搜档网
当前位置:搜档网 › 风机变频节能方案2

风机变频节能方案2

风机变频节能方案2
风机变频节能方案2

低压风机变频节能改造

编制:涂恒林

公司:厦门中佰通信息科技有限公司

日期: 2017 年 06 月 04 日

一、行业背景分析

1、节能改造背景

据《世界经济统计年鉴》和《中国统计年鉴》公布的数据测算,我国的耗能标准比其他发达国要高出几倍能源。造成这种结果的原因有两个:一是我国的能源消费结构不合理,其中产业的能源消费占78.3%,而发达国家仅占30%~40%。二是我国主要工业产品的能耗比世界先进水平高出30%~90%。大量的能源消耗既造成了经济上的极大浪费,同时也因严重的环境污染而造成了极大的社会问题。节能减排已成为摆在我国面前亟待解决的实际问题,同时也成为了政府当前的重要工作之一。

因此要解决资源战略问题,必须大力开展能源节约与资源综合利用。根据国家有关规划,电机系统节能是国家发改委启动的十大重点节能工程之一。国家发展规划要求,当前应推广变频调速节能技术,即风机、水泵、压缩机等通用机械系统采用变频调速节能措施,工业机械采用交流电动机变频工艺调速技术。

2、变频行业介绍

以前的变频器,由可控硅整流,可控硅逆变等器件构成,缺点很多,谐波大,对电网和电机都有影响。近年来,随着电力技术的发展,变频调速技术的日臻完善,发展起来的一些新型器件将改变这一现状,如IGBT、IGCT、SGCT等等。由它们构成的变频器,性能优异,可以实现PWM逆变,甚至是PWM整流。不仅具有谐波小,功率因数也有很大程度的提高,已经取代了挡板和阀门的调节方式。其稳定安全的运行性能、简单方便的操作方式、以及完善的功能,将使变频最终达到高效率的运行目的。随着变频技术的不断成熟,变频器在各个领域得到了广泛应用。变频器应用上的巨大节能潜力和优良的调速性能,使得它具有强劲的发展动力和广阔的市场空间。目前,变频技术已经成为电力传动领域的热门话题之一,对于大容量风机、水泵、空压机等系统进行变频改造已成为一种趋势,它为使用大功率传动装备的企业和行业带来了很大的节能效益。

3、客户基本情况介绍

厦门*****制造有限公司是全球第二大造箱集团、香港上市公司——胜狮货柜企业有限公司在厦门独资经营的主要从事各种国际标准海运集装箱生产制造的大型生产企业。工厂位于同安工业集中区,拥有员工800人,年产值达7-10亿元人民币。2000年度被评为厦门市十大企业。

二、系统方案

1、现场工况分析

负载设备参数及运行情况:

2、负载设备工况分析

?引风机项目分析:

在生产过程中,风机的风量与风压裕度以及在生产过程中绝大部分时间都不是满负荷,同时由于生产过程并不是连续不断的,而是周期性间断的变化,系统所需求的风量也随之变化,导致风机的运行工况点与设计高效点相偏离,从而使风机的运行效率大幅度下降。

◆在阀门调节过程中会带来一系列问题:

采用风机定速运行,阀门调整节流损失大、管网损失严重、系统效率低,造成能源的浪费。

这根本无法随时动态跟踪工艺进行风量调节以满足最佳工艺的要求。

长期的60~85%左右的阀门开度,加速阀门自身磨损,导致阀门控制特性变差。

设备使用寿命短、日常维护量大、维修成本高、造成各种资源的极大浪费。

管网压力过高威胁系统设备密封性能,严重时导致阀门泄漏,不能关严等情况发生。

工频启动时启动电流大,对电网的冲击很大,启动后电机满负荷运行,很难停机,导致设备使用寿命缩短,日常维护量大,维修成本高,且故障率高。

鉴于存在以上诸多问题,解决上述问题的重要手段之一是采用变频调速控制技术。利用变频器对风机电机进行变频控制,实现流量压力的变负荷调节。因此,采用变频调速控制改造是非常有价值的。

3、设备选型

变频器配置:

根据现场的额定参数和实际运行工况,再结合变频器在其它工程地应用情况,我公司为其改造设备配置如下变频控制柜:

变频器切换方式说明:

根据客户现场引风机配置特作如下变频改造方案:

变频柜

变频器控制系统示意图

变频调速系统由用户开关、变频柜、变频器、电机组成。。变频路柜严格按照“五防”联锁要求设计,变频器输出接触器KM1和旁路接触器KM2电气互锁,完全能够保证变频调速系统安全运行。

3、方案论述

变频器控制方式

引尘风机项目

1)引风机上装设变频系统。

2)设置就地控制方式。

变频器频率控制方式

我方提供的变频器可控制电机转速、频率调整方式:

(1)手动调节:(变频器开环运行)

值班电工根据风机运行情况判断, 通过远程控制系统(DCS或控制箱)或就地触摸屏手动调节频率给定信号, 从而达到满足风机需要的流量和压力要求。

4、方案综述

该项目可以依据实际现场情况在诸多控制方式中选择合适的方式,主要以手动控制启停,调速上述内容。

另外该系统应具备工频旁路系统,当变频器故障时可以手动或自动切换到旁路工频工作。

该系统本地控制控制模式,方便现场操控和维修。

根据一般现场控制工况,再结合我公司的M-FJ160系列变频器在其它工程应用情况,建议在正常工作情况下,由人工根据现场情况,通过变频控制柜手动给出电动机应采取的转速,并作为速度给定输入给变频器,由变频器带动电动机跟踪此转速。

三 节能直接效益分析

1、负载特性说明

负载特性是指电力拖动负载的转矩与转速之间的关系,也叫负载转矩特性。电动机节电,特别是调速节电,与负载特性的关系极为密切,除要了解电动机的运行特性之外,还要掌握被拖动工作机械的负载转矩随转速变化的特性。

典型的负载特性有恒转矩负载特性、恒功率负载特性、风机泵类负载特性三种,见如下表。

电力拖动典型负载特性表

2、风机和泵类拖动调速的节电效果

阀门(挡板)调节法主要通过调节管道进口或出口的开度来调节流量,实际是通过改变管道的阻力来改变的流量。阀门(挡板)调节时,管阻特性随着阀门开度的变化而变化,而电机恒速运行,因此扬程特性并不改变。如下图所示,当流量从QA 下降到QB 时,稳定工作点由A 点移到B 点,供水功率PA 与0EBF 区域的面积成正比。

变频(转速)调节法是通过改变风机水泵转速来改变的流量。管道一般处于全开状态,如果风机水泵转速改变,则全扬程也改变。采用转速调节法时,扬程随着转速改变而改变,但管阻特性则保持不变。如下图所示,当流量从QA 下降到QB 时稳定工作点由A 点移到C 点,供水功率PB 与0ECH 区域的面积成正比。 从下图可看出,采用转速调节法比采用阀门调节法节约的功率△ P 与HCBF 区域的面积成正比。

由风机水泵特性得知,轴功率P 与流量Q ,风压(扬程)H 的关系为: H Q P ?∝

当电动机的转速由n1变化到n2时, Q 、 H 、 P 与转速的关系如下:

1

212n n Q Q ?= (1) 21

212???? ???=n n H H (2) 2p =1p 312???

