搜档网
当前位置:搜档网 › 快速判定及测试锂电池保护板不良与电芯不良方法

快速判定及测试锂电池保护板不良与电芯不良方法

快速判定及测试锂电池保护板不良与电芯不良方法

深圳市尚族精锐科技有限公司

ShenZhen SungZu Technology Co.,Ttd 判定及测试电池保护板不良与电芯不良方法

一、判定电池保护板不良与电芯不良方法。

1.常见的保护板坏的原因是:①无充电电流。②无放电输出。③电芯充坏不保护。

④瞬间放电保护。

2. 在机子上插上充电线看充电电流的读数是多少,一般充电电流是50mA~600mA之间

属正常,有充电管理IC机子也一样。

3. 电流在50mA以下时,用镊子去夹住电芯的B-与电池保护板或带保护板的机子的P-

极数秒,看电流表是否有跳上来,松手时并锁定在100mA~600mA之间,(有充电管理IC时要同时夹住IC3脚与4脚)此情况为电芯没电,待充电就行。(要确定没有焊错线)

4. 电流表指示在600mA以上或超于1A表时,可以判定电芯不良。(要确认正与负极线

没有焊反)

5. 没有电流,用上述第3条方法去尝试,当夹住B-与P-有电流正常时,松手就没有,

此时判定是保护板不良,如果还是没有,可以判定是电芯不良。

6. 一般没有放电电流的机子都是保护板不良。

7. 判定电芯是否满电时,可以先放电一会或用表去测量一下电池量会在4.1V以上。

二、测试电池保护板不良与电芯不良方法。

1. 充电状态时,电压在3.0V~4.1V,电流在50mA~600mA为正常。(注意:正负极不

能接反)

2. 放电状态时,有经过保护板电压在

3.2V以上,电流在200mA以上为正常。

3. 放电状态时,没有经过保护板电压在2.0V~3.2V之间,电流在100mA以上为正常。

4. 在放电状态下,如果电池电压在3.7V以上,瞬间就没有电压及电流是保护板不良。

5. 测试架上的开关是,打进测“充电”,打出测“放电”功能.

锂电池是否是危险品

锂电池是否是危险品

————————————————————————————————作者:————————————————————————————————日期:

锂电池是危险品吗? 来源:吴江电池产品检测实验室| 时间:2011-9-8 20:49:00 | 【字号:大中小】 根据《联合国关于危险货物运输建议书规章范本》的规定,锂电池是列明危 险品被列为第9类危险品,其联合国编号情况如下:锂离子电池(包括锂离 子聚合物电池)(UN3480)、与设备一起包装的锂离子电池(包括锂离子聚 合物电池)(UN3481)、包含在设备中的锂离子电池(包括锂离子聚合物电 池)(UN3481);锂原电池(UN3090)、与设备一起包装的锂原电池(UN3091) 以及包含在设备中的锂原电池(UN3091)。 联合国编 号 名称和说明类别或项别特殊规定包装规范 3090 锂金属电池组(包括锂合金电池 组)9 SP188 /SP230 /SP310 P903 3091 装在设备中的锂金属电池组或同 设备包装在一起的锂金属电池组 (包括锂合金电池组) 9 SP188 /SP230 /SP360 P903 3480锂离子电池组(包括聚合物锂离子电池)9 SP188 /SP230 /SP310 /SP348 P903

3481装在设备中的锂离子电池组或同 设备包装在一起的锂离子电池组 (包括聚合锂离子电池组) 9 SP188 /SP230 /SP348 /SP360 P903 但在一定条件下,锂电池可以作为不受限制的货物进行运输。 一. IMDG CODE(国际海运) PSN: BATTERY containing lithium. Class: 9 Un no.: 3090. Definition: 含有锂或锂合金的锂电池装在刚性金属体内,锂电池也可能装在设备中或设备中含 有锂电池. SP188: 满足以下, 可以按普货运输. 1. 对于液体阴极电池,含锂量不大于0.5g, 对于电池组, 总含锂量不超过1g;, 对于锂离子电池,不大于1.5g. 对于固体阴极电池,含锂量不超过1g, 对于电池组, 不超过2g.对于锂离子电池组, 不大于8克. 2. 液体的气密封口. 3. 电池隔开. 4. 电池组隔开.或装在设备中. 如超过以上1的规定,则: 1. 完全充电后,每个电池的阳极含锂量不超过5g.电池组不超过25g. 2. 通过联合国关于危险品运输的建议书中的38.3测试. 正确包装以防止短路. SP230: 满足以下,可以做为UN3090运. 1. 按38.3规定, 可以划为9类. 2. 不会突然爆裂. 3. 应防止短路设施. 4. 装有反向电流的有效设备. SP287.废话. 总之: 锂离子电池通过了38.3的测试,注意是通过,不是做过.而且, 锂的含量不要超过8G, 加上正确的包装防止短路等, 就可以按照非危险品运输.

