搜档网
当前位置:搜档网 › 用汇编语言实现USB OHCI HCD 驱动程序

用汇编语言实现USB OHCI HCD 驱动程序

用汇编语言实现USB OHCI HCD 驱动程序
用汇编语言实现USB OHCI HCD 驱动程序

用汇编语言实现USB OHCI HCD 驱动程序

高庆

武汉理工大学计算机学院, 武汉 (430073)

E-mail: chanchanyuan@https://www.sodocs.net/doc/d712802119.html,

摘要:USB驱动是LINUX内核中重要的一部分,各种Linux版本的USB之间会有所差别,但基本原理及接口是一致的, 且现在Linux下USB驱动程序是用C语言实现,本文以符合OHCI规范的USB主机控制器为例,介绍了如何用汇编语言去实现Linux下USB OHCI HCD的驱动程序

关键词:通用串行总线;主机控制器驱动;驱动程序;汇编语言

中图分类号:TP313

1. USB主机驱动结构

现在的USB主机驱动器具有对所有连接在总线上的不同类型USB设备进行管理的功能.如图1所示, Linux USB主机驱动由三部分组成:USB主机控制器驱动(HCD), USB驱动(USBD)和不同的USB设备类驱动.[1]

图1 Linux USB 驱动程序结构

1.1 USB主机控制器驱动(HCD)

在USB主机驱动程序中, HCD是直接与硬件交互的软件模块, 其主要功能:主机控制器硬件初始化; 为USBD层提供相应的接口函数; 提供根HUB(ROOT HUB)设备配置, 控制功能; 实现4种类型的数据传输等。

1.2 USB驱动(USBD)

USBD驱动是整个USB主机驱动的核心,它的主要功能有:USB总线管理,USB总线设备, USB总线带宽管理,USB的4种类型数据传输, USB HUB驱动.为USB设备类驱动提供相

关接口,提供应用程序访问的USB系统的文件接口等. USB HUB是一类特殊的USB设备,其驱动程序被包含在USBD层.[1]

1.3 USB设备类驱动

USB设备类驱动是最终与应用程序交互的软件模块, 其主要实现的功能有: 访问USB设备,为应用程序提供访问文件系统的接口等.[1]

2.汇编实现OHCI HCD的思路

2.1 汇编与C

汇编是低级语言,其缺点是用它开发程序周期长,而且与硬件相关,所以可移植性差,即在一台机子上正确运行的程序放在另一台机子上就可能出问题.

但是它的优点在于运行速度快,效率高. 一般操作系统或者一些软件的接口部分会使用汇编来编写,以提高运行效率.特别是对于对性能要求很高的专用计算机上的软件,比如工控,航天等对实时性要求很高的系统,用汇编语言是个很好的选择.

2.2 编写思路

第一, 要了解OHCI的相关实现函数,主要注意这些函数的函数参数

第二, 对每个参数,若是C语言中的系统类型,则可以不用管,若是结构体类型, 则要熟习它的结构及所占内存的长度.

第三,对着OHCI的C语言实现,根据其实现算法,进行编写,这里有个呆板但有效的办法,即逐句翻译C语言的实现.

第四, 对于结构体类型的变量的处理,则要根据结构体字节的偏移提取数据

第五, 对于在C函数中又有调用函数的地方,要对这个调用函数的参数进行压栈处理,再进行调用

3.具体OHCI HCD的实现

Linux OHCI 驱动的所有工作都是在drivers/usb/usb-ohci.c和drivers/usb/usb-ohci.h中实现的. 主要有三个部分,分别是OHCI驱动初始化,OHCI HCD与USBD的连接, OHCI根HUB. 这三个部分实现了OHCI的所有操作及定义

3.1 OHCI 驱动初始化

OHCI驱动初始化使用的函数原型是:

int __devinit hc_add_ohci(struct pci_dev *dev, int irq, void *mem_base, unsigned long flags,ohci_t **ohci, const char *name, const char *slot_name)

在这个函数中,会先为ohci分配一个ohci_t结构的结构体内存空间,, 它是OHCI驱动的管理结构.此处有两个结构体,一个是struct pci_dev, 一个是ochi_t,对它们进行上面思路的第四条即可.这个函数的C语言实现中调用了ohci_t hc_alloc_ohci(struct pci_dev *dev, void *mem_base),Void usb_register_buf(int bus), Int request_irq(int ieq, int hc_interrupt, int irqflags, const char *name, ohci_t ** ohci);[2]

对它们,都要先对其变量进行压栈处理.

3.2 HCD 与 USBD连接

每个USB主机控制器都需要提供给USBD层一个数据结构usb_operations.通过该数据结构中的相关函数,USBD可以实现针对该主机控制器的数据传输等.

在Linux系统中定义如下用于支持OHCI主机控制器的数据结构.

struct usb_operations sohci_device_operations = {

sohci_alloc_dev,

sohci_free_dev,

sohci_get_current_frame_number,

sohci_submit_urb,

sohci_unlink_urb

}

第一个操作的函数原型为static int sohci_alloc_dev(struct usb_device *usb_dev), 这个函数为usb设备分配所用的资源, 这些资源是个struct ohci_device的结构体,而struct usb_device 结构体中有一项hcpriv就是一个指向struct ohci_device的指针,所以usb就用hcpriv来存放这个结构体资源的址.

第二个操作的函数原型为static int sohci_free_dev(struct usb_device *usb_dev), 这个函数释放USB设备在OHCI层的资源。在释放时,先必须断开该设备所有ED在系统ED链上的链接, 然后再删除该设备的ED, 再释放相关分配的资源.

第三个函数的原型是sohci_get_current_frame_number(struct usb_device *usb_dev), 这个函数直接从OHCI寄存器中读取相关帧号.

