搜档网
当前位置:搜档网 › 高考物理压轴题和高中物理初赛难题汇集一

高考物理压轴题和高中物理初赛难题汇集一

高考物理压轴题和高中物理初赛难题汇集一
高考物理压轴题和高中物理初赛难题汇集一

高考物理压轴题和高中物理初赛难题汇

集-1

1. 地球质量为M ,半径为 R ,自转角速度为ω,万有引力恒量为 G ,如果规定物体在离地

球无穷远处势能为 0,则质量为 m 的物体离地心距离为 r 时,具有的万有引力势能可表示为 E p = -G

r

Mm

.国际空间站是迄今世界上最大的航天工程,它是在地球大气层上空地球飞行的一个巨大的人造天体,可供宇航员在其上居住和进行科学实验.设空间站离地面高度为 h ,如果在该空间站上直接发射一颗质量为 m 的小卫星,使其能到达地球同步卫星轨道并能在轨道上正常运行,则该卫星在离开空间站时必须具有多大的动能? 解析:

由G 2r

Mm =r mv 2得,卫星在空间站上的动能为 E k =21 mv 2

=

G

)

(2h R Mm

+。

卫星在空间站上的引力势能在 E p = -G

h

R Mm

+ 机械能为 E 1 = E k + E p =-G

)

(2h R Mm

+

同步卫星在轨道上正常运行时有 G

2

r Mm =m ω2

r 故其轨道半径 r =

3

2

ω

MG

由③式得,同步卫星的机械能E 2 = -G r Mm 2=-G

2

Mm

3

2

GM

ω

=-

2

1m (3

ωGM )2 卫星在运行过程中机械能守恒,故离开航天飞机的卫星的机械能应为 E 2,设离开航天飞机

时卫星的动能为 E k x ,则E k x = E 2 - E p -21 32

ωGM +G h

R Mm +

2. 如图甲所示,一粗糙斜面的倾角为37°,一物块m=5kg 在斜面上,用F=50N 的力沿斜面

向上作用于物体,使物体沿斜面匀速上升,g 取10N/kg ,sin37°=0.6,cos37°=0.8,

求:

(1)物块与斜面间的动摩擦因数μ;

(2)若将F 改为水平向右推力F ',如图乙,则至少要用多大的力F '才能使物体沿斜面上升。(设最大静摩擦力等于滑动摩擦力)

解析:

(1)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向,由物体匀速运动知物体受力平衡

0sin =--=f G F F x θ 0cos =-=θG N F y

解得 f=20N N=40N

因为N F N =,由N F f μ=得5.02

1

===

N f μ (2)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向。当物体匀速上行时力F '取最小。由平衡条件

0sin cos ='--'=f G F F x θθ 0cos sin =-'-'=θθG F N F y

且有N f '='μ

联立上三式求解得 N F 100='

3. 一质量为m =3000kg 的人造卫星在离地面的高度为H =180 km 的高空绕地球作圆周运动,

那里的重力加速度g =9.3m·s-2.由于受到空气阻力的作用,在一年时间,人造卫星的高度要下降△H=0.50km .已知物体在密度为ρ的流体中以速度v 运动时受到的阻力F 可

表示为F =21

ρACv2,式中A 是物体的最大横截面积,C 是拖曳系数,与物体的形状有关.当

卫星在高空中运行时,可以认为卫星的拖曳系数C =l ,取卫星的最大横截面积A =6.0m2.已知地球的半径为R0=6400km .试由以上数据估算卫星所在处的大气密度. 解:设一年前、后卫星的速度分别为

1

v 、

2

v ,根据万有引力定律和牛顿第二定律有

21211Mm

G m R R =v ⑴

2

2222Mm

G m R R =v

式中G 为万有引力恒量,M 为地球的质量,1

R 和

2

R 分别为一年前、后卫星的轨道半径,

10R R H

=+ ⑶

20R R H H

=+-?

卫星在一年时间动能的增量

22

k 21

1122E m m ?=-v v

由⑴、⑵、⑸三式得

k 21111()

2E GMm R R ?=-

由⑶、⑷、⑹式可知,k 0

E ?>,表示在这过程中卫星的动能是增加的。

在这过程中卫星引力势能的增量

P 2111

(

)E GMm R R ?=--

P 0

E ?<,表示在这过程中卫星引力势能是减小的。卫星机械能的增量

k P

E E E ?=?+?

由⑹、⑺、⑻式得

21111

()

2E GMm R R ?=--

0E ?<,表示在这过程中卫星的机械能是减少的。由⑶、⑷式可知,因1R 、2R 非常

接近,利用

12R R H -=? ⑽

2

121R R R ≈

⑼式可表示为

2

112GMm

E H

R ?=-

?

卫星机械能减少是因为克服空气阻力做了功。卫星在沿半径为R 的轨道运行一周过程中空气作用于卫星的阻力做的功

2

12W F R ACR πρπ=-?=-v ⒀

根据万有引力定律和牛顿运动定律有

22Mm

G m R R =v ⒁

由⒀、⒁式得

1W ACGM

ρπ=-

⒂式表明卫星在绕轨道运行一周过程中空气阻力做的功是一恒量,与轨道半径无关。卫星绕半径为R 的轨道运行一周经历的时间

2R

T π=

v

由⒁、⒃式得

2T π= ⒄

由于在一年时间轨道半径变化不大,可以认为T 是恒量,且

2T R π= ⒅

以τ表示一年时间,有

73600s 36524 3.1510s τ=??=?

卫星在一年时间做圆周运动的次数

n T τ

=

在一年时间卫星克服空气阻力做的功

1

W nW = (21)

由功能关系有

W E =?

(22)

由⒂⒅⒇(21)(22)各式并利用

2

1M G

g R =得

ρ=

(23)

代入有关数据得

1331.5410kg m ρ--=??

(24)

4、如图(甲)所示,弯曲部分AB 和CD 是两个半径相等的四分之一圆弧,中间的BC 段是竖直的薄壁细圆管(细圆管径略大于小球的直径),细圆管分别与上、下圆弧轨道相切连接,

BC 段的长度L 可作伸缩调节。下圆弧轨道与地面相切,其中D 、A 分别是上、下圆弧轨道的

最高点与最低点,整个轨道固定在竖直平面。一小球多次以某一速度从A 点水平进入轨道而从D 点水平飞出。今在A 、D 两点各放一个压力传感器,测试小球对轨道A 、D 两点的压力,计算出压力差△F 。改变BC 间距离L ,重复上述实验,最后绘得△F -L 的图线如图(乙)所示。(不计一切摩擦阻力,g 取10m/s 2

(1)某一次调节后D 点离地高度为0.8m 。小球从D 点飞出,落地点与D 点水平距离为2.4m ,求小球过D 点时速度大小。

(2)求小球的质量和弯曲圆弧轨道的半径大小。 解析:

(1)小球在竖直方向做自由落体运动,22

1gt H D =

水平方向做匀速直线运动 t V X D = 得:s m g

H x t

x V D

D

62==

=

(2)设轨道半径为r ,A 到D 过程机械能守恒:

)2(2

1212

2L r mg mv mv D A ++= 在A 点:r

V m mg F A A 2=-

在D 点:r

V m mg F D D 2

=+

由以上三式得:

r

L mg

mg F F F D A 26+=-=? 由图象纵截距得:6mg =12 得m =0.2kg 由L =0.5m 时 △F =17N 代入得:r =0.4m

5 、如图所示,在光滑的水平地面上,质量为M=3.0kg 的长木板A 的左端,叠放着一个质

量为m=1.0kg 的小物块B (可视为质点),处于静止状态,小物块与木板之间的动摩擦因数

μ=0.30。在木板A 的左端正上方,用长为R =0.8m 的不可伸长的轻绳将质量为m =1.0kg 的小

球C 悬于固定点O 点。现将小球C 拉至上方使轻绳拉直且与水平方向成θ=30°角的位置由静止释放,到达O 点的正下方时,小球C 与B 发生碰撞且无机械能损失,空气阻力不计,取

g =10m/s 2,求:

(1)小球C 与小物块B 碰撞前瞬间轻绳对小球的拉力; (2)木板长度L 至少为多大时,小物块才不会滑出木板。 解析:

(1)静止释放后小球做自由落体运动到a ,轻绳被拉紧时与水平方向成30?角,再绕O 点向下做圆周运动,由机械能守恒定律得

202

1mv mgR =

轻绳被拉紧瞬间,沿绳方向的速度变为0,沿圆周切线方向的速度为

θcos 0v v a =

小球由a 点运动到最低点b 点过程中机械能守恒

()2

22

1sin 121b

a mv mgR mv =-+θ 设小球在最低点受到轻绳的拉力为F ,则

R

v m mg F b

2

=-

联立解得355.3==mg F N

(2)小球与B 碰撞过程中动量和机械能守恒,则

21mv mv mv b +=

2

22122

12121mv mv mv b += 解得 v 1=0,v 2=v b =

2

5gR

(碰撞后小球与B 交换速度) B 在木板A 上滑动,系统动量守恒,设B 滑到木板A 最右端时速度为v ,则

()v M m mv +=2

B 在木板A 上滑动的过程中,系统减小的机械能转化为能,由能量守恒定律得

()22

22

1

21

v M m mv mgL +-

=μ 联立解得()2

252???

