搜档网
当前位置:搜档网 › Heavy metals removal from solution by palygorskite clay

Heavy metals removal from solution by palygorskite clay

Heavy metals removal from solution by palygorskite clay
Heavy metals removal from solution by palygorskite clay

Heavy metals removal from solution by palygorskite clay

J.H.Potgieter

a,*

,S.S.Potgieter-Vermaak a ,P.D.Kalibantonga

b

a

School of Process and Materials Engineering,University of Witwatersrand,Private Bag X3,Johannesburg 2050,South Africa b

Department of Chemical and Metallurgical Engineering,Tshwane University of Technology,Pretoria 0001,South Africa

Received 21June 2005;accepted 14July 2005

Available online 31August 2005

Abstract

The possible use of palygorskite clay,mined in the Dwaalboom area of the Northern Province of South Africa,as an adsorbent for the removal of metal ions such as lead,nickel,chromium and copper from aqueous solution,was investigated.In this work,adsorption of these metals onto palygorskite has been studied by using a batch method at room temperature.The results of adsorp-tion were ?tted to both the Langmuir and Freundlich models.Satisfactory agreement between experimental data and the model-predicted values was expressed by the correlation coe?cient (R 2).The Langmuir model represented the sorption process better than the Freundlich one,with correlation coe?cient (R 2)values ranging from 0.953to 0.994.The adsorption capacity (Q 0)calculated from the Langmuir isotherm was 62.1mg Pb(II)g à1,33.4mg Ni(II)g à1,58.5mg Cr(VI)g à1and 30.7mg Cu(II)g à1at a pH of 7.0at 25±1°C for a clay particle size of 125l m.Kinetic investigations were performed to investigate the rate of adsorption of metal ions.The Lagergren ?s ?rst-order rate constants were calculated for di?erent initial concentrations of metal ions.In batch mode adsorption studies,removal increased with an increase of contact time,adsorbent amount and solution pH.Adsorption of metals from the single-metal solutions was in the order:Pb >Cr >Ni >Cu.Data from this study proved that metal cations from aqueous solution can be adsorbed successfully in signi?cant amounts by palygorskite.This opens up new possibilities and potential commer-cial uses in the palygorskite market.ó2005Elsevier Ltd.All rights reserved.

Keywords:Industrial minerals;Ion-exchange;Reaction kinetics;Environmental;Pollution

1.Introduction

Removal of heavy metals such as cadmium,lead,nickel,chromium and copper from aqueous solution is necessary because of the frequent appearance of these metals in waste streams from many industries,including electroplating,metal ?nishing,metallurgical,tannery,chemical manufacturing,mining and battery manufac-turing industries.This problem has received consider-able attention in recent years due primarily to concern

that those heavy metals in the waste streams can be readily adsorbed by marine animals and directly enter the human food chains,thus presenting a high health risk to consumers (Lin et al.,2000).Cadmium,for example,damages the kidneys;lead adversely a?ects red blood cells,the nervous system and the kidneys.Acute systemic poisoning can result from high exposure to hexavalent chromium (Ulmanu et al.,2003).

A number of technologies for the removal of metal ions from aqueous solutions have been developed over the years.The most important of these techniques in-clude chemical precipitation,?ltration,ion-exchange,re-verse osmosis,membrane systems,etc.However,all these techniques have their inherent advantages and limitations in application.In the last few years,adsorp-tion has been shown to be an alternative method for

0892-6875/$-see front matter ó2005Elsevier Ltd.All rights reserved.doi:10.1016/j.mineng.2005.07.004

*

Corresponding author.Tel.:+27117177510;fax:+27114031471.

E-mail address:hermanp@prme.wits.ac.za (J.H.Potgieter).This article is also available online at:

https://www.sodocs.net/doc/d26622971.html,/locate/mineng

Minerals Engineering 19(2006)

463–470

removing dissolved metal ions from liquid wastes (Bayat,2002).In order to minimise processing costs, several recent investigations have focused on the use of low cost adsorbents, e.g.agricultural by-products (Samantaroy et al.,1997),waste materials(Namasiva-yam and Yamuna,1995),biosorbents(U¨lku¨and Haluk, 2001;Pino et al.,2005),slag(C′urkovic′et al.,2001)and clay materials(Harvey and Chantawong,2001).Adsor-bents,mainly clay minerals,are readily available,inex-pensive materials and o?er a cost-e?ective alternative to conventional treatment of such mentioned waste streams (Sanchez et al.,2002).Adsorption to remove various hea-vy metals from waste streams,tailings and such solutions is and remains an important unit operation and is often the process of choice(Pereira et al.,2005).

The work reported here deals with an investigation into the use of a locally available South African indus-trial clay as adsorbent for the removal of Pb(II),Ni(II), Cr(VI)and Cu(II)from an aqueous solution,as an alter-native to existing commercial adsorbents.In the present study,the e?ect of various parameters a?ecting adsorp-tion behaviour like contact time,initial metal ion con-centration,amount of adsorbent and pH have been investigated and data on adsorption isotherms have

been presented.In this investigation,palygorskite has been chosen as the adsorbing material because of its excellent sorptive properties.Palygorskite?s porous structure and high surface area provide bene?ts in the absorption of liquids and the adsorption of heavy metals (G&W Product Information,2001).

In solution,heavy metals can be present either as free-ions or complexed with organic and inorganic li-gands(Alleoni et al.,2003).The a?nity of each metal for palygorskite was evaluated by single component hea-vy-metal solutions.Mining of a palygorskite deposit has recently started in the Northern Province of South Afri-ca near Dwaalboom and this investigation is the?rst at-tempt to explore potential uses of this material in the ?eld of environmental clean-up and remediation.

2.Materials and methods

2.1.Chemicals and reagents

A palygorskite sample,grey in colour,125-l m dry particle size,obtained from G&W Base&Industrial Minerals(located in Wadeville in Gauteng region), was used as adsorbent.Typical chemical and physical properties of the palygorskite used for adsorption exper-iments are presented in Tables1and2,respectively.The adsorbent was used directly for the experiments without any pre-treatment.Analytical grade metal salts (Pb(NO3)2,Ni(NO3)2?6H2O,K2Cr2O7and Cu(NO3)2?3H2O)were used without further puri?cation.All exper-iments employed distilled water.2.2.Instrumentation

A Perkin–Elmer model3110Atomic Absorption Spectrometer(AAS)operating with an air–acetylene ?ame was employed to measure residual metal ion con-centrations.The pH of the solutions was measured with Precisa model900pH meter with a glass electrode.A mechanical shaker model Labotec was used for shaking the adsorption batches.Filter paper(Advantec,5A)was used to separate palygorskite from the solutions after complete adsorption.An analytical balance model Met-tler Toledo(PB602-S)was used for weighting the clay and metal salts samples.

2.3.Experimental procedure

Stock solutions(500mg là1)of Pb(II),Ni(II),Cr(VI) and Cu(II)were prepared by dissolving the appropriate amounts of analytical reagent grade Pb(NO3)2,Ni(NO3)2?6H2O,K2Cr2O7and Cu(NO3)2?3H2O,respectively,in distilled water.The stock solutions were diluted as re-quired to obtain standard solutions containing20–100mg là1of Pb(II),Ni(II),Cr(VI)and Cu(II).

Adsorption measurements were made by a batch technique at room temperature(25±1°C).The batch mode was selected because of its simplicity and reliabil-ity.Known amounts of palygorskite were placed in dif-ferent stoppered Erlenmeyer glass?asks of100ml capacity containing50ml of metal ion solution of known concentration and pH.All experiments were car-ried out at pH7.0(except when the e?ect of pH was studied).The pH of each solution was adjusted to the Table1

Typical chemical composition of palygorskite(G&W Product Infor-mation,2001)

Composition Content(%)

SiO262.0

Al2O37.0

Fe2O3 3.0

MgO9.0

CaO 1.5

Na2O30.1

K2O0.3

LOI12.0

Table2

Typical physical properties of palygorskite(G&W Product Informa-tion,2001)

Property200#

Colour Grey

Moisture<12%

pH9

Bulk density0.9–1.04

Sg(g cmà3) 2.5

Grading<15%,>106l m

464J.H.Potgieter et al./Minerals Engineering19(2006)463–470

desired value by addition of dilute HCl or NaOH solu-tions.The solutions were shaken vigorously for a given time period to reach equilibrium.The agitation speed was kept constant for each run to ensure equal mixing. After completion of a pre-selected shaking time,the ?asks containing the sample were withdrawn from the shaker,the suspensions were then?ltered using?lter paper(gravitational?ltration),and the supernatant solution in each?ask was analysed by atomic absorp-tion spectrometry(AAS)for its residual metal content.