电池保护板原理详解

锂电池电路保护板详解 1.锂电池电路保护板典型电路 2.保护板的核心器件:U1 和 U2A/U2B。U1是保护IC,它由精确的比较器来获得可靠的保护参数。U2A和U2B是MOS管,串在主充放电回路,担当高速开关,执行保护动作。 3.B1的正负极接电芯的正负极;P+,P-分别接电池输出接口的正负极。 4.R3是NTC电阻,配合用电器件的MCU产生保护动作(检测电池温度)。R4是固定阻值电阻,做电池识别。 5.放电路径:B1+ ----- P+ ------ P- ------B1- 6.充电路径:P+ ------- B1+ ------ B1- ------ P- 7.DO是放电保护执行端,CO 是充电保护执行端。

8.充电保护:当电池被充电,电压超过设定值VC(4.25V- 4.35V,具体过充保护电压取决于保护IC)时,CO变为低电平,U2B截止(箭头向内是N-MOS,VG大于VS导通),充电截止。当电池电压回落到VCR(3.8V-4V,具体由IC决定),CO变为高电平,U2B导通,充电继续。VCR必须小于VC一个定值, 以防止频繁跳变。 9.过充保护的时候,即电池充满电的时候,U2B MOS截止了, 手机是不是就关机了呢?答案是肯定没有,不然的话手机开机 插着充电器充电,充满电就会自动关机了。 现在的MOS管生产工艺决定了,生产的时候都会形成一个寄生二极管(也叫体二极管,不用担心体二极管的耐流值,电池厂 都替你考虑了,放电是没问题的)MOS管标准的画法如上图。 充电保护的时候,B-到P-处于断开状态,停止充电。但U2B的 体二极管的方向与放电回路的电流方向相同,所以仍可对外负 载放电。当电芯两端电压低于4.3V时,U2B将退出充电保护状态,U2B重新导通,即B-与P-又重新接上,电芯又能进行正常 的充放电。 10.过放保护:当电池因放电而降低至设定值VD(2.3-2.5V),DO变为低电平,U2A截止,放电停止。P-到B-处于断开状态。当电池置于充电时,B-与P-通过U2A的体二极管接通,恢复到 一定电压后,D0重新置高,U2A重新导通。

锂电池保护板工作原理资料

锂电池保护板工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解: 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理:

当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 4.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关

锂电池保护板 测试报告

机械科学研究院北京机电研究所 SBCM蓄电池综合管理系统性能测试报告 测试人员:李红林 参加人员:李红林,史建军 联系方式:北京理工大学电动车辆工程技术中心68914070-840,lhlbitev@https://www.sodocs.net/doc/d611496687.html, 日期:2003-6 目录 第一节SBCM蓄电池综合管理系统介绍 第二节试验电池性能分析 第三节锂离子电池组电压均衡系统原理 第四节锂离子电池组充放电过程的安全保护功能(充电方面) 第五节电池组电压均衡系统在工作过程中的能耗分析 第六节电池组管理系统ECU单元对电池SOC的计算及其精度,同时为了消除累计误差,系统采取什么措施? 第七节SBCM蓄电池管理系统的热管理 第八节试验测试结果 a) 50A恒流充电均压曲线 b) 20A恒流充电均压曲线 c) 10A恒流充电均压曲线 d) 电池完整充电过程均压曲线 e) 恒流放电曲线 第九节结论及建议

第一节 SBCM蓄电池综合管理系统介绍 SBCM蓄电池综合管理系统组成(见图一),主要由多功能蓄电池管理模块、安全充电模式的网络化充电装置、管理系统ECU、PC机的管理系统和高速CAN 总线组成。 图一: SBCM蓄电池管理系统结构示意图 蓄电池(多功能)管理模块SBCM主要由自动均压功率部件(双向10A DC/DC变换器)、自动均压控制部件在充电、放电和备用工况下,当相邻电池电压差大于20MV时即可在嵌入模块内的微控制器和ECU的控制下进行多种模式的自动均压。 自动均压功率部件具有电池组跨电池能量迁移技术、低压差大电流充电技术,双向可逆充电技术、高内阻电池均压过程中高幅值端电压互移对自动均压工程的影响等关键技术问题。 由于具有双向高强度(可跨电池)能量迁移技术的采用,有效解决了充电、放电过程中落后电池补偿问题。 在(多功能)电池管理模块内,还集成了电压检测、温度检测、过压检测和通讯接口。通过通讯网络,将电池模块内的数据以500Kbit/秒的速度传输到高速CAN总线。 管理模块、ECU、充电装置和PC机可共享高速CAN总线上的数据信息。 由于自动均压装置的能量迁移相对有限(每个电池回路小于10A),当充放电电流过大时,不可能完全实现能量平衡。在放电过程中,除电池会产生落后电池外,不会有其他不良影响。在充电过程中,当充电电流过大时,则可能不能通过能量迁移实现电压基本平衡。在充电后期,个别电池会出现充电电压超过电池允许电压的危险状态。 为了有效防止因充电电流过大问题,将具有基于极端单体电池控制的安全充电模式功能的充电装置接入蓄电池管理系统高速CAN总线上,充电机连续监听网络中的相关数据,当发现出现充电电流大于自动均压部件的能量迁移能力时,适时减小充电电流,使充电电流与系统内自动均压部件的能量迁移相适应,从而达到充电过程的安全。 集成在网络内的充电机还监听电池组端电压,电池的最高温度和最大温升,并根据相关规定适时调整充电电流。 SBCM蓄电池综合管理系统,在检测温度的同时,还适时提供温升状况。对于NiMH电池及时发现过大温升和减小温度失控具有重要意义。