? ???n n (3)

可见风量Q 和电机的转速n 是成正比关系的,而所需的轴功率P 与转速的立方成正比关系。由上述推导可以知道,采用转速调节法的节能效果很明显。随着变频调速技术不断成熟,风机水泵采用变频器来控制其转速。由电机转速公式:n=60f/p ,其中,n 为电机同步转速,f 为供电频率,p 为电机极对数,可知电机供电频率f 与转速成正比。这样,采用变频器调速时,变频器的输出频率与流量、扬程及电机轴功率也有上述的n 次方(n=1,2,3)比例关系。

四、变频改造节能效益分析及报价

1、设备节能总量 设备(型号)

3台160KW 风机 每天运行时间H

12小时 每年运行天数

300 每年使用小时H

3600小时(按每天24小时,年300天) 设备加载比例(%)

80% 设备年运行能耗kw/h

(160 *3)*3600*80%=1382400kw/h 设备年运行电费(1.00元kw/h )

1382400kw/h *1.00元=138.24万元 预计节能率(%)

>25% 设备年节约能耗kw/h

1382400kw/h *25%=345600kw/h 设备年节约电费(1.00元kw/h ): 345600kw/h*1.00元=34.56万元

综合上诉统计: *****原有3台160KW 空压机平均每年使用时间为3600小时,平均电价1.00元kw/h ,每年运行电费为:138.24万元,采用变频控制系统后风机能耗将大幅度降低,年预计节能率达25%以上,年节约运行电费为:34.56万。以上节电收益计算为理论计算,结算时以现场测试的真实数据为准。

变频改造后,对整个控制工艺有较大改善,对生产成本也有一定的降低,综合考虑,变频改造具有以下几方面的优点:

(1)网侧功率因数提高

原电机直接由工频驱动时,满载时功率因数为0.80左右,实际运行功率因数低于0.8。采用变频调速系统后,电源侧的功率因数可提高到0.9以上,无需无功补偿装置就能大大的减少无功功率,满足电网要求,可进一步节约上游设备的运行费用。

(2)设备运行与维护费用下降

采用变频调节后,由于通过调节电机转速实现节能,在负荷率较低时,电机、风机转速也降低,主设备及相应辅助设备如轴承等磨损较前减轻,维护周期可加长,设备运行寿命延长;并且变频改造后阀门开度可达100%,运行中不承受压力,可显著减少阀门的维护量。变频器运行中,只需定期对变频器除尘,不用停机,保证了生产的连续性。随着生产的需要,调节风机的转速,进而调节风机流量、压力既满足生产工艺的要求,工作强度又大大降低。采用变频技术调速后,减少了机械磨损,维护工作量降低,检修费用下降。

(3)用变频调速装置后,可对电机实现软启动,启动时电流不超过电机额定电流的1.2倍,对电网无任何冲击,电机使用寿命延长。在整个运行范围内,电机可保证运行平稳,损耗减小,温升正常。风机启动时的噪音和启动电流非常小,无任何异常振动和噪音。

(4)与原来旧系统相比较,变频器具有过流、短路、过压、欠压、缺相、温升等多项保护功能,更完善地保护了电机。

(5)操作简单,运行方便。可通过计算机远程给定等参数,实现智能调节。

(6)适应电网电压波动能力强,电压工作范围宽,电网电压在-10%~+10%之间波动时,系统均可正常运行。

3、设备报价

备注:1、价格包含17%增值税及其运费。

2、付款方式:合同签订预付60%预付款,余款安装调试完成后5个工作日内付清。

3、变频器为台达VFD16000CP43A(如需其他品牌请重新报价),辅助电气配件为施耐德等其他知名品牌,包含现场所需电缆及安装调试。

第七章质量保证及服务承诺

一、质量保证

本公司产品自用户从购买之日起,实行为期12个月的免费保修期(出口国际/非标机产品除外),并享有有偿终身服务。

但是,如由于下述原因引起的故障,即使在保修期内亦作有偿修理:

1、由于使用错误,自行改造及不适当的维修等原因:

2、超过技术标准规范要求使用:

3、地震、火灾、雷击、异常电压、其它自然灾害等原因

二、服务承诺

1、在质保期内如果不是因操作不当和不可抗力因素而出现故障,我方负责进行免费维修;

2、售后服务的承诺:服务2小时内响应,24小时内抵达现场服务;

3、超过保修期的修理,在修理后向用户收取器件费用。

变频器在风机上的应用

一、概述: 目前在我国各行各业的各类机械与电气设备中与风机配套的电机约占全国电机装机量的60%,耗用电能约占全国发电总量的三分之一。特别值得一提的是,大多数风机、水泵在使用过程中都存在大马拉小车的现象,加之因生产、工艺等方面的变化,需要经常调节气体和液体的流量、压力、温度等;目前,许多单位仍然采用落后的调节档风板或阀门开启度的方式来调节气体或液体的流量、压力、温度等。这实际上是通过人为增加阻力的方式,并以浪费电能和金钱为代价来满足工艺和工况对气体、液体流量调节的要求。这种落后的调节方式,不仅浪费了宝贵的能源,而且调节精度差,很难满足现代化工业生产及服务等方面的要求,负面效应十分严重。 变频调速器的出现为交流调速方式带来了一场革命。随着近十几年变频技术的不断完善、发展。变频调速性能日趋完美,已被广泛应用于不同领域的交流调速。为企业带来了可观的经济效益,推动了工业生产的自动化进程。 变频调速用于交流异步电机调速,其性能远远超过以往任何交、直流调速方式。而且结构简单,调速范围宽、调速精度高、安装调试使用方便、保护功能完善、运行稳定可靠、节能效果显著,已经成为交流电机调速的最新潮流。 二、变频节能原理: 1. 风机运行曲线 采用变频器对风机进行控制,属于减少空气动力的节电方法,它和一般常用的调节风门控制风量的方法比较,具有明显的节电效果。 由图可以说明其节电原理: 图中,曲线(1)为风机在恒定转速n1下的风压一风量(H―Q)特性,曲线(2)为管网风阻特性(风门全开)。曲线(4)为变频运行特性(风门全开) 假设风机工作在A点效率最高,此时风压为H2,风量为Q1,轴功率N1与Q1、H2的乘积成正比,在图中可用面积AH2OQ1表示。如果生产工艺要求,风量需要从Q1减至Q2,这时用调节风门的方法相当于增加管网阻力,使管网阻力特性变到曲线(3),系统由原来的工况点A变到新的工况点B运行。从图中看出,风压反而增加,轴功率与面积BH1OQ2成正比。显然,轴功率下降不大。如果采用变频器调速控制方式,风机转速由n1降到n2,根据风机参数的比例定律,画出在转速n2风量(Q―H)特性,如曲线(4)所示。可见在满足同样风量Q2的情况下,风压H3大幅度降低,功率N3随着显著减少,用面积CH3OQ2表示。节省的功率△N=(H1-H3)×Q2,用面积BH1H3C表示。显然,节能的经济效果是十分明显的。 2.风机在不同频率下的节能率