第四个函数的原型是static int sohci_submit_urb(urb_t *urb), 这个函数是五个函数中最长的一个函数,它主要是提交urb数据包. 首先它会在ED链上增加一个ED(endpoint descriptor)节点,然后根据urb数据包的类型设定TD(transfer descriptor)的数目, 接着分配这些TD结构,并根据urb数据包类型设定传输时的带宽,再将所有TD链接到对应ED上,最后提交该urb相关的所有TD.[4]

第五个函数的原型是static sohci_unlink_urb(urb_t *urb), 这个函数会释放掉该urb对应在ED链表上的ED节点与所有TD节点.

对于以上五个函数,前三个函数只有一个参数struct usb_device *usb_dev, 后二个函数有一个参数urb_t *urb, 搞清它们的结构,使用第四条进行编写,而对于其中的函数调用,使用第五条即可.

4. OHCI根HUB

因为在OHCI规范定义中,根HUB不是单独的一个设备,而总是与主机控制器集成在一起. 所以,实现OHCI驱动程序时,要同时提供根HUB设备的相关配置(HUB描述字)和用于响应HUB驱动程序的相关接口(用于根HUB相关URB的提交和释放函数).[6]

4.1 根HUB描述字

根hub的描述字主要是设置描述字与配置描述字。

设备描述字存放在数组root_hub_dev_des中,它含有hub的描述字长度,描述字类型,设备类类型, 设备子类类型, 设备遵从的协议,最大包长度等信息。

配置描述字存放在数组root_hub_config_des中,字里面含有三种类型描述字的信息,第

一种是上面提到的设备描述字,但信息没有上面的那么详细, 第二种是接口描述字,第三种是端点描述字。其中,第二种接口描述字含有描述字长度,描述字类型,接口数量,端点数量,接口类,接口协议等.第三种描述字含有端点长度,描述字类型,端点地址,最大包长度,中断间隔时间等。[5]

4.2根HUB提交URB

向根HUB提交urb时,主要是函数rh_submit_urb与rh_init_int_timer.

前一个函数的原型是static int rh_submit_urb(urb_t *urb), 它实现了向根hub提交urb的操作. 如果是urb的传输类型是中断数据传输,那么它会通过一个时钟来实现传输。如果传输类型是控制数据转输, 则会进一步根据其请求类型设置urb包的传输缓冲区字段(transfer_buffer), 最后提交urb.

后一个函数的原型是static int rh_init_int_timer(urb_t *urb), 当urb的传输类型是中断数据传输类型时,就是调用这个函数来实现urb的提交, 这个函数会先设置传输时的时钟,提交urb.

4.3根HUB释放URB

根HUB释放urb是使用rh_unlink_urb来完成的,其函数原型是

Static int rh_unlink_urb(urb_t *urb), 一方面,它会清除 urb数据包关于根hub的设置,另一方面,它会重新清除时名钟设置。[3]

对于3.2, 3.3的三个函数的编写的原理与前面USBD的编写相同,这里不再详叙.

5. 总结

通过对OHCI HCD的初始化, 与USBD连接以及OHCI根HUB的主要函数的功能的分析, 可以更加深入地理解OHCI HCD与USBD,设备驱动程序的联系,同时也为我们改用汇编语言实现OHCI HCD驱动程序提供了基础,然后按照本文的改写方法,实现OHCI HCD的驱动程序.

参考文献

[1] 孙天泽,袁文菊. 嵌入式设计及Linux驱动开发指南(第二版), 电子工业出版社, 2007.7

[2] (美)科波特(Corbet,J.) 等著,魏永明,耿岳,钟书毅译. Linux设备驱动程序(第三版),

中国电力出版社, 2006.1

[3] 宋宝华编著. Linux设备驱动开发详解, 人民邮电出版社, 2008.2

[4] 薛园园编著. USB应用开发技术大全, 人民邮电出版社, 2007.8

[5] 李英伟等编著. USB2.0原理与工程开发, 国防工业出版社, 2007.1

[6] 廖济林编著. USB 2.0应用系统开发实例精讲, 电子工业出版社, 2006.7

USB OHCI HCD driver in assembly language

Gao Qing

computer institute , wuhan university of technology, WuHan (430073)

Abstract

USB driver is a important part of linux kernel, there are some difference for every rivision of Linux. but the basic thoery is same. this article introduce how to specify the linux usb OHCI HCD driver by assembly language based the USB Host control of OHCI criterion

Keywords: USB; OHCI HCD; driver; assembly language

字符设备驱动程序课程设计报告

中南大学 字符设备驱动程序 课程设计报告 姓名:王学彬 专业班级:信安1002班 学号:0909103108 课程:操作系统安全课程设计 指导老师:张士庚 一、课程设计目的 1.了解Linux字符设备驱动程序的结构; 2.掌握Linux字符设备驱动程序常用结构体和操作函数的使用方法; 3.初步掌握Linux字符设备驱动程序的编写方法及过程; 4.掌握Linux字符设备驱动程序的加载方法及测试方法。 二、课程设计内容 5.设计Windows XP或者Linux操作系统下的设备驱动程序; 6.掌握虚拟字符设备的设计方法和测试方法;

7.编写测试应用程序,测试对该设备的读写等操作。 三、需求分析 3.1驱动程序介绍 驱动程序负责将应用程序如读、写等操作正确无误的传递给相关的硬件,并使硬件能够做出正确反应的代码。驱动程序像一个黑盒子,它隐藏了硬件的工作细节,应用程序只需要通过一组标准化的接口实现对硬件的操作。 3.2 Linux设备驱动程序分类 Linux设备驱动程序在Linux的内核源代码中占有很大的比例,源代码的长度日益增加,主要是驱动程序的增加。虽然Linux内核的不断升级,但驱动程序的结构还是相对稳定。 Linux系统的设备分为字符设备(char device),块设备(block device)和网络设备(network device)三种。字符设备是指在存取时没有缓存的设备,而块设备的读写都有缓存来支持,并且块设备必须能够随机存取(random access)。典型的字符设备包括鼠标,键盘,串行口等。块设备主要包括硬盘软盘设备,CD-ROM等。 网络设备在Linux里做专门的处理。Linux的网络系统主要是基于BSD unix的socket 机制。在系统和驱动程序之间定义有专门的数据结构(sk_buff)进行数据传递。系统有支持对发送数据和接收数据的缓存,提供流量控制机制,提供对多协议的支持。 3.3驱动程序的结构 驱动程序的结构如图3.1所示,应用程序经过系统调用,进入核心层,内核要控制硬件需要通过驱动程序实现,驱动程序相当于内核与硬件之间的“系统调用”。