锂电池保护板的简单检测方法

锂电池保护板的简单检测方法 锂电池保护板对锂电池进行过充、过放、过流(充电过流、放电过流和短路)保护,有些保护板上设计有热敏电阻,用于对电池进行过热保护,但过热保护通常是由外电路完成的,并不由保护板实现。保护板上的热敏电阻仅仅是给外电路提供一个温度传感器。如果保护板不良,电池就很容易损坏。本文介绍一种锂电池保护板的简单检测方法。 检测电路如下图: 电路很简单,主要元件就是一个电容和两个电阻,两个开关可以用鳄鱼夹或手动搭线都没问题的。色框内的部分是锂电池保护板的内电路。 原理: 电解电容C连接到保护板上的电池接点(B+,B-)上,充当电池,可进行充电和放电,连接时别弄错极性就行。电压表(数字万用表20V电压档)并联在电容两端,用于监视电池电压。 初始时,电容C没电,保护板上的控制芯片无工作电源,保护板处于全关断状态,即使接通开关K2,电容也不会充电。断开开关K2,电容也无电可放。即使电容有电,但电压达不到保护芯片的工作电压,也不会通过R1、R2放电。 如果带保护板的锂电池(比如手机电池)放置太久,电池因自身放电和保护板电路耗电使电池电压低于保护板上控制芯片的工作电压,保护板则全关断。测量电池引出电极P+、P-无电压,充电也充不进,就相当于上述这种初始情况。对这样的电池,一般人只能将它报废处理。其实很多时候电池并没有坏,只是必须拆开电池的封装外壳跳过保护板直接给电池芯充电,当电池芯的电压达到保护板上控制芯片的工作电压之后,电池才起死回生,能正常充电和使用。 本电路中,电容C充当电池的作用,下文关于电路原理的叙述中一律称之为电池。 接通开关K2,如前所述,电池并不会充电。按下按钮开关K1,5V电源通过R1、保护板的P+、B+(保护板上的这两个接点是直通的)、K1给电池充电,电压表上可实时读取电池两端的电压,当电池电压上升到控制芯片的工作电压(约2V)时,放开K1,这时保护板已正常工作,电池会继续充电,电池电压持续上升。如果想知道保护板在多大的电池电压下开始工作,不要长按K1,按一下,放一下,让电池电压每次上升一点点,注意观察电池电压,当电压到某个值时,不按K1电池电压也继续上升,则这个值就是保护板开始工作的最低电池电压值。 当电池电压上升到过充启动电压时(约),保护板关断充电通路,进入过充保护状态,充电停止。这时电压表上显示的就是过充保护电压。由于电压表有内阻,以及保护板上控制芯片工作也需要耗电(电流很小),所以电池通过这两条通路缓慢放电,电压表上可看到电池电压缓慢下降。当下降到控制芯片的过充解除电压(约)时,过充

锂电池测试报告

---- 第 1 页 ---- 二次电池测试结果 打印时间:2012,11,21--08:04 工作通道:002_1 启动时间:2012,11,20--20:14:56 安全保护:1.00V--15.00V, ±1610mA 限制条件 工作过程 1: 恒流充电1400mA4.20V160Min. 50mA 2: 静置10Min. 3: 恒流放电1000mA 2.40V 4: 静置10Min. 5: 恒流充电1200mA4.20V220Min. 3.90V 20mA 6: 停止 □1 : 1 恒流充电(1--141): 513.5 mAh [2157.5 mJ] 1) 0.0 Min 3.937 V 61.8 mA 0.2 W 0.0 mAh 141) 138.7 Min 4.201 V 50.0 mA 0.2 W 513.5 mAh □1 : 2 静置(142--152): 0.0 mAh [0.0 mJ] 142) 0.0 Min 4.190 V 0.0 mA 0.0 W 0.0 mAh 152) 10.0 Min 4.179 V 0.0 mA 0.0 W 0.0 mAh □1 : 3 恒流放电(153--289): 2225.8 mAh [7547.3 mJ] 153) 0.0 Min 3.968 V -1000.0 mA -4.0 W 0.0 mAh 289) 133.6 Min 2.398 V -1000.0 mA -2.4 W 2225.8 mAh □2 : 4 静置(290--306): 0.0 mAh [0.0 mJ] 290) 0.0 Min 2.741 V 0.0 mA 0.0 W 0.0 mAh 306) 10.0 Min 3.403 V 0.0 mA 0.0 W 0.0 mAh □2 : 5 恒流充电(307--343): 689.2 mAh [2633.7 mJ] 307) 0.0 Min 3.625 V 1200.3 mA 4.4 W 0.0 mAh 343) 34.5 Min 3.900 V 1200.3 mA 4.7 W 689.2 mAh