风机变频电控改造方案(通用方案)

河南地方煤炭集团季布煤业有限公司 主 通 风 机 变 频 改 造 技 术 方 案

季布煤业主通风机变频改造技术方案 一、季布煤业公司风机现状: 季布煤业公司现用主扇风机为BU54-16×75×2KW风机,运行电压380V,运行电流80A。风叶角度正向。现有设备主要有:1台低压配电柜、4台自耦降压启动柜、1台风机监测仪及各类传感器。 二、存在在主要问题: 1、冲击电流大 通风机电机启动方式为自耦变压器降压起动方式,起动电流是其额定电流的3~5倍,在如此大的电流冲击下,接触器、电机的使用寿命大大下降。同时,起动时的机械冲击,容易对机械散件、轴承、、管道等造成破坏,从而增加维修量和备品、备件费用。 2、电能的严重浪费 主通风机一直处在较轻负载下运行。在传统的技术条件下,由于电机的转速不可以调节,只能通过改变风机叶片或挡风板的角度进行风量调节。因此造成能源浪费,增加生产成本。所以就造成了电能的无端浪费!有悖于国家的节能减排政策。 3、启动困难,机械损伤严重 主通风机若采用直接启动,启动时间长,启动电流大,对电动机的绝缘有着较大的威胁,严重时甚至烧坏电动机。而电机在启动过程中所产生的机械冲击现象使风机产生较大的机械应力,会严重影响到电动机、风机及其它机械的使用寿命。

4、自动化程度低 主通风机依靠人工调节风机叶片或挡风板角度调节风量,不具备风量的自动实时调节功能,自动化程度低,检测点少。在故障状态下,不能及时和风机联动,将对矿井正常生产造成严重影响。 三、通风机变频改造技术特点: 1、通风机改造后采用变频启动和调速,具有启动电流小,调速方便,运行稳定以及节能等特点。 2、增加电源切换柜,双母线供电,通过智能切换开关可以实现双电源自动切换,切换时间不大于3S,保证通风机供电安全可靠,具有过载、短路、欠电压保护功功能。 3、控制系统具有过欠压、短路、堵转、过载、断相、接地、电机过热等多种保护功能。 4、PLC控制系统采用西门子S7-200可编程序控制器,配以多种检测控制组件完成了风机应有的各种工艺控制,实现风机的闭环控制及各种情况下的安全保护以及系统切换时的各种闭锁。在风机变频电控操作和监控方面,控制柜提供了全面的操作按钮,操作更简单、方便,配备声光报警器。并配备以太网模块为以后实现全矿井自动化作准备。实现系统联锁、起、停控制、保护、通风机工作状态在线监测及数据通讯等功能。 5、变频器采用INVT GD200系列风机专用变频器,满足通风机负载各种运行工况的要求,根据风机运行工况,频率精度可以达到0.01HZ.启动力矩180%/HZ.

空调节能改造方案

空调节能改造方案 1

深圳市碳战军团投资技术有限公司 开平威尔逊酒店 中央空调节能改造方案 草稿完成日期:二〇一 〇年六月十七日 文档编号:开平威尔逊酒店中央 空调节能改造方案1 作者: 卓毅

目录 第1章中央空调系统概况....................................................................................................................... . (3) 第2章威尔逊酒店中央空调原系统分析........................................................................................................................ 3 第3章中央空调系统节能改造的具体方案 (4) 3.1中央空调系统的运行参数.............................................................................................................. . (4) 3.2空调水泵变频改造方案.............................................................................................................. .. (4) 3.2.1 控制原 理............................................................................................................. (4)

变频器节能计算

变频不是到处可以省电,有不少场合用变频并不一定能省电。作为电子电路,变频器本身也要耗电(约额定功率的3-5%)。一台1.5匹的空调自身耗电算下来也有20-30W,相当于一盏长明灯. 变频器在工频下运行,具有节电功能,是事实。但是他的前提条件是:第一,大功率并且为风机/泵类负载;第二,装置本身具有节电功能(软件支持);第三,长期连续运行。这是体现节电效果的三个条件。除此之外,无所谓节不节电,没有什么意义。 变频节能 什么是变频器 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。 PWM和PAM的不同点是什么 PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。 PAM是英文Pulse Amplitude Modulation (脉冲幅度调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。 电压型与电流型有什么不同 变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。 为什么变频器的电压与电流成比例的改变 异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于风机、泵类节能型变频器。

校园分体空调节能管理系统解决方案

校园分体空调节能管理系统解决方案 江苏联宏自动化系统工程有限公司 一、 引言 学校作为大型公共机构建筑的重要组成部分之一,其特点是占地面积大,建筑物种类及数量多,建筑高能耗的问题日益突出。目前学校的分体空调数量较大,空调能耗在校园能耗中比重日益增加,而校园分体空调分布较为广泛,用能管理难度较大,存在空调不合理使用的浪费现象。 针对空调的使用存在管理不到位,导致能源浪费的现象,有必要对学校的空调采用系统化的管理手段,对学校的空调系统进行精细化的管理和节能控制,以达到资源节约型、环境友好型校园的管理目标。为此,江苏联宏自动化系统工程有限公司自主开发了校园分体空调节能管理系统,为学校的分体空调用能精细化管理提供强有力的工具。 二、 分体空调管理的特点和难点 1、能耗高,单独计量不便 分体空调的能耗较高,但是由于校园建筑配电结构特点,往往无法实现分体空调的单独计量,使得校园的能耗数据一方面存在不完整、不全面的现象,另一方面,由于没有计量数据支撑,收费管理不到位,存在一定的浪费现象。 2、宿舍及教室无人时空调忘关 由于学校的课程设置特点,分体空调的使用过程中会出现上课时宿舍空调及下课时教室空调忘关的现象,加上分体空调长时间的待机能耗,造成空调电费过高的浪费现象。 3、温度设置过高或过低造成不合理能耗 由于学校分体空调使用时温度设置无法管控,存在夏季房间温度设置过低及冬季房间温度设置过高的不合理现象,从而使得分体空调未能经济运行,造成大量的能耗浪费。

