDI中搅拌下加入预处理的聚酯二醇与双端碳烃基硅油,一定稳定下浆料呈半凝胶状态后,合模,加热,加压,固化。

3.2.3 直接法

将预先制备的聚醚(聚酯)聚氨酯预聚体在一定温度下逐步滴加到有机硅低聚物中,控

制温度使反应完全。

3.3 有机硅改性聚氨酯性能

有机硅改性聚氨酯材料除力学性能优于纯有机硅材料外,还保持了聚硅氧烷的特性。用端羟基聚二甲基硅氧烷与醇解蓖麻油改性聚氨酯预聚体的进行共混改性,在共聚物成膜后,分子结构中的有机硅链段更倾向于表面富集取向,而聚氨酯段朝向内层,这使得共聚物膜的附着力,固化速度等力学性能得到改善,同时有机硅的低的表面能得到保持。

由于有机硅本身具有优异的性能,从而可赋予聚氨酯涂料优异的性能,同时由于相分离使得硅氧烷链段富集再涂膜的表面从而改变了涂膜的性质,提高了涂膜的耐水性和力学性能.

3.4 有机硅改性聚氨酯在皮革中的应用

3.4.1 用作皮革涂饰剂

涂饰层中的成膜材料对成品革的物理性能影响很大,尤其顶层涂饰赋予成品革表面耐水、耐溶剂、耐机械擦伤等性能,对成革的外观起决定性作用。与其它涂饰材料相比,聚氨酯类涂饰材料具有分子结构可调性强、手感好、粘附力强、耐磨、不热粘冷脆等优点,所以近年来,聚氨酯树脂已部分取代丙烯酸树脂乳液,用作皮革涂饰材料。但是水乳型聚氨酯由于在分子链中引入了亲水离子基团,致使其涂饰的皮革耐水性较差。这一缺点可通过内交联或外加交联剂的方法加以改进,但也可通过结合有机硅进行改善。有机硅是一类疏水性、透气性和耐侯性都较好的材料,将它用到水性聚氨酯的合成改性中,涂饰后得到的皮革将具有较好的耐湿擦性,手感也更加滑爽舒适。

如有机硅改性聚氨酯水乳液KAU - S ,是采用羟基硅油、二异氰酸酯、聚醚乙醇、扩链剂、交联剂、溶剂进行溶液共聚,采用成盐剂使KAU - S 成盐乳化。其与聚氨酯乳液涂饰剂KAU 相比,胶膜具有更高的断裂强度和断裂伸长率,耐溶剂性能更好,涂饰在皮革上可获得更高的耐湿擦级数和更加舒适滑爽的手感,可以作为皮革中、顶层涂饰剂使用。

3.4.2 用作皮革封底剂

阳离子型的聚氨酯,决定了其对铬鞣坯革封底涂饰具有阴离子成膜剂无法比拟的优点 :粒纹清晰、真皮感突出、手感特别柔软,用于服装革封底效果明显,使用也十分普遍。但应用于牛鞋面革封底涂饰时,由于涂层不耐制鞋胶粘剂中溶剂的浸渍破坏,会造成涂层剥落,至今没能有效解决。这是因为在制革的湿工段中用了大量阴离子材料处理,革面带负电荷,采用阳离子树脂封底,通过阴阳电荷作用,阻止了成膜树脂渗透,使涂层机械嵌入式的粘合力减弱。其次,相对阴离子成膜树脂而言,为增加阳离子聚氨酯水乳液贮存稳定性,其分子结构中含有更多的亲水基,胶膜耐水、耐甲苯等溶剂的性能自然会降低,因此对用于封底的阳离子聚氨酯进行耐溶剂性能的改性是非常必要的。有机硅因其结构的特殊性和较高的硅氧化学键能,具有较好的疏水性、透气性、耐候性、耐腐蚀性,且无毒等优点,用于聚氨酯改性,具有较好的耐水性、耐溶剂性和更好的滑爽性。

如用羟基硅油、TDI、聚醚二元醇、1 ,4 - 丁二醇、叔胺二元醇共聚,再经季铵化反应、乳化,制得固体含量为20 %左右的稳定乳液,所得胶膜为米黄色不透明,耐水、耐甲苯性能明显优于未改性聚氨酯。羟基硅油改性聚氨酯胶膜耐甲苯等溶剂性能明显提高,封底涂饰涂层的耐溶剂性能,可满足制鞋对鞋面革的要求。另外改性产品的涂层滑爽,封底涂饰配方中油蜡的用量可适当减少。

4有机硅聚氨酯的其他应用

4.1 医学上

有机硅改性聚氨酯的疏水性和生物相容性已经被成功地应用到医学上了。美国Avcoereto 公司开发的聚氨酯- 聚二甲基硅氧烷嵌段共聚物,有很好的机械性能,此材料在外循环血泵中应用,能满足人工心脏苛刻的要求。

4.2 用作织物处理剂

有机硅是一类疏水性、透气性和耐侯性都较好的材料,将它用到水性聚氨酯的合成改性中,织物将具有较好的耐湿擦性,手感也更加滑爽舒适,如著名的反应型织物整理剂USF。4.3 用作弹性体

有机硅改性聚氨酯做弹性体具有较高的耐热性,其热变形温度可达190 ℃,耐热性较好的原因,一方面是因为Si - O 键热稳定好,另一方面是以聚硅氧烷为主体的软段有很好的柔顺性。

4.4 此外,有机硅改性的聚氨酯还广泛用作密封胶、建材中的浸渍材料和液晶领域。

5结语

随着人们生活水平和消费水平的提高,大众对革制品特殊性能的要求也越来越高,然而皮革本身的提升空间却非常有限,此时,就需要依赖各类涂饰材料对其进行“包装”,纳米材料和有机等硅基材料改性的聚氨酯俨然已在众多新兴材料中脱颖而出,让聚氨酯具备了新的活力和广泛的应用前景。

参考文献

1.李正军,邓祯庆.有机硅皮革涂饰助剂的功能和作用.西部皮革.2009.31(7):8-5

2.王希安, 付丽红. 水性聚氨酯皮革涂饰剂的研究. 皮革科学与工程.2009.19.(2):47-4

3.魏杰,王丽娜,李刚强.皮革涂饰剂的最新研究进展.精细与专用化学品.2006.14(19):8

4.孙海龙,张斌,矫彩山,等.有机硅改性聚氨酯的研究进展. 化学与黏合.200

5.27(6):4

三官能氟硅改性丙烯酸酯

三官能氟硅改性丙烯酸酯 近几年,许多电子消费品涂装工艺不断推陈出新,不仅对外观效果有更高要求,同时也更注重涂料表面性能。涂层抗涂鸦、防指纹效果是目前比较热门的物性要求之一,主体树脂一般会采用硅改性树脂或氟改性树脂来满足耐污方面的要求。哑光体系的六官能氟硅改性丙烯酸酯,获得了不错的市场反响。 最近亮光耐污的应用也逐渐增多,对表观有很高的要求。三官能氟硅改性丙烯酸酯,配方采取树脂搭配少量单体,适量引发剂,主要考察树脂的抗涂鸦性、持久性、流平性、耐水煮、耐磨性、韧性等。 一、抗涂鸦性 是氟硅改性树脂,水接触角高,在耐油性笔的测试中,油性笔涂鸦痕迹有明显的缩油情况,笔痕可以被轻易擦除,且涂层表面没有痕迹残留。我们将涂鸦后的基材放入60℃烘箱,烘烤30分钟后,油性笔痕已经完全烤干,此时用无尘布依然能够轻松去除痕迹。通过实验可以看出有着优异的抗涂鸦性能。