锂电池保护板的基础知识普及

第一章保护板的构成和主要作用 一、保护板的构成 锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现。锂电池的保护功能通常由保护电路板和PTC协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流,即时控制电流回路的通断;PTC在高温环境下防止电池发生恶劣的损坏。 保护板通常包括控制IC、MOS开关、电阻、电容及辅助器件NTC、ID存储器等。其中 控制IC,在一切正常的情况下控制MOS开关导通,使电芯与外电路沟通,而当电芯电压或回路电流超过规定值时,它立刻(数十毫秒)控制MOS开关关断,保护电芯的安全。NTC 是Negative temperaturecoefficient的缩写,意即负温度系数,在环境温度升高时,其阻值降低,使用电设备或充电设备及时反应、控制内部中断而停止充放电。ID 存储器常为单线接 口存储器,ID是Identification 的缩写即身份识别的意思,存储电池种类、生产日期等信息。可起到产品的可追溯和应用的限制。

二、保护板的主要作用 一般要求在-25℃~85℃时Control(IC)检测控制电芯电压与充放电回路的工作电流、电压,在一切正常情况下C-MOS开关管导通,使电芯与保护电路板处于正常工作状态,而当电芯 电压或回路中的工作电流超过控制IC中比较电路预设值时,在15~30ms内(不同控制IC 与C-MOS有不同的响应时间),将CMOS关断,即关闭电芯放电或充电回路,以保证使用 者与电芯的安全。 第二章保护板的工作原理 保护板的工作原理图: 如图中,IC由电芯供电,电压在2v-5v均能保证可靠工作。 1、过充保护及过充保护恢复 当电池被充电使电压超过设定值VC(4.25-4.35V,具体过充保护电压取决于IC)后,VD1 翻转使Cout变为低电平,T1截止,充电停止.当电池电压回落至VCR(3.8-4.1V,具体过充保护恢复电压取决于IC)时,Cout变为高电平,T1导通充电继续, VCR必须小于VC一个定值,以防止频繁跳变。 2、过放保护及过放保护恢复 当电池电压因放电而降低至设定值VD(2.3-2.5V,具体过充保护电压取决于IC)时, VD2翻转,以短时间延时后,使Dout变为低电平,T2截止,放电停止,当电池被置于充电时,内部或门被翻转而使T2再次导通为下次放电作好准备。 3、过流、短路保护 当电路充放回路电流超过设定值或被短路时,短路检测电路动作,使MOS管关断,电流截止。

锂离子电池性能测试

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:锂离子电池性能测试 实验类型:验证设计综合实验时间:2014年5月5日-17日 实验指导老师:马国正组员:黄日权郭金海 一、实验目的 1.熟悉、掌握锂离子电池的结构及充放电原理。 2.熟悉、掌握锂离子正极材料的制备过程及工艺。 3.熟悉、掌握锂离子电池的封装工艺及模拟电池测试方法。 二、实验原理 锂离子电池是指正负极为Li+嵌入化合物的二次电池。正极通常采用锂过渡金属氧化物 Li x CoO2,Li x NiO2或Li x Mn2O4,负极采用锂-碳层间化合物Li x C6。电解质为溶有锂盐LiPF6,LiAsF6,LiClO4等的有机溶液。溶剂主要有碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)和氯碳酸酯(CIMC)等。在充放电过程中,Li+在两极间往返嵌入和脱出,被形象的称之为“摇椅电池”。 锂离子电池充放电原理和结构示意图如下。 锂离子电池的化学表达式为: -)Cn|LiPF6-EC+DMC|LiM x O y(+ 其电池反应为: LiM x O y+nC Li1-x M x O y+Li x C n 本实验以高温固相法制备的尖晶石型LiMn2O4为正极材料,纯锂片为负极,制备扣式锂离子模拟电池,并对制备的扣式半电池进行充放电测试。 三、仪器与试剂 电化学工作站,蓝点测试系统、手套箱、电子天平、真空干燥箱、切片机、对辊机、鼓风干燥机 LiMn2O4、乙炔黑、PVDF、无水乙醇、电解液(1M LiPF6溶与体积比EC:DEC:EMC=1:1:1

锂电池保护板的技术指标和主要参数

锂电池保护板的技术指标和主要参数 1、电压保护能力 过充电保护:保护板必须具有预防电芯电压超过预设值的能力过放电保护:保护板必须具有预防电芯电压底于预设值的能力 2.电流能力(过流保护电流,短路保护) 保护板作为锂电芯的安全保护器件,既要在设备的正常工作电流范围内,能可靠工作,又要在当电池被意外短路或过流时能迅速动作,使电芯得到保护. 3、导通电阻: 定义:当充电电流为500mA时,MOS管的导通阻抗。 由于通讯设备的工作频率较高,数据传输要求误码率低,其脉冲串的上升及下降沿陡,故对电池的电流输出能力和电压稳定度要求高,因此保护板的MOS管开关导通时电阻要小,单节电芯保护板通常在<70mΩ ,如太大会导致通讯设备工作不正常,如手机在通话时突然断线、电话接不通、噪声等现象。 4、自耗电流 定义:IC工作电压为3.6V,空载状态下,流经保护IC的工作电流,一般极小. 保护板的自耗电流直接影响电池的待机时间,通常规定保护板的自耗电流小于10微安. 5、机械性能、温度适应能力、抗静电能力 保护板必须能通过国标规定的震动,冲击试验;保护板在- 40到85度能安全工作,能经受±15KV的非接触ESD静电测试. 锂电池保护板主要由保护IC和MOS管构成 (1)保护IC主要参数 1) 封装 2) 过充电压 3) 过充释放电压 4) 过放电压 5) 过放释放电压 6) 耐压