三、 校园分体空调节能管理系统主要内容 校园分体空调节能管理系统主要包括以下方面内容: 1、空调能耗实时计量 实时监测教室、宿舍、办公室等各房间空调进线,获得各房间空调用电实时能耗数据,以及楼层或建筑空调用电能耗数据,实现空调能耗的分户用电计量,可作为收费依据。 2、运行状态监测 用电回路电压、电流、有功功率、无功功率、功率因数、频率等各种电力参数实时在线监测与分析;空调开关状态、温度设置、室内房间温度等数据采集及实时监测;安全用电报警和事件管理。 3、节能控制 (1) 定时:根据学校提供课表预先设置空调开启、关闭时间,通过定时控制手段,在上课宿舍无人时间及下课教室无人时间强制断电,避免出现无人情况下的开机等情况,有效节电。 (2) 控温:通过远红外命令学习及发送,可自动设定夏季的下限温度、冬季的上限温度以及中间恒温值,如夏季一旦检测到室内温度低于该下限温度,可自动发送红外命令自动调高空调设定温度,强制空调运行在下限温度以上,特别适合教室空调的集中管理。

风机变频调速节能改造的分析及计算

风机变频调速节能改造的分析及计算 张恒谢国政张黎海 (昆明电器科学研究所,云南昆明 650221) 摘要:以变频调速改造来达到调节工业工程所需风量成为目前实现电机节能的一种主要途径。当我们进行变频节能改造时,投入和收益是必须认真考虑的,收益就涉及到节能量的计算。在变频器未投运之前,计算节能量是比较困难的。本文通过分析变频节能的原理,介绍了针对阀门及液力耦合器调节流量系统的变频改造的节能估算的一些思考及方法。 关键词:风机变频节能原理调速节能阀门液力耦合器节能估算 一、 引言 在工业生产、发电、居民供暖(热电厂)和产品加工制造业中,风机水泵类设备应用范围广泛。其电能消耗和诸如阀门、挡板、液力耦合器等相关设备的节流损失以及维护、维修费用约占到生产成本的7%~25%,是一笔不小的生产费用开支。随着经济改革的不断深入,以及能源的危机,节能降耗业已成为降低生产成本、提高产品质量的重要手段之一。变频调速因其调速效率高,力能指标(功率因数)高,调速范围宽,调速精度高等优势,又可以实现软起动,减少电网的电流冲击及设备的机械冲击,延长设备使用寿命,对于大部分采用笼型异步电动机拖动的风机水泵,变频调速不失为目前最理想的调速节能方案。 由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能量是困难的,这在一定程度上影响了变频调速节能改造的实施。

二、 变频器节能的调速实质和原理 节约能源最根本的方法就是要提高能源的利用率,所谓的“节能”,不仅仅是节省能耗,还包括不浪费能源,用一句最简单的话说就是:“需要多少,就提供多少!” 变频器本身不是发电机。在变频器应用到风机等平方转矩负载的工业场合中,其节能原因不是由变频器本身带来的,而是通过变频器的调速特性来减小风机输出流量以适应工况中实际所需流量。 叶片式风机水泵的负载特性属于平方转矩型,即负载的转矩与转速的二次方成正比。风机水泵在满足三个相似条件:几何相似、运动相似和动力相似的情况下遵循相似定律;对于同一台风机(或水泵),当输送的流体密度ρ不变仅转速改变时,其性能参数的变化遵循比例定律:流量 (Q)与转速(n)的一次方成正比;扬程(压力)H 与转速的二次方成正比;轴功率 (P)则与转速的三次方成正比。即: ''n n Q Q = ; 2''(n n H H = 2''(n n p p = ; 3''(n n P P = 当风机、水泵的转速变化时,其本身性能曲线的变化可由比例定律作出,如图1所示。因管路阻力曲线不随转速变化而变化,故当流量由Q1变至Q2时,运行工况点将由A 点变至C 点。 图1风机流量、压力特性

23冷却塔风机变频改造方案

冷却塔风机变频改造方案 一、变频器的工作原理和节能分析 1.1 风机的特性 风机是传送气体的机械设备,是把电动机的轴功率转变为流体的一种机械。风机电机输出的轴功率为: 图1中风机的压力与风量的关系曲线及扭矩与电机速度的关系曲线,充分说明了调节阀调节风量法与变频器控制的调节风量法的本质区别与节能效果。 (1) 电动机恒速运转,由调节阀控制风量

图1 风机的运行曲线 如图1所示,调节阀门的开启度,R会变化。关紧阀门,管道阻力就增大。 管道阻力由R1变到R2,风机的工作点由A点移到B点。 在风量从Q1减少到Q4的同时,风压却从H1上升到H5,此时电机轴的功率从P1变化到P2。 (2) 变频器调节电机的速度来控制风量 当风量由Q1变化到Q4时,便出现图上虚线所示的特性。达到Q4、H4所需的电机轴功率为P3,显然P2大于P3,其差值P2-P3就是电机调速控制所节约的功率。 二、冷却塔系统变频改造过程 2.1 冷冻机组冷却循环水系统介绍: 冷冻机组的冷却循环水系统如图2所示。冷冻机组的冷却循环水系统主要由冷冻机组、冷却水泵、冷却塔组成。冷却水经冷却水泵加压后,送入冷冻机组的冷凝器,届时,由冷却水吸收制冷剂蒸气的热量,使制冷剂冷却、冷凝。冷却水带走制冷剂热

量后,被送入冷却塔,经布水器,通过冷却塔风机降温,降温后的冷却水通过出水管,流入冷却水泵,经加压后再送入冷冻机组的冷凝器。 图2 冷冻机组冷却循环水系统图 2.2 冷却塔变频节能改造原理 图3 冷却塔变频改造示意图 三、变频器选择

由于风机负载为平方转矩类负载,因此变频器应选择V/F控制型通用变频器,日锋变频器为优化电压空间矢量型变频器,使用寿命高于同类产品,接近于零的故障率,性能价格比非常好,为变频器市场上最优越产品之一。 四、总结 冷却塔风机加装变频后具有以下优点: ·操作方便,安装简单; ·能进行无级调速,调速范围宽,精度高,适应性强。 ·节能效果非常明显; ·由于采用了变频控制,随着转速的下降,风压、风量也随之下降,使得冷却水的散失也下降,节约了水量。 ·由于用水量下降,水的硬度指标上升减慢,使得水处理的用药量减少; ·由于转速下降,减少了减速箱的磨损,延长了减速箱的寿命; 总之,冷却塔变频器控制系统的使用,使得厂房调温系统可靠性提高,安全性好,具有明显的节电效果。 冷却塔是冷冻机组的冷却水最主要的热交换设备之一,它主要靠冷却塔风机对冷却水降温,风机过去是靠交流接触器直接启动控制,风机的转速是恒定的,不能调速,因此,风机的风量也是恒定的,不能调节。为了使冷冻机组进口冷却水温度保持在某个温度段之间,我们在冷却水泵的出口,即冷冻机组的冷却水进口管道上安装一个温度传感器,采集冷却水温度,通过给出一路模拟信号给变频器,经变频器自身的PID进行调节如图3所示,变频器给出适当的电压和频率给冷却塔电机调节冷却塔风机转速