? ??+=gR M m g M

L μ 代入数据解得L =2.5m

6、如图所示,一根跨越一固定的水平光滑细杆的柔软、不可伸长的轻绳,两端各系一个质量相等的小球A 和B ,球A 刚好接触地面,球B 被拉到与细杆同样高度的水平位置,当球B 到细杆的距离为L 时,绳刚好拉直.在绳被拉直时释放球B ,使球B 从静止开始向下摆动.求球A 刚要离开地面时球B 与其初始位置的高度差.

解析:

设球A 刚要离开地面时联接球B 的绳与其初始位置的夹角为θ,如图所示,这里球B 的速度为v ,绳对球B 的拉力为T ,根据牛顿第二定律和能量守恒,有

2

sin T mg m

l θ-=v

2

1sin 2m mgl θ=v

当A 球刚要离开地面时,有

T mg =

以h 表示所求高度差,有

sin h l θ=

由①②③④解得

1

3

h l

=

7 (20分)如图所示,在高为h的平台上,距边缘为L处有一质量为M的静止木块(木块的尺度比L小得多),一颗质量为m的子弹以初速度v0射入木块中未穿出,木块恰好运动到平台边缘未落下,若将子弹的速度增大为原来的两倍而子弹仍未穿出,求木块的落地点距平台边缘的水平距离,设子弹打入木块的时间极短。

解析:

设子弹以v0射入时,木块的初速度为v1,根据动量守恒定律有

mv0=(m+M) v1①

根据动能定理有μ(m+M)gL=

2

1

(m+M)v12②

设子弹以2v0射入时,木块的初速度为v2,末速度为v3,根据动量守恒定律有

m2v0=(m+M) v2③

根据动能定理有μ(m+M)gL=

2

1

(m+M)v22-

2

1

(m+M)v32④

设木块落地点距平台边缘的距离为x,由平抛运动规律有

X= v3

g

h2

由①②③④⑤联立解得 x=

g

h

m

M

mv6

+

8、如图所示为某种弹射装置的示意图,光滑的水平导轨MN右端N处与水平传送带理想连接,传送带长度L=4.0m,皮带轮沿顺时针方向转动,带动皮带以恒定速率v=3.0m/s匀速传动。三个质量均为m=1.0kg的滑块A、B、C置于水平导轨上,开始时滑块B、C之间用细绳相连,其间有一压缩的轻弹簧,处于静止状态。滑块A以初速度v0=2.0m/s沿B、C连线方

向向B 运动,A 与B 碰撞后粘合在一起,碰撞时间极短,可认为A 与B 碰撞过程中滑块C 的速度仍为零。因碰撞使连接B 、C 的细绳受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离。滑块C 脱离弹簧后以速度v C =2.0m /s 滑上传送带,并从右端滑出落至地面上的P 点。已知滑块C 与传送带之问的动摩擦因数μ=0.20,重力加速度g 取10m /s 2

。求:

(1)滑块c 从传送带右端滑出时的速度大小; (2)滑块B 、C 用细绳相连时弹簧的弹性势能E p ;

(3)若每次实验开始时弹簧的压缩情况相同,要使滑块C 总能落至P 点,则滑块A 与滑块B 碰撞前速度的最大值V m 是多少?

解析:

(1)滑块C 滑上传送带后做匀加速运动,设滑块C 从滑上传送带到速度达到传送带的速度v 所用的时间为t ,加速度大小为a ,在时间t 滑块C 的位移为x 。

根据牛顿第二定律和运动学公式 μmg=ma v =v C +at

22

1

at t v s C +=

解得 x=1.25m <L

即滑块C 在传送带上先加速,达到传送带的速度v 后随传送带匀速运动,并从右端滑出,则滑块C 从传道带右端滑出时的速度为v=3.0m/s 。

(2)设A 、B 碰撞后的速度为v 1,A 、B 与C 分离时的速度为v 2,由动量守恒定律

mv 0=2mv 1

2 mv 1=2mv 2+mv C

由能量守恒规律 2

2

2

121

112222

2

P C E mv mv mv +?=

?+

解得E P =1.0J

(3)在题设条件下,若滑块A 在碰撞前速度有最大值,则碰撞后滑块C 的速度有最大值,它减速运动到传送带右端时,速度应当恰好等于传递带的速度v 。

设A 与B 碰撞后的速度为'1v ,分离后A 与B 的速度为'2v ,滑块C 的速度为'

C v ,由能

量守恒规律和动量守恒定律 mv m =2mv 1′

2mv 1′

=mv C ′

+2mv 2′

由能量守恒规律 2

22

121

1

122222

P C E mv mv mv '''+?=

?+ 由运动学公式 aL v v C

222

=-'

解得: v m =7.1m/s

9.、如图所示。一水平传送装置有轮半径为R =

π

1

m 的主动轮Q 1和从动轮Q 2及传送带等构成。两轮轴心相距8m ,轮与传送带不打滑,现用此装置运送一袋面粉(可视为质点),已知这袋面粉与传送带之间的动摩擦因数为μ=0.4,这袋面粉中的面粉可不断地从袋中渗出。

(1)当传送带以4m/s 的速度匀速运动时,将这袋面粉由左端Q 1正上方A 点轻放在传送带上后,这袋面粉由A 端运送到Q 2正上方的B 端所用的时间为多少?

(2)要想尽快将这袋面粉(初速度为零)由A 端送到B 端,传送带速度至少多大? (3)由于面粉的渗漏,在运送这袋面粉的过程中会在深色传送带上留下白色的面粉痕迹,这袋面粉(初速度为零)在传送带上留下的面粉痕迹最长能有多长?此时传送带的速度应满足什么条件?

解析:

(1)面粉袋与传送带相对运动过程中所受摩擦力f=μmg 根据牛顿第二定律:2/4s m m

f

a ==

若传送带的速度v =4m/s ,则面粉袋加速运动的时间 t 1=s a

v

1= 在t 1时间的位移 m at s 22

12

1==

其后以v =4m/s 速度匀速运动 212vt s l s AB =-= 解得:t 2=1.5s 所以运动总时间:t =t 1+t 2=2.5s (2)要想时间最短,面粉袋应一直向B 端匀加速运动

由s t t a l AB 22

12

=''=

得 此时传送带的速度s m t a v /8='='

(3)传送带速度越大,“痕迹”越长。

当面粉的痕迹布满整条传送带时,痕迹达到最长。 即痕迹长m R l l AB 1822=+=π

在面粉袋由A 端运动到B 端的时间s t 2='痕迹达到最长,传送带运动的距离

m l l s AB 26=+≥

则传送带的速度s m t s

v /13≥'

=

10、如图所示,一木块位于光滑的水平桌面上,木块上固连一支架,木块与支架的总质量为M .一摆球挂于支架上,摆球的质量为m ,1

2

m M <

摆线的质量不计.

初始时,整个装置处于静止状态.一质量为m 的子弹以大小为v 0、方向垂直于图面向里的速度射人摆球并立即停留在球,摆球和子弹便一起开始运动.已知摆线最

大的偏转角小于900

,在小球往返运动过程中摆线始终是拉直的,木块未发生转动.

i .求摆球上升的最大高度. ii .求木块的最大速率.

iii .求摆球在最低处时速度的大小和方向.

i .由于子弹射人摆球至停留在球经历的时间极短,可以认为在这过程中摆球

仅获得速度但无位移.设摆球(包括停留在球的子弹)向前(指垂直于图面向里)的速度为u ,由动量守恒定律有

mv 0=2mu

(l)

摆球以速度u 开始向前摆动,木块亦发生运动.当摆球上升至最高时,摆球相对木块静止,设此时木块的速度为V ,摆球上升的高度为h ,因水平方向动量守恒以及机械能守恒有 2mu =(2m +M)V (2)

2

21

(2)22

mu m M V mgh =++ (3) 解(l )、(2)、(3)三式得

2

8(2)Mv h g m m =

+

(4)

ii .摆球升到最高后相对木块要反向摆动.因为在摆球从开始运动到摆线返回到竖直位置前的整个过程中,摆线作用于支架的拉力始终向斜前方,它使木块向前运动的速度不断增大;摆线经过竖直位置后,直到摆线再次回到竖直位置前,摆线作用于支架的拉力将向斜后方,它使木块速度减小,所以在摆线(第一次)返回到竖直位置的那一时刻,木块的速度最大,方向向前