(2) MOSFET主要参数 1) N沟、P沟 2) 内阻 3) 封装(TSSOP8 <简称薄片> 、SOP8<简称厚片>、SOT23-6等) 4) 耐电流 5) 耐电压 6) 内部是否连通 原文地址:https://www.sodocs.net/doc/d611496687.html,/tech/9314.html

锂电池保护板基础知识

锂电池保护板的基础知识普及 第一章保护板的构成和主要作用一、保护板的构成 锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短 路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护 板和一片电流保险器出现。锂电池的保护功能通常由保护电路板和 PT协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下 时刻准确的监视电芯的电压和充放回路的电流,即时控制电流回路 的通断;PTC在高温环境下防止电池发生恶劣的损坏。 保护板通常包括控制IC、MOS开关、电阻、电容及辅助器 件NTC、ID存储器等。其中控制IC,在一切正常的情况下控制MOS 开关导通,使电芯与外电路沟通,而当电芯电压或回路电流超过规 定值时,它立刻(数十毫秒)控制MOS开关关断,保护电芯的安全。NTC是Negative temperature coefficient的缩写,意即负温度 系数,在环境温度升高时,其阻值降低,使用电设备或充电设备及 时反应、控制内部中断而停止充放电。ID 存储器常为单线接口存 储器,ID是Identification 的缩写即身份识别的意思,存储电池 种类、生产日期等信息。可起到产品的可追溯和应用的限制。

二、保护板的主要作用 一般要求在-25℃~85℃时Control(IC)检测控制电芯电压与充放电回路的工作电流、电压,在一切正常情况下C-MOS开关管导通,使电芯与保护电路板处于正常工作状态,而当电芯电压或回路中的工作电流超过控制IC中比较电路预设值时,在15~30ms 内(不同控制IC与C-MOS有不同的响应时间),将CMOS关断,即关闭电芯放电或充电回路,以保证使用者与电芯的安全。 第二章保护板的工作原理 保护板的工作原理图:

锂电池pack生产线可行性报告

年产值3000万锂离子电池pack生产线项目 可行性研究报告 编制: 审核: 批准: 日期:2015-4-10 1.总论 1.1项目名称 年产3000万元锂电pack生产线项目 1.2项目概况 1.2.1建设目标 本项目建设的目标是:到2017年建成年产值3000万元的锂电pack生产线,本项目分三期完成,一期2015年拟建成年产值500万元的锂电PACK生产线,二期到2016年拟建成年产值1000万元的锂电pack生产线,三期到2017年拟建成年产值3000万元的锂电pack生产线,通过外购电芯,自行检测包装组合,再到市场推广,逐步积累经验、培养人才、最后形成市场口碑、优质客户等,为公司进入锂电池的电芯制造打下良好的基础。 1.2.2产品线以及拟建规模 建设期产品名称拟建规模 一期圆柱(18650) 普通型年产值500万 二期软包装普通型年产值500万 三期圆柱(18650) 动力型+普通型年产值1000万

软包装普通型+动力型年产值1000万合计(三期建成后) 年产值3000万建设期内容时间 一期编制一期设备清单2015.4.20前厂房规划2015.4.25前设备调研2015.5.10前设备采购2015.6.1前设备安装调试2015.7.1前人员培训2015.7.5前 二期编制二期设备清单2016.1.30前厂房规划2016.2.5前设备调研2016.2.20前设备采购2016.3.15前设备安装调试2016.4.20前人员培训2016.4.25前 三期编制三期设备清单2017.2.15前厂房规划2017.2.25前设备调研2017.3.25前设备采购2017.4.30前设备安装调试2017.6.10前人员培训2017.6.15前 (1)一期设备投资预计 类别名称型号用途 单台产 能支 /10h 数 量 / 台 总产 能支 /10h 单价 /万元 价格 /万元 生圆柱锂离子盈创容量检测1500 3 4500 3 9

S8261和DW01-8205A主流锂电池保护板原理图说明

S8261和DW01-8205A主流锂电池保护板原理图说明 锂电池保护板的主要参数 锂电池保护板主要由保护IC和MOS管构成 (1)保护IC主要参数 1) 封装 2) 过充电压 3) 过充释放电压 4) 过放电压 5) 过放释放电压 6) 耐压 (2) MOSFET主要参数 1) N沟、P沟 2) 内阻 3) 封装(TSSOP8 <简称薄片> 、SOP8<简称厚片>、SOT23-6等) 4) 耐电流 5) 耐电压 6) 内部是否连通 锂电池保护板的工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFET串在主充放电回路中担当高速开关,执行保护动作。下面以DW01 配MOS管8205A进行讲解: 激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS开关。 1.锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A 的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导