Langmuir and Freundlich isotherm models were?tted to the adsorption data and their constants were evalu-ated.Satisfactory conformity between experimental data and the model-predicted values was expressed by the cor-relation coe?cient(R2).Throughout the study,the con-tact time was varied from1to35min,the pH from3.0to 10,the initial metal ion concentration from20to 100mg là1and the amount of adsorbent from0.1to1g.

3.Results and discussion

Various parameters for the e?ective removal of Pb(II),Ni(II),Cr(VI)and Cu(II)from aqueous solu-tions by using palygorskite as adsorbent were studied.

3.1.E?ect of shaking time and initial metal ion concentration

The time-dependent behaviour of lead,nickel,chro-mium and copper was measured by varying the equilib-rium time between the adsorbate and adsorbent in the range of1–35min.The concentration of metal ions was varied from20to100mg là1.The pH was kept as 7.0while the amount of palygorskite added was0.1g. Fig.1shows the e?ect of shaking time and initial Pb(II) ion concentration on adsorption from solution when using palygorskite.Results show that the equilibrium is reached quickly(only30min),indicating that the adsorption sites are well exposed.Orumwense(1996), using a kaolinitic clay for the removal of lead from water by adsorption,found that the equilibrium time needed for Pb(II)was longer than is shown by the Fig.1.However,the results from Esmaili et al.(2003)were similar to those found in this investigation.The lat-ter authors conducted experiments on adsorption of lead and zinc ions from aqueous solutions by volcanic ash soil.As can be observed from the graph,an increasing concentration of the lead ions in solution resulted in an increase of the equilibrium time.It is clear from the results that the shaking time required for maximum up-take of metal ions by palygorskite was dependent on the initial Pb(II)concentration.Consequently,the shaking time was?xed at30min for the rest of the batch exper-iments to ensure that adsorption equilibrium was reached in each case.It also shows that increases in initial metal ion concentration increased the amount of metal ion uptake per unit weight of palygorskite (mg gà1),as was expected.This?nding is in agreement with the results of Ulmanu et al.(2003),who investi-gated heavy metals removal from aqueous solution using peat.

Fig.2shows the e?ect of shaking time and initial Ni(II)concentration on adsorption.It is clear that the increase in contact time from0to20min increased the amount of Ni(II)adsorbed per unit weight of palygorsk-ite,followed by a constant adsorption upon further increasing the contact time.Equilibrium adsorption was reached within a short period of20min for all con-centrations of the dissolved metal ion.This is in accor-dance with earlier observations by Kadirvelu et al. (2001).Based on these results,an equilibrium time of 20min was selected as the agitation time for the rest of the batch experiments.Results show that increases in metal ion concentration increased the amount of metal ion adsorbed per unit weight of palygorskite (mg gà1).This was also observed with the Pb2+ion adsorption.

The removal of Cr(VI)increases rapidly with time and then it continues at a relatively slower rate and reaches saturation in about15min,as shown in Fig.3. Initially,the removal of sorbate is rapid but it gradually decreases with time until it reaches equilibrium.It seems that at higher concentrations there occur an initial fast adsorption of the metal ions onto the clay,but some of it is lost again before equilibrium sets in.As time passed,the metal ion remained bound to the clay,

J.H.Potgieter et al./Minerals Engineering19(2006)463–470465

showing strong metal–clay interaction.The amount adsorbed is highly dependent on the initial concentra-tion of the sorbate.This?nding is in agreement with recent work by other authors(Shukla et al.,2003)who found the same behaviour by studying the adsorption capacity of maple sawdust for the removal of Cr(VI) from aqueous solutions.

The results of the e?ect of shaking time and initial Cu(II)ion concentration on adsorption from solution onto palygorskite are shown in Fig.4.The plots reveal that the amount of metal adsorbed per unit weight of adsorbent increases with time and reaches equilibrium within20min of shaking time for di?erent initial metal concentrations.There does not seem to be much bene?t from a shaking time longer than20min.Therefore, equilibrium time of20min was selected for all further studies.The equilibrium time was less than that for the Cu ions adsorption by a1,10-phenanthroline-grafted Brazilian bentonite found by Rubio et al.(2003).It is also observed from the graph that an increasing concen-tration of copper ions in solution resulted in a longer time being required before equilibrium was reached.

By comparing the adsorption behaviour of Pb(II), Ni(II),Cr(VI)and Cu(II)displayed in Figs.1–4respec-tively,it can be seen that the equilibrium adsorption capacity for Pb(II)was the highest.The di?erences be-tween the various metal ions can be attributed to the dif-ference in the chemical characteristics of each metal ion investigated.3.2.E?ect of amount of adsorbent

The results of the dependence of Pb(II)adsorption on amount of palygorskite used are shown in Fig.5. Increasing the mass of palygorskite slightly increased the percentage removal of Pb(II).This is an expected re-sult because as the amount of adsorbent increases,the number of adsorbent sites increases;therefore,these particles attach more ions to their surfaces.Naseem and Tahir(2001)reported similar?ndings for Pb(II)re-moval from aqueous/acidic solutions by using bentonite as an adsorbent.

The results of the dependence of Ni(II)on the amount of palygorskite are shown in Fig.6.Increasing the amount of palygorskite increased the percentage re-moval of Ni(II)up to0.5g,after which it stayed con-stant.Kadirvelu et al.(2001)reported similar?ndings for Ni(II)adsorption from aqueous solution onto acti-vated carbon prepared from coirpith.These authors found that increasing the carbon mass resulted in an in-crease in the percentage adsorption of Ni(II).

The e?ect of palygorskite mass on Cr(VI)adsorption is shown in Fig.7.It can easily be seen that the percent-age removal of metal ions increases with increasing weight of the palygorskite.The saturation capacity fol-lows a similar trend to what was observed in the case of Ni(II),and after0.5g addition of palygorskite,the re-moval e?ciency stays constant at100%for all the con-centrations of Cr(VI)solutions tested.It also con?rms

466J.H.Potgieter et al./Minerals Engineering19(2006)463–470

observations by other investigators (Shukla et al.,2003;Dakiky et al.,2002).

The results of the dependence of Cu(II)adsorption on the amount of palygorskite are shown in Fig.8.It is apparent that the percentage removal of copper in-creases rapidly with increases in the concentration of copper solutions,but display only small increases for any particular concentration with an increase in paly-gorskite mass.This is contrary to the behaviour ob-served for the other three ions investigated,but similar results have been found with the adsorption of Cu(II)ions on other adsorbents (Dorris et al.,2000).3.3.E?ect of pH on metal ion removal

The pH of the aqueous solution is an important var-iable which controls the adsorption of the metal at the clay–water interfaces.Hence,the in?uence of pH on the adsorption of Pb(II),Ni(II),Cr(VI)and Cu(II)onto palygorskite was investigated in the pH range of 3–10.Fig.9shows the e?ect of pH on adsorption of Pb(II)onto palygorskite.It can be observed from the results that the adsorption of Pb ion increases with an increase in pH of the solution to a maximum around a neutral pH or slightly basic pH,and then decreases as the pH becomes more basic.Clays are known to possess a neg-ative surface charge in solution.As pH changes,surface charge also changes,and the sorption of charged species is a?ected (attraction between the positively charged metal ion and the negatively charged clay surface).It

is conceivable that at low pH values,where there is an excess of H 3O +ions in solution,a competition exists be-tween the positively charged hydrogen ions and metal ions for the available adsorption sites on the negatively charged clay surface.As the pH increases and the bal-ance between H 3O +and OH -are more equal,more of the positively charged metal ions in solution are ad-sorbed on the negative clay surface and thus the percent-age removal of the metal ions increases.This is in agreement with work by other authors (Coetzee et al.,2003)on this same type of clay.On the other hand,pre-cipitation of metal hydroxides may also occur as the pH in solution increases,which will lead to a corresponding decrease in the amount of metal ions adsorbed onto the clay.The experimental results of Pb ions adsorption onto palygorskite are in agreement with those of other workers (Orumwense,1996;Esmaili et al.,2003).

It can be observed from Fig.10that the removal of Ni(II)ions increases as pH increases.Contrary to the case with Pb(II),there is no subsequent decrease again when the pH rises above 7.However,just as is the case with Pb(II),there is a decrease in the percentage removal with an increase in the concentration of the metal ion in solution.The results of Ni(II)ions adsorption onto palygorskite are in agreement with those found by Demirba et al.(2002),which revealed that adsorption of Ni(II)from aqueous solution onto hazelnut shell acti-vated carbon increases with increasing pH.The e?ect of pH can be explained in terms of pH zpc (zero point of charge)of the adsorbent.This explanation may be also valid for the adsorption of other metal ions investigated in this work.Below this pH zpc ,the surface charge of the adsorbent is positive.An increase in pH above pH

zpc

J.H.Potgieter et al./Minerals Engineering 19(2006)463–470467

shows a slight increase in adsorption in which the sur-face of the adsorbent is negatively charged and the sor-bate species are still positively charged.The increasing electrostatic attraction between positive sorbate species and adsorbent particles would lead to increased adsorp-tion of metal ions (Kadirvelu et al.,2001).