二、韧性佳 现在很多3C电子消费品上的涂装对韧性都有要求,尤其手机上的应用都有耐弯折测试,而市场上许多氟改性或硅改性树脂都是高官能树脂,高交联密度更有利于抗涂鸦、耐指纹等要求,但同样会使得脆性增加,做主体树脂时弯折容易崩漆或附着力下降。是三官能树脂,主链为聚氨酯,侧链采用氟硅改性链段,这样可以获得优异的韧性,而三官能度也能提供良好的交联密度,体积收缩较低,兼顾良好的耐磨性能。 三、持久性 耐污效果持久性也是重要的物性指标,靠添加硅氟类助剂来改善涂层的抗涂鸦性的方案,往往持久性较差,小分子助剂很容易迁移导致耐污效果显著下降。而支链含有氟硅结构,由于与主链不兼容且比重较低,使得氟硅结构于涂布时自然迁移至涂层表面形成纳米突触的微结构达到耐污的效果,这样的耐污效果更持久。同时相比于一些氟改性树脂,有着更好的相容性。同时通过丙烯酸双键将氟硅结构锚定于涂层立体网络结构中,相较氟硅助剂,显然持久性会得到大幅提升,即使长期使用表面被磨损,依然会有良好的耐污性能。

水性聚氨酯

水性聚氨酯 引言 为了减少涂料对环境的污染和对消费者健康的损害, 许多国家对溶剂型涂料的限制越来越严格, 从而使涂料由溶剂型向水基型的转变成为必然。早在2005 年我国就已开始控制新的溶剂型涂料生产企业的审批, 到2008 年将对溶剂型涂料的生产和销售实行控制。低污染涂料的发展方向有水性化、高固体分化和粉末化三种。与其他两种涂料相比, 水性涂料因为具有来源方便、易于净化、成本低、黏度低、良好的涂布适应性、无毒性、无刺激及不燃性等特点, 已成为环境友好型涂料的主要发展方向。 一、水性聚氨酯涂料的性能 聚氨酯( PU) 涂料是涂料业中增长速度最快的品种之一。水性聚氨酯( WPU) 涂料是以水性聚氨酯树脂为基础, 以水为分散介质配制的涂料, 除具有水性涂料的特点以外, 它还有以下突出的优点: 1)涂膜对塑料、木材、金属及混凝土等表面的附着力好, 抗磨性、耐冲击性好。脂肪族聚氨酯水性涂料的户外耐久性好, 综合性能接近溶剂型聚氨酯涂料 2) 和其他乳胶涂料相比, 其低温成膜性好, 不需要成膜助剂, 也不需要外加增塑剂、乳化剂或分散剂。 3) 容易通过交联反应进行改性, 可提高耐溶剂性和抗化学性, 改进耐水性, 对颜料( 包括金属颜料) 有良好的适应性, 也可提供高光泽

涂膜。所含羟基可以适用一些交联剂和固化剂, 可进一步改进涂膜性能。 4) PU 分子具有可裁剪性, 结合新的合成和交联技术可有效控制涂料的组成和结构, 为改进其性能提供了更多的途径。WPU 诸多的优点, 使其成为目前发展最快的涂料品种之一。 2 水性聚氨酯涂料的研究进展WPU 分为单组分和双组分。单组分WPU 涂料聚合物的对分子质量较大, 成膜过程中一般不发生交联反应, 具有施工方便的优点; 双组分WPU涂料由含羟基的水性树脂和含异氰酸酯基的固化剂组成, 施工前将两者混合, 成膜过程中发生交联反应, 涂膜性能好。由于在水性聚氨酯分子中引入了亲水基团, 所以耐水性、耐溶剂性和耐候性等较差是WPU 涂料存在的主要问题, 为此, 近几年来国内外学者对WPU 的改性进行了大量研究, 并取得了很大进展。 2. 1. 1 制备方法 单组分聚氨酯水分散体涂料的制备方法通常有强制乳化法和自乳化法。强制乳化法是将PU 预聚物缓慢加入到含乳化剂的水中, 形成粗粒乳液, 再送入均化器形成粒径适当的乳液。该法制备的PU 乳液胶体稳定性较差, 一般适用于材料的表面处理。PU 乳液涂料的制备多采用聚合物自乳化法, 即在聚合物链上引入适量的亲水基团, 在一定条件下自发分散形成乳液[11]的方法。 2. 1. 2 交联改性