通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 3.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的充电回路被切断,电芯将停止充电。保护板处于过充电状态并一直保持。等到保护板的P 与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进 行放电,当电芯的电压被放到低于4.3V时,DW01 停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电. 4.保护板短路保护控制原理: 在保护板对外放电的过程中,8205A内的两个电子开关并不完全等效于两个机械开关,而是等效于两个电阻很小的电阻,并称为8205A的导通内阻,每个开关的导通内阻约为30m\U 03a9共约为60m\U 03a9,加在G极上的电压实际上是直接控制每个开关管的导通电阻的大小当G极电压大于1V时,开关管的导通内阻很小(几十毫欧),相当于开关闭合,当G极电压小于0.7V以下时,开关管的导通内阻很大(几MΩ),相当于开关断开。电压UA就是8205A的导通内阻与放电电流产生的电压,负载电流增大则UA必然增大,因UA0.006L×IUA又称为8205A的管压降,UA可以简接表明放电电流的大小。上升到0.2V时便认为负载电流到达了极限值,于是停止第1脚的输出电压,使第1脚电压

锂电池保护板原理定稿版

锂电池保护板原理精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

锂电池保护板原理 锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现。 锂电池的保护功能通常由保护电路板和PTC等电流器件协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流,及时控制电流回路的通断;PTC在高温环境下防止电池发生恶劣的损坏。 普通锂电池保护板通常包括控制IC、MOS开关、电阻、电容及辅助器件FUSE、PTC、NTC、ID、存储器等。其中控制IC,在一切正常的情况下控制MOS开关导通,使电芯与外电路导通,而当电芯电压或回路电流超过规定值时,它立刻控制MOS开关关断,保护电芯的安全。 在保护板正常的情况下,Vdd为高电平,Vss,VM为低电平,DO、CO为高电平,当 Vdd,Vss,VM任何一项参数变换时,DO或CO端的电平将发生变化。 1、过充电检出电压:在通常状态下,Vdd逐渐提升至CO端由高电平变为低电平时VDD-VSS间电压。 2、过充电解除电压:在充电状态下,Vdd逐渐降低至CO端由低电平变为高电平时VDD-VSS间电压。 3、过放电检出电压:通常状态下,Vdd逐渐降低至D O端由高电平变为低电平时VDD- VSS间电压。 4、过放电解除电压:在过放电状态下,Vdd逐渐上升到DO端由低电平变为高电平时VDD-VSS间电压。 5、过电流1检出电压:在通常状态下,VM逐渐升至DO由高电平变为低电平时VM-VSS 间电压。

锂电池保护板工作原理及构成

锂离子电池保护板工作原理及其构成 锂离子电池保护板工作原理及其构成 MOS 锂在元素周期表上第3位,外层电子1个,容易失去形成稳定结构,所以是非常活泼的一种金属。而锂离子电池具有放电电流大、内阻低、寿命长、无记忆效应等被人们广泛使用,锂离子电池在使用中严禁过充电、过放电、短路,否则将会使电池起火、爆炸等致命缺点,所以,在使用可充锂电池都会带有一块保护板来保护电芯的安全。

保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFE T串在主充放电回路中担当高速开关,执行保护动作。电路原理图如下: 1、下面介绍保护IC个引脚功能:VDD是IC电源正极,VSS是电源负极,V-是过流/短路检测端,Do ut是放电保护执行端,Cout是充电保护执行端。 2、保护板端口说明:B+、B-分别是接电芯正极、负极;P+、P-分别是保护板输出的正极、负极;T 为温度电阻(NTC)端口,一般需要与用电器的MCU配合产生保护动作,后面会介绍,这个端口有时也标为ID,意即身份识别端口,这时,图上的R3一般为固定阻值的电阻,让用电器的CPU辨别是否为指定的电池。 保护板工作过程:

1、激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS 开关。 2、充电:P+、P-分别接充电器的正负极,充电电流经过两个MOS对电芯进行充电。这时,IC的VD D、VSS既是电源端,也是电芯电压检测端(经R1)。随着充电的进行,电芯电压逐渐升高,当升高到保护IC门限电压(一般是4.30V,通常称为过充保护电压)时,Cout随即输出高电平将对应那个M OS关断,充电回路也被断开。过充保护后,电芯电压会下降,当下降到IC门限电压(一般为4.10V,通常称为过充保护恢复电压)时,Cout恢复低电平状态打开MOS开关。 3、放电:同样,在电池放电时,IC的VDD、VSS也会对电芯电压检测,当电芯电压下降到IC门限电压(一般是2.40V,通常称为过放保护电压)时,Dout随即输出高电平将对应那个MOS关断,放电