The results of the e?ect of pH on adsorption of Cr(VI)onto palygorskite are presented in Fig.11.It was found that the total amount of adsorption of Cr(VI)onto palygorskite increases with an increase of pH from 3to 10.The pH e?ect was also attributed to the di?erent complexes that Cr(VI)can form in aqueous solution.

The hexavalent Cr(VI)forms are Cr 2O 2à7and CrO 2à

4.The two forms of Cr(VI)are pH dependent.The pre-dominant form of Cr(VI)below a pH of 6is Cr 2O 2à

7.Increasing the pH will shift the concentration from the

Cr 2O 2à7form to CrO 2à

4.It can be conclude that the most e?ective form of Cr(VI)that is adsorbed by palygorskite

in this study is CrO 2à

4.This mechanism is in agreement with the ?ndings of previous studies on other adsor-bents,such as those used by Leyva-Ramos et al.(1994)and Shukla et al.(2003).

The results of the e?ect of pH on adsorption of Cu(II)onto palygorskite are presented in Fig.12.It can be ob-served that the removal of Cu(II)by palygorskite adsorption increases very slightly with increasing pH,from its minimum at pH 3.0to its maximum at a pH of about 8.5.After that the percentage adsorption de-creases slightly in pH range of 8.5–10.Cu(II)adsorption under the in?uence of varying pH display a very similar trend to that of Ni(II).

It can be concluded that the adsorption of Pb(II),Ni(II),Cr(VI)and Cu(II)from solution was a?ected dramatically by the pH at which the adsorption oc-curred.The percentage removal of Cr(VI)is higher than Ni(II)and Cu(II)ions at the same pH-values,but at neutral and basic pH values,Pb(II)adsorb the best on the palygorskite of all the metal ions evaluated in this investigation.

3.4.Adherence to adsorption isotherms

The adsorption isotherms for Pb(II),Ni(II),Cr(VI)and Cu(II)removal were studied using initial concentra-tions of metal ions between 20and 100mg l à1at adsor-bent mass of 0.1g at room temperature (25±1°C).The data obtained were ?tted to the Langmuir and Freund-lich isotherms.The data obtained from the various plots as summarised in Table 3show that adsorption of Pb(II),Ni(II),Cr(VI)and Cu(II)follow the Langmuir isotherm model fairly well.

The adsorption data of all the metal ions also ?t the Freundlich isotherm reasonably well,but not as well as the Langmuir equation.Only the adsorption of Ni(II)?ts both equations equally well.According to Tryball (1980),it has been shown using mathematical calcula-tions that n values of between 1and 10for the Freundlich isotherm indicate e?ective adsorption.A summary of the corresponding values of the Langmuir and Freundlich isotherm constants and correlation coe?cients for Pb(II),Ni(II),Cr(VI)and Cu(II)are given in Table 3.3.5.First-order adsorption kinetic model

Kinetics of sorption describing the solute uptake rate,which in turn governs the residence time of the solution in an adsorption column or reactor,is one of the impor-tant characteristics de?ning the e?ciency of sorption (Yi et al.,2004).Hence,the kinetic parameters for the adsorption process were studied on the batch adsorption of 20to 100mg l à1of metal ions at room temperature at initial pH ranging from 3.0to 10.The data were ?tted to the ?rst-order Lagergren equation (Da Costa et al.,2003):

log eq e àq T?log q e à

K 1;ads 2:303?t

e1T

where q e (mg g à1)is the amount of adsorbed metal ions on the clay at equilibrium,q is the amount of adsorbed metal ions at any time t ,K 1,ads is the Lagergren ?rst-order rate constant.

In order to ?t Eq.(1)to experimental data,the equi-librium sorption capacity,q e ,must be known (Ho and McKay,1998).The adsorption rate constants (k )were calculated from the slopes of the plots constructed from Eq.(1)for each of the metal ions under investigation and the results are summarised in Table 4

.

468J.H.Potgieter et al./Minerals Engineering 19(2006)463–470

The ionic radius of the metal ions and charge intensity,which a?ects the accessibility of the metal ions to the sur-face of pores,must be considered (Uyanik et al.,2004).The smaller the ionic radius and the greater the valence,the more closely and strongly is the ion adsorbed (McKay et al.,2004)onto the clay.The charge to radius ratio (Z /r )or ionic potential (IP)of each of these metal ions is shown in Table 5.For the cationic metal ions,there is a direct relationship between the Z /r ratio and the adsorption rate constant,which is in agreement with other literature re-ports (Uyanik et al.,2004;McKay et al.,2004).

4.Conclusions

The following conclusions can be drawn from this investigation:

1.This study proved that Pb(II),Ni(II),Cr(VI)and Cu(II)could be adsorbed and thus removed in signi?-cant amounts by palygorskite from aqueous solutions.

2.In batch mode adsorption studies,removal of metal ion increased with the increase of contact time,amount of adsorbent and pH.

3.The increase in initial metal ion concentration decreased the percent adsorption and increased the amount of metal uptake per unit weight of the sor-bent (mg/g).

4.The equilibrium data could be described by the Lang-muir and Freundlich isotherm equations.However,the Langmuir model better represented the sorption process than the Freundlich model.

5.Kinetic modeling results showed that the Lagergren ?s ?rst-order equation was appropriate for the descrip-tion of this type of adsorption and removal.

6.Adsorption of metals from the single-metal solutions followed the order of:Pb >Cr >Ni >Cu.

7.For industrial applications,one will have to compli-ment the batch results with those from columns to derive the necessary design data.Acknowledgements

The authors are grateful to the National Research Foundation (NRF)of South Africa and the Board of Trustees of the Geological Society of South Africa Trust for their ?nancial support during this study.Our grati-tude is extended to Tshwane University of Technology for making available the materials and facilities for the completion of this work.In particular,special thanks to Mr.R.Schwarzer for his assistance with analysis of samples using Atomic Absorption Spectrometer (AAS).References

Alleoni,L.R.F.,Silveira,M.L.A.,Guilherme,L.R.G.,2003.Biosolids

and heavy metals in soils.Scientia Agricola 30(4),793–806.

Bayat, B.,https://www.sodocs.net/doc/d26622971.html,parative study of adsorption properties of

Turkish ?y ashes:I.The case of nickel(II),copper(II)and zinc(II).Journal of Hazardous Materials B95,251–273.

Coetzee,P.P.,Coetzee,L.L.,Puka,R.,Mubenga,S.,2003.Charac-terisation of selected South African clays for de?uoridation of natural waters.Water SA 29,331–338.C ′urkovic

′,L.,Cerjan-Stefanovic,S ˇ.,Rastove `an-Mioe `,A.,2001.Batch Pb 2+and Cu 2+

removal by electric furnace slag.Water Resource 35(14),3436–3440.

Table 5

Charge to radius ratio (Z /r )of Pb(II),Ni(II),Cr(VI)and Cu(II)

Ion Ionic radius (A ?)Z a /ionic radius Pb(II)

1.19 1.68Ni(II)0.69

2.90Cr(VI)0.807.50Cu(II)

0.77 2.60

a

Valence.

Table 3

Langmuir and Freundlich constants and correlation coe?cients associated with adsorption isotherms of Pb(II),Ni(II),Cr(VI)and Cu(II)onto palygorskite

Langmuir equation Freundlich equation Q 0(mg g à1)

b (l mg à1)R 2K f n R 2Pb(II)62.110.750.986623.89 1.800.9525Ni(II)33.440.100.9528 5.97 2.410.9550Cr(VI)58.480.150.993712.79 2.380.8009Cu(II)

30.67

0.11

0.9734

6.14

2.58

0.9320

Table 4

Adsorption rate constants and coe?cients of correlation associated with the Lagergren ?rst-order kinetic models (pH 7.0)K 1,ads (min à1)R 2Pb(II)Ni(II)Cr(VI)Cu(II)Pb(II)Ni(II)Cr(VI)Cu(II)0.17±0.02

0.11±0.01

0.40±0.06

0.08±0.01

0.94

0.97

0.96

0.96

J.H.Potgieter et al./Minerals Engineering 19(2006)463–470469

Da Costa, A.C.A.,Antunes,W.M.,Luna,A.S.,Henriques, C.A., 2003.An evaluation of copper biosorption by a brown seaweed under optimized conditions.Electronic Journal of Biotechnology6

(3),174–184.

Dakiky,M.,Khamis,M.,Manassra,A.,Mer?eb,M.,2002.Selective adsorption of chromium(VI)in industrial wastewater using low-cost abundantly available adsorbents.Advances in Environmental Research6(4),533–540.

Demirba,E.,Kobya,M.,O¨ncel,S.,Sencan,S.,2002.Removal of Ni(II)from aqueous solution by adsorption onto hazelnut shell activated carbon:equilibrium studies.Bioresource Technology84

(3),291–293.

