搜档网
当前位置:搜档网 › 模具三维设计检查表

模具三维设计检查表

模具三维设计检查表
模具三维设计检查表

CEGZ Injection Mold 3D Design Checklist

CEGZ

Part Number: Tip #1: X:

Mold Description: Tip #2: Y:

Material: Rotate: Z:

Press:

1. Part Data Check

1. Are the parts handed? 产品是否分左右?

2. Is the latest approved data used?模具设计用的产品是否是客户最后提供的产品?

3. Is standardized layer used?层使用是否标准?

4. Are the parts symmetrically opposite? 产品是否是镜像的?

5. Are there any match point and “under-flush” conditions required?

6. Are there telescopic seal-offs below 5 deg?

7. Are there any poor steel conditions? 模具上是否有尖钢?

8. Is there sufficient draft for texture? 产品晒纹的地方是否有足够的脱模角?

2. Parting Line

1. Does parting line taper lock have adequate lock angle (10 or 15 deg).分模面上的

落位角度是否是10或15度?

2. Are P/L & common level clearances developed?

3. Are Z-pad and the master dowel for cavity shoe, core shoe and main inserts

developed? 前模肉、后模肉和大的镶件上是否有Z-pad?

4. Are pry bar slots developed? 模具上是否有检测基准孔?

5. Are core and cavity radii added and correct? 前后模肉是否加了倒圆角?

6. Are parting line lock wear plates needed and developed?分模面上是否需要承压硬

片?

3. Gates vents and runner

1. Are runners shape and size correct? 流道类型和大小是否合适?

2. Are cold slug developed and shown?是否有冷料井?

3. Are gates type and size right?浇口类型和大小是否合适?

4. Are vents layout and sizes right? 排气的排布和尺寸是否合适?

5. Are gate inserts and runner shut-offs needed and developed?是否需要水口镶件和

转流道?

4. Water line

1. Do water lines have adequate distance?(approx 2” apart every two lines)每两条运

水之间的间距是否合适(大约2”)?

2. Do water lines have at least 0.75” to part surface and parting line?运水到产品表面

和分型面的距离是否至少有0.75”?

3. Do water lines interfere with any components, Guide pins, EJ pin, Screws, Dowels,

Inserts, mechanisms and E’bolts holes? They should have at least 0.25” distance.

运水是否与其他部件干涉?比如导柱、顶针、螺丝、销钉、镶件、机械装置、吊模孔。

运水与它们的间距至少0.25”

5. Ejection

1. Are the number and location of Ej pins adequate for part Ejection?对于产品的顶

出,顶针的数量是否足够,位置是否合适?

2. Is any poor steel condition on EJ pins or mold?模具上的顶针位置是否有尖钢?

6. Mechanisms

1. Is there a minimum of 2deg difference between all driving pins and heel / back

angles?

2. Is mechanism draw draft added? 行位、斜顶等机械装置上是否有角度?

3. Is mechanism draw draft added to pockets? 与行位、斜顶等机械装置配合的部位是

否有角度?

4. Are slides and their pockets developed?行位和其配合部位是否完成?

5. Does slide nose have 5deg lead-in from slide draw? 行位前端运动方向是否有5度

的斜度?

6. Are gibbs / wear plates (heel & bottom) developed? 压片和硬片是否完成?

7. Are horn pins developed? 行位斜边是否完成?

8. Are lifters and their pockets developed? 斜顶和其配合部位是否完成?

9. Are lifter / retractor bars developed? 斜顶杆是否完成?

10. Are hook slides and their pockets developed? 行位铲基和其配合部位是否完成?

11. Does hook slide seal off differ from the drive angle by at least 5deg? 行位铲基角度

是否比斜边角度至少大5度?

12. Does hook length protect for crash condition? 行位铲基长度是否合适?

13. Are retractors and their pockets developed?

14. Are actuators and their pockets developed?

15. Does the retractor split allow for part ejection?

16. Have all mechanisms been checked at full travel for crash conditions & undercut

relief (0.06" min)? 行位、斜顶等机械装置的行程至少要比倒扣多0.06”

17. Are any other pockets developed where required?

18. Do all components have a tooling ball dowel? 所有机械装置是否有加工dowel

凹模冲压模具设计

目录 前言 (1) 设计内容..............................................................................21、工艺性分析 (2) 2、工艺方案得确定 (2) 3、模具结构形式得确定.........................................................24、工艺设计........................................................................3(1)计算毛坯尺寸 (3) (2)画排样图 (3) (3)计算材料利用率 (4) (4)计算冲压力..................................................................5(5)初选压力机 (5) (6)计算压力中心 (5) (7)计算凸凹模刃口尺寸………………………………………………6 (8)卸料板各孔口尺寸 (6) (9)凸模固定板个孔口尺寸 (6) 5、模具结构设计 (6) (1)模具类型得选择 (6) (2)定位方式得选择 (6) (3)凹模设计……………………………………………………………6 (4)凹模刃口与边缘得距离 (6) (5)确定凹模周界尺寸…………………………………………………7 (6)选择模架及确定其她冲模零件尺寸………………………………7 6、绘制典型零件图与装配图 (8) 7、结束语 (9) 致谢 (9) 参考文献 (10) 前言

随着经济得发展,工业产品技术得也在不断发展,各行各业对模具得需求量越来越大,技术要求也越来越高、虽然模具种类繁多,但在“十一五"期间其发展重点应该就是既能满足大量需要,又具有较高得技术含量,特别就是目前国内尚不能自给、需大量进口得模具与能代表发展方向得大型、精密、复杂、长寿命模具。又由于模具标准件得种类、数量、水平、生产集中度等对整个模具行业得发展有重大影响.因此,一些重要得模具标准件也必须重点发展,而且其发展速度应快于模具得发展速度,这样才能不断提高我国得模具标准化水平,从而提高模具质量,缩短模具生产周期及降低成本。由于我国得模具产品在国际市场上占有较大得价格优势,因此对于出口前景好得模具产品也应作为重点来发展。而且应该就是目前已有一定基础,有条件、有可能发展起来得产品.如: 1)大型精密塑料模具塑料模具占我国模具总量得比例正逐年上升,发展潜力巨大.目前虽然已有相当技术基础并正在快速发展,但技术水平与国外仍有较大差距,总量也供不应求,每年进口几亿美元、 2)主要模具标准件目前国内已有较大产量得模具标准件主要就是模架、导向件、推杆推管、弹性元件等、这些产品不但国内配套大量需要,出口前景也很好,应继续大力发展、 虽然如此,我国得冲压模具设计制造能力与市场需要与国际先进水平相比仍有较大差距、这些主要表现在飞行器钣金件、高档轿车与大中型汽车覆盖件模具及高精度冲模方面,无论在设计还就是加工工艺与能力方面,都有较大差距.覆盖件模具,具有设计与制造难度大,质量与精度要求高得特点,可代表覆盖件模具得水平。虽然在设计制造方法与手段方面已基本达到了国际水平,模具结构功能方面也接近国际水平,在模具国产化进程中前进了一大步,但在制造质量、精度、制造周期等方面,与国外相比还存在一定得差距.标志冲模技术先进水平得多工位级进模与多功能模具,就是我国重点发展得精密模具品种、有代表性得就是集机电一体化得铁芯精密自动阀片多功能模具,已基本达到国际水平。 因此我们在学习完飞行器板金成形与模具相关基础课程后,老师让我们进行简单冲压件得模具设计,我们可经通过简单件得设计初步了解一下模具设计得过程。 设计内容 1、工艺性分析

