搜档网
当前位置:搜档网 › 正弦定理与余弦定理练习题

正弦定理与余弦定理练习题

正弦定理与余弦定理练习题
正弦定理与余弦定理练习题

正弦定理与余弦定理

1.已知△ABC 中,a=4,ο

30,34==A b ,则B 等于( )

A .30°

B .30° 或150°

C .60°

D .60°或120° 2.已知锐角△ABC 的面积为33,BC=4,CA=3,则角C 的大小为( ) A .75° B .60° C .45° D .30°

3.已知ABC ?中,c b a ,,分别是角C B A ,,所对的边,若0cos cos )2(=++C b B c a ,则角B 的大小为( ) A .

6

π

B .

3

π

C .

32π D .6

5π 4.在ABC 中,a 、b 、c 分别是角A 、B 、C 的对边.若

sin sin C

A

=2,ac a b 322=-,则B ∠=( ) A. 030 B. 060 C. 0120 D. 0150 5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知a=5,c=10,A=30°,则B 等于( )

A .105°

B .60°

C .15°

D .105° 或 15° 6.已知ABC ?中,75

6,8,cos 96

BC AC C ===,则ABC ?的形状是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .钝角三角形

7.在ABC ?中,内角,,A B C 的对边分别为,,a b c ,且2B C =,2cos 2cos b C c B a -=,则角A 的大小为( ) A .

2π B .3π C .4π D .6

π 8.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )

A .锐角三角形

B .直角三角形

C .钝角三角形

D .不能确定 9.在ABC ?中,sin :sin :sin 3:2:4A B C =,那么cos C =( ) A.

14 B.23 C.23- D.14

- 10.在ABC ?中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形

C .等腰三角形

D .等腰或直角三角形 11.在△ABC 中,cos 2=

,则△ABC 为( )三角形.

A .正

B .直角

C .等腰直角

D .等腰 12.在△ABC 中,A=60°,a=4,b=4

,则B 等于( )

A .B=45°或135°

B .B=135°

C .B=45°

D .以上答案都不对

13.在ABC ?,内角,,A B C 所对的边长分别为,,.a b c 1

sin cos sin cos ,2

a B C c B A

b +=

且a b >,则B ∠=( ) A.6π B.3π

C.23π

D.56π

14.设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若cos cos sin b C c B a A +=, 则△ABC 的形状为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 15.已知在ABC ?中,2

cos 22A b c

c

+=

,则ABC ?的形状是( ) A .直角三角形 B .等腰三角形或直角三角形 C .正三角形 D .等腰直角三角 16.已知ABC ?内角,,A B C 的对边分别是,,a b c ,若1

cos ,2,sin 2sin 4

B b

C A =

==,

则ABC ?的面积为( ) A.

15

6 B. 15

4 C. 15

2

D. 15 17.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =3

π

,a =3,b =1,则c =( ) A . 3-1 B .3 C. 2 D. 1

评卷人 得分

一、解答题(题型注释)

18.在ABC ?中,内角A ,B ,C 所对的边分别是a ,b ,c .已知4

A π

=,22212

b a

c -=

. (1)求tan C 的值;

(2)若ABC ?的面积为3,求b 的值.

19.在△ABC 的内角A ,B ,C 对应的边分别是a ,b ,c ,已知,

(1)求B ;

(2)若b=2,△ABC 的周长为2

+2,求△ABC 的面积.

ABC C B A ,,c b a ,,B c C b a sin cos +=

B

2=b ABC

21.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知()

222332b c a bc +=+ (1)求sinA ; (2)若3

2

a =

,△ABC 的面积S =22,且b>c ,求b ,c .

22.已知ABC △的内角A B C ,,的对边分别为a b c ,,,且满足sin(2)

22cos()sin A B A B A

+=++.

(Ⅰ)求

b

a

的值; (Ⅱ)若17a c ==,ABC △的面积.

23.在ABC ?中,角,,A B C 所对的边分别为,,a b c ,已知2a =,5c =,3cos 5

B =. (1)求b 的值; (2)求sin

C 的值.

二、填空题

24.已知在中,,,,则___.

25.△ABC 中,若222a b c bc =+-,则A = .

26.在中,角,,A B C 所对边长分别为,,a b c ,若,则b=___________.

27.在C ?AB 中,已知43AB =C 4A =,30∠B =o ,则C ?AB 的面积是 . 28.在ABC ?中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为△ABC 的面积,2

223)S a b c =+-,则C 的大小为___________. 29.在?ABC 中,已知

C

c

B b A a cos cos cos =

=,则这个三角形的形状是

参考答案

1.D 【解析】

试题分析:

B b A a sin sin =,2

3421

344

30

sin 34sin sin 0

=?

=?==a A b B ;b a <Θ,030=>∴A B , 060=∴B 或0120=B ,选D.

考点:正弦定理、解三角形 2.B 【解析】

试题分析:33sin 432

1sin 21=??=??=

?C C BC AC S ABC ,则23sin =C ,所以060=C ,选B.

考点:三角形面积公式

3.C 【解析】

试题分析:由已知和正弦定理得(2sin sin )cos sin cos 0,A C B B C ++=展开化简得2sin cos sin 0A B A +=,由于A 为三角形内角,所以0,sin 0A A ≠≠,所以1cos 2B =-

,23

B π=,选C. 考点:1.正弦定理;2.两角和的正弦公式;3.已知三角函数值求角.