以V ’表示摆线位于竖直位置时木块的速率,u ’表示此时摆球的速度(相对桌面),当u' >0,表示其方向水平向前,反之,则水平向后.因水平方向动量守恒以及机械能守恒,

故有

22mu mu MV ''=+ (5)

2

2

21

2

mu mu MV ''=+

(6) 解(1)、(5)、(6)三式可得摆线位于竖直位置时木块速度的大小

0V '= (7)

22mv V m M

'=

+

(8)

(7)式对应于子弹刚射人摆球但木块尚未运动时木块的速度,它也是摆球在以后相对木块往复运动过程中摆线每次由后向前经过竖直位置时木块的速度;而题中要求的木块的最大速率为(8)式,它也是摆球在以后相对木块的往复运动过程中摆线每次由前向后经过竖直位置时木块的速度.

iii .在整个运动过程中,每当摆线处于竖直位置时,小球便位于最低处.当子弹刚射人摆球时,摆球位于最低处,设这时摆球的速度为u ,由(l )式得

01

2

u v =

(9)

方向水平向前.当摆球第一次回到最低处时,木块速度最大,设这时摆球的速度为u',由 (l )、(5)、(6)三式和(8)式可得

01

22m M

u v M m

-'=+ (10)

其方向向后.

当摆球第二次回到最低处时,由(7)式木块速度减至0,设这时摆球的速度为u'', 由(l )、(5)、(6)式可得

u''=01

2

u v =

(11) 方向向前,开始重复初始的运动.

11、图中坐标原点O (0, 0)处有一带电粒子源,向y ≥0一侧沿Oxy 平面的各个不同方向发射带正电的粒子,粒子的速率都是v ,质量均为m ,电荷量均为q .有人设计了一方向垂直于Oxy 平面,磁感应强度的大小为 B 的均匀磁场区域,使上述所有带电粒子从该磁场区域的边界射出时,均能沿x 轴正方向运动.试求出此边界线的方程,并画出此边界线的示意图. 解析:

先设磁感应强度为B 的匀强磁场方向垂直xy 平面向里,且无边界.考察从粒子源发出的速率为v 、方向与x 轴夹角为θ的粒子,在磁场的洛仑兹力作用下粒子做圆周运动,圆轨道经过坐标原点O ,且与速度方向相切,

若圆轨道的半径为R ,有

2

v qvB m R

= (1)

得 mv

R qB

=

(2) 圆轨道的圆心O ’在过坐标原点O 与速度方向垂直的直线上,至原点的距离为R ,如图1所示.通过圆心 O ’作平行于y 轴的直线与圆轨道交于P 点,粒子运动到P 点时其速度方向恰好是沿x 轴正方向,故P 点就在磁场区域的边界上.对于不同人射方向的粒子,对应的P 点的位置不同,所有这些P 点的连线就是所求磁场区域的边界线.P 点的坐标为

x =—Rsin θ (3 ) y =一R + Rcos θ (4)

这就是磁场区域边界的参数方程,消去参数θ,得

x 2 +(y+R)2=R 2

(5) 由(2)、(5)式得

222

222()mv m v x y qB q B

++= (6)

这是半径为R 圆心 O ’’的坐标为(0,一R ) 的圆,作为题所要求的

磁场区域的边界线,应是如图 2 所示的半个圆周,故磁场区域的边界线的方程为

22

2

222()mv m v x y qB q B

++= 0x ≤0y ≤ (7)

若磁场方向垂直于xy 面向外,则磁场的边界线为如图3示的半圆,

磁场区域的边界线的方程为

x 2 +(y —R)2=R 2 0x ≥ 0y ≥ (8 )

或 22

2

222()mv m v x y qB q B

+-= 0x ≥ 0y ≥ (9)

12、.如图Ⅰ-12所示,质量为 M = 3.0 kg 的小车静止在光滑的水平面上,AD 部分是表面粗糙的水平导轨,DC 部分是光滑的

4

1

圆弧导轨,整个导轨由绝缘材料做成并处于 B = 1.0 T 的垂直纸面向里的匀强磁场中,今有一质量为 m = 1.0 kg 的金属块(可视为质点)

带电量 q = 2.0×10-3

C 的负电,它以v 0 = 8 m/s 的速度冲上小车,当它将要过

D 点时,

它对水平导轨的压力为 9.81 N(g 取 9.8 m/s 2

)求:

(1)m 从 A 到 D 过程中,系统损失了多少机械能?

(2)若 m 通过D 点时立即撤去磁场,在这以后小车获得的最大速度是多少?

解析:

(1)设 m 抵达D 点的速度为v 1 ,则:Bqv 1 +mg =N ∴v 1 =

Bq mg N -=0

.1100.280

.99813

??--= 5.0 m/s. 设此小车速度为v 2,金属块由 A-D 过程中系统动量守恒则:

mv 0 = mv 1 +Mv 2.∴v 2 = 1.0 m/s. ∴损失的机械能ΔE =21mv 02 -21mv 12-2

1Mv 22

= 18 J (2)在 m 冲上

4

1

圆弧和返回到 D 点的过程中,小车速度一直在增大,所以当金属块回到D 点时小车的速度达到最大,且在上述过程中系统水平方向动量守恒,则:mv 1 + Mv 2 = mv 1 ′+Mv 2′系统机械能守恒,则:

21mv 12 + 21Mv 22 = 21mv 1′2+2

1

Mv 02v 2′=1 m/s 和v 2′=3 m/s. v 2′=1 m/s 舍去,∴小车能获得的最大速度为 3 m/s.

13、图中L 是一根通电长直导线,导线中的电流为I .一电阻为R 、每边长为2a 的导线

方框,其中两条边与L 平行,可绕过其中心并与长直导线平行的轴线OO’转动,轴线与长直导线相距b ,b >a ,初始时刻,导线框与直导线共面.现使线框以恒定的角速度ω转动,求线框中的感应电流的大小.不计导线框的自感.已知电流I 的长直导线在距导线r 处的磁

感应强度大小为k r I

,其中k 为常量.

解:当线框绕转轴转过t θω=的角度时,其位置如图1所示,俯视图如图2所示。

当线框以角速度ω绕OO '转动时,线框与轴线平行的两条边的速度都是v ,且

a ω=v ⑴ L 中的电流产生的磁场在这两条边所在处的磁感应强度分别为

I B k

r =

I

B k

r '=' ⑶

式中r 和r '分别为这两条边到L 的距离。线框

的两条边的速度v 的方向与B 和B '的方向间的夹角分别为α和α',由电磁感应定律,线框的感应电动势为

2sin 2sin Ba B a εαα''=+v v

注意到

sin sin()sin

r b b

θπαα

-

==

sin sin()sin

r b b

θπαα

''

-

==

'⑹

以及2222cos

r a b abθ

=+-⑺

2222cos

r a b abθ

'=++⑻

由以上各式得

2

2222

11

2()sin

2cos2cos

kIa b t

a b ab t a b ab t

εωω

ωω

=+

+-++⑼由欧姆定律得线框中感应电流

i

R

ε

=

由⑼、⑽两式得

2

2222

211

()sin

2cos2cos

kIa b

i t

R a b ab t a b ab t

ω

ω

ωω

=+

+-++

14、如图所示,两同心圆M、N之间的区域存在垂直于纸面的匀强磁场,圆M、N外没有磁

场,一质量为m,带电量为+q的粒子从圆心O处沿某一方向以速度

v飞出,已知圆M 的半径为R,圆N的半径为R

3,粒子重力不计。已知粒子进入磁场后沿顺针方向偏转。求:

(1)磁场的方向是垂直于纸面向里还是向外的?

(2)若粒子能再次经过圆心O,磁场的磁感应强度至少为多大?