3.7v锂电池保护板原理图

3.7v锂电池保护板原理图 锂电池保护板主要由维护IC(过压维护)和MOS管(过流维护)构成,是用来保护锂电池电芯安全的器材。锂电池具有放电电流大、内阻低、寿数长、无回忆效应等被人们广泛运用,锂离子电池在运用中禁止过充电、过放电、短路,不然将会使电池起火、爆破等丧命缺陷,所以,在运用可充锂电池都会带有一块维护板来维护电芯的安全。 1、电压保护能力过充电保护板:保护板有必要具有防止电芯电压超越预设值的才干过放电维护:保护板有必要具有防止电芯电压底于预设值的才干。 2、电流能力(过流保护电流,短路保护) 保护板作为锂电芯的安全保护器材,既要在设备的正常作业电流规模内,能可靠工作,又要在当电池被意外短路或过流时能迅速动作,使电芯得到保护。 3、导通电阻定义:当充电电流为500mA时,MOS管的导通阻抗。 由于通讯设备的工作频率较高,数据传输要求误码率低,其脉冲串的上升及下降沿陡,故对电池的电流输出能力和电压稳定度要求高,因而保护板的MOS管开关导通时电阻要小,单节电芯保护板通常在《70m,如太大会导致通讯设备作业不正常,如手机在通话时突然断线、电话接不通、噪声等现象。 4、自耗电流定义:IC作业电压为3。6V,空载状况下,流经保护IC的作业电流,一般极小。 保护板的自耗电流直接影响电池的待机时刻,通常规则保护板的自耗电流小于10微安。 5、机械功能、温度适应能力、抗静电能力保护板有必要能通过国标规则的轰动,冲击实验;保护板在40到85度能安全工作,能经受15KV的非触摸ESD静电测验。 锂电池充放电保护电路的特点及工作原理锂电池的保护功能通常由保护电路板和PTC协同完成,保护板由电子元件组成,在-40℃~+85℃的环境下时刻准确地监视电芯的电压和充放电回路的电流,并及时控制电流回路的通断;PTC的主要作用是在高温环境下进行保护,防止电池发生燃烧、爆炸等恶性事故。

锂电池实验报告

篇一:锂离子电池的制备合成及性能测定实验报告 实验二锂离子电池的制备合成及性能测定 一.实验目的 1.熟悉锂离子电极材料的制备方法,掌握锂离子电极材料工艺路线; 2.掌握锂离子电池组装的基本方法; 3.掌握锂离子电极材料相关性能的测定方法及原理; 4.熟悉相关性能测试结果的分析。二.实验原理 锂离子电池的结构与工作原理:所谓锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的,独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。以licoo2为例:⑴电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。这就需要一个电极在组装前处于嵌锂状态,一般选择相对锂而言电位大于3v且在空气中稳定的嵌锂过渡金属氧化物做正极,如licoo2、linio2、limn2o4、lifepo4。⑵为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括sno、sno2、锡复合氧化物snbxpyoz(x=0.4~0.6,y=0.6~0.4,z=(2+3x+5y)/2)等。三.实验装置及材料 1.实验装置: 恒温槽,冰箱,搅拌器,管式电阻炉,真空干燥箱,鼓风干燥箱,铁夹,分液漏斗,研钵,烧杯,ph试纸,循环水真空泵,漏斗,抽滤瓶,滤纸,玻璃皿,温度计; 2.实验材料: 乙醇,醋酸镍,醋酸钴,醋酸锰,碳酸钠,去离子水,氨水,乙炔黑,pvdf,nmp,lioh; 四.实验内容及步骤 1.样品的制备及准备 碳酸盐共沉淀法制备lini1/3co1/3mn1/3o2:分别称取摩尔比为1:1:1的醋酸镍(ni(ch3coo)2·4h2o)、醋酸钴 (co(ch3coo)2·4h2o)、醋酸锰 (mn(ch3coo)2·4h2o),用去离子水溶解,溶液金属离子总浓度为1mol·l-1。快速搅拌的同时逐滴加入na2co3溶液,用nh3·h2o控制反应的ph值在8~12之间,温度恒定在40~80℃之间,生成有着均匀阳离子分布的三元混合碳酸盐ni1/3co1/3mn1/3co3,反应完成后继续陈化18h。将所得碳酸盐沉淀过滤,并用去离子水多次洗涤,以彻底除去所残留的锂盐、钠盐。然后将沉淀物置于鼓风烘箱中85℃干燥12h。干燥后按化学计量比1:1.05与 lioh·h2o在研钵中彻底混合,将沉淀物干燥后置于电阻炉中,在空气氛围下于600℃-900℃烧结。 2.组装模拟电池 按80:10:10(wt%)称取所制备的活性物质lini0.4co0.2mn0.4o2、乙炔黑、粘接剂pvdf,将前两者充分混合后加入到溶解了pvdf的nmp中,充分混合调至糊状后将其均匀地涂布在铝箔上,然后于真空干燥箱中120℃干燥4h后取出,裁成直径为1.2cm的圆片。以金属锂片为负极,celgard2400微孔聚丙烯膜为隔膜,以1mol/l lipf6/ec+dmc+emc (1:1:1体积比)为电解液,在充满氩气的手套箱中组装成cr2025型扣式电池,然后静置一段时间即可测试。 3.循环性能的测定 (1)连接模拟电池与测试装置:循环伏安法测试采用三电极实验电池体系进行,三电极实验电池体系依次放入锂对电极、锂参比电极、膈膜及制备好的正极,加入电解液,再组装成三电极实验电池;测试仪器采用上海辰华仪器公司的chi660a电化学工作站;(2)置试验参数:锂离子电池:以0.1c恒流充电至4.5, 1c恒流放电,终止电压为3.0v的放电制度开始试验;(3)验结果保存及处理。四.实验测定结果及分析 1.循环性能的测定