什么是驱动程序资料

什么是驱动程序? 驱动程序扮演沟通的角色,把硬件的功能告诉电脑系统,并且也将系统的指令传达给硬件,让它开始工作。 年轻人最大的动力,或者最大的优势就在于,你一旦想做什么你就马上去做。说这是天真也好,甚至对一些事情的无知也好,有这种勇气和决心就应该去做。” 什么是BSP? BSP是板级支持包,是介于主板硬件和操作系统之间的一层,应该说是属于操作系统的一部分,主要目的是为了支持操作系统,使之能够更好的运行于硬件主板。BSP是相对于操作系统而言的,不同的操作系统对应于不同定义形式的BSP,例如VxWorks的BSP和Linu x的BSP相对于某一CPU来说尽管实现的功能一样,可是写法和接口定义是完全不同的,所以写BSP一定要按照该系统BSP的定义形式来写(BSP的编程过程大多数是在某一个成型的BSP模板上进行修改),这样才能与上层OS保持正确的接口,良好的支持上层OS。 例如:在VxWorks中的网卡驱动,首先在config.h中包含该网卡,然后将网卡含网卡信息的参数放入数组END_TBL_ENTRY endDevTbl [ ] 中,系统通过函数muxDevLoad ( )调用这个数组来安装网卡驱动。而在Linux中的网卡驱动,是在space.c中声明该网络设备,再把网卡驱动的一些函数加到dev结构中,由函数ether_setup()来完成网卡驱动的安装。 纯粹的BSP所包含的内容一般说来是和系统有关的驱动和程序,如网络驱动和系统中网络协议有关,串口驱动和系统下载调试有关等等。离开这些驱动系统就不能正常工作。 用户也可以添加自己的程序到BSP中,但严格来说不应该算BSP.一般来说这种做法不建议。因为一旦操作系统能良好运行于最终的主板硬件后,BSP也就固定了,不需要做任何改动。而用户自己在BSP中的程序还会不断的升级更新,这样势必对BSP有不好的影响,对系统造成影响,同时由于BSP调试编译环境较差,也不利于程序的编译调试。 如何编写Linux设备驱动程序 Linux是Unix操作系统的一种变种,在Linux下编写驱动程序的原理和思想完全类似于其他的Unix系统,但它和dos或window环境下的驱动程序有很大的区别。在Linux环境下设计驱动程序,思想简洁,操作方便,功能也很强大,但是支持函数少,只能依赖kerne l中的函数,有些常用的操作要自己来编写,而且调试也不方便。 一、Linux device driver 的概念

usb驱动程序教程

编写Windows https://www.sodocs.net/doc/d712802119.html,的usb驱动程序教程 Windows https://www.sodocs.net/doc/d712802119.html, 是微软推出的功能强大的嵌入式操作系统,国内采用此操作系统的厂商已经很多了,本文就以windows https://www.sodocs.net/doc/d712802119.html,为例,简单介绍一下如何开发windows https://www.sodocs.net/doc/d712802119.html, 下的USB驱动程序。 Windows https://www.sodocs.net/doc/d712802119.html, 的USB系统软件分为两层: USB Client设备驱动程序和底层的Windows CE实现的函数层。USB设备驱动程序主要负责利用系统提供的底层接口配置设备,和设备进行通讯。底层的函数提本身又由两部分组成,通用串行总线驱动程序(USBD)模块和较低的主控制器驱动程序(HCD)模块。HCD负责最最底层的处理,USBD模块实现较高的USBD函数接口。USB设备驱动主要利用 USBD接口函数和他们的外围设备打交道。 USB设备驱动程序主要和USBD打交道,所以我们必须详细的了解USBD提供的函数。 主要的传输函数有: abourttransfer issuecontroltransfer closetransfer issuein te rruptransfer getisochresult issueisochtransfer gettransferstatus istransfercomplete issuebulktransfer issuevendortransfer 主要的用于打开和关闭usbd和usb设备之间的通信通道的函数有: abortpipetransfers closepipe isdefaultpipehalted ispipehalted openpipe resetdefaultpipe resetpipe 相应的打包函数接口有: getframelength getframenumber releaseframelengthcontrol setframelength takeframelengthcontrol 取得设置设备配置函数: clearfeature setdescriptor getdescriptor setfeature