聚氨酯的合成工艺

改性水性聚氨酯涂料的合成工艺 引言: 随着人们环保意识的增强,人们对自身的生活环境越来越关注,传统的溶剂型聚氨酯胶粘剂有毒、易燃、异味、易造成空气污染等缺点,而水性涂料具有无毒、不易燃烧、无污染环境等优点,而水性聚氨酯树脂具有硬度高、附着力强、耐腐蚀、耐溶剂好、VOC 含量低等优点,它是以水为分散介质的二元胶体体系,符合目前化工环保的要求,因此日益受到人们的关注。然而,一般的聚氨酯乳液固含量低,胶膜的耐水性差、光泽性较低,涂膜的综合性能较差,对水性聚氨酯乳液进行适当的改性后能更好地提高水性聚氨酯涂料的综合性能,扩大应用范围。在各种改性方法中,最引人注目的是聚氨酯/聚丙烯酸改性(PUA) 复合乳液的研究。PUA 改性树脂将两种材料的最佳性能融合于一体,可制备出高固含量的水性树脂,降低加工能耗,提高生产率,其胶膜柔软、耐磨、耐湿擦、耐水解性能优异。PUA 的研制方法有共混复合、共聚复合、核-壳乳液聚合法和PUA 互穿网络乳液聚合法4 种。其中用环氧树脂E-44 和甲基丙烯酸甲酯(MMA)复合改性水性聚氨酯,丙烯酸羟乙酯(HEA)与MMA 发生共聚反应.制得以丙烯酸酯为核,聚氨酯为壳,HEA 为核壳之间桥连的核壳交联型PUA 复合乳液。这种复合乳液集中了聚氨酯的耐低温、柔软性好、附着力强,丙烯酸酯的耐水和耐候性好,环氧树脂的高模量、高强度、耐化学性好等许多优点。实验研究结果表明:随着环氧树脂E-44 和MMA 添加量增大,胶膜硬度、拉伸强度和耐水性逐渐提高,胶膜断裂伸长率和乳液的稳定性则随着降低,当环氧E-44 含量为4%,MMA含量为20%~30%时综合性能较好。改性后的聚氨酯在下几种用途时有杰出的综合效果:水性聚氨酯木器涂料,水性聚氨酯织物涂料,建筑防水涂料,水性聚氨酯防腐涂料,水性聚氨酯汽车涂料,功能性水性聚氨酯涂料。共聚乳液的制备方法主要有以下几种:(1) 聚氨酯乳液和丙烯酸酯乳液共混,外加交联剂,形成聚氨酯-丙烯酸酯共混复合乳液;(2) 先合成聚氨酯聚合物乳液,以此为种子乳液再进行丙烯酸酯乳液聚合,形成具有核-壳结构的聚氨酯丙烯酸酯复合乳液;(3) 2种乳液以分子线度互相渗透,然后进行反应,形成高分子互穿网络的聚氨酯丙烯酸酯复合乳液;(4) 合成带C═C双键的不饱和氨基甲酸酯单体,然后将该大单体和其它丙烯酸酯单体进行乳液共聚,得到聚氨酯丙烯酸酯共聚乳。 聚氨酯的合成工艺: 1.1 主要原材料准备和精制 异佛尔酮二异氰酸酯(IPDI),工业品;聚醚多元醇(N220,相对分子质量为2000),工业品;蓖麻油(C.O),分析纯;1,4- 丁二醇(BDO),工业品;三羟甲基丙烷(TMP),试剂级;环氧树脂E- 20,工业品;二羟甲基丙酸(DMPA),工业品;甲基丙烯酸甲酯(MMA),工业品;N- 甲基吡咯烷酮(NMP),工业品;三乙胺(TEA)、乙二胺(EDA)、丙酮,分析纯,使用前用4A 分子筛干燥处理;偶氮二异丁腈(AIBN),化学纯;二月桂酸二丁基锡(DBTDL),分析纯;成膜助剂、流平剂、增稠剂,均为工业品。 1.2光引发剂 作为光固化材料的重要组成部分,光引发剂的作用是吸收一定波长的光能后产生活泼自由基或阳离子,引发或催化相应的单体或预聚物的聚合。在紫外光固化体系中,光引发剂在吸收适当光能后,发生光物理过程至某一激发态,若此时的能量大于键断裂所需的能量,就能产生初级活性种,如自由基或离子,从而引发聚合反应。自由基引发剂有安息香类、苯偶姻类、苯乙酮类、硫杂蒽酮类等,在空气中受O 2 的阻聚作用而影响固化速度。另一种夺氢型引发剂利用叔胺类光敏剂构成引发剂/光敏剂复合引发体系,可抑制O 2 的阻聚作用,提高固化速度。另外,大分子光引发剂分为侧链夺氢型和主链裂解型。二苯甲酮、硫杂蒽酮等光活性芳酮作为侧基接到大分子链上可制得侧链夺氢型大分子光引发剂;主链裂解型不多见,以苯偶姻醚聚碳酸酯为代表,利用这类光引发剂可以合成嵌段共聚物,以获得性能更加平衡或

简析有机硅改性聚氨酯的微观结构和性能探讨

简析有机硅改性聚氨酯的微观结构和性能探讨-经济 简析有机硅改性聚氨酯的微观结构和性能探讨 肖亚军 摘要本研究中利用差热扫描量热仪、透射电镜以及正电子湮灭寿命谱对水性有机硅改性聚氨酯微观结构进行了分析,利用静态拉伸试验对水性有机硅改性聚氨酯膜的力学性能进行了测试,证明了聚氨酯改性后其膜内部的微相分离结构更为突出,同时扩大了自由体积的空洞,进而造成透湿性能的显著提高。 关键词有机硅聚氨酯微观结构性能 以聚氨酯作为涂层而制成的合成革除了在外观上具有真皮感外,还具有较好的黏结性、方便加工、价格较低等多种优势,防水性能也非常突出,因而在工业生产中大量运用。本文对水性有机硅改性聚氨酯(WSPU)的围观结构和性能进行了滔滔,其中混合软段选用的是聚四氢呋喃醚(PWMG)、聚乙二醇(PEG)以及α,ω- 二氨丙基聚二甲基硅氧烷(APDMS)作为,亲水扩连剂选取的是二羟甲基丙酸充当,1,4- 丁二醇充当硬段调节剂,反应物为异佛尔酮二异氰酸酯。 一、WSPU 微相分离的宏观结构分析 1.DSC 方面。是在不同APDMS 质量分数下,WSPU 膜的DSC 曲线情况变化。根据图中显示,我们可以明显看出WSPU 在-78 摄氏度时发生了一次玻璃化转变,除此之外,处于20 摄氏度时还出现了一次微小熔融,反观其他同样含有APDMS 的聚合物DSC 曲线,都是只有两个玻璃化转变区,分别归归属于在-78 摄氏度左右软段的玻璃化转变和100 摄氏度左右的硬段的玻璃化转变。因而我们不难看出,含有APDMS 的聚氨酯无论是在软段还是硬段都是属

于一种无定形状态,同时WSPU 的软段和硬段之间还存在非常显著的微相分离。软段玻璃化转变温度变化上,则随着APDMS 含量的不但增加而呈现出降低的趋势,而硬段玻璃化转变温度则明显不同,呈现出先升高后降低的状态,换句话说就是随着APDMS 含量的不断增加,聚合物微相分离在增加之后又逐渐开始递减,而在PDMS 质量分数达到了10%时,其微相分离程度到达了一个顶值,为最大。 2.TEM 方面。WSPU0 软段和硬段相分离界面非常模糊,基本很难用肉眼分辨。另外,暗区和亮区分别为硬段区和软段区,两区质检相融程度较大,换句话说就是软段和硬段的微相混溶程度比较大。但是在(b)中WSPU10 的电镜照片中,可以非常明显的观察到亮暗微区,同时软段和硬段相分离程度也比较大。 3. 力学性能方面。本研究中利用静态拉伸膜实验来测试APDMS 引入后原来的膜力学性能所造成的影响。根据曲线变化我们可以看出随着APDMS 含量的逐渐增大,膜的抗拉强度呈现出明显的变化,开始增加后逐渐下降,而其延伸率则始终都处于减小状态。同时当APDMS 的质量分数达到10%时,其拉伸模量也即是E 的值达到一个峰值,为22.12 mPa,为最大值,这是其断裂伸长率也即是ε 的值则为830.41.之所以出现这种情况,其根本原因是:如果单纯从硬段的角度来看,那么随着WSPU 中所含APDMS 的不断增加,硬段所形成的脲键也越来越多增多,链段氢键的功能随之开始不断增强,从而导致膜的抗拉强度开始加大。如果从软段的角度来看,由于引入了APDMS,一定程度上对分子的柔性有所提升,然而它本身具有的分子结构特征却迫使分子与分子之间的距离越来越宽,在这种情况下,分子内聚力逐渐开始变小,膜强度开始降低,延伸率