4.C 【解析】

试题分析:由正弦定理可得,

sin 22sin C c c a A a

==?=,又2222

37b a ac b a -=?=,由余弦定理可得,22222

21

cos 242

a c

b a B a

c a +--===-,又()0,B π∈,所以120B ?∠=. 考点:1.正弦定理;2.余弦定理.

5.D 【解析】解:=, ∴sinC=sinA=

×=

∵0<C <π,

∴∠C=45°或135°, ∴B=105°或15°, 故选D .

【点评】本题主要考查了正弦定理的应用.解题的过程中一定注意有两个解,不要漏解. 6.D 【解析】

试题分析:由余弦定理得2

2

2

75

6826825

96AB =+-???=,所以最大角为B 角,因为226258cos 0265B +-=

所以B 角为钝角,选D.

考点:余弦定理

【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件

即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具

即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果. 7.A 【解析】

试题分析:由正弦定理得()2sin cos 2sin cos sin sin B C C A B C -==+sin cos cos sin B C B C =+,

2

sin cos 3sin cos ,sin 2cos 3sin cos 2B C C B C C C C ==,

()

2222cos 3cos sin C C C =-,

213tan ,tan 33C C ==,2,B C C =∴Q 为锐角,所以,,632

C B A πππ

===,故选A.

考点:1、正弦定理两角和的正弦公式;2、三角形内角和定理.

8.C 【解析】

试题分析:由题可根据正弦定理,得a 2+b 2

ab

+-<0,则角C 为钝角

考点:运用正弦和余弦定理解三角形. 9.D 【解析】

试题分析:sin :sin :sin 3:2:4,::3:2:4A B C a b c =∴=2221

cos 24

a b c C ab +-∴=

=- 考点:正余弦定理解三角形

10.C 【解析】

试题分析:在给定的边与角的关系式中,可以用余弦定理,得222

22a b c a b ab

+-=g ,那么化简可知

所以 2222=a a b c +-,即 22=b c ,=b c ,所以三角形ABC 是等腰三角形.故选C .

考点:余弦定理判断三角形的形状. 11.B 【解析】

试题分析:根据二倍角的余弦公式变形、余弦定理化简已知的等式,化简后即可判断出△ABC 的形状. 解:∵cos 2=

,∴

(1+cosB )=

在△ABC 中,由余弦定理得,=,

化简得,2ac+a 2+c 2﹣b 2=2a (a+c ), 则c 2=a 2+b 2,

∴△ABC 为直角三角形, 故选:B . 12.C 【解析】

试题分析:由A 的度数求出sinA 的值,再由a 与b 的值,利用正弦定理求出sinB 的值,由b 小于a ,得到B 小于A ,利用特殊角的三角函数值即可求出B 的度数. 解:∵A=60°,a=4,b=4, ∴由正弦定理=

得:sinB=

=

=

∵b <a ,∴B <A ,

则B=45°. 故选C 13.A 【解析】

试题分析:利用正弦定理化简得:sinAsinBcosC+sinCsinBcosA=1

2

sinB , ∵sinB ≠0,∴sinAcosC+cosAsinC=sin (A+C )=sinB=12

, ∵a >b ,∴∠A >∠B ,∴∠B=6

π 考点: 14.B 【解析】

试题分析:()2

2

cos cos sin sin cos cos sin sin sin sin b C c B a A B C B C A B C A +=∴+=∴+=

sin 12

A A π

∴=∴=

,三角形为直角三角形

考点:三角函数基本公式 15.A

【解析】试题分析:2

2cos 2cos 11cos 1cos 222A b c A b c b b b A A c c c c c

++=?==+?+=+?= ()sin sin cos sin cos 0cos 0,sin sin 2

A C

B A A

C C C C C π

+=

=?=∴==,选A 考点:正弦定理,二倍角的余弦,两角和的正弦

16.B

【解析】试题分析:2222214

sin 2sin 2cos 242a c b a c C A c a B ac ac +-+-=∴==∴=Q Q 1,2a c ∴==

11sin 1222S ac B ∴=

=??= 考点:正余弦定理解三角形

17.C 【解析】

试题分析:由余弦定理可得2222113

cos 2222b c a c A c bc c

+-+-=

∴=∴= 考点:余弦定理解三角形 18.(1)2;(2)3.

【解析】试题分析:(1)先运用余弦定理求得b c 322=

,进而求得b a 3

5

=,再运用正弦定理求C sin 的值即可获解;(2)利用三角形的面积公式建立关于b 方程求解. 试题解析:(1)由余弦定理可得2

2

22

2

2

?

-+=bc c b a ,

即bc c a b 2222=+-,将22212b a c -=

代入可得b c 322=,再代入2221

2

b a

c -=可得b a 35=, 所以

5

2

2sin sin =

=a c A C ,即52sin =C ,则51cos =C ,所以2tan =C ; (2)因

3sin 2

1

=A bc ,故322322212=??

b ,即3=b . 考点:正弦定理余弦定理等有关知识的综合运用. 19.(1)B=

(2)

【解析】解:(1)由正弦定理可得:=

∴tanB=,

∵0<B <π, ∴B=

(2)由余弦定理可得b 2=a 2+c 2﹣2accosB , 即a 2+c 2﹣ac=4, 又b=2,△ABC 的周长为2+2,

∴a+c+b=2+2, 即a+c=2, ∴ac=,

∴S △ABC =acsinB=××

=

【点评】本题考查了正弦定理、余弦定理、三角形周长、三角形面积计算公式,考查了推理能力与计算能力,属于中档题. 20.(1)B=

.4

π

(2)21+ 【解析】试题分析:(1)由题为求角,可利用题中的条件B c C b a sin cos +=,可运用正弦定理化边为角, 再联系两角和差公式,可求出角B 。