模具设计检查表

明记工业设计 模具设计检查表 表单编号:检查人模具编号项目编号 部门设计者日期 一.产品资料事项 □ 1.是否确认为最新版的产品图。品名: 版本: 接图日 期: □ 2.塑料:(),缩水率:()/1000,模穴数:()穴。 □ 3.产品内厚是否平均,是否会造成缩水。局部较厚胶位缩水痕迹如何克服。 □ 4.脱模斜度是否足够。 □ 5.咬花之花纹型式及纹号, 脱模斜度是否与花纹深度配合。咬花纹号( )。 □ 6.日期章、穴号之规格、位置及字样,须凹入成品,是否客户有指示。 □ 7.重要公差(外径、平面度、偏摆度、同心度)要特别注意。单向公差是否有处理。 □ 8.与客户检讨事项是否全部执行。 □ 9.注意易变形及缩水的地方。 □ 10.模具表面处理:□咬花□喷砂□刻字□印刷□打光□电镀考虑是否需要预留加工余量。 二.顶出机构 □ 11.顶出方式及位置是否正确,是否平衡,有否做位置记号。 □ 12.回位梢的大小()mm。 □ 13.回位弹簧的选取Φ径、长度及强度、偷孔大小、深度是否正确。 □ 14.顶板导柱是否已安装,其位置及大小是否合适,最少2支,其直径要大过回位梢。 □ 15.限位柱是否已设计,其尺寸及位置是否合适。 □ 17.顶针是否凹入成品,位置、大小是否合适,长度是否正确,有否做防转设计。 □ 18.顶针及套筒长度是否正确,套筒针在下固定板上不可使用无头螺钉固定。 □ 19.KO孔的大小Φ()mm,数量()个,及位置是否符合机台。 □ 20.机台吨数()Tons。模座的大小是否适合机台生产。模图上是否有表达哥林柱位置、大小。 □ 21.定位环的大小Φ()mm,是否符合机台。唧嘴之Φ径、R、深度是否合适。 □ 22.产品顶出距离是否足够。(注意:顶出量不可超过塑料机之最大顶出量。) □ 23.是否有先复位机构。是否装设行程开关。 三.模具结构 □ 24.是否翻图。 □ 25.模具的分模面是否与客户要求的內容一致。 □ 26.模肉固定螺丝大小, 分布位置是否合适。 □ 27.吊模孔是否与其它零件干涉造成吊模困难。 □ 28.吊模孔螺丝大小, 分布位置是否合适。 □ 29.母模导柱(三板模)的大小及长度是否合适。 □ 30.公模导柱的大小()mm,及长度是否合适。 □ 31.模仁排气是否设计,排气的方式及位置是否适合。 □ 32.内、外拉杆的大小及行程是否足够,以及内拉杆弹簧规格是否正确。 □ 33.三板模抓料梢的尺寸及固定方式是否适当。 □ 34.是否须加隔热板(PC料),两板模是否有防开板。 □ 35.公模板及承板间是否加定位梢及定位螺钉。 □ 36.滑块配置方向是否理想。定位是否安全。(天、地、右、左)

冲压模具设计

设计题目: 零件图:

前 言 从几何形状特点看,矩形盒状零件可划分成 2 个长度为 (A-2r) 和 2 个长度为 (B-2r) 的直边加上 4 个半径为 r 的 1/4 圆筒部分。若将圆角部分和直边部分分开考虑,则圆角部分的变形相当于直径为 2r 、高为 h 的圆筒件的拉深,直边部分的变形相当于弯曲。但实际上圆角部分和直边部分是联系在一起的整体,因此盒形件的拉深又不完全等同于简单的弯曲和拉深,有其特有的变形特点,这可通过网格试验进行验证。 拉深前,在毛坯的直边部分画出相互垂直的等距平行线网格,在毛坯的圆角部分,画出等角度的径向放射线与等距离的同心圆弧组成的网格。变形前直边处的横向尺寸是等距的,即321L L L ?=?=?,纵向尺寸也是等距的,拉深后零件表面的网格发生了明显的变化(如图1所示) 。这些变化主要表现在: 图 1 ⑴直边部位的变形 直边部位的横向尺寸变形后间距逐渐缩小,愈向直边中间部位缩小愈少,纵向尺寸变形后,间距逐渐增大,愈靠近盒形件口部增大愈多,可见,此处的变形不同于纯粹的弯曲。 (2) 圆角部位的变形 拉深后径向放射线变成上部距离宽,下部距离窄的斜线,而并非与底面垂直的等距平行线。同心圆弧的间距不再相等,而是变大,越

向口部越大,且同心圆弧不位于同一水平面内。因此该处的变形不同于纯粹的拉深。 盒形件拉深有以下变形特点: σ的分布是不均匀的。在圆角部分最大,直 (1) 凸缘变形区内径向拉应力 1 σ也远小于相应的圆筒形件的拉应力。边部分最小。即使在角部,平均拉应力 1 因此,就危险断面处载荷来说,矩形盒拉深时要小得多;对于相同材料,矩形盒拉深的最大成形相对高度要大于相同半径的圆筒形零件拉深时的最大成形相对高度。 (2) 由于直边和圆角变形区内材料受力情况不同,直边处材料向凹模流动的阻力要远小于圆角处,并且,直边处材料的径向伸长变形小而圆角处材料的径向变形大,使变形区内两处材料的变形量不同,直边处大于圆角处。由此引起两处位移速度差,因而必然诱发出切应力(图2),以协调直边与圆角处的变形。 图2 盒形件拉深时的应力分布 σ的分布也是不均匀的。从角部到中间直 (3)在毛坯外周边上,切向压应力 3 σ的数值逐渐减小。通常情况下,起皱都发生在角部,但是起边部位,压应力 3 皱的趋势要小于拉深相应圆筒形件时的情况。 常用相对圆角半径r/B表示矩形盒的几何形状特征,0