USB驱动程序编写

USB驱动程序编写 linux下usb驱动编写(内核2.4)——2.6与此接口有区别2006-09-15 14:57我们知道了在Linux 下如何去使用一些最常见的USB设备。但对于做系统设计的程序员来说,这是远远不够的,我们还需要具有驱动程序的阅读、修改和开发能力。在此下篇中,就是要通过简单的USB驱动的例子,随您一起进入USB驱动开发的世界。 USB骨架程序(usb-skeleton),是USB驱动程序的基础,通过对它源码的学习和理解,可以使我们迅速地了解USB驱动架构,迅速地开发我们自己的USB硬件的驱动。 USB驱动开发 在掌握了USB设备的配置后,对于程序员,我们就可以尝试进行一些简单的USB驱动的修改和开发了。这一段落,我们会讲解一个最基础USB框架的基础上,做两个小的USB驱动的例子。 USB骨架 在Linux kernel源码目录中driver/usb/usb-skeleton.c为我们提供了一个最基础的USB驱动程序。我们称为USB骨架。通过它我们仅需要修改极少的部分,就可以完成一个USB设备的驱动。我们的USB驱动开发也是从她开始的。 那些linux下不支持的USB设备几乎都是生产厂商特定的产品。如果生产厂商在他们的产品中使用自己定义的协议,他们就需要为此设备创建特定的驱动程序。当然我们知道,有些生产厂商公开他们的USB协议,并帮助Linux驱动程序的开发,然而有些生产厂商却根本不公开他们的USB协议。因为每一个不同的协议都会产生一个新的驱动程序,所以就有了这个通用的USB驱动骨架程序,它是以pci 骨架为模板的。 如果你准备写一个linux驱动程序,首先要熟悉USB协议规范。USB主页上有它的帮助。一些比较典型的驱动可以在上面发现,同时还介绍了USB urbs的概念,而这个是usb驱动程序中最基本的。 Linux USB 驱动程序需要做的第一件事情就是在Linux USB 子系统里注册,并提供一些相关信息,例如这个驱动程序支持那种设备,当被支持的设备从系统插入或拔出时,会有哪些动作。所有这些信息都传送到USB 子系统中,在usb骨架驱动程序中是这样来表示的: static struct usb_driver skel_driver = { name: skeleton, probe: skel_probe, disconnect: skel_disconnect, fops: &skel_fops, minor: USB_SKEL_MINOR_BASE, id_table: skel_table,

USB驱动程序源代码

项目报告7 USB驱动程序源代码作者:罗仕波 一.头文件go7007sb.h /* *go7007sb.h - this file includes all relative header files that *will be used in go7007sb vedio usb interface driver, and it *also defines all relative driver private data structures and *it's io control commands. */ #ifndef _GO7007SB_H #define _GO7007SB_H #include #include #include #include #include #include #include #include #include #include #include #include //#define DEBUG #define DRIVER_VERSION "1.0.0" #define DRIVER_DESC "USB GO7007SB Driver" #include MODULE_AUTHOR("Luo Shibo"); MODULE_DESCRIPTION(DRIVER_DESC" "DRIVER_VERSION); MODULE_LICENSE("GPL"); /* *io control commands definition,these commands will be *used to control the device in function iocntl_go7007sb */ #define GO7007SB_IOC_MAGIC 'U' //command magic number #define GO7007SB_IOC_RESET _IO(GO7007SB_IOC_MAGIC,0) //software reset the device

最新开发usb驱动程序的方法连载一

最新开发usb驱动程序的方法连载一 开发usb驱动程序的方法(连载二) NT还有更多其他的对象,例如中断对象、Controller对象、定时器对象等等,但在我们开发的驱动程序中并没有用到,因此在这里不做介绍。 I/O缓冲策略 很明显的,驱动程序和客户应用程序经常需要进行数据交换,但我们知道驱动程序和客户应用程序可能不在同一个地址空间,因此操作系统必须解决两者之间的数据交换。这就就设计到设备的I/O缓冲策略。 读写请求的I/O缓冲策略 前面说到通过设置Device对象的Flag可以选择控制处理读写请求的I/O缓冲策略。下面对这些缓冲策略分别做一介绍。 1、缓冲I/O(DO_BUFFERED_IO) 在读写请求的一开始,I/O管理器检查用户缓冲区的可访问性,然后分配与调用者的缓冲区一样大的非分页池,并把它的地址放在IRP的AssociatedIrp.SystemBuffer域中。驱动程序就利用这个域来进行实际数据的传输。 对于IRP_MJ_READ读请求,I/O管理器还把IRP的UserBuffer域设置成调用者缓冲区的用户空间地址。当请求完成时,I/O管理器利用这个地址将数据从驱动程序的系统空间拷贝回调用者的缓冲区。对于IRP_MJ_WRITE写请求,UserBuffer被设置为NULL,并把用户缓冲区的数据拷贝到系统缓冲区中。 2、直接I/O(DO_DIRECT_IO) I/O管理器首先检查用户缓冲区的可访问性,并在物理内存中锁定它。然后它为该缓冲区创建一个内存描述表(MDL),并把MDL的地址存放在IRP的MdlAddress域中。AssociatedIrp.SystemBuffer和 UserBuffer 都被设置为NULL。驱动程序可以调用函数 MmGetSystemAddressForMdl得到用户缓冲区的系统空间地址,从而进行数据操作。这个函数将调用者的缓冲区映射到非份页的地址空间。驱动程序完成I/O请求后,系统自动从系统空间解除缓冲区的映射。 3、这两种方法都不是 这种情况比较少用,因为这需要驱动程序自己来处理缓冲问题。 I/O管理器仅把调用者缓冲区的用户空间地址放到IRP的UserBuffer 域中。我们并不推荐这种方式。 IOCTL缓冲区的缓冲策略 IOCTL请求涉及来自调用者的输入缓冲区和返回到调用者的输出缓冲区。为了理解IOCTL请求,我们先来看看WIN32 API DeviceIoControl函数的原型。 BOOL DeviceIoControl ( HANDLE hDevice, // 设备句柄 DWORD dwIoControlCode, // IOCTL请求操作代码 LPVOID lpInBuffer, // 输入缓冲区地址 DWORD nInBufferSize, // 输入缓冲区大小 LPVOID lpOutBuffer, // 输出缓冲区地址 DWORD nOutBufferSize, // 输出缓冲区大小 LPDWORD lpBytesReturned, // 存放返回字节数的指针