(3)若磁场的磁感应强度保持为(2)的大小,求粒子从圆心O飞出到再次过圆心且速度与初速度方向相同所用的时间。

解析:

(1)由左手定则得:磁场方向垂直于纸面向外。

(2)粒子能再次经过圆心O,磁场的磁感应强度最小时,粒子运动轨迹与圆N相切,

轨迹如图。设粒子在磁场中做匀速圆周运动的半径为r 。由几何知识可知:

222)3(r R r R +=- ①

设磁场的磁感应强度最小值为B ,由洛仑兹力公式及匀速圆周运动规律得:

r

v m qBv 20

0= ②

联立①②解得:qR

mv B 0

3=

③ (3)由几何知识可知:

3tan /==

∠r

R

O CO 0/60=∠O CO ④ 粒子从C 点进入磁场到从D 离开磁场,粒子转过的角度为

0/02402360=∠-=O CO ? 即3

2

个圆周 ⑤

由几何知识可知粒子从圆心O 飞出到第一次过圆心且速度与初速度方向相同所运动的轨迹如图所示,运动的时间为:

)3

2

2(

30T v R t += ⑥ 0

2v r T π=

联立①⑥⑦解得:)3

346(0π+=

v R t ⑧ 15、如图所示,固定于同一条竖直线上的A 、B 是两个带等量异种电荷的点电荷,电荷量均

为Q ,其中A 带正电荷,B 带负电荷,A 、B 相距为2d 。MN 是竖直放置的光滑绝缘细杆,另有一个穿过细杆的带电小球P ,质量为m 、电荷量为+q (可视为点电荷),现将小球P 从与点电荷A 等高的C 处由静止开始释放,小球P 向下运动到距C 点距离为d 的D 点时,速度为v 。已知MN 与AB 之间的距离为d ,静电力常量为k ,重力加速度为g ,若取无限远处的电势为

零,试求:

(1)在A 、B 所形成的电场中,C 的电势φC 。 (2)小球P 经过D 点时的加速度。

(3)小球P 经过与点电荷B 等高的E 点时的速度。 解析:

(1)由等量异种电荷形成的电场特点可知,D 点的电势与无限远处电势相等,即D 点电势为零。小球P 由C 运动到D 的过程,由动能定理得:

02

12

-=

+mv q mgd CD ? ① 0-=-=C C C CD ???? ②

q

mgd mv C 222-=? ③

(2)小球P 经过D 点时受力如图:由库仑定律得:

2

21)

2(d Qq k

F F == ④

由牛顿第二定律得:

ma F F mg =++020145cos 45cos ⑤

2

22md kQq

g a +

= ⑥

(3)小球P 由D 运动到E 的过程,由动能定理得:

2

22

121mv mv q mgd E DE -=

+? ⑦ 由等量异种电荷形成的电场特点可知:CD DE ??= ⑧ 联立①⑦⑧解得:v v E 2=

16、如图所示,在水平方向的匀强电场中,用长为L 的绝缘细线拴住一质量为m ,带电荷量

为q 的小球,线的上端固定,开始时连线带球拉成水平,突然松开后,小球由静止开始向下摆动,当细线转过60°角时的速度恰好为零。问:

(1)电场强度E 的大小为多少?

(2)A 、B 两点的电势差U AB 为多少?

(3)当悬线与水平方向夹角θ为多少时,小球速度最大?最大为多少? 解析:

(1)小球从A→B 由动能定理有:

sin 60(1cos 60)00mgL EqL =-=-

3mg E q

∴=

(2)AB 两点电压u=Ed ,d=L(1-cos60°)

32gL

u q ∴=

3AB gL

u ∴-

(3)当沿切线方向合力为O 时,速度最大。

cos sin 0mg Eq θθ∴-= 30θ∴=

由动能定理得:

21

sin 30(1cos30)02

mgL EqL mVm --=-

2(23)m v gL ∴=-

17、“加速度计”作为测定运动物体加速度的仪器,已被广泛地应用于飞机、潜艇、航天器等装置的制导系统中,如图Ⅰ-13所示是“应变式加速度计”的原理图,支架 A 、B 固定在待测系统上,滑块穿在 A 、B 间的水平光滑杆上,并用轻弹簧固定于支架 A 上,随着系统沿水平做变速运动,滑块相对于支架发生位移,滑块下端的滑动臂可在滑动变阻器上相应地自由滑动,并通过电路转换为电信号从 1、2 两接线柱输出. 已知:滑块质量为 m ,弹簧劲度系数为 k ,电源电动势为 E ,阻为 r , 滑动变阻器的电阻随长度均匀变化,其总电阻 R = 4 r ,有效总长度 L ,当待测系统静止时,1、2 两接线柱输出的电压 U 0 = 0.4 E ,取 A 到 B 的方向为正方向.

(1)确定“加速度计”的测量围.

(2)设在1、2 两接线柱间接入阻很大的电压表,其读数为 U ,导出加速度的计算式. (3)试在1、2 两接线柱间接入阻不计的电流表,其读数为 I ,导出加速度的计算式.

解析:

(1)当待测系统静止时,1、2 接线柱输出的电压 U 0 =

r

R +ε·R 12..

由已知条件 U 0 = 0.4ε可推知:R 12 = 2r ,此时滑片 P 位于变阻器中点..待测系统沿水平方向做变速运动分加速运动和减速运动两种情况,弹簧最大压缩与最大伸长时刻,P 点只能滑至变阻器的最左端和最右端,故有:

a 1 =

m L k 2?.. a 2 =-m

L

k 2?..

所以"加速度计"的测量围为[-

m L k 2?·m

L

k 2?].. (2)当1、2两接线柱接电压表时,设P 由中点向左偏移 x ,则与电压表并联部分的电阻 R 1 =(

2

L - x )·L r

?4..

由闭合电路欧姆定律得:I =

r

R +1ε

..

故电压表的读数为:U = IR 1..

根据牛顿第二定律得:k ·x = m ·a .. 建立以上四式得:a =

m L k 2? -m

U

L k ???ε45..

图Ⅰ-13

高考物理压轴题和高级高中物理初赛难题汇集一

高考物理压轴题和高级高中物理初赛难题汇集 一 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

高考物理压轴题和高中物理初赛难题汇集-1 1. 地球质量为M ,半径为 R ,自转角速度为ω,万有引力恒量为 G ,如果规定 物体在离地球无穷远处势能为 0,则质量为 m 的物体离地心距离为 r 时,具有的万有引力势能可表示为 E p = -G r Mm .国际空间站是迄今世界上最大的航天工程,它是在地球大气层上空地球飞行的一个巨大的人造天体,可供宇航员在其上居住和进行科学实验.设空间站离地面高度为 h ,如果在该空间站上直接发射一颗质量为 m 的小卫星,使其能到达地球同步卫星轨道并能在轨道上正常运行,则该卫星在离开空间站时必须具有多大的动能 解析: 由G 2r Mm =r mv 2得,卫星在空间站上的动能为 E k =21 mv 2 = G ) (2h R Mm +。 卫星在空间站上的引力势能在 E p = -G h R Mm + 机械能为 E 1 = E k + E p =-G ) (2h R Mm + 同步卫星在轨道上正常运行时有 G 2r Mm =m ω2 r 故其轨道半径 r = 3 2 ω MG 由③式得,同步卫星的机械能E 2 = -G r Mm 2=-G 2 Mm 3 2 GM ω =-2 1 m (3ωGM )2

卫星在运行过程中机械能守恒,故离开航天飞机的卫星的机械能应为 E 2,设离 开航天飞机时卫星的动能为 E k x ,则E k x = E 2 - E p -21 32ωGM +G h R Mm + 2. 如图甲所示,一粗糙斜面的倾角为37°,一物块m=5kg 在斜面上,用F=50N 的力沿斜面向上作用于物体,使物体沿斜面匀速上升,g 取10N/kg ,sin37°=,cos37°=,求: (1)物块与斜面间的动摩擦因数μ; (2)若将F 改为水平向右推力F ',如图乙,则至少要用多大的力F '才能使物体沿斜面上升。(设最大静摩擦力等于滑动摩擦力) 解析: (1)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向,由物体匀速运动知物体受力平衡 解得 f=20N N=40N 因为N F N =,由N F f μ=得5.02 1 === N f μ (2)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向。当物体匀速上行时力F '取最小。由平衡条件 且有N f '='μ 联立上三式求解得 N F 100=' 3. 一质量为m =3000kg 的人造卫星在离地面的高度为H =180 km 的高空绕地球作圆周运动,那里的重力加速度g =9.3m·s-2.由于受到空气阻力的作用,在一年时间内,人造卫星的高度要下降△H=0.50km .已知物体在密度为ρ的 流体中以速度v 运动时受到的阻力F 可表示为F =21 ρACv2,式中A 是物体的