有机硅改性聚氨酯丙烯酸酯光—潮气双固化体系

第21卷第9期应用化学Vol.21No.9 2004年9月 CHIN ESE JOURNAL OF APPL IED CHEMISTR Y Sep.2004 有机硅改性聚氨酯丙烯酸酯光2潮气双固化体系 齐宇颂 曾兆华 杨建文 陈用烈3 (中山大学高分子研究所 广州510275) 摘 要 由甲基丙烯酸羟乙酯、异佛尔酮二异氰酸酯和二2(γ2三乙氧基硅烷基丙基)胺为原料,合成了有机硅 改性聚氨酯丙烯酸酯(Si2PUA)预聚物,预聚物属于宾汉流体。用GPC方法测得预聚物的分子量分散度为 1112,用FTIR和光DSC(DPC)方法研究了预聚物的固化行为,光聚合反应的转化率为5613%,用TG等方法 研究了光、潮气固化膜的膜性能,发现光固化膜的电性能、热性能均好于潮气固化膜的膜性能。 关键词 聚氨酯丙烯酸酯,有机硅,光固化,潮气固化 中图分类号:O631 文献标识码:A 文章编号:100020518(2004)0920918205 紫外光固化涂料以其快干、节能和环保等优势而备受关注。由于光固化体系的固化过程是由光引发的,因此,对于固化对象的形状、厚度、颜色有一定的限制,如小区域阴影部分无法实现光固化。为此,人们研究开发了具有不同反应原理的光2暗双重固化体系[1,2],利用光固化使体系快速定型或达到“表干”,再利用暗反应使阴影或底层部分固化完全,达到体系的“实干”。光、暗双固化保形涂料正是利用这种双重固化原理来实现保形涂层的全面固化,从而实施对各种复杂类型线路板的涂敷保护[36]。本文以二异氰酸酯、甲基丙烯酸β2羟乙酯(HEMA)、硅氧烷偶联剂为原料合成了聚氨酯丙烯酸酯类光敏性有机硅预聚物,可在潮湿条件下实现光、潮气双固化。 1 实验部分 1.1 试剂、仪器和测试方法 甲基丙烯酸羟乙酯(HEMA,工业品)经干燥后,减压蒸馏,收集105110℃/2000Pa馏分;异佛尔酮二异氰酸酯(IPDI,CP,华北地区特种化学试剂开发中心);二2(γ2三乙氧基硅烷基丙基)胺(G402,工业品,营口俊业化工制品有限公司);二月桂酸二丁基锡(DB TDL,CP,(Acros Organics Chemical,比利时)公司产品);22羟基222甲基-苯丙酮22(Darocur1173,Ciba公司产品);丁酮(AR,广州化学试剂厂),用前以分子筛干燥;阻聚剂对甲氧基苯酚(M EHQ,CP,上海信博森化工有限公司)。固化膜的硬度、附着力、冲击强度、柔韧性等性能分别按国家相关标准G B6739286、G B1720279、G B1732293、G B/T1731293测定。 Nicolet210型傅立叶红外光谱(美国)光谱仪,涂膜法测IR谱;Waters224型凝胶渗透色谱仪(GPC,美国),以THF为溶剂,测预聚物数均分子量(M n);Brookfield DV2Ⅱ+型旋转粘度计(18号转子, Brookfield corporation,美国),室温测涂料粘度;改装的CDR21差示扫描量热仪(DPC),记录聚合放热速率曲线,并用Origin710软件处理,得光聚合转化率曲线[7];紫外光强度以UV2A型照度计(北京师范大学光电仪器厂生厂)测定,仪器探头敏感波长范围为320400nm,测得光强为8189W/m2(日本);岛津TG A250型热分析仪,升温速率为20℃/min,在N2气气氛(40mL/min)中,测固化膜室温至600℃的TG曲线;ZC236型高阻计(上海第六电表厂)测固化膜电阻。 1.2 Si2PUA预聚物的合成 有机硅改性聚氨酯丙烯酸酯(Si2PUA):在装有搅拌器、温度计和回流冷凝器的干燥三颈烧瓶中加入适量的IPDI,于室温下缓慢加入HEMA、DB TDL(质量分数为0103%)和M EHQ的混合液,控制滴加 2003212201收稿,2004203207修回 广东省重大科技专项(粤财企[2001]367号)资助项目 通讯联系人:陈用烈,男,1937年生,博士,教授;E2mail:cescyl@https://www.sodocs.net/doc/d511786457.html,;研究方向:功能高分子

含氟硅氧烷改性聚氨酯的合成及表面性能

含氟硅氧烷改性聚氨酯的合成及表面性能* 罗振寰,黄自华,宋传江 (株洲时代新材料科技股份有限公司,株洲 412007) 摘要:以单端含两个羟烃基的聚三氟丙基硅氧烷(PMTFPS)为软段,聚己内酯(PCL)为混合软段,异佛尔酮二异氰酸酯(IPDI)为主要原料合成了一系列侧链接枝型含氟硅氧烷改性聚氨酯,并通过静态接触角、XPS、AFM等分析手段对其进行了测试表征。结果表明:含氟硅氧烷能有效降低聚氨酯的表面能,加入少量的硅氧烷,便可使得其水接触角达到110°;含氟链段在表面形成了明显的富集,表面为单一氟硅链段富集层,并无出现聚氨酯常见的软硬段微相分离形貌。 关键词:聚氨酯;含氟硅氧烷;表面性能;微相分离 中图分类号:O631.1)文献标识码:A 1 引言 聚氨酯( PU) 具有优良的耐磨性能、韧性、耐疲劳性,是一类用途广泛的工程材料. 然而其表面性能、耐老化性、耐沾污性不好,限制了它的进一步应用[1]。 将有机硅、有机氟功能链段引入其它高分子结构中,因在分子中引入了键能较大的Si-O键和C-F键,可以赋予产品极低的摩擦系数,良好的湿润渗透性,耐候性,憎水和憎油性,并有优良的电气性能等;所形成的涂膜有着耐腐蚀,自洁性等优良特性,在高层建筑,汽车,机电设备等装饰和防腐领域有着独特的优势[2-6]。 本文在聚氨酯软段中同时引入氟、硅元素,用1,3,5-三甲基-1,3,5-三(3’, 3’, 3’-三氟丙基)环三硅氧烷(F )开环得到聚三氟丙基甲基硅氧烷(PMTFPS),采用 3 *基金项目:国家自然科学基金资助项目(20576117) 收到初稿日期:2008-11-20 通讯作者:罗振寰 作者简介:罗振寰(1983?),男,江西余干人,博士,从事功能高分子材料合成及性能研究。