冲压模具设计步骤

冷冲压模具设计步骤 冷冲模设计的一般步骤如下: 1 .搜集必要的资料 设计冷冲模时,需搜集的资料包括产品图、样品、设计任务书和参考图等,并相应了解如下问题: l )了解提供的产品视图是否完备,技术要求是否明确,有无特殊要求的地方。 2 )了解制件的生产性质是试制还是批量或大量生产,以确定模具的结构性质。 3 )了解制件的材料性质(软、硬还是半硬)、尺寸和供应方式(如条料、卷料还是废料利用等),以便确定冲裁的合理间隙及冲压的送料方法。 4 )了解适用的压力机情况和有关技术规格,根据所选用的设备确定与之相适应的模具及有关参数,如模架大小、模柄尺寸、模具闭合高度和送料机构等。 5 )了解模具制造的技术力量、设备条件和加工技巧,为确定模具结构提供依据。 6 )了解最大限度采用标准件的可能性,以缩短模具制造周期。 2 .冲压工艺性分析 冲压工艺性是指零件冲压加工的难易程度。在技术方面,主要分析该零件的形状特点、尺寸大小(最小孔边距、孔径、材料厚度、最大外形)、精度要求和材料性能等因素是否符合冲压工艺的要求。如果发现冲压工艺性差,则需要对冲压件产品提出修改意见,经产品设计者同意后方可修改。 3 .确定合理的冲压工艺方案 确定方法如下: l )根据工件的形状、尺寸精度、表面质量要求进行工艺分析,确定基本工序的性质,即落

料、冲孔、弯曲等基本工序。一般情况下可以由图样要求直接确定。 2 )根据工艺计算,确定工序数目,如拉深次数等。 3 )根据各工序的变形特点、尺寸要求确定工序排列的顺序,例如,是先冲孔后弯曲还是先弯曲后冲孔等。 4 ) 根据生产批量和条件,确定工序的组合,如复合冲压工序、连续冲压工序等。 5 ) 最后从产品质量、生产效率、设备占用情况、模具制造的难易程度、模具寿命、工艺成本、操作方便和安全程度等方面进行综合分析、比较,在满足冲件质量要求的前提下,确定适合具体生产条件的最经济合理的冲压工艺方案,并填写冲压工艺过程卡片(内容包括工序名称、工序数目、工序草图(半成品形状和尺寸)、所用模具、所选设备、工序检验要求、板料规格和性能、毛坯形状和尺寸等): ; 4 确定模具结构形式 确定工序的性质、顺序及工序的组合后,即确定了冲压工艺方案也就决定了各工序模具的结构形式。冲模的种类很多,必须根据冲件的生产批量、尺寸、精度、形状复杂程度和生产条件等多方面因素选择,其选原则如下: l )根据制件的生产批量确定采用简易模还是复合模结构。一般来说简易模寿命低,成本低;而复合模寿命长,成本高。 2 )根据制件的尺寸要求确定冲模类型。 若制件的尺寸精度及断面质量要求较高,应采用精密冲模结构;对于一般精度要求的制件,可采用普通冲模。复合模冲出的制件精度高于级进模,而级进模又高于单工序模。 3 )根据设备类型确定冲模结构。 拉深加工时有双动压力机的情况下,选用双动冲模结构比选用单动冲模结构好很多

模具设计检查重点

模具設計檢查重點 一.上,下托板: 1.確定模具中心是否在上下托板中心; 2.插入對應沖床的台盤,滑塊,看托板上的夾模器槽,定位槽與台 盤,滑塊是否對應. 二.上,下墊腳: 1.各墊腳的編號是否齊全; 2.夾模器是否會與墊腳發生干涉; 3.墊腳螺絲是否會與模座上的導柱壓塊干涉; 4.對於沖孔模,應檢查墊腳上是否有漏料避位; 5.墊腳是否排在重點受力部位; 6.墊腳的數量. 三.上墊板 1.上模部分是否分級打銷; 2.墊板上的起吊螺絲孔以及其注解; 3.尺寸標注是否齊全. 四.上,下模座 1.側面起吊攻牙孔以及其注解; 2.上,下模座的導柱孔是否能夠對上; 3.上,下模座上裝有制高塊的,其座標是否一一對應; 4.上模座作上托板用時,其鎖固溝尺寸以及是否要背面銑深; 5.在下模座比較厚時,攻牙不需攻通時的注解及螺絲的選擇. 五.上夾板 1.繪圖尺寸與注解尺寸是否一致; 2.注解是否齊全(孔的數量,是否清角,消線頭),同時,還應標全 挂鈎銑深深度的注解; 3.尺寸標注位數是否正確,需銑加工的部位尺寸是否標注完全; 4.在檢查配置圖時,看衝子與衝子孔是否一一對應. 六.上打背板 1.圖元尺寸與注解尺寸是否一一對應; 2.頂珠止付後消孔; 3.在復合模中,是否比上打板要小,加工工藝性如何; 4.是否有起吊螺絲孔以及其注解. 七.上,下打板

1.圖元與注解尺寸是否一一對應; 2.對於分級衝子,其沉孔深度是否合理; 3.打板上的尺寸注解位數; 4.定位,産品的避位元是否正確,在定位移動后,避位是否也做了 相應的移動; 5.公差注解是否正確. 八.上、下模板 1.材質,熱處理以及模板厚度是否正確; 2.在下模板中,是否要起吊螺絲孔以及其注解; 3.在復合模中,上下模板共用時,共用注解是否正確; 4.在成形模中,模板邊是否要保留壓筋,外形尺寸是否要准; 5.避位的位置,大小及數量; 6.尺寸注解位數; 7.是否需要局部視圖及局部視圖是否齊全. 九.下夾板 1.折刀固定槽的小數點位數; 2.剖視圖是否齊全; 3.螺絲是否要求沈頭及相應注解是否齊全; 4.複合模的下夾板上的內導柱孔的標注及注解是否正確. 十.下墊板 1.對於沖孔模,漏料孔不能比下模座漏料孔大; 2.在定位移動后,墊板上的螺絲孔是否也做了相應的移動; 3.對於異形孔,是否採用線割. 十一.模具零件 1.尺寸是否標注全,重點尺寸和控制尺寸是否標注注全; 2.是否會形成封閉尺寸鏈(標注尺寸時要考慮零件的加工基准 和測量基准); 3.滑塊上移動中的避位是否正確,視圖是否對應,齊全; 4.是否要增加放大視圖,局部視圖; 5.尺寸標注位數是否正確; 6.材質,數量,熱處理是否正確,齊全. 十二.總體檢查 1.在總圖中,打開各模板,看各模板孔是否對應,五金零件是否 錯位(檢查步驟:1)上模部分;2)下模部分;3)重要線割模板