锂电池保护板使用方法

锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解: 1. 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 ?2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低, 同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 3.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的 电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的充电回路被切断,电芯将停止充电。保护板处于过充电状态并一直保持。等到保护板的P 与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以 进行放电,当电芯的电压被放到低于4.3V时,DW01 停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电. ?4.保护板短路保护控制原理: 如图所示,在保护板对外放电的过程中,8205A内的两个电子开关并不完全等效于两个机械开关,而是等效于两个电阻很小的电

锂电池保护板原理

锂电池保护电路原理分析,由于锂电池的特性与其它可充电电池不同,内部通常都带有一块保护板,不少人对该保护板的作用不了解(有些人可能还不知道锂电池里有保护电路),下面将对锂电池的特点及其保护电路工作原理进行阐述。由于锂电池的化学特性,在锂电池保护电路原理分析,由于锂电池的特性与其它可充电电池不同,内部通常都带有一块保护板,不少人对该保护板的作用不了解(有些人可能还不知道锂电池里有保护电路),下面将对锂电池的特点及其保护电路工作原理进行阐述。 由于锂电池的化学特性,在正常使用过程中,其内部进行电能与化学能相互转化的化学正反应,但在某些条件下,如对其过充电、过放电和过电流将会导致电池内部发生化学副反应,该副反应加剧后,会严重影响电池的性能与使用寿命,并可能产生大量气体,使电池内部压力迅速增大后爆炸而导致安全问题,因此所有的锂电池都需要一个保护电路,用于对电池的充、放电状态进行有效监测,并在某些条件下关断充、放电回路以防止对电池发生损害。 下图为一个典型的锂电池保护电路原理图。 锂电池保护电路锂电池保护板 如上图所示,该保护回路由两个MOSFET(V1、V2)和一个控制IC(N1)外加一些阻容元件构成。控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET 在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C3为延时电容,该

电路具有过充电保护、过放电保护、过电流保护与短路保护功能,其工作原理分析如下: 1、正常状态 在正常状态下电路中N1的“CO”与“DO”脚都输出高电压,两个MOSFET都处于导通状态,电池可以自由地进行充电和放电,由于MOSFET的导通阻抗很小,通常小于30毫欧,因此其导通电阻对电路的性能影响很小。 此状态下保护电路的消耗电流为μA级,通常小于7μA。 2、过充电保护 锂离子电池要求的充电方式为恒流/恒压,在充电初期,为恒流充电,随着充电过程,电压会上升到4.2V(根据正极材料不同,有的电池要求恒压值为4.1V),转为恒压充电,直至电流越来越小。 电池在被充电过程中,如果充电器电路失去控制,会使电池电压超过4.2V后继续恒流充电,此时电池电压仍会继续上升,当电池电压被充电至超过4.3V时,电池的化学副反应将加剧,会导致电池损坏或出现安全问题。 在带有保护电路的电池中,当控制IC检测到电池电压达到4.28V(该值由控制IC决定,不同的IC有不同的值)时,其“CO”脚将由高电压转变为零电压,使V2由导通转为关断,从而切断了充电回路,使充电器无法再对电池进行充电,起到过充电保护作用。而此时由于V2自带的体二极管VD2的存在,电池可以通过该二极管对外部负载进行放电。在控制IC 检测到电池电压超过4.28V至发出关断V2信号之间,还有一段延时时间,该延时时间的长短由C3决定,通常设为1秒左右,以避免因干扰而造成误判断。 3、短路保护 电池在对负载放电过程中,若回路电流大到使U>0.9V(该值由控制IC决定,不同的IC有不同的值)时,控制IC则判断为负载短路,其“DO”脚将迅速由高电压转变为零电压,使V1由导通转为关断,从而切断放电回路,起到短路保护作用。短路保护的延时时间极短,通常小于7微秒。其工作原理与过电流保护类似,只是判断方法不同,保护延时时间也不一样。 除了控制IC外,电路中还有一个重要元件,就是MOSFET,它在电路中起着开关的作用,由于它直接串接在电池与外部负载之间,因此它的导通阻抗对电池的性能有影响,当选用的MOSFET较好时,其导通阻抗很小,电池包的内阻就小,带载能力也强,在放电时其消耗的电能也少。 4、过电流保护 由于锂离子电池的化学特性,电池生产厂家规定了其放电电流最大不能超过2C(C=电池容量/小时),当电池超过2C电流放电时,将会导致电池的永久性损坏或出现安全问题。

相关主题