中央空调节能方案说明

中央空调节能方案 篇一:中央空调节能方案 一、中央空调的运行现状 1、中央空调能耗惊人 近10年来,我国中央空调行业增长率达20%约为国际水平 的10倍,已成为仅次于美、日的第三大空调设备生产国, 年产量接近10万台。 中央空调用电量的30-40%是无效消耗,是被浪费的,高能耗 已经成为制约中央空调健康发展的一大瓶颈,解决中央空调 的高能耗问题已迫在眉捷! 2、结垢是中央空调能源浪费的最大根源 中央空调的换热面都采用铜材质,铜的导热系数为397w/(m?k),但水垢的导热系数仅为?/ (m?k),只有铜的?% 据国外权威空调技术部门多年技术研究以及大量的事实证 12%

明中央空调清洗可节约能耗和运行的费用超过 3、中央空调化学清洗现状堪忧 (1)中央空调用户的清洗和节能意识淡薄 对大多数中央空调用户来说,化学清洗只是为满足空调制冷需要的无奈之举,很少有用户是从节能降耗的角度来看待化学清洗。 (2)中央空调化学清洗技术落后、清洗队伍的数量和素质普遍都较低 传统化学清洗是一项专业性特强的技术。往往一个小的疏忽可能会造成严重的安全事故或巨大的经济损失。上千万元的制冷设备在化学清洗时报废的报道屡见不鲜,这是使得中央空调用户望而却步的原因之一。 (3)政府管理和引导不够 现在政府往往只提倡提高中央空调使用时的室内温度,却不知通过对中央空调化学清洗的有效管理对于节能降耗的意义更加重大。

大多中央空调用户对化学清洗缺乏认识,往往把化学两字跟腐蚀、有毒、危险等同起来。因此,也需要政府加强对其进行正确的引导和宣传工作。 二、节能降耗整体方案 从中央空调运行现状的论述,我公司认为从技术上需要解决好两个问题: 1、积极推广中央空调中性清洗新技术,使中央空调用户能放心大胆的接受中央空调的化学清洗。 2、从新建中央空调开始,普及中央空调无垢运行的新概念也就是说通过对新建中央空调在其设计和安装过程作适当处理,使中央空调始终在不结垢或几乎不结垢的情况下高效运行,而不是等中央空调结垢并影响运行效率之后再清洗。 当新建中央空调取得积极效果之后对已经投入使用的中央空调可以进行类似的强制改造。 具体方案如下:

变频器节能效率计算

概述 在许多情况下, 使用变频器的目的是调速, 尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说, 设计选型往往以最大工况来选。与实际的工况存在较大的可调整空间。在运行中根据实际运行需要,按照流量、杨程等调节电动机的转速,从而改变电动机的输出转矩和输出功率,以代替传统上利用挡板和阀门进行的流量和扬程的控制, 节能效果非常明显。同时分析变频器在选型、应用中的注意事项。 1变频调速原理 三相异步电动机转速公式为: 式中:n-电动机转速,r/min; f-电源频率,Hz; p-电动机对数 s-转差率, 从上式可见交流电动机的调速可以概括为改变极对数,控制电源频率以及通过改变参数如定子电压、转子电压等使电机转差率发生变化等几种方式。变频器效率维持在94%~96%,变频调速是一种高效率、高效能的调速方式,使异步电动机在整个工作范围内保持正常的小转差率下运转,实现无极平滑调速。 1.1变频工作原理 异步电动机的额定频率称为基频,即电网的频率,在我国为50Hz。电机定子绕组内部感应电动势为 式中-定子绕组感应电动势,V; -气隙磁通,Wb; -定子每相绕组匝数; -基波绕组系数。

在变频调速时,如果只降低定子频率,而定子每相电压保持不变,则必然会造成增大。由于电机制造时,为提高效率减少损耗,通常在,时,电动机主磁路接近饱和,增大势必使主磁路过饱和,将导致励磁电流急剧增大,铁损增加,功率因素降低。 若在降低频率的同时降低电压使保持不变则可保持不变从而避免了 主磁路过饱和现象的发生。这种方式称为恒磁通控制方式。此时电动机转矩为 π 式中-电动机转矩,N.m; —电源极对数; —磁极对数; —转差率; —转子电阻; —转子电抗; 由于转差率较小,则有 其中 由此可知:若频率保持不变则;若转矩不变则; 电动机临界转差率其中 电动机最大转矩=常数 最大转速降=常数 由此可知:保持常数,最大转矩和最大转矩处的转速降落均等于常数, 与频率无关。因此不同频率的各条机械特性曲线是平行的,硬度相同。

风机高压变频调速改造及节能原理

风机高压变频调速改造及节能原理 2007-01-27 来源:减速机信息网浏览:611 [推荐朋友] [打印本稿] [字体:大小] 1 引言 工业生产和产品加工制造业中,风机设备应用范围广泛;其电能消耗和诸如阀门、挡板相关设备节流损失以及维护、维修费用占到生产成本7%~25%,是一笔不小生产费用开支。经济改革不断深入,市场竞争不断加剧;节能降耗业已成为降低生产成本、提高产品质量重要手段之一。 目前,变频调速技术已经成为现代电力传动技术一个主要发展方向。它卓越调速性能、显著节电效果,改善现有设备运行工况,提高系统安全可靠性和设备利用率,延长设备使用寿命等优点应用领域不断扩大而到充分体现。 2 风机参数及特性 2.1 风机基本参数 (1) 风量Q—单位时间流过风机空气量(m3/s,m3/min,m3/h); (2) 风压H—当空气流过风机时,风机给予每立方米空气总能量(kg·m)称为风机全压Ht(kg·m/m3),其由静压Hs和动压Hd组成。即Ht=Hs+Hd; (3) 轴功率P—风机工作有效总功率,又称空气功率; (4) 效率η—风机轴上功率P损失掉部分功率后剩下风机内功率与风机轴上功率P 之比,称为风机效率。 2.2 风机相似理论 风机流量,运行压力,轴功率这三个基本参数与转速间运算公式极其复杂,同时风机类负荷随环境变化参数也随之变化,工程中一般风机运行曲线,进行大致参数运算,称之为风机相似理论: Q/Qo=n/no H/Ho=(n/n0o)2(ρ/ρo) P/P0=(n/no)3(ρ/ρo) 式中:Q—风机流量; H—风机全压; n—转速; ρ—介质密度; P—轴功率。 风量Q与电机转速n成正比,Q∝n;风压H与电机转速n平方成正比,H∝n2;轴功