Dorris,K.L.,Yu,B.,Zhang,Y.,Shukla,A.,Shukla,S.S.,2000.The removal of heavy metals from aqueous solutions by sawdust adsorption—removal of copper.Journal of Hazardous Materials B80,33–42.

Esmaili,A.,Nasseri,A.H.,Atash-Dehghan,R.,2003.Adsorption of lead and zinc ions from aqueous solutions by volcanic ash soil (VAS).In:Proceedings of the8th Conference on Environment Science and Technology.Lemnos Island,Greece,pp.B193–B199. G&W Product Information(J:n&G&W Library Folder n Product Information n Attapulgite06.2001.doc),2001.Attapulgite.Wade-ville,South Africa:G&W Base&Industrial Minerals(Pty.)Ltd. Harvey,N.W.,Chantawong,V.,2001.Adsorption of heavy metals by ballclay:their competition and selectivity.Journal of Tokyo University of Information Sciences(August),78–86.

Ho,Y.S.,McKay,G.,1998.A two-stage batch sorption optimized design for dye removal to minimize contact time.Transactions of the Institution of Chemical Engineers Part B76,313–318. Kadirvelu,K.,Thamaraiselvi,K.,Namasivayam,C.,2001.Adsorp-tion of nickel(II)from aqueous solution onto activated carbon prepared from coirpith.Separation and Puri?cation Technology 24,497–505.

Leyva-Ramos,R.,Juarez-Martinez,A.,Guerrero-Coronado,R.M., 1994.Adsorption of chromium(VI)from aqueous solutions on activated carbon.Water Science and Technology30(9),191–197. Lin,S.H.,Lai,S.L.,Leu,H.G.,2000.Removal of heavy metals from aqueous solution by chelating resin in a multistage adsorption process.Journal of Hazardous Materials B76,139–153. McKay,G.,Ko,D.C.K.,Cheung,C.W.,Choy,K.K.H.,Porter,F.P., 2004.Sorption equilibria of metal ions on bone char.Chemosphere 54(3),273–281.

Namasivayam,C.,Yamuna,R.T.,1995.Adsorption of chromium(VI) by low-cost adsorbent:biogas residual slurry.Chemosphere30, 561–578.Naseem,R.,Tahir,S.S.,2001.Removal of Pb(II)from aqueous/acidic solutions by using bentonite as an adsorbent.Water Research35

(16),3982–3986.

Orumwense,F.F.O.,1996.Removal of lead from water by adsorption on a kaolinitic clay.Journal of Chemical Technology and Biotechnology65,363–369.

Pereira,P.A.L.,Martins, A.H.,Dutra, A.J.B.,2005.Adsorptive removal of arsenic from river waters using pisolite.In:Proceedings of Processing and Disposal of Minerals Industry Wastes?05 (PDMIW)Conference,Falmouth,UK,12–15June.

Pino,G.H.,Mesquita,L.M.S.,Torem,M.L.,Pinto,G.A.S.,2005.

Fibers of coconut shell as a biosorbent for heavy metals removal:a case study.In:Proceedings of Processing and Disposal of Minerals Industry Wastes?05(PDMIW)Conference,Falmouth,UK,12–15 June.

Rubio,J.,De Leon,A.T.,Nunes,D.G.,2003.Adsorption of Cu Ions onto a1.10Phenanthroline-grafted Brazilian Bentonite.Clays and Clay Minerals51(1),58–64.

Samantaroy,S.,Mohanty, A.K.,Misra,M.,1997.Removal of hexavalent chromium by Kendu fruit gum dust.Journal of Applied Polymer Science66,1485–1494.

Sanchez,G.A.,Ayuso,A.E.,De Blas,J.O.,2002.Sorption of heavy metals from industrial wastewater by low-cost mineral silicates.

Mineralogical Society Electronic Journals34(3),469.

Shukla,S.S.,Yu,L.J.,Dorris,K.L.,Shukla,A.,Margrave,J.L.,2003.

Adsorption of chromium from aqueous solutions by maple sawdust.Journal of Hazardous Materials100(1–3),53–63. Tryball,R.E.,1980.Mass Transfers Operations,third ed.McGraw, New York.

U¨lku¨,Y.,I Haluk,C?.,2001.Biosorption of Ni(II)and Pb(II)by phanerochaete chrysosporium from a binary metal system-kinetics.

Water SA27(1),15–20.

Ulmanu,M.,Anger,I.,Lakatos,J.,Aura,G.,2003.Contribution to some heavy metals removal from aqueous solution using peat.In: Proceedings of the First International Conference on Environmen-tal Research and Assessment.Bucharest,Romania,March23–27, pp.185–192.

Uyanik,A.,C?ay,S.,O¨zas?I,K.,2004.Single and binary component adsorption of copper(II)and cadmium(II)from aqueous solutions using tea-industry waste.Separation and Puri?cation Technology, 1–8.

Yi,J.,Rengaraj,S.,Kim,Y.,Joo, C.K.,Choi,K.,2004.Batch adsorptive removal of copper ions in aqueous solutions by ion exchange resins:1200H and IRN97H.Korean Journal of Chemical Engineering21(1),187–194.

470J.H.Potgieter et al./Minerals Engineering19(2006)463–470

视频会议系统操作说明

视频会议系统 简 易 操 作 说 明 一、本地PPT 演示(使用自带笔记本): 1)按投影机遥控器“POWER”键,开启投影机; 2)按投影幕遥控器“下”,把投影幕降落; 3)将笔记本电脑与墙面插连接,并将笔记本电脑的外接方式选择为“扩展”或者“复制“,分辨率设置为1024×768;

4)根据需要关闭不需要的灯光; 5) 投影机输入选择“computer 1”; 6)PPT演示完毕后,按投影机遥控器“ON/OFF”按钮,关闭投影机,按投影幕墙面开关“上”,把投影幕回升。若要关闭系统电源,请将插座电源断掉 二、本地PPT 演示(使用一体触摸屏): 1)按投影机遥控器“POWER”键,开启投影机; 2)按投影幕遥控器“下”,把投影幕降落; 3)按电视机遥控器“电源”键,开启电视机, 4)按电视机右边电脑的电源按键,启动电视自带的电脑; 5)墙面插断开与其他电脑的连接; 6)根据需要关闭不需要的灯光; 7) 投影机输入选择“computer 1”;电视机输入选择“电脑”,这时候电视机和 投影机显示的是相同的图像画面,这样使用电视机内置电脑进行PPT演示;8)PPT演示完毕后,按投影机遥控器“ON/OFF”按钮,关闭投影机;按投影幕墙面开关“上”,把投影幕回升;关闭操作系统,最后关闭电视机。若要关闭系统电源,请将插座电源断掉 三、召开视频会议 1)启动宝利通视频终端按遥控器“电源“按钮,此时宝利通视频终端指示灯闪烁,摄像机复位,120秒左右终端启动成功,指示灯长明; 2)启动电视机按电视机遥控器“电源“按钮,启动电视机,电视机启动后,左电视选择“HDMI 1”输入; 3)启动投影机投影机遥控器“POWER”键开启投影,机投影机输入选择“HDMI 1”; 4)呼叫远程从主屏幕选择“拨打电话”,或在遥控器上输入号码,后按遥控

控制软件说明书

控制软件说明书 PC端软件FTM 安装及应用 系统运行环境: 操作系统中英文Windows 98/2000/ NT/XP/WIN7/ Vista, 最低配置 CPU:奔腾133Mhz 内存:128MB 显示卡:标准VGA,256色显示模式以上 硬盘:典型安装 10M 串行通讯口:标准RS232通讯接口或其兼容型号。 其它设备:鼠标器 开始系统 系统运行前,确保下列连线正常: 1:运行本软件的计算机的RS232线已正确连接至控制器。 2:相关控制器的信号线,电源线已连接正确; 系统运行步骤: 1:打开控制器电源,控制电源指示灯将亮起。 绿色,代表处于开机运行状态;橙色代表待机状态。 2. 运行本软件 找到控制软件文件夹,点击FWM.exe运行。出现程序操作界面:

根据安装软件版本不同,上图示例中的界面及其内容可能会存在某些差别,可咨询我们的相关的售后服务人员。 上图中用红色字体标出操作界面的各部分的功能说明: 1. 菜单区:一些相关的菜单功能选择执行区。 2. 操作区:每一个方格单元代表对应的控制屏幕,可以通过鼠标或键盘的点选,拖拉的方式选择相应控制单元。 3.功能区:包含常用的功能按钮。 4.用户标题区:用户可根据本身要求,更改界面上的标题显示 5.用户图片区:用户可根据本身要求,更改界面上的图片显示,比如公司或工程相关LOGO图片。 6.附加功能区:根据版本不同有不同的附加项目。 7.状态区:显示通讯口状态,操作权限状态,和当前的本机时间,日期等。 如何开始使用 1. 通讯设置 单击主菜单中“系统配置”――》“通讯配置” 选择正确的通讯端口号,系统才能正常工作。 可以设置打开程序时自动打开串口。 2.系统配置