冲压模具设计装配图

1—下模座2、15—销钉3凹模4套5 导柱 6 导套 7 上模座 8卸料板9橡胶10凸模固定板 11—垫板12—卸料螺钉13—凸模14 —模柄 16、17螺钉图2.0.1 冲裁模典型结构与模具总体设计尺寸关系图

复合模的基本结构 1—凸模;2—凹模;3—上模固定板; 4、16—垫板;5—上模座;6—模柄; 7—推杆; 8—推块; 9—推销; 10—推件块;11、18—活动档料销; 12—固定挡料销13—卸料板 14—凸凹模;15—下模固定板; 17—下模座;19—弹簧 1-下模座;2、5-销钉;3-凹模;4-凸模 1-凹模;2-凸模;3-定位钉;4-压料板;5-靠板6-上模座;7-顶杆;8-弹簧;图3.4.2 L形件弯曲模 9、11-螺钉;10-可调定位板

1.冲裁间隙过大时,断面将出现二次光亮带。(×) 2.冲裁件的塑性差,则断面上毛面和塌角的比例大。(×) 3.形状复杂的冲裁件,适于用凸、凹模分开加工。(×) 4.对配作加工的凸、凹模,其零件图无需标注尺寸和公差,只说明配作间隙值。(×) 5.整修时材料的变形过程与冲裁完全相同。(×) 6.利用结构废料冲制冲件,也是合理排样的一种方法。(∨) 7.采用斜刃冲裁或阶梯冲裁,不仅可以降低冲裁力,而且也能减少冲裁功。(×) 8.冲裁厚板或表面质量及精度要求不高的零件时,为了降低冲裁力,一般采用加热冲裁的方法进行。(∨)9.冲裁力是由冲压力、卸料力、推料力及顶料力四部分组成。(×) 10.模具的压力中心就是冲压件的重心。(×) 11.冲裁规则形状的冲件时,模具的压力中心就是冲裁件的几何中心。(×) 12.在压力机的一次行程中完成两道或两道以上冲孔(或落料)的冲模称为复合模。× 13.凡是有凸凹模的模具就是复合模。(×) 14.在冲模中,直接对毛坯和板料进行冲压加工的零件称为工作零件。(×) 15.导向零件就是保证凸、凹模间隙的部件。(×) 16.侧压装置用于条料宽度公差较大的送料时。(×) 17.侧压装置因其侧压力都较小,因此在生产实践中只用于板厚在0.3mm以下的薄板冲压。× 18.对配作的凸、凹模,其工作图无需标注尺寸及公差,只需说明配作间隙值。(×) 19.采用斜刃冲裁时,为了保证工件平整,冲孔时凸模应作成平刃,而将凹模作成斜刃。× 20.采用斜刃冲裁时,为了保证工件平整,落料时凸模应作成平刃,而将凹模作成斜刃。× 21.凸模较大时,一般需要加垫板,凸模较小时,一般不需要加垫板。(×) 22.在级进模中,落料或切断工步一般安排在最后工位上。(∨) 23.在与送料方向垂直的方向上限位,保证条料沿正确方向送进称为送料定距。(×) 24.模具紧固件在选用时,螺钉最好选用外六角的,它紧固牢靠,螺钉头不外露。(×) 25.整修时材料的变形过程与冲裁完全相同。(×) 26.精密冲裁时,材料以塑性变形形式分离因此无断裂层。(∨) 27.在级进模中,根据零件的成形规律对排样的要求,需要弯曲、拉深、翻边等成形工序的冲压件,位于成形过程变形部位上的孔,应安排在成形工位之前冲出。(×) 28.压力机的闭合高度是指模具工作行程终了时,上模座的上平面至下模座的下平面之间的距离。× 1 、自由弯曲终了时,凸、凹模对弯曲件进行了校正。(× ) 2 、从应力状态来看,窄板弯曲时的应力状态是平面的,而宽板弯曲时的应力状态则是立体的。(∨) 3 、窄板弯曲时的应变状态是平面的,而宽板弯曲时的应变状态则是立体的。(× ) 4 、板料的弯曲半径与其厚度的比值称为最小弯曲半径。(× ) 5 、弯曲件两直边之间的夹角称为弯曲中心角。(× ) 6 、对于宽板弯曲,由于宽度方向没有变形,因而变形区厚度的减薄必然导致长度的增加。 r/t 愈大,增大量愈× 7 、弯曲时,板料的最外层纤维濒于拉裂时的弯曲半径称为相对弯曲半径。(× ) 8 、冲压弯曲件时,弯曲半径越小,则外层纤维的拉伸越大。(∨) 9 、减少弯曲凸、凹模之间的间隙,增大弯曲力,可减少弯曲圆角处的塑性变形。(× ) 10 、采用压边装置或在模具上安装定位销,可解决毛坯在弯曲中的偏移问题。(∨) 11 、塑性变形时,金属变形区内的径向应力在板料表面处达到最大值。(∨) 12 、经冷作硬化的弯曲件,其允许变形程度较大。(× ) 13 、在弯曲变形区内,内缘金属的应力状态因受压而缩短,外缘金属受拉而伸长。(∨) 14 、弯曲件的回弹主要是因为弯曲变形程度很大所致。(× ) 15 、一般来说,弯曲件愈复杂,一次弯曲成形角的数量愈多,则弯曲时各部分相互牵制作用愈大,则回弹就大。(× ) 16 、减小回弹的有效措施是采用校正弯曲代替自由弯曲。(× ) 17 、弯曲件的展开长度,就是弯曲件直边部分长度与弯曲部分的中性层长度之和。(∨) 18 、当弯曲件的弯曲线与板料的纤维方向平行时,可具有较小的最小弯曲半径,相反,弯曲件的弯曲线与 板料的纤维方向垂直时,其最小弯曲半径可大些。(× ) 19 、在弯曲 r/t 较小的弯曲件时,若工件有两个相互垂直的弯曲线,排样时可以不考虑纤维方向。(× )