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析 一、电磁感应现象的两类情况 1.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。一质量m=2kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.5,ab连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。现用一质量M=6kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放物体,当物体下落高度h=2.0m时,ab开始匀速运动,运动中ab始终垂直导轨并与导轨接触良好。不计空气阻力,sin37°=0.6,cos37°=0.8,g取10m/s2。 (1)求ab棒沿斜面向上运动的最大速度; (2)在ab棒从开始运动到开始匀速运动的这段时间内,求通过杆的电量q; (3)在ab棒从开始运动到开始匀速运动的这段时间内,求电阻R上产生的焦耳热。 【答案】(1) (2)q=40C (3) 【解析】 【分析】 (1)由静止释放物体,ab棒先向上做加速运动,随着速度增大,产生的感应电流增大,棒所受的安培力增大,加速度减小,棒做加速度减小的加速运动;当加速度为零时,棒开始匀速,速度达到最大。据法拉第电磁感应定律、闭合电路的欧姆定律、安培力公式、平衡条件等知识可求出棒的最大速度。 (2)本小问是感应电量的问题,据法拉第电磁感应定律、闭合电路的欧姆定律、电流的定义式、磁通量的概念等知识可进行求解。 (3)从ab棒开始运动到匀速运动,系统的重力势能减小,转化为系统增加的动能、摩擦热和焦耳热,据能量守恒定律可求出系统的焦耳热,再由焦耳定律求出电阻R上产生的焦耳热。 【详解】 (1)金属棒ab和物体匀速运动时,速度达到最大值,由平衡条件知 对物体,有;对ab棒,有 又、 联立解得: (2) 感应电荷量

高中物理电磁感应综合问题

电磁感应综合问题 电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定 理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、 直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下 两个方面: (1)受力情况、运动情况的动态分析。思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。要画好受力图,抓住a=0时,速度v达最大值的特点。 (2)功能分析,电磁感应过程往往涉及多种能量形势的转化。例 如:如图所示中的金属棒ab沿导轨由静止下滑时,重力势能减小,一 部分用来克服安培力做功转化为感应电流的电能,最终在 R上转转化为焦耳热,另一部分转化为金属棒的动能.若 导轨足够长,棒最终达到稳定状态为匀速运动时,重力势 能用来克服安培力做功转化为感应电流的电能,因此,从 功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往 是解决电磁感应问题的重要途径. 【例1】如图1所示,矩形裸导线框长边的长度为2l,短边的长度 为l,在两个短边上均接有电阻R,其余部分电阻不计,导线框一长边

及x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l x B B 20π=。一光滑导体棒AB 及短边平行且 及长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求: (1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。 答案:(1))()(sin v l t R l vt v l B F 203222220≤≤=π (2)R v l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导 轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一及水平面垂直的均匀磁场,磁感强度B=0.5T 。一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下作匀变速直线运动,加速度大小为a=2m/s 2,方向及初速度方向相反,设导轨和金属杆的电阻都可以忽略,且接触良好。求: (1)电流为零时金属杆所处的位置; (2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向; (3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方

人教版高中物理相互作用好题难题教学内容

2017年04月30日高中物理相互作用组卷 一.选择题(共14小题) 1.把一个薄板状物体悬挂起来,静止时如图所示,则对于此薄板状物体所受重力的理解,下列说法正确的是() A.重力就是地球对物体的引力 B.重力大小和物体运动状态有关 C.重力的方向总是指向地心的 D.薄板的重心一定在直线AB上 2.下列关于常见力的说法中正确的是() A.弹力、重力、支持力、摩擦力都是按照性质命名的 B.有规则形状的物体,其重心就在物体的几何中心 C.两接触面间有摩擦力存在,则一定有弹力存在 D.物体之间接触就一定产生弹力 3.下列说法中,正确的是() A.有受力物体,就必定有施力物体 B.力只能产生在相互接触的物体之间 C.施力物体施力在先,受力物体受力在后 D.力是一个物体就能产生的,而并不需要其他物体的存在 4.如图所示,一被吊着的空心的均匀球壳内装满了细沙,底部有一阀门,打开阀门让细沙慢慢流出的过程中,球壳与球壳内剩余细沙组成的系统的重心将会() A.一直下降B.一直不变C.先下降后上升D.先上升后下降 5.弹簧秤的秤钩上挂一个重2N的物体,当弹簧秤与所挂物体一起匀加速竖直上升时,弹簧秤示数可能出现下列哪个图所示情况?()

A.B.C.D. 6.如图所示,一轻弹簧竖直固定在地面上,一物体从弹簧上方某高处自由下落,并落在弹簧上,弹簧在压缩过程中始终遵守胡克定律.从球接触弹簧开始,直到把弹簧压缩到最短为止,小球的加速度大小() A.一直变大B.一直变小C.先变大后变小D.先变小后变大 7.如图所示,某同学在擦黑板.已知黑板擦对黑板的压力为8N,与黑板间的动摩擦因数为0.4,则黑板擦与黑板间的滑动摩擦力为() A.2N B.3.2N C.20N D.32N 8.已知一些材料间动摩擦因数如下: 材料钢﹣钢木﹣木木﹣金属木﹣冰 动摩擦因数0.250.300.200.03 质量为1kg的物块放置于水平面上,现用弹簧秤沿水平方向匀速拉动此物块时, 读得弹簧秤的示数为3N,则关于两接触面的材料可能是(取g=10m/s2)()A.钢﹣钢B.木﹣木C.木﹣金属D.木﹣冰 9.物体A放在物体B上,物体B放在光滑的水平面上,已知m A=6kg,m2=2kg,A、B间动摩擦因数μ=0.2,如图.现用一水平向右的拉力F作用于物体A上,g=10m/s2,则下列说法中正确的是() A.当拉力F<12N时,A静止不动 B.当拉力F=16N时,A对B的摩擦力等于4N C.当拉力F>16N时,A一定相对B滑动 D.无论拉力F多大,A相对B始终静止

全国高中物理竞赛难题

四、(20分)某些非电磁量的测量是可以通过一些相应的装 置转化为电磁量来测量的。一平板电容器的两个极扳竖直放 置在光滑的水平平台上,极板的面积为S ,极板间的距离为 d 。极板1固定不动,与周围绝缘;极板2接地,且可在水 平平台上滑动并始终与极板1保持平行。极板2的两个侧边 与劲度系数为k 、自然长度为L 的两个完全相同的弹簧相连, 两弹簧的另一端固定.图预17-4-1是这一装置的俯视图.先将电容器充电至电压U 后即与电源断开,再在极板2的右侧的整个表面上施以均匀的向左的待测压强p ;使两极板之间的距离发生微小的变化,如图预17-4-2所示。测得此时电容器的电压改变量为U ?。设作用在电容器极板2上的静电作用力不致引起弹簧的可测量到的形变,试求待测压强p 。 五、(20分)如图预17-5-1所示,在正方形导线回路所围的区域 1234A A A A 内分布有方向垂直于回路平面向里的匀强磁场,磁感应强 度B 随时间以恒定的变化率增大,回路中的感应电流为 1.0mA I =.已知12A A 、34A A 两边的电阻皆为零;41A A 边的电阻 1 3.0k R =Ω,23A A 边的电阻27.0k R =Ω。 1.试求12A A 两点间的电压12U 、23A A 两点间的电压23U 、34 A A 两点间的电压34U 、41A A 两点间的电压41U 。 2.若一内阻可视为无限大的电压表V 位于正方形导线回路所在的平面内,其正负端与连线 位置分别如图预17-5-2、图预17-5-3和图预17-5-4所示,求三种情况下电压表的读数1U 、 2U 、3U 。 六、(20分)绝热容器A 经一阀门与另一容积比A 的容积大得很多的绝热容器B 相连。开始时阀门关闭,两容器中盛有同种理想气体,温度均为30℃,B 中气体的压强为A 中的2倍。现将阀门缓慢打开,直至压强相等时关闭。问此时容器A 中气体的温度为多少?假设在打开到关闭

高考物理压轴题之电磁学专题(5年)(含答案分析).

25.2014新课标2 (19分)半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m且质量分布均匀的直导体棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯 视图如图所示.整个装置位于一匀强磁场中,磁感应强度的 大小为B,方向竖直向下,在内圆导轨的C点和外圆导轨的 D点之间接有一阻值为R的电阻(图中未画出).直导体棒 在水平外力作用下以速度ω绕O逆时针匀速转动、转动过 程中始终与导轨保持良好接触,设导体棒与导轨之间的动摩 擦因数为μ,导体棒和导轨的电阻均可忽略,重力加速度大 小为g.求: (1)通过电阻R的感应电流的方向和大小; (2)外力的功率.