统一认证系统_设计方案

基础支撑平台

第一章统一身份认证平台 一、概述 建设方案单点登录系统采用基于Liberty规范的单点登录ID-SSO系统平台实现,为数字化校园平台用户提供安全的一站式登录认证服务。为平台用户以下主要功能: 为平台用户提供“一点认证,全网通行”和“一点退出,整体退出”的安全一站式登录方便快捷的服务,同时不影响平台用户正常业务系统使用。用户一次性身份认证之后,就可以享受所有授权范围内的服务,包括无缝的身份联盟、自动跨域、跨系统访问、整体退出等。 提供多种以及多级别的认证方式,包括支持用户名/密码认证、数字证书认证、动态口令认证等等,并且通过系统标准的可扩展认证接口(如支持JAAS),可以方便灵活地扩展以支持第三方认证,包括有登录界面的第三方认证,和无登录界面的第三方认证。 系统遵循自由联盟规范的Liberty Alliance Web-Based Authentication 标准和OASIS SAML规则,系统优点在于让高校不用淘汰现有的系统,无须进行用户信息数据大集中,便能够与其无缝集成,实现单点登录从而建立一个联盟化的网络,并且具有与未来的系统的高兼容性和互操作性,为信息化平台用户带来更加方便、稳定、安全与灵活的网络环境。 单点登录场景如下图所示:

一次登录认证、自由访问授权范围内的服务 单点登录的应用,减轻了用户记住各种账号和密码的负担。通过单点登录,用户可以跨域访问各种授权的资源,为用户提供更有效的、更友好的服务;一次性认证减少了用户认证信息网络传输的频率,降低了被盗的可能性,提高了系统的整体安全性。 同时,基于联盟化单点登录系统具有标准化、开放性、良好的扩展性等优点,部署方便快捷。 二、系统技术规范 单点登录平台是基于国际联盟Liberty规范(简称“LA”)的联盟化单点登录统一认证平台。 Liberty规范是国际170多家政府结构、IT公司、大学组成的国际联盟组织针对Web 单点登录的问题提供了一套公开的、统一的身份联盟框架,为客户释放了使用专用系统、不兼容而且不向后兼容的协议的包袱。通过使用统一而又公开的 Liberty 规范,客户不再需要为部署多种专用系统和支持多种协议的集成复杂度和高成本而伤脑筋。 Liberty规范的联盟化单点登录SSO(Single Sign On)系统有以下特点: (1). 可以将现有的多种Web应用系统联盟起来,同时保障系统的独立性,提供单点 登录服务;

用友T软件软件操作手册

用友T6管理软件操作手册总账日常业务处理 日常业务流程 1、进入用友企业应用平台。 T6 双击桌面上的 如设置有密码,输入密码。没有密码就直接确定。 2、填制凭证进入系统之后打开总账菜单下面的填制凭证。如下图 丄总账[演示版】国B设畫 -二疑证 i :卜0 直接双击填制凭证,然后在弹出凭证框里点增 制单日期可以根据业务情况直接修改,输入附单据数数(可以不输),凭证摘要(在后面的匝可以选择常用摘要),选择科目直接选择(不知道可以选按F2或点击后面的一), 输入借贷方金额,凭证完后如需继续作按增加自动保存,按保存也可,再按增加 3.修改凭证 填制凭证 证 证 证 总 £ ■ 凭 汇 汇 流

没有审核的凭证直接在填制凭证上面直接修改,改完之后按保存。(审核、记帐了凭 证不可以修改,如需修改必须先取消记帐、取消审核)。 4.作废删除凭证只有没有审核、记帐的凭证才可以删除。在“填制凭证”第二个菜单“制单” 下面有 一个“作废恢复”,先作废,然后再到“制单”下面“整理凭证”,这样这张凭证才被彻底删除。 5.审核凭证 双击凭证里的审核凭证菜单,需用具有审核权限而且不是制单人进入审核凭证才能审核(制单单人不能审核自己做的凭证) 选择月份,确定。 再确定。 直接点击“审核”或在第二个“审核”菜单下的“成批审核” 6.取消审核 如上所述,在“成批审核”下面有一个“成批取消审核”,只有没有记帐的凭证才可 以取消审核

7.凭证记账 所有审核过的凭证才可以记帐,未审核的凭证不能记账,在“总帐——凭证——记账” 然后按照提示一步一步往下按,最后提示记帐完成。 8.取消记帐 在“总帐”—“期末”—“对帐”菜单按“ Ctrl+H ” 系统会提示“恢复记帐前状态已被激活”。然后按“总帐”——“凭证”——“恢复 记帐前状态”。最后选“月初状态”,按确定,有密码则输入密码,再确定。 10、月末结转收支 当本月所有的业务凭证全部做完,并且记账后,我们就要进行当月的期间损益结转。 点击:月末转账并选择期间损益结转。 选择要结转的月份,然后单击“全选”。点击确定后

MCU视频会议操作手册

目录 1视频会议开局调试内容 ....................................... 错误!未定义书签。 系统组网图................................................ 错误!未定义书签。 准备会议参数.............................................. 错误!未定义书签。 规划IP地址............................................... 错误!未定义书签。 规划通信参数.............................................. 错误!未定义书签。 配置MCU8650 ............................................. 错误!未定义书签。 配置8650与RM的相关参数.................................. 错误!未定义书签。 配置8650与SC(GK)相关参数 .............................. 错误!未定义书签。 配置RM数据............................................... 错误!未定义书签。 添加区号.................................................. 错误!未定义书签。 添加服务区................................................ 错误!未定义书签。 添加MCU 8650 ............................................. 错误!未定义书签。 添加会场.................................................. 错误!未定义书签。 配置SM数据............................................... 错误!未定义书签。 登陆SM ................................................... 错误!未定义书签。 添加SC ................................................... 错误!未定义书签。 添加MCU节点.............................................. 错误!未定义书签。 召开会议.................................................. 错误!未定义书签。 定义会议.................................................. 错误!未定义书签。 调度会议.................................................. 错误!未定义书签。 结束会议.................................................. 错误!未定义书签。2安装RMCC多点资源管理中心软件............................... 错误!未定义书签。 安装RM ................................................... 错误!未定义书签。 配置中的数据库参数........................................ 错误!未定义书签。 安装后检查................................................ 错误!未定义书签。 启动系统服务.............................................. 错误!未定义书签。 刷新L ICENSE ............................................... 错误!未定义书签。3安装SC&SM多点控制管理中心软件.............................. 错误!未定义书签。 安装S WITCH C ENTRE........................................... 错误!未定义书签。 安装S WITCH M ANAGER .......................................... 错误!未定义书签。 配置系统参数.............................................. 错误!未定义书签。 配置SwitchCentre系统参数................................. 错误!未定义书签。 配置SwitchManager系统参数................................ 错误!未定义书签。 启动系统服务.............................................. 错误!未定义书签。 刷新L ICENSE ............................................... 错误!未定义书签。4MCU VIEWPOINT 8650维护指南................................. 错误!未定义书签。 登录V IEWPOINT 8650 ......................................... 错误!未定义书签。 V IEWPOINT 8650内部命令..................................... 错误!未定义书签。 系统设置命令.............................................. 错误!未定义书签。 系统查询类命令............................................ 错误!未定义书签。

智能窗户控制系统软件说明

智能窗户控制系统软件V1.0设计说明 目录 前言 (1) 第一章软件总体设计 (1) 1.1. 软件需求概括 (1) 1.2. 定义 (1) 1.3. 功能概述 (1) 1.4. 总体结构和模块接口设计 (2) 第二章控制系统的总体设计 (3) 2.1. 功能设计 (3) 第三章软件控制系统的设计与实现 (5) 3.1. RF解码过程程序设计介绍 (5) 3.2. RF对码过程设计 (6) 3.3. 通信程序设计 (8) 3.4. IIC程序设计介绍 (9) 3.5. 接近开关程序设计 (12) 3.6. 震动开关检测程序设计 (13) 3.7. 墙面按键程序设计 (15) 第四章智能窗户控制系统的设计 (17) 第五章实测与结果说明 (18) 第六章结论 (18)

前言 目的 编写详细设计说明书是软件开发过程必不可少的部分,其目的是为了使开发人员在完成概要设计说明书的基础上完成概要设计规定的各项模块的具体实现的设计工作。 第一章软件总体设计 1.1.软件需求概括 本软件采用传统的软件开发生命周期的方法,采用自顶向下,逐步细化,模块化编程的软件设计方法。 本软件主要有以下几方面的功能 (1)RF遥控解码 (2)键盘扫描 (3)通信 (4)安全检测 (5)电机驱动 1.2.定义 本项目定义为智能遥控窗户系统软件。它将实现人机互动的无缝对接,实现智能关窗,遥控开关窗户,防雨报警等功能。 1.3.功能概述 1.墙体面板按键控制窗户的开/关 2.RF遥控器控制窗户的开/关 3.具有限位,童锁等检测功能 4.实时检测大气中的温湿度,下雨关窗 5.具有防盗,防夹手等安全性能的检测

用友NC财务信息系统操作手册全

NC系统培训手册 编制单位:用友软件股份有限公司 中央大客户事业部 目录 一、NC系统登陆 .................................... 二、消息中心管理................................... 三、NC系统会计科目设置 ............................ 四、权限管理....................................... 五、打印模板设置................................... 六、打印模板分配................................... 七、财务制单....................................... 八、NC系统账簿查询 ................................ 九、辅助余额表查询................................. 十、辅助明细账查询................................. 十一、固定资产基础信息设置......................... 十二、卡片管理..................................... 十三、固定资产增加................................. 十四、固定资产变动................................. 十五、折旧计提..................................... 十六、折旧计算明细表...............................