水性聚氨酯涂料doc

水性聚氨酯涂料的特点及改性应用综述 学院:材料与化工学院 专业:高分子材料与工程 班级:110311班 姓名:李辽辽 学号:110311122 水性聚氨酯涂料的特点及改性应用综述 李辽辽 (班级:11班学号:110311122) 摘要:介绍水性聚氨酯涂料的分类、特点及其改性应用 关键字:水性聚氨酯涂料;改性;应用 0引言 聚氨酯(又称聚氨基甲酸酯)是指分子主链结构中含有氨基甲酸酯(-NH0COO-)重复单元的高分子聚合物,通常由多异氰酸酯与含活泼氢的聚多元醇反应生成。水性聚氨酯(WPU)是以水代替其他有机溶剂作为分散介质的聚氨酯体系,形成的WPU 乳液及其胶膜具有优异的机械性能、耐磨性、耐化学品性和耐老化性等特点,可广泛用于轻化纺织、皮革加工、涂料、建筑和造纸等行业。随着世界各国对环境保护的日益重视,越来越多的学者致力于水性聚氨酯涂料的开发,有效限制挥发性有机溶剂的毒害性。虽然水性聚氨酯具有一些优良的性能,但仍有许多不足之处。如硬度低、耐溶剂性差、表面光泽差、涂膜手感不佳等缺点。由于水性聚氨酯在实际应用中存在诸多问题,因此需要对其进行改性。其改性方法主要包括环氧树脂改性、丙烯酸酯改性、有机硅改性、多元改性等。 2水性聚氨酯涂料的特点与分类 2.1水性聚氨酯涂料的特点[1] 水性聚氨酯涂料是以水为介质的二元胶态体系。它不含或含很少量的有机溶剂,粒径小于0.1nm,具有较好的分散稳定性,不仅保留了传统的溶剂型聚氨酯涂料的一些优良性能,而且还具有生产成本低、安全不燃烧、不污染环境、不易损伤被涂饰表面、易操作和改性等优点,对纸张、木材、纤维板、塑料薄膜、金属、玻璃和皮革等均有良好的粘附性。 2.2水性聚氨酯涂料的分类 目前的水性聚氨酯主要包括单组分水性聚氨酯涂料、双组分水性聚氨酯涂料和特种涂料三大类。 2.2.1单组分水性聚氨酯涂料 单组分水性聚氨酯涂料是以水性聚氨酯树脂为基料并以水为分散介质的一类涂料。通过交联改性的水性聚氨酯涂料具有良好的贮存稳定性、涂膜机械性能、耐水性、耐溶剂性及耐老化性能,而且与传统的溶剂型聚氨酯涂料的性能相近,是水性聚氨酯涂料的一个重要发展方向。目前的品种主要包括热固型聚氨酯涂料和含封闭异氰酸酯的水性聚氨酯涂料等几个品种:a.热固型聚氨酯涂料。交联的聚氨酯能增加其耐溶剂性及水解稳定性。聚氨酯水分散体在应用时与少量外加交联剂混合组成的体系叫热固型水性聚氨酯涂料,也叫做外交联水性聚氨酯涂料。b.含封闭异氨酸酯的水性聚氨酯涂料。该涂料的成膜原料由多异氰酸酯组分和含羟基组分两部分组成。多异氰酸酯被苯酚或其它含单官能团的活泼氢原子的化合物所封闭,因此两部分可以合装而不反应,成为单组分涂料,并具有良好的贮藏稳定性。c.室温固化水性聚氨酯涂料。对于某些热敏基材和大型制件,不能采用加热的方式交联,必须采用室温交联的水性聚氨酯涂料。通过与水分散性多异氰酸酯结合,可以改进水性端羟基聚氨酯预聚物/丙烯

水性聚氨酯的制备及改性方法

聚氨基甲酸酯(polyurethane),简称聚氨酯(PU),是分子结构中含有重复氨基甲酸酯(-NHCOO-)结构的高分子材料的总称。聚氨酯一般由二异氰酸酯和二元醇或多元醇为基本原料经加聚反应而成,根据原料的官能团数不同,可制成线形或体形结构的聚合物,其性能也有差异。聚氨酯具有良好的力学性能、粘结性能及耐磨性等,在各领域得到了广发应用。 由于溶剂型聚氨酯的溶剂为有机物,具有挥发性,不仅污染环境,而且对人体有害。在人们日益重视环境保护的今天以及环保法规的确立,溶剂型涂料中的有机化合物的排放量受到了严格的控制,因此,开发污染小的水性涂料已成为研究的主要方向。水性聚氨酯(WPU)具有优异的物理机械性能,其不含或含有少量可挥发性有机物,生产施工安全,对环境及人体基本无害,符合环保要求。其生产方法分为外乳化法和内乳化法,外乳化法又称强制乳化法,由使用这种方法得到的乳液稳定性较差,所以使用较少。目前使用较多的是内乳化法,也称自乳化法,即在聚氨酯分子链上引入一些亲水性基团,使聚氨酯分子具有一定的亲水性,然后在高速分散下,凭借这些亲水基团使其自发地分散于水中,从而得到WPU。 然而,亲水基团的引入在提高聚氨酯亲水性的同时却降低了它的耐水性和拒油性。为了改善其耐水性和拒油性,通常是将强疏水性链段引入聚氨酯结构之中。有机硅、有机氟由于其表面能低和热稳定性好受到人们的重视,已经得到了广泛应用。同时利用纳米材料来提高涂膜的光学、热学和力学性能。纳米改性WPU 完美地结合了无机物的刚性、尺寸稳定性、热稳定性及WPU的韧性、易加工性,纳米改性WPU为涂料向高性能化和多功能化提供了崭新的手段和途径,是最有前途的现代涂料研究品种之一。[1] 1.2 水性聚氨酯的基本特征及发展历史 1937年德国的Otto Bayer博士首次将异氰酸酯用于聚氨酯的合成。直到1943年德国科学家Schlack在乳化剂或保护胶体存在的情况下,将二异氰酸酯在水中乳化并在强烈搅拌下加入二胺,首次成功制备了水性聚氨酯。1975年研究者们向聚氨酯分子链中引入亲水成分,从而提高了水性聚氨酯的乳液稳定性和涂膜性能,其应用领域也随之拓广。进入21世纪以来,随着水性聚氨酯乳液应用范围的进一步拓宽,世界范围内日益高涨的环保要求,进一步加快了水性聚氨酯工业发展的步伐。[2] 相对于国外,国内的水性聚氨酯发展较晚。我国水性聚氨酯的研究开始于上世纪七十年代,1976年沈阳皮革研究所最早研制出用于皮革涂饰用的水性聚氨