冷冲压模具设计与制造习题和答案

模具设计与制造基础复习题+答案 一、选择题 1.冷冲压工序分为AD工序两大类。 A分离工序;B冲裁;C拉深;D塑性变形 2.冲裁模的间隙应当C模具导向件的间隙。 A、小于; B、等于; C、大于; D、小于等于。 3 、落料时,其刃口尺寸计算原则是先确定____ A _______ 。 A 、凹模刃口尺寸 B 、凸模刃口尺寸 C 、凸、凹模尺寸公差 4.在连续模中,条料进给方向的定位有多种方法,当进距较小,材料较薄,而生产效率高时,一般选用C定位较合理。 A、挡料销, B、导正销, C、侧刃, D、初始挡料销. 5.冲裁间隙对冲裁件的尺寸精度有一定影晌。一般情况下,若采用间隙过大时,落料件尺寸B凹模尺寸。 A 大于; B、小于; C、等于;D大于等于 6 、对T 形件,为提高材料的利用率,应采用_____ C ______ 。 A 、多排 B 、直对排 C 、斜对排 7 、为使冲裁过程的顺利进行,将梗塞在凹模内的冲件或废料顺冲裁方向从凹模孔中推出,所需要的力称为______ A _____ 。 A 、推料力 B 、卸料力 C 、顶件力 8 、冲裁件外形和内形有较高的位置精度要求,宜采用_____ C ______ 。 A 、导板模 B 、级进模 C 、复合模 9 、弯曲件在变形区的切向外侧部分____ A ____ 。 A 、受拉应力 B 、受压应力 C 、不受力 10.弯曲过程中常常出现的现象A C B A、回弹; B,变形区厚度减薄; C、偏移; D、变形区厚度增加. 11.相对弯曲半径r/t表示B A、材料的弯曲变形极限: B、零件的弯曲变形程度, C、弯曲难易程度。

冲压模具设计实例讲解

第二节冲压工艺与模具设计实例 一、摩托车侧盖前支承冲压工艺设计 二、微型汽车水泵叶轮冲压工艺与模具设计 一、摩托车侧盖前支承冲压工艺设计 图12-1所示为摩托车侧盖前支承零件示意图,材料Q215钢,厚度1.5mm,年生产量5万件,要求编制该冲压工艺方案。 ⒈零件及其冲压工艺性分析 mm的凸包定位且焊接组合在车架的电气元件支架上,腰圆孔用于摩托车侧盖前支承零件是以2个9.5 侧盖的装配,故腰圆孔位置是该零件需要保证的重点。另外,该零件属隐蔽件,被侧盖完全遮蔽,外观上要求不高,只需平整。

图12-1侧盖前支承零件示意图 该零件端部四角为尖角,若采用落料工艺,则工艺性较差,根据该零件的装配使用情况,为了改善落料的工艺性,故将四角修改为圆角,取圆角半径为2mm。此外零件的“腿”较长,若能有效地利用过弯曲和校正弯曲来控制回弹,则可以得到形状和尺寸比较准确的零件。 腰圆孔边至弯曲半径R中心的距离为2.5mm。大于材料厚度(1.5mm),从而腰圆孔位于变形区之外,弯曲时不会引起孔变形,故该孔可在弯曲前冲出。

⒉确定工艺方案 首先根据零件形状确定冲压工序类型和选择工序顺序。冲压该零件需要的基本工序有剪切(或落料)、冲腰圆孔、一次弯曲、二次弯曲和冲凸包。其中弯曲决定了零件的总体形状和尺寸,因此选择合理的弯曲方法十分重要。 (1) 弯曲变形的方法及比较该零件弯曲变形的方法可采用如图12-2所示中的任何一种。 第一种方法(图12-2a)为一次成形,其优点是用一副模具成形,可以提高生产率,减少所需设备和操作人员。缺点是毛坯的整个面积几乎都参与激烈的变形,零件表面擦伤严重,且擦伤面积大,零件形状与尺寸都不精确,弯曲处变薄严重,这些缺陷将随零件“腿”长的增加和“腿”长的减小而愈加明显。 第二种方法(图12-2b)是先用一副模具弯曲端部两角,然后在另一副模具上弯曲中间两角。这显然比第一种方法弯曲变形的激烈程度缓和的多,但回弹现象难以控制,且增加了模具、设备和操作人员。 第三种方法(图12-2c)是先在一副模具上弯曲端部两角并使中间两角预弯45°,然后在另一副模具上弯曲成形,这样由于能够实现过弯曲和校正弯曲来控制回弹,故零件的形状和尺寸精确度高。此外,由于成形过程中材料受凸、凹模圆角的阻力较小,零件的表面质量较好。这种弯曲变形方法对于精度要求高或长“脚”短“脚”弯曲件的成形特别有利。

《冲压模具课程设计》范例

【范例】 (1)题目:东风EQ-1090汽车储气简支架 (2)原始数据 数据如图7—1所示。大批量生产,材料为Q215,t=3mm。 图7-1零件图 (3)工艺分析 此工件既有冲孔,又有落料两个工序。材料为Q235、t=3mm的碳素钢,具有良好的冲压性能,适合冲裁,工件结构中等复杂,有一个直径φ44mm的圆孔,一个60mm×26mm、圆角半径为R6mm的长方形孔和两个直径13mm的椭圆孔。此工件满足冲裁的加工要求,孔与孔、孔与工件边缘之间的最小壁厚大于8mm。工件的尺寸落料按ITll级,冲孔按IT10级计算。尺寸精度一般,普通冲裁完全能满足要求。 (4)冲裁工艺方案的确定 ①方案种类该工件包括落料、冲孑L两个基本工序,可有以下三种工艺方案。 方案一:先冲孔,后落料。采用单工序模生产。 方案二:冲孔一落料级进冲压。采用级进模生产。 方案三:采用落料一冲孔同时进行的复合模生产。 ②方案的比较各方案的特点及比较如下。 方案一:模具结构简单,制造方便,但需要两道工序,两副模具,成本相对较高,生产效率低,且更重要的是在第一道工序完成后,进入第二道工序必然会增大误差,使工件精度、质量大打折扣,达不到所需的要求,难以满足生产需