25.(19分)2013新课标1 如图,两条平行导轨所在平面与水平 地面的夹角为θ,间距为L。导轨上端接 有一平行板电容器,电容为C。导轨处于 匀强磁场中,磁感应强度大小为B,方向 垂直于导轨平面。在导轨上放置一质量为 m的金属棒,棒可沿导轨下滑,且在下滑 过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系。 24.(14分)2013新课标2 如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行。a、b为轨道直径的两端,该直径与电场方向平行。一电荷为q(q>0)的质点沿轨道内侧运动.经过a 点和b点时对轨道压力的大小分别为Na和Nb不计重力,求电场强度的大小E、质点经过a点和b点时的动能。

高考物理复习资料高中物理综合题难题汇编(三)高考物理压轴题汇编

高考物理复习资料高考物理压轴题汇编高中物理综合题难 题汇编(3) 1. (17分)如图所示,两根足够长的光滑直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。整套装置处于匀强磁场中,磁场方向垂直于斜面向上。导轨和金属杆的电阻可忽略。让金属杆ab沿导轨由静止开始下滑,经过一段时间后,金属杆达到最大速度v m,在这个过程中,电阻R上产生的热量为Q。导轨和金属杆接触良好,重力加速度为g。求: (1)金属杆达到最大速度时安培力的大小; (2)磁感应强度的大小; (3)金属杆从静止开始至达到最大速度的过程中杆下降的高度。 2. (16分)如图所示,绝缘长方体B置于水平面上,两端固定一对平行带电极板,极板间形成匀强电场E。长方体B的上表面光滑,下表面与水平面的动摩擦因数 =0.05(设最大静摩擦力与滑动摩擦力相同)。B与极板的总质量 m=1.0kg。带正电的小滑块A质量 B m=0.60kg,其受到的电场力大小F=1.2N。假设A所带的电量不影响极板间的电场分布。 A t=0时刻,小滑块A从B表面上的a点以相对地面的速度 v=1.6m/s向左运动,同时,B A (连同极板)以相对地面的速度 v=0.40m/s向右运动。(g取10m/s2)问: B

(1)A 和B 刚开始运动时的加速度大小分别为多少? (2)若A 最远能到达b 点,a 、b 的距离L 应为多少?从t=0时刻至A 运动到b 点时,摩擦力对B 做的功为多少? 3. (18分)如图所示,一个质量为m 的木块,在平行于斜面向上的推力F 作用下,沿着倾角为θ的斜面匀速向上运动,木块与斜面间的动摩擦因数为μ.(θμtan <) (1)求拉力F 的大小; (2)若将平行于斜面向上的推力F 改为水平推力F 作用在木块上,使木块能沿着斜面匀速运动,求水平推力F 的大小。 4. (21分)如图所示,倾角为θ=30°的光滑斜面固定在水平地面上,斜面底端固定一垂直斜面的挡板。质量为m =0.20kg 的物块甲紧靠挡板放在斜面上,轻弹簧一端连接物块甲,另一端自由静止于A 点,再将质量相同的物块乙与弹簧另一端连接,当甲、乙及弹簧均处于静止状态时,乙位于B 点。现用力沿斜面向下缓慢压乙,当其沿斜面下降到C 点时将弹簧锁定,A 、 C 两点间的距离为△L =0.06m 。一个质量也为m 的小球丙从距离乙的斜面上方L =0.40m 处由静止自由下滑,当小球丙与乙将要接触时,弹簧立即被解除锁定。之后小球丙与乙发生碰撞(碰撞时间极短且无机械能损失),碰后立即取走小球丙。当甲第一次刚要离开挡板时,乙的速度为v =2.0m/s 。(甲、乙和小球丙均可看作质点,g 取10m/s 2)求:

高中物理经典问题---弹簧类问题全面总结解读

高中物理经典问题---弹簧类问题全面总结解读 一:专题训练题 1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板 将物体托住,并使弹簧处于自然长度。如图7所示。现让木板由静止开始以加速度a(a <g = 匀加速向下移动。求经过多长时间木板开始与物体分离。 分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。据牛顿第二定律有: mg-kx-N=ma 得N=mg-kx-ma 当N=0时,物体与平板分离,所以此时k a g m x )(-= 因为221at x =,所以ka a g m t )(2-=。 2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静 止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。现在给P 施加一个竖直向上的力F , 使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒 力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。 .分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离 开秤盘。此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于 原长。在0_____0.2s 这段时间内P 向上运动的距离: x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m t x a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有 F min =ma=240N. 当P 与盘分离时拉力F 最大,F max =m(a+g)=360N. 3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的 物体A 、B 。物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面 物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个 过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求: (1)此过程中所加外力F 的最大值和最小值。 (2)此过程中外力F 所做的功。 解:(1)A 原来静止时:kx 1=mg ① 当物体A 开始做匀加速运动时,拉力F 最小,设为F 1,对物体A 有: F 1+kx 1-mg =ma ② 当物体B 刚要离开地面时,拉力F 最大,设为F 2,对物体A 有: F 2-kx 2-mg =ma ③ 对物体B 有:kx 2=mg ④ 对物体A 有:x 1+x 2=22 1at ⑤ 由①、④两式解得 a =3.75m/s 2 ,分别由②、③得F 1=45N ,F 2=285N F 图8 A B F 图 9 图7

高中物理难题巧解归纳总结

高中物理难题巧解归纳总结 用逆向思维巧解运动学问题 匀减速运动中的某些问题,用常规解法来解,步骤往往比较多,或似乎无法求解;如改用逆向思维来考虑,不仅能顺利求解,而且步骤也比较简便。此处所谓逆向思维是把运动的“末状态”当作“初状态”,而把物体的运动逆时间顺序倒过来考虑。 例1:做匀减速直线运动直到静止的物体,在最后三个连续相等的运动时间通过的位移比是。 解析:初速度为零的匀加速直线运动开始的三个连续相等的时间通过的位移比为:1:3:5,如把这题中的运动倒过来逆时间顺序考虑,可用上前面的规律,则可得答案为: 5:3:1。 例2:一物体以4m/s2的加速做匀减速直线运动直到停止,求物体停止前的第2s通过的路程。 解析:按常方法考虑似乎缺少条件,无法求解。如改用逆思维,将物体看成从静止开始做加速度为4m/s2的匀加速运动,它在第二秒通过的路程与题目所求的物体在静止前的第二秒通过的路程相等。则s=at22/2- at12/2=4×22/2- 4×12/2=6m。 例3:一小物体以一定的初速度自光滑斜面的底端a点上滑,最远可达b点,e为ab的中点,已知物体由a到e的时间为t0,则它从e 经b再返回e所需时间为[ ]

A.t0 B.(2-1)t0 C.2 (2+1)t0 D. (22+1)t0 解析:由逆向思维可知物体从b到e和从e到a的时间比为:1:(2-1);即:t:t0= 1:(2-1),得t= (2+1)t0,由运动的对称性可得从e到b和从b到e的时间相等,所以从e经b再返回e所需时间为2t,即2 (2+1)t0,答案为C。 例4:一物体以某一初速度在粗糙的平面上做匀减速直线运动,最后静止下来。若物体在最初5s通过的路程与最后5s通过的路程之比为11:5,求此物体一共运动了多长时间。 解析:由题意可知运动时间大于5s,但比10s大,还是小还是相等,无法确定。下图是按运动时间大于10s画出的示意图。 设总的运动时间为t,用逆向思维考虑,将物体看成 反方向的匀加速直线运动,则有: s2=at22/2=25a/2 (1) s1=at2/2- a(t- t1)2/2 (2) 又:s1:s2=11:5 (3) 联立(1)、(2)、(3)解得:t=8s 巧解平抛运动

---2018高三期中物理压轴题答案

2016-2018北京海淀区高三期中物理易错题汇编 1.如图所示为某种弹射装置的示意图,该装置由三部分组成,传送带左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量M = 6.0kg的物块A.装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接.传送带的皮带轮逆时针匀速转动,使传送带上表面以u = 2.0m/s匀速运动.传送带的右边是一半径R = 1.25m位于竖直平面内的光滑1/4圆弧轨道.质量m = 2.0kg的物块B从1/4圆弧的最高处由静止释放.已知物块B与传送带之间的动摩擦因数μ= 0.1,传送带两轴之间的距离l = 4.5m.设物块A、B之间发生的是正对弹性碰撞,第一次碰撞前,物块A静止.取g = 10m/s2.求: (1)物块B滑到1/4圆弧的最低点C时对轨道的压力. (2)物块B与物块A第一次碰撞后弹簧的最大弹性势能. (3)如果物块A、B每次碰撞后,物块A再回到平衡位置时弹簧都会被立即锁定,而当它们再次碰撞前锁定被解除,求物块B经第一次与物块A后在传送带碰撞上运动的总时间. 2.我国高速铁路使用的和谐号动车组是由动车和拖车编组而成,提供动力的车厢叫动车,不提供动力的车厢叫拖车.某列动车组由8节车厢组成,其中车头第1节、车中第5节为动车,其余为拖车,假设每节动车和拖车的质量均为m = 2 × 104kg,每节动车提供的最大功率P = 600kW. (1)假设行驶过程中每节车厢所受阻力f大小均为车厢重力的0.01倍,若该动车组从静止以加速度a = 0.5m/s2加速行驶. 1求此过程中,第5节和第6节车厢间作用力大小. 2以此加速度行驶时所能持续的时间. (2)若行驶过程中动车组所受阻力与速度成正比,两节动车带6节拖车的动车组所能达到的最大速度为v1.为提高动车组速度,现将动车组改为4节动车带4节拖车,则动车组所能达到的最大速度为v2,求v1与v2的比值. 3.暑假里,小明去游乐场游玩,坐了一次名叫“摇头飞椅”的游艺机,如图所示,该游艺机顶上有一个半径为 4.5m的“伞盖”,“伞盖”在转动过程中带动下面的悬绳转动,其示意图如图所示.“摇头飞椅”高O1O2 = 5.8m,绳长5m.小明挑 选了一个悬挂在“伞盖”边缘的最外侧的椅子坐下,他与座椅的总质量为40kg.小明和椅子的转动可简化为如图所示的圆周