(2)由(1)已知角B ,可借助三角形面积公式求,先运用正弦定理表示出所需的边,再利用正弦三角函数的性质,化为已知三角函数的定义域,求函数值得最值问题,可解。

试题解析: (1)∵a=bcosC+csinB, ∴由正弦定理可得: sinA=sinBcosC+sinCsinB , ∴sin (B+C )=sinBcosC+sinCsinB ,即cosBsinC=sinCsinB ,∵sinC ≠0, ∴ cos sin B B =, ∴sin tan 1cos B B B =

=,()0,B π∈,∴B=.4

π

。 (2)由(1)可得34

4A C B π

πππ+=-=-

=

,∴33,0,44

C A A ππ

??

=-∈ ???

, 由正弦定理可得:

2

22sin sin sin sin 4

a c

b A C B π

====

∴,a A c C ==,

11

sin sin 224

ABC S ac B A C π?=

=???=

3sin sin 4A C A A π??

=- ?

??

=

22A A A ?+????

=2

2sin cos 2sin A A A +=sin21cos2A A +-)14A π-+, ∵30,4

A π?

?∈ ??

?,∴52,

444A πππ????

-∈- ? ?

????

,∴当242A ππ-=,

即38

A π

=

时,ABC S ?1+ 考点:(1)利用正弦定理进行边角互化解三角形。(2)利用正弦定理进行边角互化及正弦函数的性质。

21.(1)

3(2)3

,12

b c == 【解析】试题分析:(1)将已知条件变形结合余弦定理可得到cosA,进而可求得sinA ;(2)由余弦定理可得到关于

b,c 的关系式,由三角形面积得到关于b,c 的又一关系式,解方程组可求得其值 试题解析:(1) ∵()

222332b c a bc +=+,

2221

23

b c a bc +-= ∴ cosA =

1

3 又 ∴ ∠A 是三角形内角

∴ sinA =

3

.

(2)∵S =

2,∴12bcsinA =2,∴bc =32

① ∵ 3

2

a = ,∴由余弦定理可得

2

22

31223b c bc ??=+-? ?

??

∴2

2

2

312b c ??

+=+ ???

∵b>c>0,∴联立①②可得3

,12

b c =

=. 考点:余弦定理解三角形及三角形面积求解

22.(I )

2b

a

=;

(II . 【解析】

试题分析:(I )利用两角和的正弦、余弦公式,化简sin(2)

22cos()sin A B A B A

+=++,得到sin 2sin B A =,利用正弦定

理得到2b

a

=;(II )由(I )可求得2b =,先求出一个角的余弦值,再求其正弦值,最后利用三角形面积公式求面积.

试题解析:

解析:(Ⅰ)∵

sin(2)

22cos()sin A B A B A

+=++,∴sin(2)2sin 2sin cos()A B A A A B +=++,

∴sin[()]2sin 2sin cos()A A B A A A B ++=++,∴sin()cos sin cos()2sin A B A A A B A +-+=,

∴sin 2sin B A =,∴2b a =,∴

2b

a

=. (Ⅱ)∵17a c ==,,2b a =,∴2b =,∴2221471cos 242a b c C ab +-+-===-,∴23

C π

=

. ∴1133sin 122222ABC S ab C ==???=

△,即ABC △的面积的3

2

. 考点:三角函数与解三角形.

23.(1)17(2)

417

17

【解析】试题分析:由三角形余弦定理2222cos b a c ac B =+-,将已知条件代入可得到b 的值;(2)由正弦定理

sin sin b c

B C

=

,将已知数据代入可得到sin C 的值. 试题解析:(1)由余弦定理 2222cos b a c ac B =+-,得23

425225175

b =+-???

=,∴17b = (2)∵3cos 5B =

∴4sin 5B =,由正弦定理 sin sin b c

B C =

,1754sin 5

C =,417sin 17C = 考点:正余弦定理解三角形 24.

【解析】试题分析:由正弦定理可得,,代入数值可求出,可求,又因为BC>AC,

所以由大角对大边的原则,

考点:1.正弦定理的运用;2.三角形三边关系; 25.

3

π 【解析】

试题分析:由余弦定理可得,2122cos 222==-+=

bc bc bc a c b A ,又π<

π

考点:余弦定理的应用;

26. 【解析】

试题分析:因

,故,由正弦定理可得,即,应填.

考点:正弦定理及运用. 27.4383

【解析】试题分析:设x BC =,则由余弦定理可得0

230cos 3424816x x ??-+=,即032122=+-x x ,所以

4=x 或8=x ,所以3430sin 344210=??=?ABC S 或3830sin 38421

0=??=?ABC S ,故答案为43或

83.

考点:正弦定理和余弦定理的妙用. 28.

【解析】试题分析:∵根据余弦定理得,

的面积S =

∴由4S =

,得

∵,∴C =

考点:余弦定理与面积公式.