有机硅改性水性聚氨酯

有机硅改性水性聚氨酯-聚丙烯酸酯乳液的研究 李伟,胡剑青,涂伟萍 (华南理工大学化工与能源学院,广州510640) 摘要:以聚酯多元醇、异佛尔酮二异氰酸酯、甲基丙烯酸甲酯等为原料,合成了水性聚氨酯丙烯酸乳液,加入含侧氨基和不饱和双键的有机硅氧烷进行扩链改性,得到了一系列有机硅改性的聚氨酯丙烯酸乳液。对得到的产物进行了表征,对改性前后的体系涂膜的性能进行了比较,结果表明,用有机硅改性的聚氨酯丙烯酸乳液形成的涂膜接触角更大、附着力更强、具有更好的耐水性,但硬度稍有下降。 关键词:水性聚氨酯;有机硅;接触角;耐水性;柔韧性 0引言 水性聚氨酯(WPU)涂料有良好的物理机械性能和优良的耐寒性。但是单一的PU乳液存在自增稠差、固含量低、耐水性差、机械强度不如丙烯酸树脂等缺点,且成本较高。而聚丙烯酸酯(PA)乳液在性能上能与聚氨酯乳液形成互补,所以将聚氨酯乳液和聚丙烯酸乳液复合制备水 性聚氨酯-丙烯酸酯(PUA)乳液,兼有聚氨酯和聚丙烯酸酯乳液的优点,有很好的应用前景。有机硅树脂表面能低,耐水性、耐候性以及透气性优良,已经广泛用于聚氨酯改性,采用合适化学方法用有机硅对水性聚氨酯-聚丙烯酸酯进行改性,可以得到有良好耐水性以及力学性能的涂膜。本文在聚氨酯链段上引入了几种有机硅氧烷,对得到的产物进行了表征及性能对比,制得了具有优良耐水性及力学性能的聚氨酯-聚丙烯酸酯乳液[1-2]。 1实验 1.1原料 异佛尔酮二异氰酸酯(IPDI)、己内酯二元醇(PCL)(M n=2000):工业品,拜耳公司;1,4-丁二醇(BDO):化学纯,上海凌峰化学试剂公司;二羟甲基丙酸(DMPA):工业品,进口;三羟甲基丙烷(TMP):试剂级,上海试剂一厂;N-甲基吡咯烷酮(NMP)、三乙胺(TEA)、乙二胺(EDA)、丙酮:分析纯,湖北大学化工厂;有机硅Z-6011、有机硅Z-6020、有机硅Z-6032:道康宁公司。 1.2合成工艺 1.2.1PU乳液的合成 将聚酯多元醇进行脱水处理后加入到装有搅拌器、冷凝管、温度计的四口烧瓶中,水浴升温到75~80℃后,加入IPDI,开动搅拌反应1.5~2h,后加入1,4-丁二醇,80℃反应1~1.5h,然后降温到70℃加入二羟甲基丙酸(溶于NMP中)和三羟甲基丙烷,反应2~3h,期间注意用丙酮调节黏度,后降温至50℃以下,加入有机硅后再加三乙胺中和15~20min,出料,在高速剪切下于去离子水中乳化分散,加入乙二胺扩链。减压脱去溶剂,最后得到半透明的带蓝光的PU乳液。 1.2.2PUA乳液的合成 将PU乳液、乳化剂、水混合后置于四口烧瓶中,搅拌加入含有引发剂AIBN的BA溶液,预乳化一段时间于80℃聚合3h,再升温至90℃反应1h,降至室温,出料,得到PUA乳液。 1.3乳液的成膜性能测试 (1)耐水性测试[3]:取适量的乳液涂在聚四氟乙烯板上,室温干燥7d成膜,将膜剪成 2cm×2cm的小块,称质量(m0),然后在水中浸泡一定时间,取出后吸干表面上的液体,称质量(m1)。计算膜的吸水率: 吸水率=(m1-m0)/m0×100% 用上海中晨数字技术设备有限公司JC2000C1型静滴接触角测量仪测量接触角; (2)硬度测试:根据GB/T1730—1993,使用QYB型漆膜摆杆硬度计测量; (3)附着力测试:根据GB1720—1979(1989)测量;

有机硅改性丙烯酸树脂水性涂料项目可行性实施报告

有机硅改性丙烯酸树脂水性涂料项目 第一章总论 一、项目背景 (一)项目名称 有机硅改性丙烯酸树脂水性涂料 (二)项目的承办单位 名称:宝利邦装饰设计工程有限公司 地址: 法定代表人: 注册资本: 企业类型:有限责任 企业简介:宝利邦涂料装饰公司于1994年成立,是一家以销售代理立邦雅士利、美佳室、大宝漆,外墙涂料装饰为主及工程涂装为辅的公司。公司自成立以来,本着“诚信、开拓、务实”的宗旨,在及省各地州建立了一个完善的分销网络,使公司业绩遍及省每一个地州,同时延伸至缅甸、老挝、越南等国家和地区,目前拥有15家专卖店,遍布全省的约100家分销商。2009年实现营业收入万元,成为省涂料装饰业的前三位。 (三)研究工作依据 根据中华人民国有关法规、政策与该项目的具体情况,该项目可行性研究报告的主要编制依据有:

1、《投资项目可行性研究指南》; 2、国家计委办公厅关于出版《投资项目可行性研究指南(试用版)》的通知(计办投资[2002]15号); 3、《大气污染物综合排放标准》(GB16297-1996); 4、《建设项目环境保护设计规定》; 5、《省工业固体废弃物污染控制标准》(DB21-777-94); 6、市场调查数据; (四)项目提出的理由与过程 1、项目背景 随着信息、生命、空间、海洋、新材料、新能源和可再生资源、环保、软(管理)科学八大高科学技术的发展,对涂料的装饰、防腐蚀、耐温、耐寒、耐沾污等性能要求越来越高,不仅如此,人类社会的不断文明进步,又引导世界涂料工业由溶剂型向高性能、无污染、环境友好型水性涂料的方向飞速发展。近几年来,随着我国房地产、汽车等下游产业的高速发展,涂料生产比去年有较大幅度增长。2009年从全国1348家规模以上的涂料企业统计数据显示,全年总产量达755.44万吨,较去年同样企业数的661.88万吨上升了14.14%;建筑涂料产量达到261.67万吨,较去年同期的215.92万吨同比增长了21.19%,增长幅度超出行业预料。18大类涂料中,我国产量最大的品种是醇酸树脂漆,其次是酚醛树脂漆,高档合成树脂涂料比例达到70%左右,节能低污染涂料(水性涂料、粉末涂料、高固体分涂料、辐射固化涂料)比例约26%。随着国家对环保

对水性聚氨酯的合成、优化及实践论述

对水性聚氨酯的合成、优化及实践论述 发表时间:2019-08-28T13:11:33.453Z 来源:《建筑细部》2018年第29期作者:余渡江 [导读] 本文主要分析了水性聚氨酯的合成以及优化、实践内容,重点分析了水性聚氨酯的合成及优化方法。 余渡江 红宝丽集团股份有限公司江苏南京 210000 摘要:本文主要分析了水性聚氨酯的合成以及优化、实践内容,重点分析了水性聚氨酯的合成及优化方法。通过对于水性聚氨酯的合成、优化以及实践分析,不仅有助于实现水性聚氨酯的改进和优化,而且也推动其性能的完善。通过对水性聚氨酯的研究,力求在实践中不断积累经验,推动其改性研究。 关键词:水性聚氨酯;合成;优化;实践 1 水性聚氨酯合成及优化技术分析 据有关调查显示,我国大多数材料行业对于水性聚氨酯的合成及优化研究是需要结合技术发展水平而展开的。对于水性聚氨酯的合成以及优化技术进行分析,需要从水性聚氨酯的本质出发,实现对其合成过程的掌握基础上的优化分析。下面对于水性聚氨酯对的合成以及优化技术进行详细的分析。 1.1 合成技术分析 在对于水性聚氨酯的合成研究之前,需要对于水性聚氨酯的产生以及作用进行必要的掌握,这有助有后期对具体的合成路径进行必要的分析和掌握,进而帮助合成的完善。具体而言,水性聚氨酯是一种利用聚氨酯粒子来通过一系列的分化实验得出的高分子材料。在水性聚氨酯的应用上也主要倾向于在工业中的多功能应用聚合材料,大多常见于各种施工环境中。由于,水性聚氨酯具有污染性低、安全性高等优点,其在实际应用时可以有效的降低危险和污染程度,由此就导致水性聚氨酯的利用率大大增加。但随着社会的发展,对于水性聚氨酯的应用上也需要针对时代的变化对其合成路径和方法进行必要的研究和分析,实现其技术突破和性能完善。 一般而言,在水性聚氨酯的合成上现阶段的合成方法主要是通过对植物油、松香、淀粉以及纤维素等成分应用到实际的水性聚氨酯制备环节,并在改善水性聚氨酯构造的基础上,实现其性能的完善和合成效果的增加。对于不同的原料进行合成元素分析,其主要内容在于通过掌握原料在水性聚氨酯合成中占据的地位和应用的环节进行针对性试验,对水性聚氨酯进行改性处理和性能的完善。不同原料的应用对于实际的水性聚氨酯合成效果也是有所差异的,具体的差异见表1 表1 不同原料合成水性聚氨酯性能对比 1.2 水性聚氨酯的优化分析 调查显示,对于水性聚氨酯的合成和优化分析技术应用需要结合实际的水性聚氨酯的改性实验而展开,进而更好的达到一定的优化效果。具体而言,在水性聚氨酯的优化上只要是针对上文中提到的各种原料在水性聚氨酯合成的应用,进而在不断丰富水性聚氨酯性能的基础上实现对其性能的优化和相应效果的发挥。在水性聚氨酯的合成中加入上述因素不仅在初步实现了水性聚氨酯的性能优化,而且需要在不断试验的同时完善相应的构成因素分析,控制原料的添加范围和具体效果发挥程度,最终实现对水性聚氨酯的优化分析。 2 水性聚氨酯的实践应用 上面已经对水性聚氨酯的合成以及相应的优化方案进行了大致的分析和基础合成理论介绍,可以发现:在水性聚氨酯的合成及优化上需要结合实际的水性聚氨酯研究内容而展开,进一步丰富水性聚氨酯的相关理论。根据以上信息以及水性聚氨酯在实际材料应用中存在的问题,进而采取针对性措施进行水性聚氨酯性能的优化和研究。下面对于水性聚氨酯在实际中的应用进行分析,为后期的改进奠定基础。在水性聚氨酯的实践应用上,在现阶段的水性聚氨酯的运用中一方面在于通过各种改性研究和具体的改性方法实践来实现对水性聚氨