风机变频调速器

风机型变频调速器选型 产品特点: ■针对风机节能控制设计 ■内置PID和先进的节能软件 ■高效节能,节电效果20%~60%(根据实际工况而定) ■简便管理、安全保护、实现自动化控制 ■延长风机设备寿命、保护电网稳定、保减磨损,降低故障率 ■实现软起,制动功能 更多描述: 应用行业: □罗茨风机□矿山风机□离心风机□工业风机□环境工程 阿启蒙GP400系列高性能矢量变频器采用先进的DSP控制系统,通过高精度的控制算法完成优化的无速度传感器矢量控制,有效抑制低频震荡;丰富的端子使应用更加灵活,内置输入电抗器性能更稳定,完备的电磁兼容设计适用于对使用环境要求更加苛刻的场合。此系列产品广泛应用纺织化纤、塑胶、建材、有色金属等对速度控制精度、转矩响应速度、低频输出有很高要求的场合。在风机领域已经大面积使用。 产品主要特点: ?高性能的电流矢量控制、V/f控制、转矩控制 ?丰富的外围接口 ?可扩展控制键盘 ?G/P合一 ?内置输入直流电抗器(18.5kW及以上机型) ?16段多段速控制、PID控制、摆频控制 ?提供RS485串行通讯接口,采用标准Modbus协议 ?产品符合EMC(EN61000-6-4、EN61800-3)标准规范 阿启蒙在变频领域在国内处于领导地位。 二、变频节能原理: 1. 风机运行曲线

采用变频器对风机进行控制,属于减少空气动力的节电方法,它和一般常用的调节风门控制风量的方法比较,具有明显的节电效果。 由图可以说明其节电原理: 图中,曲线(1)为风机在恒定转速n1下的风压一风量(H-Q)特性,曲线(2)为管网风阻特性(风门全开)。曲线(4)为变频运行特性(风门全开)假设风机工作在A点效率最高,此时风压为H2,风量为Q1,轴功率N1与Q1、H2的乘积成正比,在图中可用面积AH2OQ1表示。如果生产工艺要求,风量需要从Q1减至Q2,这时用调节风门的方法相当于增加管网阻力,使管网阻力特性变到曲线(3),系统由原来的工况点A变到新的工况点B运行。从图中看出,风压反而增加,轴功率与面积BH1OQ2成正比。显然,轴功率下降不大。如果采用变频器调速控制方式,风机转速由n1降到 n2,根据风机参数的比例定律,画出在转速n2风量(Q-H)特性,如曲线(4)所示。可见在满足同样风量Q2的情况下,风压H3大幅度降低,功率N3随着显著减少,用面积CH3OQ2表示。节省的功率△N=(H1-H3)×Q2,用面积BH1H3C表示。显然,节能的经济效果是十分明显的。 2.风机在不同频率下的节能率 从流体力学原理得知,风机风量与电机转速功率相关:风机的风量与风机(电机)的转速成正比,风机的风压与风机(电机)的转速的平方成正比,风机的轴功率等于风量与风压的乘积,故风机的轴功率与风机(电机)的转速的二次方成正比(即风机的轴功率与供电频率的二次方成正比):

中央空调节能自控系统改造方案设计

1.1空调自控系统改造方案 1.1.1控制设备范围 一套制冷系统中的制冷机组、冷冻水循环泵、冷却水循环泵、冷却塔、相关 阀门、膨胀水箱、软化水箱等。 1.1.2空调自控系统 1.1. 2.1.监测功能信息采集优化 A通过冷机通讯接口读取(包括但不限于)以下参数: 冷水机组运行状态、故障报警状态 冷冻水供/回水温度、冷却水供/回水温度 冷冻水温度设定值 运行时间、压缩机运行电流百分比、压缩机运行小时数、压缩机启动次数、蒸发温度、冷凝温度、蒸发压力、冷凝压力。 B冷冻水系统 冷冻水泵运行状态、故障报警、手/自动模式反馈(DI) 冷冻水补水泵运行状态、故障报警、手/自动模式反馈(DI) 冷冻水供回水管温度、水流量反馈(AI) 冷冻水泵进口、出口分支管压力(AI) 冷冻水供回水环网压力、冷冻水供回水环网间压差反馈(AI) 冷冻水泵变频器频率反馈(AI) 最不利末端供回水压差

C冷却水系统 冷却水泵、冷却塔风机运行状态、故障报警、手/自动模式反馈(DI) 冷却水供回水管温度、环网水流量反馈(AI) 冷却水泵进口、出口分支管压力反馈(AI) 冷却水泵、冷却塔风机变频器频率反馈(AI) 冷却水补水泵运行状态、故障报警、手/自动模式反馈(DI) D电动蝶阀 压差旁通阀开度反馈(AI) 免费供冷管路上切换电动蝶阀开关状态反馈(DI)E液位监控 膨胀水箱超高、超低水位监测(DI) 软化水补水箱高、低水位监测(DI) F其他参数 室外干球温度、相对湿度(AI) 计算室外湿球温度、焓值 免费供冷系统水泵运行、故障、手/自动状态(DI) 免费供冷板换进出口压力监测(AI) 1.1. 2.2.控制功能 1、冷水机组启/停控制、出水温度设定(通过冷机通讯接口控制) 2、冷冻水系统: 冷冻水泵启/停控制(DO)及反馈

风机水泵变频节能计算

■风机水泵工作特性 风机水泵特性: H=H0-(H0-1)*Q2 H-扬程 Q-流量 H0-流量为0 时的扬程 管网阻力: R=KQ2 R-管网阻力 K-管网阻尼系数 Q-流量 注:上述变量均采用标准值,以额定值为基准,数值为1 表示实际值等于额定值风机水泵轴功率P: P= KpQH/ηb P-轴功率 Q-流量; H-压力; ηb-风机水泵效率; Kp-计算常数; 流量、压力、功率与转速的关系: Q1/Q2 = n1/n2; H1/H2 =(n1/n2)2; P1/P2 =(n1/n2)3 ■变阀控制 变阀调节就是利用改变管道阀门的开度,来调节泵与风机的流量。变阀调节时,泵或风机的功率基本不变,泵或风机的性能曲线不变,而管道阻力特性曲线发生变化,泵或风机的性能曲线与新的管道阻力特性曲线的交点处就是新的工作点。 ■变频控制 变频调节就是利用改变性能曲线方法来改变工作点,变速调节中没有附加阻力,是比较理想的一种调节方法。通过变频器改变电源的工作频率,从而实现对交流电机的无级调速。泵和风机采用变速调节时,其效率几乎不变,流量随转速按一次方规律变化,而轴功率按三次方规律变化。同时采用变频调节,可以降低泵和风机的噪声,减轻磨损,延长使用寿命。 ■节能计算示例 假设电动机的效率=98% IPER 高压变频器的效率=97%(含变压器) 额定风量时的风机轴功力:1000kW 风机特性:风量Q 为0 时,扬程H 为标么值,以额定值为基准) ;设曲 线特性为H=年运行时间为:8000 小时 风机的运行模式为:风量100%,年运行时间的20% 风量70%,年运行时间的50% 风量50%,年运行时间的30% 变阀调节控制风量时 假设P100 为100%风量的功耗,P70 为70%风量的功耗,P50 为50%风量的功耗 P100=1000/ = 1020kW P70=1000 x x = 860kW P50=1000 x x = 663kW