软件操作说明书

门禁考勤管理软件 使 用 说 明 书

软件使用基本步骤

一.系统介绍―――――――――――――――――――――――――――――2二.软件的安装――――――――――――――――――――――――――――2 三.基本信息设置―――――――――――――――――――――――――――2 1)部门班组设置―――――――――――――――――――――――――3 2)人员资料管理―――――――――――――――――――――――――3 3)数据库维护――――――――――――――――――――――――――3 4)用户管理―――――――――――――――――――――――――――3 四.门禁管理―――――――――――――――――――――――――――――4 1)通迅端口设置―――――――――――――――――――――――――42)控制器管理――――――――――――――――――――――――――43)控制器设置――――――――――――――――――――――――――64)卡片资料管理―――――――――――――――――――――――――11 5)卡片领用注册―――――――――――――――――――――――――126)实时监控―――――――――――――――――――――――――――13 五.数据采集与事件查询――――――――――――――――――――――――13 六.考勤管理―――――――――――――――――――――――――――――14 1)班次信息设置――――――――――――――――――――――――――14 2)考勤参数设置――――――――――――――――――――――――――15 3)考勤排班――――――――――――――――――――――――――――15 4)节假日登记―――――――――――――――――――――――――――16 5)调休日期登记――――――――――――――――――――――――――16 6)请假/待料登记―――――――――――――――――――――――――17 7)原始数据修改――――――――――――――――――――――――――17 8)考勤数据处理分析――――――――――――――――――――――――17 9)考勤数据汇总―――――――—――――――――――――――――――18 10)考勤明细表—―――――――――――――――――――――――――18 11)考勤汇总表――――――――――――――――――――――――――18 12)日打卡查询――――――――――――――――――――――――――18 13)补卡记录查询—――――――――――――――――――――――――19

博思软件操作步骤

开票端操作说明 双击桌面“博思开票”图标,单击“确定”,进入开票界面: 一、开票: 日常业务——开票——选择票据类型——增加——核对票号无误后——单击“请核对票据号”——输入“缴款人或缴款单位”——选择”收费项目”、“收入标准”——单击“收费金额”。 (如需增加收费项目,可单击“增一行”) (如需加入备注栏(仅限于收款收据)),则在右侧“备注”栏内输入即可) 确认无误后,单击“打印”——“打印” 二、代收缴款书: 日常业务——代收缴款书——生成——生成缴款书——关闭——缴款——输入“专用票据号”——保存——缴款书左上角出现“已缴款”三个红字即可。 三、上报核销: 日常业务——上报核销——选择或输入核销日期的截止日期——刷新——核销。 (注意:“欠缴金额”处无论为正或为负均不可核销,解决方法见后“常见问题”)

常见问题 一、如何作废“代收缴款书” 日常业务——代收缴款书——缴款——删除“专用票据号”和“缴款日期”——保存——作废。 二、上报核销时出现欠缴金额,无法完成核销,或提示多缴。 1、首先检查有没有选择好截止日期,选择好后有没有点击“刷新”。 2、其次检查有没有做代收缴款书。注意:最后一张缴款书的日期不得晚于选择上报核 销日期。 3、若上述方法仍无效,则可能是由于以前作废过票据而未作废缴款书。解决方法: 首先作废若干张缴款书(直到不能作废为止),然后重新做一张新的缴款书。再核销。 三、打开“博思开票”时,出现“windows socket error:由于目标机器积极拒绝,无法连接。 (10061),on API’connect’” 单击“确定”,将最下面一行的连接类型“SOCKET”更换为“DCOM”,再点“连接” 即可。 四、如何设置密码 双击桌面“博思开票”,单击登录界面的右下方“改口令”输入用户编号、新密码和确认密码,单击“确认”即可。 五、更换开票人名称或增加开票人 进入开票系统——系统维护——权限管理 1、更换开票人名称:单击“用户编码”——删除“用户名”——输入新的开票人名称 ——单击“保存用户”即可。 2、增加开票人:单击“新增用户”——输入“用户编码”和“用户名”——单击“保 存用户”——单击新增的用户编码——将右边的“权限列表如下”下面的“所有”前的小方框勾上——单击右侧“保存用户权限”。 六、重装电脑系统 1、由于博思开票软件安装在D盘,所以重装电脑系统前无需做任何备份。 2、重装系统后,打开我的电脑—D盘,将“博思软件”文件夹复制到桌面上(或U盘)。 3、将安装时预留的安装光盘放入主机,打开后找到“票据核销及管理_开票端(江西欠 缴不能上报版)”(或者进入D盘----开票软件备份目录勿删文件夹里也可找到)。双 击,按提示点击“下一步”,直到“完成”。 4、双击桌面任务栏右下角“博思开票服务器”,将其关闭(或右键点击“博思开票服 务器”——“关闭服务器”)。 (这一步若找不到“博思开票服务器”,也可以用重启电脑来代替) 5、将刚才复制到桌面(或U盘)的“博思软件”再复制粘贴回D盘,若提示“此文 件夹已包含名为博思软件的文件夹”,点击下面的“全部”。 6、双击桌面“博思开票”——输入用户编码(001)——确定。 7、确认原来的票据数据没有丢失后,将桌面(或U盘)的“博思软件”文件夹删除。

控制系统使用说明

控制系统使用说明 系统针对轴流风机而设计的控制系统, 系统分为上位监视及下位控制两部分 本操作为上位监控软件的使用说明: 1: 启动计算机: 按下计算机电源开关约2秒, 计算机启动指示灯点亮, 稍过大约20秒钟屏幕出现操作系统选择菜单, 通过键盘的“↑↓”键选择“windows NT 4.0”菜单,这时系统进入WINDOWS NT 4.0操作系统,进入系统的操作画面。 2:系统操作 系统共分:开机画面、停机画面、趋势画面、报警画面、主机流程画面、轴系监测画面、润滑油站画面、动力油站画面、运行工况画面、运行记录画面等十幅画面,下面就十幅画面的作用及操作进行说明 A、开机画面: 开机: 当风机开始运转前,需对各项条件进行检查,在本画面中主要对如下指标进行检查,红色为有效: 1、静叶关闭:静叶角度在14度

2、放空阀全开:放空阀指示为0% 3、润滑油压正常 4、润滑油温正常 5、动力油压正常 6、逆止阀全关 7、存储器复位:按下存储器复位按钮,即可复位,若复位不成 需查看停机画面。 8、试验开关复位:按下试验开关按钮即可,试验开关按钮在风 机启动后,将自动消失,同时试验开关也自动复位。 当以上条件达到时,按下“允许机组启动”按钮,这时机组允许启动指示变为红色,PLC机柜里的“1KA”继电器将导通。机组允许启动信号传到高压柜,等待电机启动。开始进行高压合闸操作,主电机运转,主电机运转稳定后,屏幕上主电机运行指示变红。这时静叶释放按钮变红,按下静叶释放按钮后,静叶从14度开到22度,静叶释放成功指示变红。 应继续观察风机已平稳运行后,按下自动操作按钮,启机过程结束。 B、停机画面: 停机是指极有可能对风机产生巨大危害的下列条件成立时,PLC 会让电机停止运转: 1、风机轴位移过大