要。故而不选此方案。 方案二:级进模是一种多工位、效率高的加工方法。但级进模轮廓尺寸较大,制造复杂,成本较高,一般适用于大批量、小型冲压件。而本工件尺寸轮廓较大,采用此方案,势必会增大模具尺寸,使加工难度提高,因而也排除此方案。 方案三:只需要一套模具,工件的精度及生产效率要求都能满足,模具轮廓尺寸较小、模具的制造成本不高。故本方案用先冲孔后落料的方法。 ③方案的确定综上所述,本套模具采用冲孔一落料复合模。 (5)模具结构形式的确定 复合模有两种结构形式,正装式复合模和倒装式复合模。分析该工件成形后脱模方便性,正装式复合模成形后工件留在下模,需向上推出工件,取件不方便。倒装式复合模成形后工件留在上模,只需在上模装一副推件装置,故采用倒装式复合模。 图7 2粗画排样图 (6)工艺尺寸计算 ①排样设计 a.排样方法的确定根据工件的形状。确定采用无废料排样的方法不可能做到,但能采用有废料和少废料的排样方法。经多次排样计算决定采用直对排法,初画排样图如图7 2所示。 b.确定搭边值查表,取最小搭边值:工件间a l =2.8,侧面a=3.2。 考虑到工件的尺寸比较大,在冲压过程中须在两边设置压边值,则应取。a=5;为了方便计算取al =3。 c. 确定条料步距步距:257.5mm,宽度:250+5+5=260mm . d.条料的利用率 21752052.35%257.5260 η?==? e.画出排样图根据以上资料画出排样图,如图7-3所示。

冲压模具设计冲裁模

目录 一、设计任务书 (2) 二、冲压工艺性及工艺方案的确定 (3) 三、主要设计计算 (4) 四、模具总体设计 (8) 五、主要零部件设计 (8) 六、冲压设备的选定 (12) 七、设计小结 (13) 八、参考文献 (13) 一、课程设计任务 一、题目:冲孔、落料复合模 二、零件: 材料:Q235 厚度:2.0mm 批量:大批量 三、任务内容: (一)工艺设计 1、工艺审查与工艺分析 2、工艺计算: ①毛胚计算 ②工序件计算或排样图 3、工艺方案的确定

①工序的确定 ②基准和定位方式的选择 (二)模具设计 1、总图 2、零件图 二、冲压工艺性及工艺方案的确定 一、工艺性分析 1、材料零件的材料为Q235普通碳素钢,具有良好的冲压性能,适合冲裁。 2、结构该零件属于较典型冲裁件,形状简单对称。孔边距远大于凸、凹模允许的最小壁厚(见参考文献 ①表2.9.5),故可以考虑复合冲压工序。 3、精度零件外形:80±0.07属于10级精度,60±0.05属于9级精度。零件内形: 16060.00 Φ+属9级精度。孔间距:42±0.08属11级精度(均由参考文献精度②附录一查得)。因零件边有90o的尖角,应以圆弧过渡,查参考文献①表2.7.1取r=0.5mm。零件精度较高,模具按六、七级制造可达到尺寸精度要求。 4、结论可以冲裁。 二、冲压工艺方案的确定 该零件包括落料、冲孔两个基本工序,可以采用以下三种工艺方案:

方案①:先落料、再冲孔。采用单工序模生产。 方案②:落料—冲孔复合冲压。采用复合模生产。 方案③:冲孔—落料级进冲压。采用级进模生产。 方案①模具结构简单,但需要两道工序、两套模具才能完成零件的加工,生产效率较低,难以满足零件大批量生产的需求。方案②只需要一套模具,冲压件的形位精度和尺寸易于保证,且生产效率也高。尽管模具结构较方案①复杂,但由于零件的几何形状简单对称,模具制造并不困难。方案③也只需要一套模具,生产效率高,但零件的冲压精度不易保证。通过以上三种方案的分析比较,对该冲压件生产以采用方案②为佳。 三、主要设计计算 (1)排样方式的确定及计算 查参考文献①表2.5.2,查得:取两工件间的最小搭边:a1=2.0mm 侧面搭边值:a=2.2mm 由下表计算可知条料宽度5. 8506.0-mm,步距62.2mm。查参考文献③第8页选取t=2.0mm,950mm?2000mm的钢板。一个步距材料利用率90.3%(计算见下表)。每条钢板可剪裁为11张条料(85.5mm?2000mm)每张条料可冲32个工件,故每张材料利用率为88.9%(计算见 2. 2.

双孔垫片冲压模具设计与制造毕业设计(论文)

酒泉职业技术学院 毕业设计(论文)题目:双孔垫片冲压模具设计与制造

目录 摘要: (4) 第一章综述 (6) 第二章冲压模具设计 (11) 一.冲压件工艺分析 (11) (一)材料: (11) (二)零件结构: (12) (三)尺寸精度: (12) 二.工艺方案及模具结构类型 (12) 三.排样设计 (12) (一)少废料排样 (12) (二)无废料排样 (12) 四.冲压力与压力中心计算 (13) (一)计算冲压力的目的是为了合理地选择冲压设备和设计模具。 (13) (二)压力中心 (15) 五.压力机的选择 (15) (一)压力机的选择原则 (15) (二)冲压设备规格的选择 (15) (三)压力机的其它参数 (16) 六.工作零件刃口尺寸计算 (16) 七.工作零件结构尺寸 (18) (一)落料凹模板尺寸: (18) (二)落料凹模板的固定方式: (19) (三)凸凹模尺寸计算: (20) (四)凸凹模内外刃口间壁厚校核: (20) (五)冲孔凹模洞口的类型 (20) (六)凸凹模的固定方法和主要技术要求 (21) (七)冲孔凸模尺寸计算: (21) (八)凸模的固定方式 (22) (九)标准模架和导向零件 (22) 八.有关模具设计计算: (24) (一)卸料弹簧选择: (24) (二)设计和选用卸料与出件零件 (24) (三)选择上、下模板及模柄 (25) (四)垫板的结构设计: (25) (五)闭合高度: (26) 第三章塑料模具设计 (27) 一.塑件工艺性分析: (28) (一)塑料 (29) (二)塑件的尺寸精度分析 (30) (三)塑件表面质量分析 (30) (四)塑件收缩率 (30) (五)塑件结构工艺性分析 (31)