29.等边三角形 【解析】

试题分析:由正弦定理

sin sin sin a b c A B C ==得sin sin sin cos cos cos A B C

A B C

==

tan tan tan A B C A B C ∴==∴==,三角形为等边三角形

考点:正弦定理解三角形

余弦定理知识点+经典题(有答案)

余弦定理 余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的两倍。即: 2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+- 2.利用余弦定理解三角形: (1)已知两边和它们所夹的角: (2)已知三边: 余弦定理 1.在△ABC 中,如果BC =6,AB =4,cos B =1 3 ,那么AC 等于( )A .6 B .2 6 C .3 6 D .4 6 3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150° 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B = 3ac , 则∠B 的值为( ) A.π6 B.π3 C.π6或5π6 D.π3或2π3 5.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 6.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( ) A .2 B .-2 C .4 D .-4

7.在△ABC中,b=3,c=3,B=30°,则a为( ) A. 3 B.2 3 C.3或2 3 D.2 8.已知△ABC的三个内角满足2B=A+C,且AB=1,BC=4,则边BC上的中线AD的长为________. 9.△ABC中,sin A∶sin B∶sin C=(3-1)∶(3+1)∶10,求最大角的度数.10.已知a、b、c是△ABC的三边,S是△ABC的面积,若a=4,b=5,S=53,则边c 的值为________. 11.在△ABC中,a=32,cos C=1 3 ,S△ABC=43,则b=________. 12.已知△ABC的三边长分别为AB=7,BC=5,AC=6,则AB→·BC→的值为________. 13.已知△ABC的三边长分别是a、b、c,且面积S=a2+b2-c2 4 ,则角C=________. 14.(2015年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 15.在△ABC中,BC=a,AC=b,a,b是方程x2-23x+2=0的两根,且2cos(A+B)=1,求AB的长.

高考正弦定理和余弦定理练习题及答案精选.

高考正弦定理和余弦定理练习题及答案 一、选择题 1. 已知△ABC 中,a =c =2,A =30°,则b =( ) A. 3 B. 2 3 C. 3 3 D. 3+1 答案:B 解析:∵a =c =2,∴A =C =30°,∴B =120°. 由余弦定理可得b =2 3. 2. △ABC 中,a =5,b =3,sin B = 22,则符合条件的三角形有( ) A. 1个 B. 2个 C. 3个 D. 0个 答案:B 解析:∵a sin B =102, ∴a sin B b B .a

C .a =b D .a 与b 的大小关系不能确定 答案:A 解析:由正弦定理,得c sin120°=a sin A , ∴sin A =a ·3 22a =64>1 2. ∴A >30°.∴B =180°-120°-A <30°.∴a >b . 5. 如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A. 5 18 B. 3 4 C. 3 2 D. 7 8 答案:D 解析:方法一:设三角形的底边长为a ,则周长为5a , ∴腰长为2a ,由余弦定理知cos α=(2a )2+(2a )2-a 22×2a ×2a =7 8. 方法二:如图,过点A 作AD ⊥BC 于点D , 则AC =2a ,CD =a 2,∴sin α2=1 4, ∴cos α=1-2sin 2α 2 =1-2×116=7 8. 6. (2010·泉州模拟)△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积等于( ) A. 3 2 B. 3 4 C. 3 2或 3 D. 32或3 4 答案:D 解析:∵sin C 3=sin B 1, ∴sin C =3·sin30°=3 2.

《正弦定理和余弦定理》典型例题.

《正弦定理和余弦定理》典型例题透析 类型一:正弦定理的应用: 例1.已知在ABC ?中,10c =,45A = ,30C = ,解三角形. 思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C = , ∴sin 10sin 45sin sin 30c A a C ?=== ∴ 180()105B A C =-+= , 又sin sin b c B C =, ∴sin 10sin10520sin 7520sin sin 304 c B b C ?====?= 总结升华: 1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题; 2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式. 举一反三: 【变式1】在?ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。 【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0 sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0 sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在?ABC 中,已知075B =,0 60C =,5c =,求a 、A . 【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60o o a =,∴a =【变式3】在?ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C ==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在60,1ABC b B c ?=== 中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .

2021年高考数学一轮复习题型归纳与高效训练试题:4.5 正弦定理和余弦定理(原卷版)文

『高考复习·精推资源』『题型归纳·高效训练』

高考复习·归纳训练

2021年高考理科数学一轮复习:题型全归纳与高效训练突破 专题4.5 正弦定理和余弦定理 目录 一、题型全归纳 (1) 题型一利用正、余弦定理解三角形 (1) 类型一用正弦定理解三角形 (2) 类型二用余弦定理解三角形 (2) 类型三综合利用正、余弦定理解三角形 (3) 题型二利用正、余弦定理边角互化 (5) 题型三与三角形面积有关的问题 (7) 二、高效训练突破 (10) 一、题型全归纳 题型一利用正、余弦定理解三角形 【题型要点】解三角形的常见题型及求解方法 (1)已知两角A,B与一边a,由A+B+C=π及a sin A= b sin B= c sin C,可先求出角C及b,再求出c. (2)已知两边b,c及其夹角A,由a2=b2+c2-2bc cos A,先求出a,再求出角B,C. (3)已知三边a,b,c,由余弦定理可求出角A,B,C. (4)已知两边a,b及其中一边的对角A,由正弦定理a sin A=b sin B可求出另一边b的对角B,由C=π-(A+B), 可求出角C,再由a sin A=c sin C可求出c,而通过a sin A= b sin B求角B时,可能有一解或两解或无解的情况.

类型一 用正弦定理解三角形 【例1】.(2020·北京朝阳区模拟)在△ABC 中,B =π6,c =4,cos C =53 ,则b =( ) A .3 3 B .3 C.32 D.43 【例2】.(2020·丹东模拟)在△ABC 中,C =60°,AC =2,AB =3,则A =( ) A .15° B .45° C .75° D .105° 类型二 用余弦定理解三角形 【例3】(2020·贵阳模拟)平行四边形ABCD 中,AB =2,AD =3,AC =4,则BD =( ) A .4 B.10 C.19 D.7 【例4】.在△ABC 中,AB =4,AC =7,BC 边上中线AD =72 ,则BC =________. 类型三 综合利用正、余弦定理解三角形 【例5】(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C. △求A ; △若2a +b =2c ,求sin C. 【例6】在△ABC 中,a =3,b -c =2,cos B =-12 .