水性聚氨酯的合成与改性_闫福安

CHINA COATINGS 2008年第23卷第7期 15 0 引 言 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控,配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行必不可少的材料之一,其本身就已经形成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。 据有关报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右。美国人均年消耗聚氨酯材料约5.5 kg,西欧约4.5 kg,而我国的消费水平 还很低,年人均不足0.5 kg。 溶剂型的聚氨酯涂料品种众多、用途广泛,在涂料产品中占有非常重要的地位。水性聚氨酯的研究始自20世纪50年代,60、70年代,对水性聚氨酯的研究、开发迅速发展,70年代开始工业化生产用作皮革涂饰剂的水性聚氨酯。进入90年代,随着人们环保意识以及环保法规的加强,环境友好的水性聚氨酯的研究、开发日益受到重视,其应用已由皮革涂饰剂不断扩展到涂料、黏合剂等领域,正在逐步占领溶剂型聚氨酯的市场。在水性树脂中,水性聚氨酯仍然是优秀树脂的代表,是现代水性树脂研究的热点之一。 水性聚氨酯的合成与改性 □ 闫福安,陈 俊 (武汉工程大学化工与制药学院,武汉 430073) 摘要:对水性聚氨酯的合成单体、合成原理、合成工艺及改性方法作了介绍。水性聚氨酯合成技术不断完善,市场正在推进,国内相关企业和研究机构应加强合作,从分子设计出发,不断推进水性聚氨酯产业的技术进步和市场推广。 关键词:水性聚氨酯;合成;改性 中图分类号:TQ630 文献标识码:A 文章编号:1006-2556(2008)07-0015-08 Synthesis and modifi cation of water-borne PU Yan fuan, Chen jun (School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, Hubei Province) Abstract: This paper introduces water-borne PU about its monomers, synthesis mechanism, and synthesis technology and modifi cation methods. Relevant enterprises and research institutes China should strengthen the work cooperatively on molecule design, to promote the continuously progressing synthesis technology and the growing market of water-borne PU. Keywords: water-borne PU, synthesis, modifi cation 编者按:本文搜集了相关的情报资料,比较全面地阐述水性聚氨酯的合成技术。相应地,嘉宝莉朱延安、中国科技大章鹏进行了这方面的研发和实验实践。相比之下,为改善PUD分散体涂膜力学性能,选用聚碳酸酯型方向是可行的,但在水性木器涂料中的应用,应综合考虑制造成本、涂料使用范围、对涂膜光泽大小不同要求等方面因素;软段多元醇的选用不可能单一型,可以选用混合型,如PCD与PCL混合,或PCD与聚醚型混合,否则单用PCD,因价格太贵或存在功能过剩,影响水性聚氨酯涂料的推广应用与市场定位。 TECHNICAL PROGRESS DOI:10.13531/https://www.sodocs.net/doc/d511786457.html,ki.china.coatings.2008.07.007

聚氨酯研究进展

聚氨酯树脂的研究进展 摘要:本文综述了聚氨酯目前研究热点,其中包括氟硅改性、水性化、非异氰酸酯聚氨酯和聚氨酯纳米复合材料的研究,指出了聚氨酯未来研究方向。 关键词:聚氨酯;氟硅改性;水性;非异氰酸酯;纳米复合材料 Research progress of polyurethane Abstract:This article reviews the current research focus of polyurethane, including fluorine-modified, water-based, non-isocyanate polyurethane and polyurethane nano-composites,demonstrating future research directions of polyurethane. Keyword: polyurethane; fluorine-modified; non-isocyanate; nano-composites 引言 聚氨酯树脂(PU)是一种重要的合成树脂,它具有优良的性能,如硬度范围宽、强度高、耐磨、耐油、耐臭氧性能优良,且具有良好的吸振,抗辐射和耐透气性能,具有高拉伸强度和断裂伸长率,良好的耐磨损性、抗挠曲性、耐溶剂性,而且容易成型加工,并具有性能可控的优点;它的产品形态多样,如泡沫塑料、弹性体、涂料、胶黏剂、纤维素、合成革等;因此广泛应用于交通运输、建筑、机械、家具等诸多领域。 1.氟硅改性 氟硅改性聚氨酯是目前研究的热点之一,氟硅具有独特的化学结构,其表面能较低,因此在成膜过程中向表面富集,可赋予改性聚合物涂膜优良的耐水、耐油污、耐候、耐高低温使用性能以及良好的机械性能。常有两种: 一种方法是将含有羟基或胺基的硅氧烷树脂或单体与二异氰酸酯反应,将有机硅氧烷引到水性聚氨酯中,利用硅氧烷的水解缩合交联来改善聚氨酯的性能;另一种方法是在环氧硅氧烷作为后交联剂引入到体系中,形成环氧交联改性聚氨酯体系。Cheng(Cheng, Zhang et al. 2005)等人基于聚丙二醇(PPG),聚醚接枝聚硅氧烷(PE- PSI),2,4 - 甲苯二异氰酸酯(TDI),二羟甲基丙酸(DMPA)和1,4 -丁二醇(BDO)合成一个新颖的硅氧烷改性聚氨酯(PE- PSI)。Luo(Luo, Huang et al. 2010)等人基于异佛尔酮二异氰酸酯(IPDI),以二端羟烷基聚[甲基-(3,3,3- 三氟丙基)]硅氧烷(PMTFPS)为软段,聚己内酯(PCL)的混合软段的基础上,合成氟-硅氧烷改性聚氨酯系列。Linlin(Linlin, Xingyuan et al. 2007)等以2,4-甲苯二异氰酸酯、二端羟丁基聚二甲基硅氧烷(DHPDMS)、聚四氢呋喃醚二醇、1,4-丁二醇为主要原料合成了系列的有机硅改性聚氨酯(Si-PU)。硅烷改性聚氨酯的研究十分活跃,以聚氨酯为主链通过硅烷封端改性,是一个重要的发展方向。Mahdi(Mahdi, Syed Z. Rochester Hills et al. 2001)通过硅烷偶联剂改性聚氨酯,提高了聚氨酯密封胶对玻璃的粘接性,而且不用底涂剂,甚至可胶接油漆面和有机物污染的表面。Sun, DX(Sun, Miao et al. 2011)等用硅烷偶联剂(SiCA)改性功能化的纳米二氧化硅聚氨酯,提高其热稳定性、