塑料模具设计检查表

塑料模具设计检查表 模号: 设计员: 检查: 工程师: 日期: 一, 塑件(成品) □ 1,塑胶材料为 收缩率 正确吗? □ 2,成品是否是最新版本? □ 3,成品是否是1:1的,模图内的成品有无加收缩率? □ 4,成品如何定位的? □ 5,模图内的成品平面图是否已作相应的镜像? □ 6,胶位选择合理吗?哪边动模出,哪边定模出? □ 7,胶位是否会粘上模? □ 8,分型面合理吗?是否清楚? □ 9,有无倒扣,如何出模? □ 10,浇口设置,能否接受可见的收缩痕? □ 11,浇口设置,能否接受可见的夹水纹? □ 12,枕,擦位清楚吗? □ 13,镶件位清楚吗? □ 14,骨位加顶针时,当考虑出模角时是否产生柱位? □ 15,有无出摸角? 出模角足够吗? 二, 注塑机 □ 1,客人提供的注塑机型号为 。 □ 2,所有成品连同浇口,流道重量是否在射胶量内? □ 3,锁模力足够吗? □ 4,注塑机拉杆内是否可装入模具? □ 5,模厚是否在调校范围内? □ 6,开模行程能否足够取出成品或浇口? □ 7,定位圈尺寸 合注塑机吗? □ 8,浇口套球面R 合注塑机吗? □ 9,推杆孔有无螺纹孔?合客人要求吗? □ 10,推杆孔位置合注塑机要求吗? 三, 排位,镶块 □ 1,一模多腔或多个成品,其排位是否最合理,最为紧凑? □ 2,排位是否使得浇道最短? □ 3,镶块镶法是否合理? □ 4,镶块是否最易加工? □ 5,镶块是否利于封胶而无披锋机会? □ 6,镶块是否易于装拆?大件是否有吊孔? □ 7,长镶块(特别是大模)是否应该分几段(方便加工/避免变形)? □ 8,镶块厚度足够吗?是否会变形? □ 9,小镶块是否合理?有利于排气,加工,打光? □ 10,任何薄片,细针在注射时会否变形? □ 11,镶块螺丝够大,够数吗? □ 12,镶块钢材合适吗?硬度要求为何? 四, 模架 □ 1,模架材料为何?外购时粗/精加工是否清楚/合理? □ 2,模架如为标准型而外购时,是否确保各尺寸符合标准?□ 3,模架尺寸是否合理?零件大小及数量是否足够? □ 4,导柱是否够长,比凸凹模先到?导套下方是否 有排气槽? □ 5,码模位置足够吗? □ 6,偏心模码模有无问题? □ 7,吊模孔够大吗? □ 8,吊模孔是否够数,位置是否合理? □ 9,需加准确定位件吗? □ 10,有撬模坑吗? □ 11,TOP位置选择合理吗? □ 12,有足够的垃圾钉吗?有足够的支撑柱吗? □ 13,针板行程是否足够? 五,浇口,流道 口 1,浇口位置是否最佳,如最厚胶位处,避免变形 应力,能否充满,是否有熔接痕/困气等 □ 2,流道布置是否平衡设计,以保证各腔同状态? 口 3,流道尺寸是否合适,保证充满而无浪费? 口4,流道横断面是否最佳选择? 口 5,浇口类型合客人要求吗?是否合理? 口 6,浇口尺寸是否足够? 口 7,有浇口拉料杆、冷料井吗? 口 8,浇口是否有放大图表示出来? 六,顶出系统 口 1,成品肯定跟动模吗? 口 2,顶出行程足够顶出成品及浇口吗? 口 3,顶杆尺寸是否太细而导致变形? 口 4,顶杆位置排列合理吗?数量够吗?不影响外观 及装配要求? 口 5,柱位是否要用顶管? 口 6,顶管前端配合面在切除一段后够长吗? 口 7,骨位是否用方顶?是否已做镶块? 口 8,顶杆是否与其它件如支撑柱、冷却水道相接? 口 9,顶管是否与推杆孔相撞? 口 10,顶在斜面、曲面上的顶杆是否已加防转销? 口 11,是否需要加二次顶,加速顶,延时顶及吹气阀? 口 12,推杆孔足够吗?是否平衡? 七,冷却水道 口 1,水道分布是否合理?是否在热量集中处? 口 2,水道尺寸为何?合适吗? 口 3,水道离胶位太近?或太远? 口 4,大模水道流程是否太长? 口 5,定模水道出入会不会撞码模夹?

冲压模具设计方法与步骤

冲压模具设计的方法与步骤 1、冲压零件的冲压工艺性分析冲压零件必须具有良好的冲压工艺性,才能 以最简单、最经济的方法制造出合格的冲压零件,可以按照以下的方法完成冲压件的工艺性分析: a.读懂零件图;除零件形状尺寸外,重点要了解零件精度和表面粗糙度的要求。 b.分析零件的结构和形状是否适合冲压加工。 c.分析零件的基准选择及尺寸标注是否合理,尺寸、位置和形状精度是否适合冲压加工。 d.冲裁件断面的表面粗糙度要求是否过高。 e.是否有足够大的生产批量。 如果零件的工艺性太差,应与设计人员协商,提出修改设计的方案。如果生产批量太小,应考虑采用其它的生产方法进行加工。 2、冲压工艺方案设计及最佳工艺规程设计: a.根据冲压零件的形状尺寸,初步确定冲压工序的性质,如:冲裁、弯曲、拉深、胀形、扩孔。 b.核算各冲压成形方法的变形程度,若变形成度超过极限变形程度,应计算该工序的冲压次数。 c.根据各工序的变形特点和质量要求,安排合理的冲压顺序。要注意确保每道工序的变形区都是弱区,已经成形的部分(含已经冲制出的孔或外形)在以后的工序中不得再参与变形,多角弯曲件要先弯外后弯内,要安排必要的辅助工序和整形、校平、热处理等工序。 d.在保证制件精度的前提下,根据生产批量和毛坯定位与出料要求。确定合理的工序组合方式。 e.要设计两个以上的工艺方案,并从质量、成本、生产率、模具的刃磨与维修、模具寿命及操作安全性等各个方面进行比较,从中选定一个最佳的工艺方案。 f.初步确定各个工序的冲压设备。 3、冲压零件毛坯设计及排样图设计: a.按冲压件性质尺寸,计算毛坯尺寸,绘制毛坯图。

b.按毛坯性质尺寸,设计排样图,进行材料利用率计算。要设计多种排样方案,经过比较选择其中的最佳方案。 4、冲压模具设计: a.确定冲压加工各工序的模具结构形式,并绘制模具简图。 b.对指定的1—2个工序的模具进行详细的结构设计,并绘制模具工作图。设计方法如下: ※ 确定模具的种类:简单模、连续模还是复合模。 ※ 模具工作零件设计:计算凸、凹模刃口尺寸和凸、凹模长度,确定凸、凹模结构形式和连接固定方式。 ※ 确定毛坯的定位和定距方式,并对相应的定位、定距零件进行设计。 ※ 确定压料、卸料、顶件及推件方式,并对相应的压料板、卸料板、推件块等进行设计。 ※ 模架设计:包括上下模座及导向方式的设计,也可以选用标准模架。 ※ 在完成以上工作的基础上,按比例绘制模具工作图。先用双点划线绘制毛坯,再绘制工作零件,然后绘制定位和定距零件,用连接零件把以上各部分连接起来,最后在适当的位置绘制压料和卸料零件。根据模具的具体情况,以上顺序也可作适当调整。 ※ 工作图上应该标注模具的外轮廓尺寸、模具闭合高度、配合尺寸及配合型式。工作图上要标注模具的制造精度和技术条件的要求。工作图要按国家制图标准绘制,有标准的标题栏和名细表。如果是落料模,要在工作图的左上角上绘制排样图。 ※计算模具压力中心,检查压力中心与模柄中心线是否重合。如果不重合,对模具结果作相应的修改。 ※计算冲压力,最后选定冲压设备,进行模具与冲压设备相关尺寸的校核(闭合高度、工作台面、模柄安装尺寸等)。 5、测绘模具的大部分零件图(要求完成图纸工作量折合为A0图三张以上),零 件图要求按国家制图标准绘制,标注完整的尺寸、公差、表面粗糙度和技术要求。 6、填写冲压加工工艺规程卡片。