USB设备驱动程序设计

USB设备驱动程序设计 引言 USB 总线是1995 年微软、IBM 等公司推出的一种新型通信标准总线, 特点是速度快、价格低、独立供电、支持热插拔等,其版本从早期的1.0、1.1 已经发展到目前的2.0 版本,2.0 版本的最高数据传输速度达到480Mbit/s,能 满足包括视频在内的多种高速外部设备的数据传输要求,由于其众多的优点,USB 总线越来越多的被应用到计算机与外设的接口中,芯片厂家也提供了多种USB 接口芯片供设计者使用,为了开发出功能强大的USB 设备,设计者往往 需要自己开发USB 设备驱动程序,驱动程序开发一直是Windows 开发中较难 的一个方面,但是通过使用专门的驱动程序开发包能减小开发的难度,提高工 作效率,本文使用Compuware Numega 公司的DriverStudio3.2 开发包,开发了基于NXP 公司USB2.0 控制芯片ISP1581 的USB 设备驱动程序。 USB 设备驱动程序的模型 USB 设备驱动程序是一种典型的WDM(Windows Driver Model)驱动程序,其程序模型如图1 所示。用户应用程序工作在Windows 操作系统的用户模式层,它不能直接访问USB 设备,当需要访问时,通过调用操作系统的 API(Application programming interface)函数生成I/O 请求信息包(IRP),IRP 被传输到工作于内核模式层的设备驱动程序,并通过驱动程序完成与UBS 外设通 信。设备驱动程序包括两层:函数驱动程序层和总线驱动程序层,函数驱动程 序一方面通过IRP 及API 函数与应用程序通信,另一方面调用相应的总线驱动 程序,总线驱动程序完成和外设硬件通信。USB 总线驱动程序已经由操作系统 提供,驱动程序开发的重点是函数驱动程序。 USB 设备驱动程序的设计

编译hello设备驱动程序详细过程

编译hello world设备驱动程序详细过程 1、安装与你的开发板相同的内核版本的虚拟机,我的板子内核是2.6.8.1,虚拟机是2.6.9, 一般是虚拟机的内核只能比板子内核新,不能旧 #uanme –a [1](在任何目录下,输入此命令,查看虚拟机的内核版本,我的内核版本是2.6.9) 2、在虚拟机上设置共享目录,我的共享目录在linux下的/mnt/hgfs/share [2]share是自己命名的,我的物理机上,即Windows下的目录是G:/share, 3、在Windows下,把开发板的的交叉开发工具链[3],内核源码包[4],复制到物理机的共享目录下[5] 即Windows下的目录是G:/share, 4、#cp /mnt/hgfs/share/cross-3.3.2.tar.bz2 /usr/local/arm [6] 在Linux下,把交叉工具链,复制到/usr/local/arm目录下 5、#cd /usr/local/arm 6、#tar jxvf cross-3.3.2.tar.bz2 [7] 并在当前目录/usr/local/arm下解压它cross-2.95.3.tar.bz2和gec2410-linux-2.6.8.tar.bz2也是用同样的命令去解压 7、#export PATH=/usr/local/arm/3.3.2/bin:$PATH [8] 安装交叉工具链,在需要使用交叉编译时,只要在终端输入如下命令 #export PATH=/usr/local/arm/版本/bin:$PATH 即可,在需要更改不同版本的工具链时,重新启动一个终端,然后再一次输入上面的命令即可,使用哪个版本的交叉工具链,视你要编译的内核版本决定,编译2.4版本的内核,则用2.95.3版本的交叉工具链,而2.6版本内核的,则要用3.3.2版本的交叉工具链。 8、#cp gec2410-linux-2.6.8.tar.bz2 /root [9]把内核拷贝到/root目录下, 9、#cd /root 10、#tar gec2410-linux-2.6.8.tar.bz2 [10] 在/root解压开发板的内核源码压缩包gec2410-linux-2.6.8.tar.bz2,得到gec2410-linux-2.6.8.1文件夹 11、#cd /root/ gec2410-linux-2.6.8.1 12、#cp gec2410.cfg .config [11] gec2410.cfg文件是广嵌开发板提供的默认内核配置文件,在这里首先把内核配置成默认配置,然后在此基础上用make menuconfig进一步配置,但在这里,不进行进一步的配置,对于内核配置,还需要看更多的知识,在这里先存疑。 13、#make [12]在内核源代码的根目录gec2410-linux-2.6.8.1下用make命令编译内核,注意,先安装交叉工具链,再编译内核,因为这里编译的hello.ko驱动模块最终是下载到开发板上运行的,而不是在虚拟机的Linux系统运行的,如果是为了在虚拟机的Linux系统运行的,则不用安装交叉编译工具链arm-linux-gcc,而直接用gcc,用命令#arm-linux-gcc –v 可以查看当前已经安装的交叉编译工具链的版本。这里编译内核不是为了得到内核的映象文件zImage(虽然会得到内核的映象文件zImage),而是为了得到编译hello.o模块需要相关联,相依赖(depends on)的模块。 14、#cd /root 12、#mkdir hello [13]在/root目录下建立hello文件夹, 13、#cd hel 14 、#vi hello.c [12]编辑hello.c文件,内容是《Linux设备驱动程序》第三版22页的hello world程序。 15、#vi Makefile [13]在hello文件夹下编辑Makefile文件, 16、obj-m := module.o [14] 这是Makefile的内容,为obj-m := module.omodule.o视你编辑的.c文件而定,这里则要写成hello.o,写完后,保存退出。 17、cd /root/hello

开发usb驱动程序的方法(连载一)