风机变频节能改造案例

风机变频节能改造案例 一、森兰变频恒压供风系统节能原理 1、恒压供风变频调速系统原理 说明:图中风机是输出环节,转速由变频器控制,实现变风量恒压控制。变频器接受PID调节器的信号对风机进行速度控制,控制器综合给定信号与反馈信号后,经PID调节,向变频器输出运转频率指令。压力传感器监测风口压力,并将其转换为控制其可接受的模拟信号,进行调节。 2、系统工作原理 变频调速恒压供风控制终极通过调节风机转速实现的,风机是供风的执行单元。通过调速能实现风压恒定是由风机特性决定的,风机特性见下图所示。图中,横坐标为风机风量Q,纵坐标为压力P。EA 为恒压线,n1、n2……nn是不同转速下的风量—压力特性。可见,在转速n1下,假如控制阀门的开度使风量从QA减少到QB,压力将沿n1曲线到达B点,很显然减少风量的同时进步了压力。假如转速由n1到n2,风量将QA减少到QC,而压力不变,由此可见,在一定范围,可以保持风压恒定的条件下,可以通过改变转速来调节风量,并且不改变风压。这种特性表明,调节风机转速,改变出风压力,改变风量,使压力稳定在恒压线上,就可以完成恒压供风。 二、250KW风机变频节能改造方案及功能 1、贵厂风机运行目前现状 现有风机一台,配套电机为250KW一台,工作电压380V,电流

460A,现采用阀门调节,控制供风风量、压力。这种调节方式既不方便,又浪费大量的电能,很轻易造成阀门及风机的损坏。 我公司经过多年对化工、轮胎行业的水泵、风机等设备的节能改造,积累了丰富的经验,具有雄厚的技术实力。 2、改造方案 现采用一台280KW森兰变频器控制一台250KW风机。 3、系统功能 A.风压任意设定,风压稳定且无波动 B.软启动软停机,对电网无冲击,无需电力增容 C.延长风机机械寿命 D.缺相,欠压,过流,过载,过热及堵转保护 E.节约电能,投资回收快 三、供风风机运用变频节能分析 1、现行实际运行功率(I实=350A) P运=√3UICOSω=√3×380×350×0.85=196kw W=196×320×24=1505280kwh 注:按一年320天运行计算 2、转速自动控制节能 A理论基础 因风机属于典型的平方转矩负载类型, 所以其功率(轴功率),转矩(压力),转速(风量)满足以下关系(相似定理):

一次风机变频改造及节能分析

一次风机变频改造及节能分析 摘要:介绍了某电厂一次风机的变频改造方案,给出了一套可靠的控制策略。比较了一次风机变频控制和工频控制的节能效果,阐述了变频控制技术在电厂节能降耗的效果,对降低厂用电率,提高机组运行效率有很大的意义。 关键词:一次风机;变频改造;控制策略;节能 Abstract: A certain power plant is introduced of the primary air fan frequency converter design, and design a reliable control strategy for the primary air energy-saving effect of adopting transducer fore-and-aft is compared, which has practical meaning on reducing power plant curl consumption and increasing unit running efficiency. Key words: induced draft fan; frequency converter reconstruction; control strategy; energy-saving 1引言 在火力发电厂中,一次风机是最主要的耗电设备之一,这些设备都是长期连续运行并常常处于变负荷运行状态,其节能潜力巨大。发电厂辅机的经济运行,直接关系到厂用电率的高低。随着电力行业改革的不断深化,厂网分家、竞价上网等政策的逐步实施,降低厂用电率,降低发电成本,已成为发电厂努力追求的经济目标。在目前电力短缺的情况下,厉行节能,已经被推到了能源战略的首位。 2设备概述 华电集团某电厂一期工程采用2×330MW国产亚临界、燃煤空冷抽汽凝汽式供热机组,锅炉、汽轮机均采用上海电气集团公司设备。其中锅炉型号SG-1170/,为亚临界参数汽包炉,单炉膛、一次再热、平衡通风、露天布置、固态排渣、全钢构架、全悬吊结构Π型锅炉。每台锅炉配四台钢球磨煤机,一次风机为静叶可调轴流风机。 3 一次风机变频改造方案 % 主要设计原则 目前,交流调速取代其它调速及计算机数字控制技术取代模拟控制技术已成为发展趋势。电机交流调速技术是节能、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速、启动和制动性能、高效率、高功率因素和节电效果、广泛的适用范围及其它许多优点而被国内外公认为是最有发展前途的调速方式。

风机的变频调速节能改造的节能空间估算

风机的变频调速节能改造的分析及计算 摘要:以变频调速改造来达到调节工业工程所需风量成为目前实现电机节能的一种主要途径。当我们进行变频节能改造时,投入和收益是必须认真考虑的,收益就涉及到节能量的计算。在变频器未投运之前,计算节能量是比较困难的。本文通过分析变频节能的原理及分析,介绍了针对阀门及液力耦合器调节调节流量系统的变频改造的节能估算的一些思考及方法。 关键词:风机变频节能原理调速节能阀门液力耦合器节能估算一、引言 在工业生产、发电、居民供暖(热电厂)、和产品加工制造业中,风机水泵类设备应用范围广泛;其电能消耗和诸如阀门、挡板、液力耦合器等相关设备的节流损失以及维护、维修费用约占到生产成本的7%~25%,是一笔不小的生产费用开支。随着经济改革的不断深入,以及能源的危机,节能降耗业已成为降低生产成本、提高产品质量的重要手段之一。变频调速因其调速效率高,力能指标(功率因数)高,调速范围宽,调速精度高等优势,又可以实现软起动,减少电网的电流冲击及设备的机械冲击,延长设备使用寿命,对于大部分采用笼型异步电动机拖动的风机水泵,变频调速不失为目前最理想的调速节能方案。 由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能改造的实施。本文通过分析变频节能的原理及分析,介绍了针对阀门及液力耦合器调节调节流量系统的变频改造的节能估算的一些思考及方法。 二、变频器节能的调速实质和原理 节约能源最根本的方法就是要提高能源的利用率,所谓的“节能”,不仅仅是节省能耗,还包括不浪费能源,用一句最简单的话说就是:“需要多少,就提