统一身份认证平台讲解

统一身份认证平台设计方案 1)系统总体设计 为了加强对业务系统和办公室系统的安全控管,提高信息化安全管理水平,我们设计了基于PKI/CA技术为基础架构的统一身份认证服务平台。 1.1.设计思想 为实现构建针对人员帐户管理层面和应用层面的、全面完善的安全管控需要,我们将按照如下设计思想为设计并实施统一身份认证服务平台解决方案: 内部建设基于PKI/CA技术为基础架构的统一身份认证服务平台,通过集中证书管理、集中账户管理、集中授权管理、集中认证管理和集中审计管理等应用模块实现所提出的员工帐户统一、系统资源整合、应用数据共享和全面集中管控的核心目标。 提供现有统一门户系统,通过集成单点登录模块和调用统一身份认证平台服务,实现针对不同的用户登录,可以展示不同的内容。可以根据用户的关注点不同来为用户提供定制桌面的功能。 建立统一身份认证服务平台,通过使用唯一身份标识的数字证书即可登录所有应用系统,具有良好的扩展性和可集成性。 提供基于LDAP目录服务的统一账户管理平台,通过LDAP中主、从账户的映射关系,进行应用系统级的访问控制和用户生命周期维护

管理功能。 用户证书保存在USB KEY中,保证证书和私钥的安全,并满足移动办公的安全需求。 1.2.平台介绍 以PKI/CA技术为核心,结合国内外先进的产品架构设计,实现集中的用户管理、证书管理、认证管理、授权管理和审计等功能,为多业务系统提供用户身份、系统资源、权限策略、审计日志等统一、安全、有效的配置和服务。 如图所示,统一信任管理平台各组件之间是松耦合关系,相互支撑又相互独立,具体功能如下: a)集中用户管理系统:完成各系统的用户信息整合,实现用户生 命周期的集中统一管理,并建立与各应用系统的同步机制,简 化用户及其账号的管理复杂度,降低系统管理的安全风险。

用友T+软件系统操作手册范本

用 友 T+ 软 件 系 统 操 作 手 册版本号:v1.0

目录 一、系统登录 (3) 1.1、下载T+浏览器 (3) 1.2、软件登陆 (3) 二、基础档案设置 (5) 2.1、部门、人员档案设置 (5) 2.2、往来单位设置 (6) 2.3、会计科目及结算方式设置 (6) 三、软件操作 (9) 3.1、凭证处理 (9) 3.1.1、凭证填制 (9) 3.1.2、凭证修改 (10) 3.1.3、凭证审核 (11) 3.1.4、凭证记账 (12) 3.2、月末结转 (13) 四、日常帐表查询与统计 (14) 4.1、余额表 (14) 4.2、明细账 (15) 4.3、辅助账 (16) 五、月末结账、出报表处理 (17) 5.1、总账结账 (17) 5.2、财务报表 (20)

一、系统登录 1.1、下载T+浏览器 首次登陆需要用浏览器打开软件地址,即:127.0.0.1:8000(一般服务器默认设置,具体登陆地址请参考实际配置),第一次登陆会提示下载T+浏览器,按照提示下载安装T+浏览器,然后打开T+浏览器,输入软件登陆地址。 ,T+浏览器, 1.2、软件登陆 按键盘上的“回车键(enter)”打开软件登陆页面,如下: 选择选择“普通用户”,输入软件工程师分配的用户名和密码,选择对应的账套,以下以demo 为例,如下图:

点击登陆,进入软件,

二、基础档案设置 2.1、部门、人员档案设置 新增的部门或者人员在系统中可按照如下方法进行维护,

2.2、往来单位设置 供应商客户档案的添加方法如下: 添加往来单位分类: 2.3、会计科目及结算方式设置会计科目:

威利普LEDESC控制系统操作说明书

LED-ECS编辑控制系统V5.2 用 户 手 册 目录 第一章概述 (3) 1.1LED-ECS编辑控制系统介绍 (3) 1.2运行环境 (3) 第二章安装卸载 (3) 2.1安装 (3) 2.2卸载 (5) 第三章软件介绍 (5) 3.1界面介绍 (5) 3.2操作流程介绍 (13) 3.3基本概念介绍 (21) 第四章其他功能 (25) 4.1区域对齐工具栏 (25) 4.2节目对象复制、粘贴 (26) 4.3亮度调整 (26) 第五章发送 (27) 5.1发送数据 (27) 第六章常见问题解决 (28) 6.1计算机和控制卡通讯不上 (28) 6.2显示屏区域反色或亮度不够 (29)

6.3显示屏出现拖尾现象,显示屏的后面出现闪烁不稳定 (29) 6.4注意事项 (31) 6.5显示屏花屏 (31) 6.6错列现象 (32) 6.7杂点现象 (32) 第一章概述 1.1LED-ECS编辑控制系统介绍 LED-ECS编辑控制系统,是一款专门用于LED图文控制卡的配套软件。其具有功能齐全,界面直观,操作简单、方便等优点。自发布以来,受到了广大用户的一致好评。 1.2运行环境 ?操作系统 中英文Windows/2000/NT/XP ?硬件配置 CPU:奔腾600MHz以上 内存:128M 第二章安装卸载 2.1LED-ECS编辑控制系统》软件安装很简单,操作如下:双击“LED-ECS编辑控制系统”安装程序,即可弹出安装界面,如图2-1开始安装。如图所示 图2-1 单击“下一步”进入选择安装路径界面,如图2-2,如果对此不了解使用默认安装路径即可 图2-2 图2-3 单击“完成”,完成安装过程。 2.2软件卸载如图2-2 《LED-ECS编辑控制系统V5.2》提供了自动卸载功能,使您可以方便的删除《LED-ECS编辑控制系统V5.2》的所有文件、程序组件和快捷方式。用户可以在“LED-ECS编辑控制系统V5.2”组中选择“卸载LED-ECS编辑控制系统V5.2”卸载程序。也可以在“控制面板”中选择“添加/删除程序”快速卸载。卸载程序界面如图2-4,此时选择自动选项即可卸载所有文件、程序组和快捷方式。 图2-4 第三章、软件介绍

财政票据 网络版 电子化系统开票端操作手册

财政票据(网络版)电子化系统 开票端 操 作 说 明 福建博思软件股份有限公司

目录 1.概述 业务流程 流程说明:

1.单位到财政部门申请电子票据,由财政把单位的基本信息设置好并审核完后,财政部门给用票单位发放票据,单位进行领票确认并入库。 2.在规定时间内,单位要把开据的发票带到财政核销,然后由财政进行审核。 系统登录 登入系统界面如图: 登录日期:自动读取主服务器的日期。 所属区划:选择单位所属区划编码。【00安徽省非税收入征收管理局】 所属单位:输入单位编码。 用户编码:登录单位的用户编码【002】 用户密码:默认单位密码为【123456】 验证码:当输入错误时,会自动换一张验证码图片; 记录用户编码:勾选系统自动把用户编码保存在本地,第二次登录不需要重新输入。 填写完正确信息,点【确定】即可登入系统。 进入系统 进入系统界面如图: 当单位端票据出现变动的时候,如财政或上级直管下发票据时,才会出现此界面:

出现此界面后点击最下方的确认按钮,入库完成。 当单位端票据无变动时,直接进入界面: 2.基本编码人员管理 功能说明:对单位开票人员维护,修改开票人名称。 密码管理 修改开票人员密码,重置等操作。 收发信息 查看财政部门相关通知等。

3.日常业务 电脑开票 功能说明:是用于开票据类型为电子化的票据。 在电脑开票操作界面,点击工具栏中的【增加】按钮,系统会弹出核对票号提示框,如图: 注意:必须核对放入打印机中的票据类型、号码是否和电脑中显示的一致,如果不一致打印出来的票据为无效票据,核对完后,输入缴款人或缴款单位和收费项目等信息,全部输入完后,点【增加】按钮进行保存当前票据信息或点【打印】按钮进行保存当前票据信息并把当前的票据信息打印出来;点电脑开票操作界面工具栏中的【退出】则不保存。 在票据类型下拉单框中选择所要开票的票据类型,再点【增加】进行开票。

统一身份认证平台讲解-共38页知识分享

统一身份认证平台讲解-共38页

统一身份认证平台设计方案 1)系统总体设计 为了加强对业务系统和办公室系统的安全控管,提高信息化安全管理水平,我们设计了基于PKI/CA技术为基础架构的统一身份认证服务平台。 1.1.设计思想 为实现构建针对人员帐户管理层面和应用层面的、全面完善的安全管控需要,我们将按照如下设计思想为设计并实施统一身份认证服务平台解决方案: 内部建设基于PKI/CA技术为基础架构的统一身份认证服务平台,通过集中证书管理、集中账户管理、集中授权管理、集中认证管理和集中审计管理等应用模块实现所提出的员工帐户统一、系统资源整合、应用数据共享和全面集中管控的核心目标。 提供现有统一门户系统,通过集成单点登录模块和调用统一身份认证平台服务,实现针对不同的用户登录,可以展示不同的内容。可以根据用户的关注点不同来为用户提供定制桌面的功能。 建立统一身份认证服务平台,通过使用唯一身份标识的数字证书即可登录所有应用系统,具有良好的扩展性和可集成性。