开发usb驱动程序的方法(连载一) 开始驱动程序设计 下面的文字是从Microsoft的DDK帮助中节选出来的,它让我们明白在开始设计驱动程序应该注意些什么问题,这些都是具有普遍意义的开发准则。应该支持哪些I/O请求在开始写任何代码之前,应该首先确定我们的驱动程序应该处理哪些IRP例程。 如果你在设计一个设备驱动程序,你应该支持和其他相同类型设备的NT驱动程序相同的IRP_MJ_XXX 和IOCTL请求代码。 如果你是在设计一个中间层NT驱动程序,应该首先确认你下层驱动程序所管理的设备,因为一个高层的驱动程序必须具有低层驱动程序绝大多数IRP_MJ_XXX例程入口。高层驱动程序在接到I/O 请求时,在确定自身IRP当前堆栈单元参数有效的前提下,设置好IRP中下一个低层驱动程序的堆栈单元,然后再调用IoCallDriver 将请求传递给下层驱动程序处理。 一旦决定好了你的驱动程序应该处理哪些IRP_MJ_XXX,就可以开始确定驱动程序应该有多少个Dispatch例程。当然也可以考虑把某些 RP_MJ_XXX处理的例程合并为同一例程处理。例如在ChangerDisk 和 VDisk里,对IRP_MJ_CREATE和IRP_MJ_CLOSE处理的例程就是同一函数。对IRP_MJ_READ和IRP_MJ_WRITE处理的例程也是同一个函数。 应该有多少个Device对象? 一个驱动程序必须为它所管理的每个可能成为I/O请求的目标的物理和逻辑设备创建一个命名Device对象。一些低层的驱动程序还可能要创建一些不确定数目的Device对象。例如一个硬盘驱动程序必须为每一个物理硬盘创建一个Device对象,同时还必须为每个物理磁盘上的每个逻辑分区创建一个Device对象。一个高层驱动驱动程序必须为它所代表的虚拟设备创建一个Device 对象,这样更高层的驱动程序才能连接它们的Device对象到这个驱动程序的Device对象。另外,一个高层驱动程序通常为它低层驱动程序所创建的Device对象创建一系列的虚拟或逻辑Device对象。 尽管你可以分阶段来设计你的驱动程序,因此一个处在开发阶段的驱动程序不必一开始就创建出所有它将要处理的所有Device对象。但从一开始就确定好你最终要创建的所有Device对象将有助于设计者所要解决的任何同步问题。另外,确定所要创建的Device对象还有助于你定义Device对象的Device Extension 的内容和数据结构。 开始驱动程序开发 驱动程序的开发是一个从粗到细逐步求精的过程。NT DDK的src\ 目录下有一个庞大的样板代码,几乎覆盖了所有类型的设备驱动程序、高层驱动程序和过滤器驱动程序。在开始开发你的驱动程序之前,你应该在这个样板库下面寻找是否有和你所要开发的类似类型的例程。例如我们所开发的驱动程序,虽然DDK 对USB描述得不是很详细,我们还是可以在src\storage\class目录发现很多和USB设备有关的驱动程序。下面我们来看开发驱动程序的基本步骤。 最简的驱动程序框架 1、写一个DriverEntry例程,在里面调用IoCreateDevice创建一个Device对象。 2、写一个处理IRP_MJ_CREA TE请求的Dispatch例程的基本框架 (参见DDK Kernel-Mode Drivers 4.4.3描述的一个DispatchCreate 例程所要完成的最基本工作。当然写了DispatchCreate例程后,要在DriverEntry 例程为IRP_MJ_CREA TE初始化例程入口)。如果驱动程序创建了多于一个Device对象,则必须为IRP_MJ_CLOSE 请求写一个例程,该例程通常情况下可以和DispatchCreate共用一个例程,参见参见DDK Kernel-Mode Drivers 4.4.3。 3、编译连接你的驱动程序。

触摸屏控制器驱动程序设计

触摸屏控制器驱动程序设计 在便携式的电子类产品中,触摸屏由于其便、灵活、占用空间少等优点,已经逐渐取代键盘成为嵌入式计算机系统常选用的人机交互输入设备。触摸屏输入系统由触摸屏、触摸屏控制器、微控制器及其相应的驱动程序构成。本文从触摸屏控制器的驱动程序设计着手,介绍触摸屏控制器ADS7843的内部结构及工作原理和在嵌入式Linux操作系统中基于PXA255微处理器的ADS7843驱动程序设计。 1触摸屏控制器ADS7843的介绍 1.1ADS7843的内部结构 ADS7843内驻一个多路低导通电阻模拟开关组成的供电-测量电路网络、12bit逐次逼近A/D转换器和异步串行数据输入输出,ADS7843根据微控制器发来的不同测量命令导通相应的模拟开关,以便向触摸屏电极对提供电压,并把相应电极上的触点坐标位置所对应的电压模拟量引入A/D 转换器,图1为ADS7843内部结构图。X+、Y+、X-、Y-为触摸屏电极模拟电压输入;CS为ADS7843的片选输入信号,低电平有效;DCLK接外部时钟输入,为芯片进行A/D转换和异步串行数据输入/输出提供时钟;DIN串行数据输入端,当CS低电平时,输入数据在时钟的上升沿将串行数据锁存;DOUT串行数据输出端,在时钟下降沿数据由此移位输出,当CS为高电平时,DOUT呈高阻态。BUSY为系统忙标志端,当CS为低电平,且BUSY 为高电平时,表示ADS7843正在进行数据转换;VREF参考电压输入端,电

压值在+1V到+VCC之间变化;PENIRQ为笔触中断,低电平有效;IN3、IN4为辅助ADC转换输入通道;+VCC为电源输入。 图1ADS7843内部结构 1.2ADS7843的转换时序 ADS7843完成一次数据转换需要与微控制器进行3次通信,第一次微处理器通过异步数据传送向ADS843发送控制字,其中包括起始位、通道选择、8/12位模式、差分/单端选择和掉电模式选择,其后的两次数据传送则是微控制器从ADS7843取出16bitA/D转换结果数据(最后四位自动补零),每次通信需要8个时钟周期,完成一次数据转换共需24个时钟周期,图2为ADS7843转换时序。 图2ADS7843转换时序 2ADS7843与PXA255硬件接口 PXA255微处理器是Intel公司生产的第二代基于32位XScale微架构的集成系统芯片(ISOC),PXA255具有高性能、低功耗等优点,它除了XScale 微内核外,还集成了许多适用于手持设备市场需要的外围设备。图3为ADS7843触摸屏控制器与PXA255微处理器的硬件连线示意图。当屏触发生时ADS7843向PXA255发出中断请求,由PXA255响应该中断请求,