正余弦定理练习题(答案)

1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) D .26 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 C .2 6.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( ) 或 3 或3 2 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) B .2 C. 3 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π 3,则A =________. 10.在△ABC 中,已知a =43 3,b =4,A =30°,则sin B =________. 11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________. 13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C =________,c =________. 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________. 15.在△ABC 中,已知a =32,cos C =1 3,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°, 航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少 18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c . 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.

2021届高三高考数学文科一轮复习知识点专题4-6 正弦定理和余弦定理【含答案】

2021届高三高考数学文科一轮复习知识点 专题4.6 正弦定理和余弦定理【考情分析】 1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 【重点知识梳理】 知识点一正弦定理和余弦定理 1.在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则 定理正弦定理余弦定理 公式 a sin A= b sin B= c sin C=2R a2=b2+c2-2bc cos A;b2=c2 +a2-2ca cos B; c2=a2+b2-2ab cos C 常见变形(1)a=2R sin A,b=2R sin B,c=2R sin C; (2)sin A= a 2R,sin B= b 2R,sin C= c 2R; (3)a∶b∶c=sin A∶sin B∶sin C; (4)a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A= b2+c2-a2 2bc; cos B= c2+a2-b2 2ac; cos C= a2+b2-c2 2ab 2.S△ABC=1 2ab sin C= 1 2bc sin A= 1 2ac sin B= abc 4R= 1 2(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R, r. 3.在△ABC中,已知a,b和A时,解的情况如下: A为锐角A为钝角或直角图形 关系式a=b sin A b sin Ab a≤b 解的个数一解两解一解一解无解知识点二三角函数关系和射影定理 1.三角形中的三角函数关系 (1)sin(A+B)=sin C;(2)cos(A+B)=-cos C;

正弦定理、余弦定理经典练习题

学科数学版本人教版大开本、3+x 期数2339 年级高一编稿老师梁文莉审稿教师 【同步教育信息】 一. 本周教学内容: §5.9正弦定理、余弦定理 目标:使学生理解正弦定理、余弦定理的证明和推导过程,初步运用它们解斜三角形。并会利用计算器解决解斜三角形的计算问题。培养学生观察、分析、归纳等思维能力、运算能力、逻辑推理能力,渗透数形结合思想、分类思想、化归思想,以及从特殊到一般、类比等方法,进一步提高学生分析问题和解决问题的能力。 二. 重点、难点: 重点: 正弦定理、余弦定理的推导及运用。 难点: (1)正弦定理、余弦定理的推导过程; (2)应用正弦定理、余弦定理解斜三角形。 [学法指导] 学习本节知识时可采用向量法、等积法(面积相等)等不同方法来推导正弦定理,以加深对定理的理解和记忆,由于已知两边及其中一边的对角,不能唯一确定三角形,此时三角形可能出现两解、一解、无解三种情况,因此解此类三角形时,要注意讨论。 深刻领会向量的三角形法则及平面向量的数量积是用向量法推导余弦定理的关键。注意余弦定理的每一个等式中都包含四个不同的量,它们分别是三角形的三边和一个角,知道其中的三个量,便可求得第四个量。当有一个角为90°时,即为勾股定理。因此,勾股定理可看作是余弦定理的特例。 正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。一般地,利用公式a=2RsinA,b=2RsinB,c=2RsinC(R 为ΔABC外接圆半径),可将边转化为角的三角函数关系,然后利用三角函数知识进行化简,其中往往用到三角形内角和定理A+B+C=π。 可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题。在三角形中,有一个角的余弦值为负值,该三角形为钝角三角形;有一个角的余弦值为零,便是直角三角形;三个角的余弦值都为正值,便是锐角三角形。 【例题分析】

新课标高考数学题型全归纳正余弦定理常见解题类型典型例题

正余弦定理常见解题类型 1. 解三角形 正弦定理常用于解决以下两类解斜三角形的问题:①已知两角和任一边,求其他两边和一角;②已知两边和其中一边的对角,求另一边的对角及其他的边和角. 余弦定理常用于解决以下两类解斜三角形的问题:①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两个角. 例1 已知在ABC △中,4526A a c ∠===,,,解此三角形. 解:由余弦定理得22(6)26cos 454b b +-=, 从而有31b =±. 又222(6)222cos b b C =+-?, 得1cos 2 C =±,60C ∠=或120C ∠=. 75B ∴∠=或15B ∠=. 因此,31b =+,60C ∠=,75B ∠= 或31b =-,120C ∠=,15B ∠=. 注:此题运用正弦定理来做过程会更简便,同学们不妨试着做一做. 2. 判断三角形的形状 利用正余弦定理判断三角形的形状主要是将已知条件中的边、角关系转化为角的关系或