【电路】高中物理电路经典例题

?在许多精密的仪器中,如果需要较精确地调节某一电阻两端的电压,常常采用如图所示的电路.通过两只滑动变阻器R1和R2对一阻值为500 Ω 左右的电阻R0两端电压进行粗调和微调.已知两个滑动变阻器的最大阻值分别为200 Ω和10 Ω.关于滑动变阻器R1、R2的连接关系和各自所起的作用,下列说法正确的是( B A.取R1=200 Ω,R2=10 Ω,调节R1起粗调作用 B.取R1=10 Ω,R2=200 Ω,调节R2起微调作用 C.取R1=200 Ω,R2=10 Ω,调节R2起粗调作用 D.取R1=10 Ω,R2=200 Ω,调节R1起微调作用 滑动变阻器的分压接法实际上是变阻器的一部分与另一部分在跟接在分压电路中的电阻并联之后的分压,如果并联的电阻较大,则并联后的总电阻接近变阻器“另一部分”的电阻值,基本上可以看成变阻器上两部分电阻的分压.由此可以确定R1应该是阻值较小的电阻,R2是阻值较大的电阻,且与R1的一部分并联后对改变电阻的影响较小,故起微调作用,因此选项B是正确的. 如图所示,把两相同的电灯分别拉成甲、乙两种电路,甲电路所加的电压为8V, 乙电路所加的电压为14V。调节变阻器R 1和R 2 使两灯都正常发光,此时变阻器 消耗的电功率分别为P 甲和P 乙 ,下列关系中正确的是( a ) A.P 甲> P 乙 B.P 甲<P 乙 C.P 甲 = P 乙 D.无法确 定 ?一盏电灯直接接在电压恒定的电源上,其功率是100 W.若将这盏灯先接一段很长的导线后,再接在同一电源上,此时导线上损失的电功率是9 W,那么此电灯的实际功率将( ) A.等于91 W B.小于91 W C.大于91 W D.条件不足,无法确定

高中物理磁场难题集

?场难题集 Colle?c t by LX 2014.06.20 1.(2015?南阳模拟)如图所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R.以O为圆心、R为半径的圆形区域内存在 感应强度为B、方向垂直纸面向外的匀强 场.D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入 场.粒子在s1处的速度和粒子所受的重力均不计. (1)当M、N间的电压为U时,求粒子进入场时速度的大小υ; (2)若粒子恰好打在收集板D的 点上,求M、N间的电压值U0; (3)当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t的最小值. 2.(2015?乐山一模)坐标原点O处有一点状的放射源,它向xoy平面内的x轴上方各个方向发射粒子,粒子的速度大小都是v0,在0<y<d的区域内分布有指向y轴正方向的匀强电场,场强大小为, 其 q与m分别为粒子的电量和质量;在d<y<2d的区域内分布有垂直于xoy平面的匀强场.ab为一块很大的平面感光板,放置于y=2d处,如图所示.观察发现此时恰无粒子打到ab板上.(不考虑a粒子的重力) (1)求粒子刚进人 场时的动能; (2)求 感应强度B的大小; (3)将ab板平移到什么位置时所有粒子均能打到板上?并求出此时a b板上被粒子打 的区域的长度. 3.(2015?郴州三模)如图(甲)所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N.现有一质量为m,带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,速度方向与x轴夹角为30°.此时在圆形区域加如图(乙)所示周期性变化的 场,以垂直于纸面向外为 场正方向),最后电子运动一段时间后从N飞出,速度方向与进入 场时的速度方向相同(与x轴夹角也为30°).求:

备战高考物理临界状态的假设解决物理试题-经典压轴题

备战高考物理临界状态的假设解决物理试题-经典压轴题 一、临界状态的假设解决物理试题 1.如图所示,用长为L =0.8m 的轻质细绳将一质量为1kg 的小球悬挂在距离水平面高为H =2.05m 的O 点,将细绳拉直至水平状态无初速度释放小球,小球摆动至细绳处于竖直位置时细绳恰好断裂,小球落在距离O 点水平距离为2m 的水平面上的B 点,不计空气阻力,取g =10m/s 2求: (1)绳子断裂后小球落到地面所用的时间; (2)小球落地的速度的大小; (3)绳子能承受的最大拉力。 【答案】(1)0.5s(2)6.4m/s(3)30N 【解析】 【分析】 【详解】 (1)细绳断裂后,小球做平抛运动,竖直方向自由落体运动,则竖直方向有2 12 AB h gt =,解得 2(2.050.8) s 0.5s 10 t ?-= = (2)水平方向匀速运动,则有 02m/s 4m/s 0.5x v t = == 竖直方向的速度为 5m/s y v gt == 则 22 22045m/s=41m/s 6.4m/s y v v v =+=+≈ (3)在A 点根据向心力公式得 2 v T mg m L -= 代入数据解得 2 4(1101)N=30N 0.8 T =?+?

2.如图所示,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。P是圆外一点,OP=3r,一质量为m、电荷量为q(q>0)的粒子从P点在纸面内沿着与OP成60°方向射出(不计重力),求: (1)若粒子运动轨迹经过圆心O,求粒子运动速度的大小; (2)若要求粒子不能进入圆形区域,求粒子运动速度应满足的条件。 【答案】(1)3Bqr ;(2) (332) v m ≤ + 或 (332) v m ≥ - 【解析】 【分析】 【详解】 (1)设粒子在磁场中做圆周运动的半径为R,圆心为O',依图题意作出轨迹图如图所示: 由几何知识可得: OO R '= ()222 (3)6sin OO R r rRθ '=+- 解得 3 R r = 根据牛顿第二定律可得 2 v Bqv m R = 解得 3Bqr v= (2)若速度较小,如图甲所示:

高中物理必修一中等题、难题

高中物理必修一中等 题、难题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 高中物理必修一:中等题、难题 1.如图所示,两根长度相等的绳子把一物体吊在空中,使其处于静止状态。现在缓慢增大两个悬点A 、B 间的距离。下列说法正确的是 A. 每根绳子的拉力将变小 B. 每根绳子的拉力将保持不变 C. 每根绳子的拉力将变大 D. 两根绳子对物体的合力将变小 2.如图,将一条轻而柔软的细绳一端拴在天花板上的A 点,另一端拴在竖直墙上的B 点,AC=3m ,绳长5m 。现将一重力不计的光滑滑轮和一重力为G 的物体挂到细绳上,在达到平衡时 A . AO 、BO 与水平方向的夹角α、β相等 B . AO 、BO 绳的张力相等 C . AO 、BO 绳的张力均为5G/6 D . 只有A 、B 等高时,选项A 才正确 3.如图,质量为M 的长木板置于水平桌面上,木板上面放一质量为m 的小物块。已 知M=3m 。现用水平力F 使小物块在木板上滑行,木板保持静止。已知所有接触面的动摩擦因数均为μ。下列关于桌面对木板的摩擦力的说法中,正确的是 A .大小为4mg μ B .大小为mg μ

3 C .方向水平向右 D .方向水平向左 4.如图所示,在水平向右的拉力F 作用下,木块在长木板上向右做匀减速直线运动,加速度大小 为a 。长木板处于静止状态。已知,木块质量为m ,长木板质量为M ,长木板与水平地面间的动摩擦因数为μ1,木块与长木板间的动摩擦因数为μ2。地面对长木板的摩擦力大小为 A .μ1(m+M )g B .μ2mg C .F ﹣ma D .F+ma 5.如图5所示,一个滑雪运动员保持图中姿势沿滑道下滑, 滑行速度越来越小.不计空气阻力.下列说法正确的 是 A .运动员所受合力的方向沿滑道向下 B .运动员所受合力的方向沿滑道向上 C .滑板对运动员的作用力小于运动员的重力 D .滑板对运动员的作用力大于运动员的重力 6.如图所示,在粗糙水平面上有一质量为m 的物体,被一轻弹簧连在左侧墙上。物 体在O 点静止时,弹簧恰为原长。物体只有在A 、B 之间才能处于静止状态。则下列说法中正确的是 A .物体静止在AO 之间任何位置,受到摩擦力的方向都向左 B .无论物体静止在AB 之间的任何位置,它离O 越近,受到的摩 v F 图9 A O B