提供基于LDAP目录服务的统一账户管理平台,通过LDAP中主、从账户的映射关系,进行应用系统级的访问控制和用户生命周期维护管理功能。 用户证书保存在USB KEY中,保证证书和私钥的安全,并满足移动办公的安全需求。 1.2.平台介绍 以PKI/CA技术为核心,结合国内外先进的产品架构设计,实现集中的用户管理、证书管理、认证管理、授权管理和审计等功能,为多业务系统提供用户身份、系统资源、权限策略、审计日志等统一、安全、有效的配置和服务。 如图所示,统一信任管理平台各组件之间是松耦合关系,相互支撑又相互独立,具体功能如下:

视频会议系统简易操作手册

陵县电力局视频会议系统简易操作手册 此手册为简易操作手册,针对初次使用的对此设备不了解的用户,在需要建立会议的时候,开启总电源(机柜内插线板上),检查设备是否都正常启动,机柜内设备指示灯是否闪烁,(机柜内有三台设备蓝色长盒为交换机、灰色竖立设备为b5视频终端、黑色小盒为光端收发器)如果在操作中有设备没有响应的话,需要断电重启设备(B5后部有单独开关键),检查设备启动无误后,等待中心会场呼叫。在会议结束后,由专人负责断电(请先关闭电视机,再关闭机柜内总电源|;有投影机的站应先用遥控器关闭两次投影机,待绿灯不闪烁变成红灯时,再断总电源)和检查设备,麦克风套上塑料袋放入机柜,摄像机套上塑料袋。检查设备都已断电方可离开,会议室在没人的情况下要锁门。

设备正确连接总图

投影机使用说明 一、投影机正面板图片 1、电源指示灯通电后电源指示灯为红色,轻按一下为绿色,则 为正式启动。若要关机,轻按一下为绿色闪烁,几秒钟后变为红色,则为关机状态。 2、输出信号选择(INPUT)开会时需要选择的输出信号为 S-VIDEO信号。可选信号为A V信号,S-VIDEO信号,视频信号等。开设视频会议时必须要选择为S-VIDEO信号模式。3、确定键(ENTER) 当进入菜单后需要选择时,按确定键确认选 择。周围4个键为上,下,左,右方向键。 4、菜单键(MENU) 可调节画面亮度,对比度,画面翻转等。 5、暂时停止投影键可暂时停止投影(待机键)一般不需要

二、投影机侧面板图片 1、焦距可调节焦距,清晰或模糊。 2、画面大小可调节投影画面的大小,推荐与投影幕布大小一样。

控制软件操作说明书

创维液晶拼接控制系统 软件操作指南 【LCD-CONTROLLER12】 请在使用本产品前仔细阅读该用户指导书

温馨提示:: 温馨提示 ◆为了您和设备的安全,请您在使用设备前务必仔细阅读产品说明书。 ◆如果在使用过程中遇到疑问,请首先阅读本说明书。 正文中有设备操作的详细描述,请按书中介绍规范操作。 如仍有疑问,请联系我们,我们尽快给您满意的答复。 ◆本说明书如有版本变动,恕不另行通知,敬请见谅!

一、功能特点 二、技术参数 三、控制系统连接示意图 四、基本操作 五、故障排除 六、安全注意事项

一、功能特点创维创维--液晶液晶拼接拼接拼接控制器特点控制器特点 ★采用创维第四代V12数字阵列高速图像处理技术 视频带宽高达500MHZ,应用先进的数字高速图像处理算实时分割放大输入图像信号,在多倍分割放大处理的单屏画面上,彻底解决模/数之间转换带来的锯齿及马赛克现象,拼接画面清晰流畅,色彩鲜艳逼真。 ★具有开窗具有开窗、、漫游漫游、、叠加等功能 以屏为单元单位的前提下,真正实现图像的跨屏、开窗、画中画、缩放、叠加、漫游等个性化功能。 ★采用基于LVDS 差分传送技术差分传送技术,,增强抗干扰能力 采用并行高速总线连接技术,上位控制端发出命令后,系统能快速切换信号到命令指定的通道,实现快速响应。 采用基于LVDS 差分传送技术,提高系统抗干扰能力,外部干扰对信号的影响降到了最低,并且,抗干扰能力随频率提高而提升。★最新高速数字阵列矩阵通道切换技术 输入信号小于64路时,用户不需要再另外增加矩阵,便可以实现通道之间的任意换及显示。 ★断电前状态记忆功能 通过控制软件的提前设置,能在现场断电的情况下,重启系统后,能自动记忆设备关机前的工作模式状态。 ★全面支持全高清信号 处理器采用先进的去隔行和运动补偿算法,使得隔行信号在大屏幕拼接墙上显示更加清晰细腻,最大限度的消除了大屏幕显示的锯齿现象,图像实现了完全真正高清实时处理。纯硬件架构的视频处理模块设计,使得高清视频和高分辨率计算机信号能得到实时采样,确保了高清信号的最高视频质量,使客户看到的是高质量的完美画质。

工会经费收入专用收据(1)

工会经费收入专用收据(1) 福州博思软件开发有限公司 2010年6月 目录 第一部分初始安 装 ....................................................... (1) 1.1系统 安装 (1) 1.2系统登录 ............................................................ (4) 第二部分组成模块介 绍 ................................................... (4) 2.1模块组 成 (4) 2.1.1票据资料 .......................................................... (5) 2.1.2用户管 理 .......................................................... (5) 2.1.3 票据领用 (6) 2.1.4电脑开票 .......................................................... (6) 2.1.5手工开 票 .......................................................... (7) 2.1.6 手工批开票 (7) 2.1.7票据查询 .......................................................... (8) 第三部分软件操 作 ....................................................... (9) 3.2用户 管理 (10)

统一身份认证系统技术方案

智慧海事一期统一身份认证系统 技术方案

目录 目录...................................................................................................................................................... I 1.总体设计 (2) 1.1设计原则 (2) 1.2设计目标 (3) 1.3设计实现 (3) 1.4系统部署 (4) 2.方案产品介绍 (6) 2.1统一认证管理系统 (6) 2.1.1系统详细架构设计 (6) 2.1.2身份认证服务设计 (7) 2.1.3授权管理服务设计 (10) 2.1.4单点登录服务设计 (13) 2.1.5身份信息共享与同步设计 (15) 2.1.6后台管理设计 (19) 2.1.7安全审计设计 (21) 2.1.8业务系统接入设计 (23) 2.2数字证书认证系统 (23) 2.2.1产品介绍 (23) 2.2.2系统框架 (24) 2.2.3软件功能清单 (25) 2.2.4技术标准 (26) 3.数字证书运行服务方案 (28) 3.1运行服务体系 (28) 3.2证书服务方案 (29) 3.2.1证书服务方案概述 (29) 3.2.2服务交付方案 (30) 3.2.3服务支持方案 (36) 3.3CA基础设施运维方案 (38) 3.3.1运维方案概述 (38) 3.3.2CA系统运行管理 (38) 3.3.3CA系统访问管理 (39) 3.3.4业务可持续性管理 (39) 3.3.5CA审计 (39)

宝利通视频会议系统操作手册

视频会议系统MCU会议操作手册 一、会前准备 各分会场应提前开启主会场视频终端电源,检查网络连接情况,电视是否有显示本端会场画面,主屏幕下方是否显示“我的IP地址”。 检查用于MCU操作的电脑是否正常,网终连接是否正常。 二、会议操作 1、进入MCU管理界面 打开IE浏览器界面,在地址栏输入MCU地址:XXX.XXX.XXX.XXX,回车即可进行MCU的管理员界面,如下图: 分别输入用户名和密码后点击登陆;用户名和密码由信息中心统一发放,默认情况下为用户名和密码均为POLYCOM; 管理员管理界面介绍:如下图

2、新建会议 点击会议列表左上方的,出现如下图: 点击新建会议后,会出现如下图的对话框,左边是会议属性列表,右边是会

议属性的配置选项: “常规”选项: 在常规属性里面,可以进行如下配置: 会议名称可输入需要召开的会议名称,这名称会在会议中显示出来; 会议模板会议模板有832K速率视频会议和1.2 M速率视频会议,如有双流会议,建议先择1.2M速率视频会议模板; 会议时长可以定义会议召开的时长,默认为8小时,会议最长不得超过24小时 会议号码此号码用于区别不同的会议,供于终端呼入MCU选择需要加入的会议时使用; 会议密码设置加入会议的密码; 主席密码设置会议主席密码; “与会者”选项:点击“从地址薄添加”,打开地址簿选择与会者;

选择与会者; “组播”选项:本属性用于开启会议组播;如需组播,把“启用组播”打勾,把“LAN1”上的勾去掉,把“LAN2“打勾就完成;

“信息”选项:本属性用于输入本会议的一些附加说明或计费信息,如无特别说明一般为空; 当以上设置完毕时,会议正常召开,整个界面如下图所示;

相关主题