边的关系,一般的,利用正弦定理的公式2sin 2sin 2sin a R A b R B c R C ===,,,可将边转化为角的三角函数关系,然后利用三角函数恒等式进行化简,其中往往用到三角形内角和定理: A B C ++=π;利用余弦定理公式222222 cos cos 22b c a a c b A B bc ac +-+-==,, 222 cos 2a b c C ab ++=,可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题. 例2 在ABC △中,若2222sin sin 2cos cos b C c B bc B C +=,判定三角形的形状. 解:由正弦定理2sin sin sin a b c R A B C ===,为ABC △外接圆的半径, 可将原式化为22228sin sin 8sin sin cos cos R B C R B C B C =, sin sin 0B C ≠∵, sin sin cos cos B C B C ∴=,即cos()0B C +=. 90B C ∴+=,即90A =,故ABC △为直角三角形. 3. 求三角形中边或角的范围 例3 在ABC △中,若3C B ∠=∠,求c b 的取值范围. 解: A B C ∠+∠+∠=π,4A B ∴∠=π-∠. 04B π∴<∠<.可得210sin 2 B <<. 又2sin sin 334sin sin sin c C B B b B B ===-∵, 2134sin 3B ∴<-<.故13c b <<. 点评:此题的解答容易忽视隐含条件B ∠的范围,从而导致结果错误.因此,解此类问题应注意挖掘一切隐含条件. 4. 三角形中的恒等式证明 根据所证等式的结构,可以利用正、余弦定理化角为边或角的关系证得等式. 例4 在ABC △中,若2()a b b c =+,求证:2A B =. 证明:2222cos 2222a c b bc c b c a B ac ac a b +-++====∵, 222222 22222cos 22cos 1214222a a b b bc b c b B B b b b b -+--∴=-=?-===.

-正弦定理和余弦定理高考题

温馨提示: 此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,关闭Word 文档返回原板块。 考点16 正弦定理和余弦定理 一、选择题 1.(2011·浙江高考文科·T5)在ABC ?中,角,,A B C 所对的边分别为,,a b c .若cos sin a A b B =,则 2sin cos cos A A B +=( ) (A)- 12 (B)1 2 (C)-1 (D)1 【思路点拨】用正弦定理统一到角的关系上,再用同角三角函数的平方关系即可解决. 【精讲精析】选D. 由cos sin a A b B =可得2sin cos sin A A B = 所以222 sin cos cos sin cos 1A A B B B +=+=. 二、填空题 2.(2011·安徽高考理科·T14)已知ABC ? 的一个内角为120o ,并且三边长构成公差为4的等差数列, 则ABC ?的面积为_______________. 【思路点拨】设三角形一边的长为x ,可以用x 表示其他两边,再利用余弦定理建立方程求出x ,最后利用三角形面积公式求出ABC ?的面积. 【精讲精析】设三角形中间边长为x ,则另两边的长为x-4,x+4,那么 所以解得)(,10,120cos )4(2)4(4222=---+=+x x x x x x .315120sin 6102 1 =???= ? ABC S 【答案】153 3.(2011·福建卷理科·T14)如图,△ABC 中,AB=AC=2,BC=23,点D 在BC 边上,∠ADC=45°,则AD 的长度等于______. 【思路点拨】结合图形, ?∠∠ABC 先在中,由余弦定理解出C 与B , ABD ?然后在中,由正弦定理解得AD. 【精讲精析】在ABC ?中,由余弦定理易得

正弦定理、余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中, C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o ,则b = 【解析】0000000 sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=

正弦余弦历年高考题及详细答案

正 余 弦 定 理 1.在 ABC ?中,A B >是sin sin A B >的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 2、已知关于x 的方程2 2 cos cos 2sin 02 C x x A B -?+=的两根之和等于两根之积的一半,则ABC ?一定是 ( ) (A )直角三角形(B )钝角三角形(C )等腰三角形(D )等边三角形. 3、 已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若a=1,b=3, A+C=2B,则sinC= . 4、如图,在△ABC 中,若b = 1,c =3,23 C π ∠=,则a= 。 5、在ABC ?中,角,,A B C 所对的边分别为a ,b ,c ,若2a =,2b =, sin cos 2B B +=,则角A 的大小为 . 6、在?ABC 中,,,a b c 分别为角,,A B C 的对边,且2 7 4sin cos 222 B C A +-= (1)求A ∠的度数 (2)若3a =,3b c +=,求b 和c 的值 7、 在△ABC 中已知acosB=bcosA,试判断△ABC 的形状. 8、如图,在△ABC 中,已知3=a ,2=b ,B=45? 求A 、C 及c . A B 3 23 π

1、解:在ABC A B ?>中,2sin 2sin sin sin a b R A R B A B ?>?>?>,因此,选C . 2、【答案】由题意可知:211cos cos cos 2sin 222 C C A B -= ??= ,从而2cos cos 1cos()1cos cos sin sin A B A B A B A B =++=+- cos cos sin sin 1A B A B +=,cos()1A B -=又因为A B ππ-<-<所以0A B -=, 所以ABC ?一定是等腰三角形选C 3、【命题立意】本题考察正弦定理在解三角形中的应用. 【思路点拨】由已知条件求出B 、A 的大小,求出C ,从而求出sin .C 【规范解答】由A+C=2B 及180A B C ++=得60B =,由正弦定理得 1sin 60 A =得1 sin 2 A = ,由a b <知60A B <=,所以30A =,180C A B =-- 90=,所以sin sin 90 1.C == 4、【命题立意】本题考查解三角形中的余弦定理。 【思路点拨】对C ∠利用余弦定理,通过解方程可解出a 。 【规范解答】由余弦定理得,222121cos 33 a a π +-???=,即220a a +-=,解得1a =或2-(舍)。【答案】1 【方法技巧】已知两边及一角求另一边时,用余弦定理比较好。 5、【命题立意】本题考查了三角恒等变换、已知三角函数值求解以及正弦定理,考查了考生的推理论证能力和运算求解能力。 【思路点拨】先根据sin cos B B +=B ,再利用正弦定理求出sin A ,最后求出A. 【规范解答】由sin cos B B += 12sin cos 2B B +=,即sin 2B 1=,因为0