中央空调节能措施

编号:SM-ZD-96668 中央空调节能措施 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

中央空调节能措施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 中央空调是现代建筑中不可缺少的能耗运行系统。中央空调系统在给人们提供舒适的生活和工作环境的同时,又消耗掉了大量的能源。据统计,我国建筑物能耗约占能源总消耗量的30%。在有中央空调的建筑物中,中央空调的能耗约占总能耗的70%,而且呈逐年增长的趋势。因此,如何高效利用中央空调系统的能源和节能就成为迫切需要解决的问题。 正常运行的中央空调系统,其耗能主要有两个方面[1]:一方面是为了供给空气处理设备冷量和热量的冷热源耗能;另一方面是为了输送空气和水,风机和水泵克服流动阻力所需的动力耗能。中央空调系统的耗能量受很多因素影响,许多运行环节都有节能措施,因此,中央空调节能是一项综合性的工程。以下就冷热源耗能和动力耗能两方面介绍几种常用的节能措施。

风机水泵的变频调速节能分析

风机水泵的变频调速节能分析 节能降耗、增加效益是全社会应为之努力的方向。我国的电动机用电量占全国发电量 的60%~70%,风机、水泵设备年耗电量占全国电力消耗的1/3。应用于风机、水泵等设备的传统方法是通过调节出口或入口的挡板、阀门开度来控制给风量和给水量,其输出功 率大量消耗在挡板、阀门地截流过程中。另外,由于在通常的设计中为了满足峰值需求, 水泵选型的裕量往往过大,也造成了不应有的浪费。根据风机、水泵类的转矩特性,采用 变频调速器来调节流量、风量,将大大节约电能。下面就分析一下在风机水泵类负载中使 用变频器所能达到的效果。 一,通过变频调速达到的一次节能。 下面以水泵为例来说明,由图1可以看到: 流量Q正比于转速n 压力H正比于n2 转矩T正比于n2 功率P正比于n3 图1 水泵流量、压力、功率曲线…

在普通的水泵流量控制中使用阀门来调节,如图2所示: 图2 阀门控制水泵流量 管道阻力h与流量Q的关系为h正比于RQ2,其中R为阻力系数 电机在恒速运行时,流量为100%情况下(工作点为A),水泵轴功率相当于Q1AH1O 所包容的面积。 电机在恒速运行时,采取调节阀门的办法获得70%的流量(工作点为B),将导致 管阻增大,水泵轴功率相当于Q2BH2O所包容的面积,所以轴功率下降不大。 采用变频调速控制流量时,由于管道特性没有改变,水泵特性发生变化(工作点为C),轴功率与Q2CH3O所包容的面积成正比。故其节能量与CBH2H3所包容的面积成正比, 输入功率大大减小。如图3所示: 图3 变频调节水泵流量

正如前面提到的,轴功率P与转速n的三次方成正比。采用变频器进行调速,当流量 下降到80%时,转速也下降到80%,而轴功率N将下降到额定功率的51.2%,如果流量下降到60%,轴功率N可下降到额定功率的21.6%,当然还需要考虑由于转速降低会引起的效 率降低及附加控制装置的效率影响等.即使这样,这个节能数字也是很可观的,因此在装有风机水泵的机械中,采用转速控制方式来调节风量或流量,在节能上是个有效的方法。 二,变频调速所实现的二次节能 变频调速自动根据负载情况调整输出电压,通过对电机的最佳励磁,有效地降低了无 功损耗,提高系统功率因数,降低电机工作噪音, 延长电机使用寿命。 电动机的总电流(IS)为电机励磁电流(IM)与电机力矩电流(IT)的矢量和, IS和IM夹角的余弦值即为电动机的功率因数; 电机励磁电流决定于加在电机线圈上的电压, 在工频状态下, 交流电压为380V恒定不变, 因此励磁电流也不会改变; 在变频状态下, 变频器自动检测负载力矩, 根据实际负载决定输出电压, 因此在负载较低的时候自动降低输出电压, 以维持最高的功率因数. 由于变频器自动降低了电机励磁电流, 使得输出总电流明显低于工频工作的总电流, 节约了线路中的损耗和无功功率的损失; 这个功能在丹佛斯VLT系列变频器中称为AEO功能(Automatic Energy Optimization, 自动节能功能). 声明:上海津信电气有限公司拥有此篇技术文档的所有权,任何人如需转载,必须表明出处。

变频器的节电原理

变频器的节电原理 常常听人说变频器能省电,说的人多了也就接受了,但一直没弄懂变频器为什么能省电,同时又能省多少,是高频省的多还是低频省的多?有用户还有如下几个疑问: a、如果两个一模一样的电机都工作在50HZ的工频状态下,一个使用变频器,一个没有,同时转速和扭矩都在电机的额定状态下,那么变频器还能省电吗?能省多少呢? b、如果这两个电机的扭矩没有达到电机的额定扭矩状态下工作(频率,转速还是一样50HZ),有变频器的那个能省多少电? c、同样的条件,空载状态下能省多少,这三种状态下哪个省的更多? 爱德利变频器答:变频器可以省电这是不可磨灭的事实,在某些情况下可以节电40%以上,但是某些情况还会比不接变频器浪费! 变频器是通过轻负载降压实现节能的,拖动转距负载由于转速没有多大变化,即便是降低电压,也不会很多,所以节能很微弱,但是用在风机环境就不同了,当需要较小的风量时刻,电机会降低速度,我们知道风机的耗能跟转速的1.7次方成正比,所以电机的转距会急剧下降,节能效果明显。如果我们用在油井上,就会因为在返程使用制动电阻白白浪费很多电能反而更废电。 当然,如果环境要求必须调速,变频器节能效果还是比较明显的。不调速的场合变频器不会省电,只能改善功率因数。 1、如果两个一模一样的电机都工作在50HZ的工频状态下,一个使用变频器,一个没有,同时转速和扭矩都在电机的额定状态下,那么变频器还能省电吗?能省多少呢? 答:对于这种情况,变频器只能改善功率因数,并不能节省电力。 2、如果这两个电机的扭矩没有达到电机的额定扭矩状态下工作(频率,转速还是一样50HZ),有变频器的那个能省多少电? 答:如果使用了自动节能运行,这个时刻变频器能降压运行,可以节省部分电能,但是节电不明显。 3、同样的条件,空载状态下能省多少,这三种状态下哪个省的更多? 答:拖动型负载空载状态也节省不了多大的电能。 比如关于“闭环控制”如是说。我认为有讨论的空间。文中的闭环概念太狭义了。闭环控制不仅仅是转速传感器反馈才算数。矢量控制时的频率控制就是闭环控制,而且是装置内部的闭环控制,V/F控制才属于开环控制,另外还有温度、压力、流量等等物理量的PID调节器反馈控制,都是闭环控制的范畴。而且都是可以通过变频器调节实现的。不应该将闭环控制概念解释得那么窄。

相关主题