linux驱动程序的编写

linux驱动程序的编写 一、实验目的 1.掌握linux驱动程序的编写方法 2.掌握驱动程序动态模块的调试方法 3.掌握驱动程序填加到内核的方法 二、实验内容 1. 学习linux驱动程序的编写流程 2. 学习驱动程序动态模块的调试方法 3. 学习驱动程序填加到内核的流程 三、实验设备 PentiumII以上的PC机,LINUX操作系统,EL-ARM860实验箱 四、linux的驱动程序的编写 嵌入式应用对成本和实时性比较敏感,而对linux的应用主要体现在对硬件的驱动程序的编写和上层应用程序的开发上。 嵌入式linux驱动程序的基本结构和标准Linux的结构基本一致,也支持模块化模式,所以,大部分驱动程序编成模块化形式,而且,要求可以在不同的体系结构上安装。linux是可以支持模块化模式的,但由于嵌入式应用是针对具体的应用,所以,一般不采用该模式,而是把驱动程序直接编译进内核之中。但是这种模式是调试驱动模块的极佳方法。 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以像操作普通文件一样对硬件设备进行操作。同时,设备驱动程序是内核的一部分,它完成以下的功能:对设备初始化和释放;把数据从内核传送到硬件和从硬件读取数据;读取应用程序传送给设备文件的数据和回送应用程序请求的数据;检测和处理设备出现的错误。在linux操作系统下有字符设备和块设备,网络设备三类主要的设备文件类型。 字符设备和块设备的主要区别是:在对字符设备发出读写请求时,实际的硬件I/O一般就紧接着发生了;块设备利用一块系统内存作为缓冲区,当用户进程对设备请求满足用户要求时,就返回请求的数据。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。 1 字符设备驱动结构 Linux字符设备驱动的关键数据结构是cdev和file_operations结构体。

USB驱动程序的编写采用WDM驱动程序

U S B驱动程序的编写采用W D M驱动程序 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

USB驱动程序的编写采用WDM 驱动程序。WDM 驱动程序是一些例程的集合,它们被动地存在,等待主机系 统软件(PnP 管理器、I/O 管理器、电源管理器等)来调用或激活它们。具体驱动程序不同,其所包含 的例程也不同。一个WDM 驱动程序的基本组成包括以下5个例程:(1)驱动程序入口例程:处理驱动程序的初始化。 (2)即插即用例程:处理PnP 设备的添加、删除和停止。 (3)分发例程:处理用户应用程序发出的各种 I/O 请求。 (4)电源管理例程:处理电源管理请求。 (5)卸载例程:处理驱动程序的卸载。 包含文件: , , , , , makefile,sources) 在文件中,包含了上述五个例程: 中定义了各种数据结构还有各种IOCTL控制码,用于不同数据的读写。

中实现了各种驱动例程。包含了上述五个所说例程外还包含了其他例程,课程从下面的驱动 程序入口例程得出一些信息。 驱动程序入口例程: NTSTATUS DriverEntry( IN PDRIVER_OBJECT DriverObject, IN PUNICODE_STRING RegistryPath ) { NTSTATUS ntStatus = STATUS_SUCCESS; PDEVICE_OBJECT deviceObject = NULL; DriverObject->MajorFunction[IRP_MJ_CREATE] = Ezusb_Create; DriverObject->MajorFunction[IRP_MJ_CLOSE] = Ezusb_Close; ources. If you want to add a new source # file to this

USB键盘驱动程序

/* * $Id: usbkbd.c,v 1.27 2001/12/27 10:37:41 vojtech Exp $ * * Copyright (c) 1999-2001 Vojtech Pavlik * * USB HIDBP Keyboard support */ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Should you need to contact me, the author, you can do so either by * e-mail - mail your message to <>, or by paper mail: * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic */ #include #include #include #include #include #include #include /* * Version Information */ #define DRIVER_VERSION "" #define DRIVER_AUTHOR "Vojtech Pavlik <>" #define DRIVER_DESC "USB HID Boot Protocol keyboard driver" #define DRIVER_LICENSE "GPL"

一个简单字符设备驱动实例

如何编写Linux设备驱动程序 Linux是Unix操作系统的一种变种,在Linux下编写驱动程序的原理和思想完全类似于其他的Unix系统,但它dos或window环境下的驱动程序有很大的区别。在Linux环境下设计驱动程序,思想简洁,操作方便,功能也很强大,但是支持函数少,只能依赖kernel中的函数,有些常用的操作要自己来编写,而且调试也不方便。本文是在编写一块多媒体卡编制的驱动程序后的总结,获得了一些经验,愿与Linux fans共享,有不当之处,请予指正。 以下的一些文字主要来源于khg,johnsonm的Write linux device driver,Brennan's Guide to Inline Assembly,The Linux A-Z,还有清华BBS上的有关device driver的一些资料. 这些资料有的已经过时,有的还有一些错误,我依据自己的试验结果进行了修正. 一、Linux device driver 的概念 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能: 1)对设备初始化和释放; 2)把数据从内核传送到硬件和从硬件读取数据; 3)读取应用程序传送给设备文件的数据和回送应用程序请求的数据; 4)检测和处理设备出现的错误。 在Linux操作系统下有两类主要的设备文件类型,一种是字符设备,另一种是块设备。字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如果不能,就调用请求函数来进行实际的I/O操作。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待. 已经提到,用户进程是通过设备文件来与实际的硬件打交道。每个设备文件都都有其文件属性(c/b),表示是字符设备还是块设备。另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们。设备文件的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序. 最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度。也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作。如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck。 二、实例剖析 我们来写一个最简单的字符设备驱动程序。虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理.把下面的C代码输入机器,你就会获得一个真正的设备