考点17 正弦定理和余弦定理【2019年高考数学真题分类】

温馨提示: 此题库为Word版, 请按住Ctrl, 滑动鼠标滚轴, 调节合适的观看比例, 关闭Word文档返回原板块。 考点17 正弦定理和余弦定理 一、选择题 1.(2019·全国卷Ⅰ文科·T11)△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-1 4,则b b = () A.6 B.5 C.4 D.3 【命题意图】本题考查正弦定理及余弦定理推论的应用. 【解题指南】利用余弦定理推论得出a,b,c的关系,再结合正弦定理边角互换列出方程,解出结果. 【解析】选A.由已知及正弦定理可得a2-b2=4c2,由余弦定理推论可得-1 4=cos A=b2+b2-b2 2bb ,所以b2-4b2 2bb =-1 4 ,所以3b 2b =1 4 ,所以 b b =3 2 ×4=6,故选A. 二、填空题 2.(2019·全国卷Ⅱ理科·T15)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B=π 3 ,则△ABC的面积为. 【命题意图】考查余弦定理以及三角形面积公式的应用. 【解析】因为cos B=b2+b2-b2 2bb , 又因为b=6,a=2c,B=π 3 ,可得c2=12, 1

解得c=2√3,a=4√3, 则△ABC的面积S=1 2×4√3×2√3×√3 2 =6√3. 答案:6√3 3.(2019·全国卷Ⅱ文科·T15)△ABC的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=. 【命题意图】考查正弦定理、同角三角函数基本关系的运用. 【解析】已知b sin A+a cos B=0,由正弦定理可得sin B sin A+sin A cos B=0,即sin B=-cos B, 又因为sin2B+cos2B=1,解得sin B=√2 2,cos B=-√2 2 ,故B=3π 4 . 答案:3π 4 4.(2019·浙江高考·T14)在△ABC中,∠ABC=90°,AB=4,BC=3,点D在线段AC上,若∠BDC=45°,则BD=,cos∠ABD= . 【命题意图】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想. 【解析】在△ABD中,由正弦定理有:bb sin∠bbb =bb sin∠bbb , 而AB=4,∠ADB=3π 4 ,AC=√bb2+bb2=5, sin∠BAC=bb bb =3 5 ,cos∠BAC=bb bb =4 5 ,所以BD=12√2 5 . cos∠ABD=cos(∠BDC-∠BAC) =cosπ 4cos∠BAC+sinπ 4 sin∠BAC=7√2 10 . 2

正余弦定理高考真题.doc

高一(下)数学(必修五)第一章 解三角形 正弦定理、余弦定理高考真题 1、(06湖北卷)若ABC ?的内角A 满足2 sin 23 A =,则sin cos A A += A. 15 3 B .153- C .53 D .53- 解:由sin2A =2sinAcosA >0,可知A 这锐角,所以sinA +cosA >0, 又25(sin cos )1sin 23 A A A +=+=,故选A 2、(06安徽卷)如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则 A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 解:111A B C ?的三个内角的余弦值均大于0,则111 A B C ?是锐角三角形,若222 A B C ?是锐角三角形,由211211211sin cos sin()2 sin cos sin()2sin cos sin()2A A A B B B C C C πππ?==-??? ==-???==-??,得21 2 121222A A B B C C πππ? =-?? ?=-??? =-?? ,那么,2222 A B C π ++=,所以222A B C ?是钝角三角形。故选D 。 3、(06辽宁卷)ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量 (,)p a c b =+ ,(,)q b a c a =-- ,若//p q ,则角C 的大小为 (A)6π (B)3π (C) 2π (D) 23 π 【解析】222//()()()p q a c c a b b a b a c ab ?+-=-?+-= ,利用余弦定理可得2cos 1C =,即1cos 23 C C π = ?=,故选择答案B 。 【点评】本题考查了两向量平行的坐标形式的重要条件及余弦定理和三角函数,同时着重考查了同学们的运算能力。 4、(06辽宁卷)已知等腰ABC △的腰为底的2倍,则顶角A 的正切值是( ) A. 3 2 B.3 C. 158 D. 157 解:依题意,结合图形可得15tan 215A =,故22 1522tan 15152tan 7151tan 1() 215 A A A ? = ==--,选D 5、(06全国卷I )ABC ?的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B = A .1 4 B .34 C . 24 D .23 解:ABC ?中,a 、b 、c 成等比数列,且2c a =,则b =2a , 222cos 2a c b B ac +-==2222 423 44 a a a a +-=,选B. 6、06山东卷)在△ABC 中,角A 、B 、C 的对边分别为a 、 b 、 c ,A =3 π,a =3,b =1,则c =