冲压模具设计与制造考试复习题

一、填空题 1?塑性变形的物体体积保持不变,其表达式可写成ε 1 + ε 2 + ε 3 =0 。 2 ?冷冲压生产常用的材料有黑色金属、有色金属、非金属材料。 3 ?物体在外力的作用下会产生变形,如果外力取消后,物体不能恢复到原来的形状和尺寸这种变形称为塑性 变形。 4 ?影响金属塑性的因素有金属的组织、变形温度、变形速度、变形的应力与应变状态、金属的尺寸因素。 5 ?在冲压工艺中,有时也采用加热成形方法,加热的目的是提高塑性,增加材料在一次成型中所能达到的变形程度;降低变形抗力提高工件的成形准确度。 6 ?冲压工艺中采用加热成形方法,以增加材料塑性能达到变形程度的要求。 7 ?材料的冲压成形性能包括成型极限和成型质量两部分内容。 8 ?压应力的数目及数值愈大,拉应力数目及数值愈小,金属的塑性愈好。 9 ?在材料的应力状态中,压应力的成分愈多,拉应力的成分愈少,愈有利于材料塑性的发挥。 10 ?一般常用的金属材料在冷塑性变形时,随变形程度的增加,所有强度指标均增加,硬度也增加,塑性指标降低,这种现象称为加工硬化。 11 ?用间接试验方法得到的板料冲压性能指标有总伸长率、均匀伸长率、屈强比、硬化指数、板厚方向性系数r 和板平面方向性系数△ r 。 12 ?在筒形件拉深中如果材料的板平面方向性系数△ r 越大,则凸耳的高 度越大。

13 ?硬化指数 n 值大,硬化效应就大,这对于伸长类变形来说就是有利的。 14 ?当作用于坯料变形区的拉应力的绝对值最大时,在这个方向上的变形一定是伸长变形,故称这种变形为伸长类变形。 15 ?当作用于坯料变形区的压应力的绝对值最大时,在这个方向上的变形一定是压缩变形,故称这种变形为压缩类变形。 16 ?材料对各种冲压加工方法的适应能力称为材料的冲压成形性能。 17 ?材料的冲压性能好,就是说其便于冲压加工,一次冲压工序的极限变形 程度和总的极限变形程度大,生产率高,容易得到高质量的冲压件,模具寿 命长等。 18 ?材料的屈服强度与抗拉强度的比值称为屈强比。屈强比小,对所有的 冲压成形工艺都有利。 二、判断题(正确的打√,错误的打×) 1 ?变形抗力小的软金属,其塑性一定好。(×) 2 ?物体的塑性仅仅取决于物体的种类,与变形方式和变形条件无关。(×) 3 ?金属的柔软性好,则表示其塑性好。(×) 4 ?物体某个方向上为正应力时,该方向的应变一定是正应 变。(×) 5?物体某个方向上为负应力时,该方向的应变一定是负应 变。(×) 6?物体受三向等压应力时,其塑性变形可以很 大。(×)

冲压模具设计-冲裁模

目录 一、 令狐采学 二、设计任务书 (2) 三、冲压工艺性及工艺方案的确定 (3) 四、主要设计计算 (4) 五、模具总体设计 (8) 六、主要零部件设计 (8) 七、冲压设备的选定 (12) 八、设计小结 (13) 九、参考文献 (13) 一、课程设计任务 一、题目:冲孔、落料复合模 二、零件: 材料:Q235 厚度:2.0mm 批量:大批量 三、任务内容: (一)工艺设计 1、工艺审查与工艺分析 2、工艺计算: 毛胚计算

工序件计算或排样图 3、工艺方案的确定 工序的确定 基准和定位方式的选择 (二)模具设计 1、总图 2、零件图 二、冲压工艺性及工艺方案的确定 一、工艺性分析 1、材料零件的材料为Q235普通碳素钢,具有良好的冲压性能,适合冲裁。 2、结构该零件属于较典型冲裁件,形状简单对称。孔边距远大于凸、凹模允许的最小壁厚(见参考文献①表 2.9.5),故可以考虑复合冲压工序。 3、精度零件外形:80±0.07属于10级精度,60±0.05属于9级精度。零件内形: 16060.00 Φ+属9级精度。孔间距:42±0.08属11级精度(均由参考文献精度②附录一查得)。因零件边有90o的尖角,应以圆弧过渡,查参考文献①表2.7.1取r=0.5mm。零件精度较高,模具按六、七级制造可达到尺寸精度要求。 4、结论可以冲裁。 二、冲压工艺方案的确定 该零件包括落料、冲孔两个基本工序,可以采用以下三

种工艺方案: 方案①:先落料、再冲孔。采用单工序模生产。 方案②:落料—冲孔复合冲压。采用复合模生产。 方案③:冲孔—落料级进冲压。采用级进模生产。 方案①模具结构简单,但需要两道工序、两套模具才能完成零件的加工,生产效率较低,难以满足零件大批量生产的需求。方案②只需要一套模具,冲压件的形位精度和尺寸易于保证,且生产效率也高。尽管模具结构较方案①复杂,但由于零件的几何形状简单对称,模具制造并不困难。方案③也只需要一套模具,生产效率高,但零件的冲压精度不易保证。通过以上三种方案的分析比较,对该冲压件生产以采用方案②为佳。 三、主要设计计算 (1)排样方式的确定及计算 查参考文献①表2.5.2,查得:取两工件间的最小搭边:a1=2.0mm 侧面搭边值:a=2.2mm 由下表计算可知条料宽度5. 8506.0-mm,步距62.2mm。查参考文献③第8页选取t=2.0mm,950mm?2000mm的钢板。一个步距材料利用率90.3%(计算见下表)。每条钢板可剪裁为11张条料(85.5mm?2000mm)每张条料可冲32个工件,故每张材料利用 2.0 2.0

相关主题