LED驱动程序设计

LED驱动程序设计 分类:ARM系统进阶班(arm裸机程序)2012-08-24 13:23 1561人阅读评论(0) 收藏举报 首先声明,此文章是基于对国嵌视频教程中tiny6410有关视频教程的总结,为方便大家的复习。再次予以感谢,感谢国嵌各位老师为我们提供如此好的视频教程,为对于想要迈入嵌入式大门却迟迟找不到合适方法的学子们指引一条光明的方向。好了,接下来步入正题,此处将介绍tiny6410 LED驱动程序的设计。

2 下面来看看tiny6410关于LED 的原理图如图(1)所示:

图1 LED原理图 3 LED实例,代码如下所示:(代码摘自\光盘4\实验代码\3-3-1\src\main.c) main.c [cpp]view plaincopy 1./********************************************************** 2.*实验要求:用Tiny6410上的4个LED资源实现跑马灯程序。 3.*功能描述: Tiny6410用下面4个引脚连接了LED发光二极管,分别是 4.* GPK4--LED1 5.* GPK5--LED2 6.* GPK6--LED3 7.* GPK7--LED4 8.* 本程序将控制这四个管脚的输出电平,实现跑马灯的效果 9.*日期: 2011-3-10 10.*作者:国嵌 11.**********************************************************/ 12.#include "def.h" 13.#include "gpio.h" 14. 15.#define LED1_ON ~(1<<4) 16.#define LED2_ON ~(1<<5) 17.#define LED3_ON ~(1<<6) 18.#define LED4_ON ~(1<<7) 19. 20.#define LED1_OFF (1<<4)

USB驱动程序安装说明

USB编程电缆驱动程序安装说明 概述 USB编程电缆或USB接口产品是通过将电脑的USB接口模拟成传统的串行口(通常为COM3),从而使用现有的编程软件或通信软件,通过编程电缆与PLC 等设备的传统接口进行通信。 功能 ●支持的操作系统Windows2000/Windows XP ●完全兼容USB 2.0规范 ●USB总线供电(非隔离产品)、或USB总线供电与PLC的编程口同时供 电(隔离型产品) ●波特率:300bps~1Mbps自动适应 ●每台PC只支持一个USB接口转换产品(如一台电脑需使用多个USB 接口产品,需为各个USB接口产品设置不同的序列号,请咨询生产厂家 索取序列号设置工具软件) 系统要求 请在使用USB编程电缆之前确认你的电脑是IBM PC兼容型并具备以下最低系统要求: ●Intel兼容586DX4-100MHz中央处理器或更高 ●一个标准的USB接口(4-pin A型插座) ●运行操作系统为Windows2000或Windows XP 驱动程序的安装 驱动程序的安装非常简单,只需按提示进行即可,以Windows XP为例,按以下步骤进行: 1、打开将要连接USB编程电缆或USB接口产品的电脑电源,并确认电脑 的USB口已经启动并正常工作。 2、将USB编程电缆或USB接口产品插入电脑的USB接口,Windows将检 测到设备并运行添加新硬件向导帮助你设置新设备,插入驱动程序光盘 并单击下一步继续。 如果Windows没有提示找到新硬件,那么在设备管理器的硬件列表中, 展开“通用串行总线控制器”,选择带问号的USB设备,单击鼠标右键 并运行更新驱动程序。

虚拟设备驱动程序的设计与实现

虚拟设备驱动程序的设计与实现 由于Windows对系统底层操作采取了屏蔽的策略,因而对用户而言,系统变得 更为安全,但这却给众多的硬件或者系统软件开发人员带来了不小的困难,因为只要应用中涉及到底层的操作,开发人员就不得不深入到Windows的内核去编写属 于系统级的虚拟设备驱动程序。Win 98与Win 95设备驱动程序的机理不尽相同,Win 98不仅支持与Windows NT 5.0兼容的WDM(Win32 Driver Mode)模式驱动程序 ,而且还支持与Win 95兼容的虚拟设备驱动程序VxD(Virtual Device Driver)。下面介绍了基于Windows 9x平台的虚拟环境、虚拟设备驱动程序VxD的基本原理和 设计方法,并结合开发工具VToolsD给出了一个为可视电话音频卡配套的虚拟设备 驱动程序VxD的设计实例。 1.Windows 9x的虚拟环境 Windows 9x作为一个完整的32位多任务操作系统,它不像Window 3.x那样依 赖于MS-DOS,但为了保证软件的兼容性,Windows 9x除了支持Win16应用程序和 Win32应用程序之外,还得支持MS-DOS应用程序的运行。Windows 9x是通过虚拟机 VM(Virtual Machine)环境来确保其兼容和多任务特性的。 所谓Windows虚拟机(通常简称为Windows VM)就是指执行应用程序的虚拟环 境,它包括MS-DOS VM和System VM两种虚拟机环境。在每一个MS-DOS VM中都只运 行一个MS-DOS进程,而System VM能为所有的Windows应用程序和动态链接库DLL(Dynamic Link Libraries)提供运行环境。每个虚拟机都有独立的地址空间、寄存器状态、堆栈、局部描述符表、中断表状态和执行优先权。虽然Win16、Win32应用程序都运行在System VM环境下,但Win16应用程序共享同一地址空间, 而Win32应用程序却有自己独立的地址空间。 在编写应用程序时,编程人员经常忽略虚拟环境和实环境之间的差异,一般认为虚拟环境也就是实环境。但是,在编写虚拟设备驱动程序VxD时却不能这样做 ,因为VxD的工作是向应用程序代码提供一个与硬件接口的环境,为每一个客户虚 拟机管理虚设备的状态,透明地仲裁多个应用程序,同时对底层硬件进行访问。这就是所谓虚拟化的概念。 VxD在虚拟机管理器VMM(Virtual Machine Manager)的监控下运行,而VMM 实 际上是一个特殊的VxD。VMM执行与系统资源有关的工作,提供虚拟机环境(能产

相关主题