余弦定理教学设计经典

1.1.2余弦定理教学设计 一、教学目标 认知目标:在创设的问题情境中,引导学生发现余弦定理的内容,推证余弦定理,并简单运用余弦定理解三角形; 能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出余弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题;情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,培养学生学习数学兴趣和热爱科学、勇于创新的精神。 二、教学重难点 重点:探究和证明余弦定理的过程;理解掌握余弦定理的内容;初步对余弦定理进行应用。 难点:利用向量法证明余弦定理的思路;对余弦定理的熟练应用。 探究和证明余弦定理过程既是本节课的重点,也是本节课的难点。学生已经具备了勾股02220定理的知识,即当∠C=90时,有c=a+b。作为一般的情况,当∠C≠90时,三角形的三边满足什么关系呢?学生一时很难找到思路。最容易想到的思路就是构造直角三角形,尝试应用勾股定理去探究这个三角形的边角关系;用向量的数量积证明余弦定理更是学生想不到的,原因是学生很难将向量的知识与解三角形的知识相结合。因而教师在授课时可以适当的点拨、启发,鼓励学生大胆的探索。在教学中引导学生从不同的途径去探索余弦定理的证明,这样既能开拓学生的视野,加强学生对余弦定理的理解,又能培养学生形成良好的思维习惯,激发学生学习兴趣,这是本节课教学的重点,也是难点。 三、学情分析和教学内容分析 本节内容是人教B版普通高中课程标准实验教科书必修5第一章第一节余弦定理的第一课时。余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际应用问题(如测量等)的重要定理,它将三角形的边和角有机的结合起来,实现了“边”和“角”的互化,从而使“三角”与“几何”有机的结合起来,为求与三角形有关的问题提供了理论依据,同时也为判断三角形的形状和证明三角形中的等式提供了重要的依据。教科书首先通过设问的方式,指出了“已知三角形的两边和夹角,无法用正弦定理去解三角形”,进而通过直角三角形中的勾股定理引导学生去探究一般三角形中的边角关系,然后通过构造直角三角形去完成对余弦定理的推证过程,教科书上还进一步的启发学生用向量的方法去证明余弦定理,最后通过3个例题巩固学生对余弦定理的应用。 在学习本节课之前,学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解哪些类型的三角形。在此基础上,教师可以创设一个“已知三角形两边及夹角”来解三角形的实际例子,学生发现不能用上一节所学的知识来解决这一问题,从而引发学生的学习兴趣,引出这一节的内容。在对余弦定理教学中时,考虑到它比正弦定理形式上更加复杂,教师可以有目的的提供一些供研究的素材,并作必要的启发和引导,让学生进行思考,通过类比、联想、质疑、探究等步骤,辅以小组合作学习,建立猜想,获得命题,再想方设法去证明。在用两种不同的方法证明余弦定理时,学生可能会遇到证明思路上的困难,教师可以适当的点拨。

2017年高考试题:正余弦定理解三角形

2017年高考文科数学新课标Ⅰ卷第11题:ABC ?的内角A 、B 、C 的对边分别为a 、b 、c 。 已知0)cos (sin sin sin =-+C C A B ,2=a ,2=c ,则=C ( ) A. 12π B.6π C.4π D.3 π 本题解答:0cos sin sin sin )sin(0)cos (sin sin sin =-++?=-+C A C A C A C C A B 0sin sin cos sin 0cos sin sin sin cos sin cos sin =+?=-++?C A A C C A C A A C C A 4 31tan 1cos sin cos sin 0sin cos π = ?-=?-=? -=?=+?A A A A A A A A 。 根据正弦定理得到: 21222 2sin sin sin sin =? ==?=a A c C C c A a ,C 是锐角6 π=?C 。 2017年高考理科数学新课标Ⅰ卷第17题:ABC ?的内角A 、B 、C 的对边分别为a 、b 、c 。 已知ABC ?的面积为A a sin 32 。 (Ⅰ)求C B sin sin ; (Ⅱ)若1cos cos 6=C B ,3=a ,求ABC ?的周长。 本题解答:(Ⅰ)ABC ?的面积为 A a sin 32222sin 2 3 sin 3sin 21a A bc A a A bc =?=? 3 2 sin sin 1sin sin 23sin sin sin sin 2322=?=?=?C B C B A A C B 。 (Ⅱ)61cos cos 1cos cos 6=?=C B C B ,3261sin sin cos cos 32sin sin -=-?=C B C B C B 3 21cos 21cos 21)cos(π =?=?-=-?-=+?A A A C B 。 根据余弦定理得到:921 29cos 22222222=-+??-+=?-+=bc c b bc c b A bc c b a ①。 根据(Ⅰ)得到:898 9 3)23(23sin 232222=?=?=??=bc bc bc a A bc ②。 ②代入①中得到:3382172)(17982222222=?+=++=+?=+?=-+bc c b c b c b c b ABC c b ??=+?33的周长为:333+=++c b a 。 2017年高考文科数学新课标Ⅱ卷第16题:ABC ?的内角A 、B 、C 的对边分别为a 、b 、c 。 若A c C a B b cos cos cos 2+=,则=B 。 本题解答:根据射影定理得到:b A c C a =+cos cos ,b B b A c C a B b =?+=cos 2cos cos cos 2

正弦定理和余弦定理专题试题及答案

正弦定理和余弦定理专题试题及答案 1.在△ABC 中,若sin 2 A +sin 2 B <sin 2 C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定 3.已知△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,若ɑ2 =b 2 +c 2 -bc ,bc =4,则△ABC 的面积为( ) A.1 2 B .1 C. 3 D .2 4.在△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,且bsin A =3ɑcos B .则B =( ) A.π6 B.π4 C.π3 D.π2 5.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若3a =2b ,则2sin 2 B -sin 2 A sin 2A 的值为( ) A .-19 B .13 C .1 D .72 6.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A =3a cos C ,则sin A +sin B 的最大值是( ) A .1 B . 2 C . 3 D .3 7.在△ABC 中,若A=,B=,BC=3,则AC=( ) A. B. C.2 D.4 8.在△ABC 中,若a 2 +b 2

相关主题