水性聚氨酯的合成

闫福安,陈俊 (武汉工程大学化工与制药学院,武汉430073) 摘要:对水性聚氨酯的合成单体、合成原理、合成工艺及改性方法作了介绍。水性聚氨酯合成技术不断完善,市场正在推进,国内相关企业和研究机构应加强合作,从分子设计出发,不断推进水性聚氨酯产业的技术进步和市场推广。 关键词:水性聚氨酯;合成;改性 0引言 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控,配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行必不可少的材料之一,其本身就已经形成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。据有关报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右。美国人均年消耗聚氨酯材料约5.5kg,西欧约4.5kg,而我国的消费水平还很低,年人均不足0.5kg。溶剂型的聚氨酯涂料品种众多、用途广泛,在涂料产品中占有非常重要的地位。水性聚氨酯的研究始自20世纪50年代,60、70年代,对水性聚氨酯的研究、开发迅速发展,70年代开始工业化生产用作皮革涂饰剂的水性聚氨酯。进入90年代,随着人们环保意识以及环保法规的加强,环境友好的水性聚氨酯的研究、开发日益受到重视,其应用已由皮革涂饰剂不断扩展到涂料、黏合剂等领域,正在逐步占领溶剂型聚氨酯的市场。在水性树脂中,水性聚氨酯仍然是优秀树脂的代表,是现代水性树脂研究的热点之一。 1水性聚氨酯的合成单体 1.1多异氰酸酯(polyisocynate) 多异氰酸酯可以根据异氰酸酯基与碳原子连接的部位特点,可分为四大类:芳香族多异氰酸酯(如甲苯二异氰酸酯,TDI)、脂肪族多异氰酸酯(六亚甲基二异氰酸酯,HDI)、芳脂族多异氰酸酯(即在芳基和多个异氰酸酯基之间嵌有脂肪烃基-常为多亚甲基,如苯二亚甲基二异氰酸酯,XDI)和脂环族多异氰酸酯(即在环烷烃上带有多个异氰酸酯基,如异佛尔酮二异氰酸酯,IPDI。芳香族多异氰酸酯合成的聚氨酯树脂户外耐候性差,易黄变和粉化,属于“黄变性多异氰酸酯”,但价格低,来源方便,在我国应用广泛,如TDI常用于室内涂层用树脂;脂肪族多异氰酸酯耐候性好,不黄变,其应用不断扩大,欧美发达国家已经成为主流的多异氰酸酯单体;芳脂族和脂环族多异氰酸酯接近脂肪族多异氰酸酯,也属于“不黄变性多异氰酸酯”。水性聚氨酯合成用的多异氰酸酯主要有TDI、IPDI、HDI、TMXDI(四甲基苯二亚甲基二异氰酸酯)。TMXDI可直接用于水性体系,或用于零VOC水性聚氨酯的合成。

以有机硅改性丙烯酸树脂为基料制备道路标线漆的研究

以有机硅改性丙烯酸树脂为基料制备道路标线漆的研究 董洪波,王海青,王胜利 (山东东明石化集团有限公司,山东东明 274500) 摘要:以有机硅改性丙烯酸树脂为基料,选用耐磨颜填料,设计出适宜的颜基比和溶剂体系,研制出抗水、耐磨的道路标线漆,克服了常温溶剂型道路标线漆存在的弊病。 关键词:改性丙烯酸树脂;道路标线漆;抗水性;耐磨性 中图分类号:TQ631.8 文献标识码:A 文章编号:1008-021X (2003)04-0042-02 Study on the Preparation of T raff ic Lane Paint by Using the Material B ased on Acrylic R esin from the Organic Silicon DON G Hong -bo ,W A N G Hai -qi ng ,W A N G S heng -li (Shandong Dongming Petrochemical Group Co.,Ltd.,Donging 274500,China ) Abstract :The traffic lane paint prepared by using the material based on acrylic resin from the organic silicon &wear -resisting fillings with suitable proportion of basic material &pigment &solvent system has the advantage of antiwater &wear -resisting and can improve the characters of normal traffic lane paint. K ey w ords :acrylic resin from the organic silicon ;traffic lane paint ;antiwater ;wear -resisting 1 前言 常温溶剂型道路标线漆在应用中经常出现耐磨性差、寿命短的问题,并且雨后易出现块状甚至大面积脱落的现象。众所周知,涂膜的耐磨性是硬度、附着力、内聚力综合效应的体现。对硬度、附着力、内聚力相当的两种涂膜来说,其耐磨耐久性主要取决于涂膜的厚度。涂膜越厚,耐磨耐久性越好,使用寿命就越长。 涂膜性能主要取决于基料树脂的性能,因此所选基料树脂的抗水性、湿态附着力的好坏直接影响路标漆的相应性能。有机硅具有较低的表面张力,抗水性好,将含有活性官能团的有机硅氧烷与丙烯酸酯类单体接枝共聚制成的改性树脂,兼具有机硅和丙烯酸类二者的,因此本试验选用东明合成树脂厂研制的DS -H J 55有机硅改性丙烯酸树脂为基料来制备道路标线漆。该树脂是由含甲氧基的有机硅氧烷改性制成,改性后的树脂由于引入了可水解的反应活性较高的-Si (OCH 3)3基团,具有潮气活化、室温固化的性质。-Si (OCH 3)3遇潮气水解,释出醇,转变为硅烷醇,不仅分子间硅烷醇缩合,而且还 可与颜填料以及道路表面(尤其水泥路面)天然存在 的羟基进行缩合,相互之间形成化学键,从而大大提高了涂膜的内聚强度和对路面的附着力。并且改性后的树脂由于有较低的粘度,制漆时可获得较高的固体分,以保证施工的涂膜厚度,提高耐磨耐久性。2 实验部分 2.1 道路标线漆用原料及配方 表1 道路标线漆用原料及配方 原料规格型号 产地质量分数/% 树脂DS -H J55山东东明36钛白粉R930 日本12锻烧高岭土细度38μm 济南10硅灰石粉细度38μm 济南15滑石粉细度38μm 济南10云母粉细度38 μm 河北3分散剂F108杭州临安0.4抗沉剂B YK -410 德国毕克公司 0.05-0.1稀释剂 自制 13.5 2.2 制备工艺 将配方量溶剂、树脂、分散剂、防沉剂于搅拌下依次投入分散罐内。将它们分散均匀后,再依次投入颜填料,分散至无团块,打入砂磨机研磨,至细度≤ ? 24?SHANDON G CHEMICAL INDUSTR Y 2003年第32卷 山 东 化 工 收稿日期:2003-03-31 修回日期:2003-07-07

相关主题