最新2021年高考物理压轴题训练含答案 (5)

1.如图所示,质量为m 的小物块以水平速度v 0滑上原来静止在光滑水平面上质量为M 的小车上,物块与小车间的动摩擦因数为μ,小车足够长。求: (1) 小物块相对小车静止时的速度; (2) 从小物块滑上小车到相对小车静止所经历的时间; (3) 从小物块滑上小车到相对小车静止时,系统产生的热量和物块相对小车滑行的距离。 解:物块滑上小车后,受到向后的摩擦力而做减速运动,小车受到向前的摩擦力而做加速运动,因小车足够长,最终物块与小车相对静止,如图8所示。由于“光滑水平面”,系统所受合外力为零,故满足动量守恒定律。 (1) 由动量守恒定律,物块与小车系统: mv 0 = ( M + m )V 共 ∴0 mv V M m =+共 (2) 由动量定理,: (3) 由功能关系,物块与小车之间一对滑动摩擦力做功之和(摩擦力乘以相对位移)等于系统机械能的增量: 2201()21 - f l M+m V mv 2 = -共 ∴2 02()Mv l μM+m g = 2如下图所示是固定在水平地面上的横截面为“”形的光滑长直导轨槽,槽口向上(图为俯视图)。槽内 放置一个木质滑块,滑块的左半部是半径为R 的半圆柱形光滑凹槽,木质滑块的宽度为2R ,比“ ”形槽 的宽度略小。现有半径r(r<

高中物理力学经典例题集锦

高中物理典型例题集锦 力学部分 1、如图9-1所示,质量为M=3kg的木板静止在光滑水平面上,板的右端放一质量为m=1kg 的小铁块,现给铁块一个水平向左速度V0=4m/s,铁块在木板上滑行,与固定在木板左端的水平轻弹簧相碰后又返回,且恰好停在木板右端,求铁块与弹簧相碰过程中,弹性势能的最大值E P。 分析与解:在铁块运动的整个过程中,系统的动量守恒,因此弹簧压缩最大时和铁块停在木板右端时系统的共同速度(铁块与木板的速度相同)可用动量守恒定律求出。在铁块相对于木板往返运动过程中,系统总机械能损失等于摩擦力和相对运动距离的乘积,可利用能量关系分别对两过程列方程解出结果。 设弹簧压缩量最大时和铁块停在木板右端时系统速度分别为V和V’,由动量守恒得:mV0=(M+m)V=(M+m)V’ 所以,V=V’=mV0/(M+m)=1X4/(3+1)=1m/s 铁块刚在木板上运动时系统总动能为:EK=mV02==8J 弹簧压缩量最大时和铁块最后停在木板右端时,系统总动能都为: E K’=(M+m)V2=(3+1)X1=2J 铁块在相对于木板往返运过程中,克服摩擦力f所做的功为: W f=f2L=E K-E K’=8-2=6J 铁块由开始运动到弹簧压缩量最大的过程中,系统机械能损失为:fs=3J 由能量关系得出弹性势能最大值为:E P=E K-E K‘-fs=8-2-3=3J 说明:由于木板在水平光滑平面上运动,整个系统动量守恒,题中所求的是弹簧的最大弹性势能,解题时必须要用到能量关系。在解本题时要注意两个方面:①是要知道只有当铁块和木板相对静止时(即速度相同时),弹簧的弹性势能才最大;弹性势能量大时,铁块和木板的速度都不为零;铁块停在木板右端时,系统速度也不为零。 ②是系统机械能损失并不等于铁块克服摩擦力所做的功,而等于铁块克服摩擦力所做的功和摩擦力对木板所做功的差值,故在计算中用摩擦力乘上铁块在木板上相对滑动的距离。 2、如图8-1所示,质量为m=0.4kg的滑块,在水平外力F作用下,在光滑水平面上从A

高中物理力学难题(答案)

解:A、C、t 1时刻与t 3 时刻,物体正加速,故加速度与速度同向,而加速度和合力同向, 故合力与速度同方向,故A正确,C正确; B、D、t 2时刻与t 4 时刻,物体正减速,故合力与速度反向,故B错误,D错误; 故选:AC.

本题可以假设从以下两个方面进行讨论.(1)斜劈A表面光滑(设斜面的倾角为θ,A的质量为m A,B的质量为m B) A、同时撤去F1和F2,物体在其重力沿斜面向下的分力m B gsinθ的作用下也一定沿斜面向下做匀加速直线运动.故A是正确的; B、如果撤去F1,使A相对地面发生相对运动趋势的外力大小是F N2sinθ=m B gcosθsin θ,方向向右.如图1所示.由于m B gcosθsinθ<(m B gcosθ+F1sinθ)sinθ,所以A所受地面的摩擦力仍然是静摩擦力,其方向仍然是向左,而不可能向右.故B错误的; C、撤去F2,在物体B仍向下运动的过程中,A所受地面摩擦力的变化情况要从A受

地面摩擦力作用的原因角度去思考即寻找出使A相对地面发生相对运动趋势的外力的变化情况.通过分析,使A相对地面有向右滑动趋势的外力是(m B gcosθ+F1sinθ)sinθ.如图2、3所示.与F2是否存在无关.所以撤去F2,在物体B仍向下运动的过程中,A所受地面的摩擦力应该保持不变.故C错误的; D、根据以上判断,故D正确的; 因此,在斜劈表面光滑的条件下,该题的答案应该是AD.那么,答案会不会因为斜劈表面粗糙而不同呢? (2)斜劈A表面粗糙(设A表面的动摩擦因数为μ)在斜劈A表面粗糙的情况下,B在F1、F2共同作用下沿斜面向下的运动就不一定是匀加速直线运动,也可能是匀速直线运动.如果在此再陷入对B的运动的讨论中,势必加大判断的难度.退一步海阔天空.是不是可以不必纠缠于B的受力分析,看一看A会怎么样呢? 由题意知,在B沿斜劈下滑时,受到A对它弹力F N和滑动摩擦力f.根据牛顿第三定

高考物理(法拉第电磁感应定律提高练习题)压轴题训练及详细答案(1)

一、法拉第电磁感应定律 1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。求: (1)线圈中的感应电流的大小和方向; (2)电阻R两端电压及消耗的功率; (3)前4s内通过R的电荷量。 【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。 【解析】 【详解】 (1)0﹣4s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为: 由楞次定律知感应电流方向沿逆时针方向。 4﹣6s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为:,方向沿顺时针方向。 (2)0﹣4s内,R两端的电压为: 消耗的功率为: 4﹣6s内,R两端的电压为: 消耗的功率为: 故R消耗的总功率为: (3)前4s内通过R的电荷量为:

2.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。重力加速度为g ,求: (1)匀强电场的电场强度 (2)流过电阻R 的电流 (3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgd qR (3)()B mgd R r t NQRS ?+=? 【解析】 【详解】 (1)由题意得: qE =mg 解得 mg q E = (2)由电场强度与电势差的关系得: U E d = 由欧姆定律得: U I R = 解得 mgd I qR = (3)根据法拉第电磁感应定律得到: E N t ?Φ =? B S t t ?Φ?=?? 根据闭合回路的欧姆定律得到:()E I R r =+ 解得:

高中物理弹簧类问题专题练习总结附详细答案

- v 甲 高 中物理弹簧类问题专题练习 1.图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d 0。现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d 。( ) A .若M = m ,则d = d 0 B .若M >m ,则d >d 0 C .若M <m ,则d <d 0 D .d = d 0,与M 、m 无关 2. 如图a 所示,水平面上质量相等的两木块A 、B 态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬 间这个过程,并且选定这个过程中木块A 列图象中可以表示力F 和木块A 的位移x 之间关系的是( 3.如图甲所示,一轻弹簧的两端分别与质量为m 1和m 2的两物块相连接,并且静止在光滑的水平面上.现使m 1瞬时获得水平向右的速度3m/s ,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( ) A .在t 1、t 3时刻两物块达到共同速度1m/s 且弹簧都是处于压缩状态 B .从t 3到t 4时刻弹簧由伸长状态逐渐恢复原长 C .两物体的质量之比为m 1∶m 2 = 1∶2 D .在t 2时刻两物体的动量之比为P 1∶P 2 =1∶2 4.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上。现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( ) A.小球P 的速度是先增大后减小 B.小球P 和弹簧的机械能守恒,且P 速度最大时 所受弹力与库仑力的合力最大 C.小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变 D.小球P 合力的冲量为零 A B C D

相关主题