搜档网
当前位置:搜档网 › 电容计算公式

电容计算公式

电容计算公式
电容计算公式

电容定义式

C=Q/U

Q=I*T

电容放电时间计算:C=(Vwork+ Vmin)*I*t/( Vwork2 -Vmin2)

电容计算公式.xlsx

电压(V) = 电流(I) x 电阻(R)

电荷量(Q) = 电流(I) x 时间(T)

功率(P) = V x I (I=P/U; P=Q*U/T)

能量(W) = P x T = Q x V

容量 F= 库伦(C) / 电压(V)

将容量、电压转为等效电量

电量=电压(V) x 电荷量(C)

实例估算:电压5.5V 1F(1法拉电容)的电量为5.5C(库伦),电压下限是 3.8V,电容放电的有效电压差为5.5-3.8=1.7V,所以有效电量为1.7C。

1.7C=1.7A*S(安秒)=1700mAS(毫安时)=0.472mAh(安时)

若电流消耗以10mA计算,1700mAS/10mA=170S=2.83min(维持时间分钟)

电容放电时间的计算

在超级电容的应用中,很多用户都遇到相同的问题,就是怎样计算一定容量的超级电容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放电时间的推算,十分地方便。

C(F):超电容的标称容量;

R(Ohms):超电容的标称内阻;

ESR(Ohms):1KZ下等效串联电阻;

Vwork(V):正常工作电压

Vmin(V):截止工作电压;

t(s):在电路中要求持续工作时间;

Vdrop(V):在放电或大电流脉冲结束时,总的电压降;

I(A):负载电流;

超电容容量的近似计算公式,

保持所需能量=超级电容减少的能量。

保持期间所需能量=1/2I(Vwork+ Vmin)t;

超电容减少能量=1/2C(Vwork2 -Vmin2),

因而,可得其容量(忽略由IR引起的压降)

C=(Vwork+ Vmin)*I*t/( Vwork2 -Vmin2)

举例如下:

如单片机应用系统中,应用超级电容作为后备电源,在掉电后需要用超级电容维持100mA的电流,持续时间为10s,单片机系统截止工作电压为4.2V,那么需要多大容量的超级电容能够保证系统正常工作?

由以上公式可知:

工作起始电压Vwork=5V

工作截止电压Vmin=4.2V

工作时间t=10s

工作电源I=0.1A

那么所需的电容容量为:

C=(Vwork+ Vmin)*I*t/( Vwork2 -Vmin2)

=(5+4.2)*0.1*10/(52 -4.22)

=1.25F

根据计算结果,可以选择5.5V 1.5F电容就可以满足需要了。

实例:

假设磁带驱动的工作电压5V,安全工作电压3V。如果直流马达要求0.5A保持2秒(可以安全工作),问需要选用多大容量的超级电容?

解: C=(Uwork+ Umin)It/(Uwork*Uwork -Umin*Umin)

=(5+3)*0.2*2/(5*5-3*3)

=0.5F

因为5V的电压超过了单体电容器的标称工作电压。因而,可以将两电容器串联。如两相同的电容器串联的话,那每只的电压即是其标称电压2.5V。

MTBF寿命计算公式

寿命计算公式 MTBF (平均间隔失效时间)预估 概述 MTBF之计算系依据军用手册MIL-HDBK-217F “电子设备之可靠性预估” 来 进行,此部份涵盖了电子零件实际的应力关系、失效率。MIL-HDBK-217 的基 本版本将保持不变,只有失效率的资料会更新。在评估过程之前,应确定各元 器件的相关特性(如基本失效率、质量等级,环境等级等等)。 定义 “MTBF”的解释为“平均间隔失效时间”而MTBF是由MIL-HDBK- 217E.F计算,以25 C环境温度为参考温度。 电解电容寿命预测 Rubycon 品牌的电解电容的寿命计算公式 L X=Lr X2【(T°-Tx)/1°】X2(A r s/Ao- A Tj/A) L X预测寿命(Hr), Lr:制造商承诺的在最高工作温度(To)及额定纹波电流(Io)下的寿命, To:最高工作温度一105C或85C, Tx:实际外壳温度(C), △Ts:额定纹波电流(Io)下的电解电容中心温升「C), △Tj:实际纹波电流(lx)下的电解电容中心温升(C), A: A= 10 —0.25XZTj,(0

Io:额定的纹波电流值(Arms), R:电解电容的等效串连阻抗(Q), S:电解电容的表面积(cm2), S=dDX(D+ 4L)/4 , B:热辐射常数,一般取3= 2.3 X1O-3XS0.2, D:电解电容的截面积的直径(cm), L:电解电容的高度(cm), nichicon品牌的电解电容的寿命计算公式 2 L X= Lr X2【(To-Tx)/10] x21-(Ix/Io )/K, K:温升加速系数,二10—6X(Tx—75 C)/30 (Tx W75C 时,K 值 取 10) 其余字符的表达含意同上。 其余品牌的电解电容的寿命计算公式 2 b= L r X2【(To-Tx)/10]眾1-(Ix/Io ) ] XZTo/10 △To:最高工作温度下的电解电容中心容许温升(取△T o= 5C), K= 2,纹波电流允许的范围内;K= 4,超过纹波电流允许的范围时。

超级电容电量简易计算

超级电容电量简易计算 2011-05-21 00:49:18| 分类:默认分类 | 标签: |字号大中小订阅 电压(V) = 电流(I) x 电阻(R) 电荷量(Q) = 电流(I) x 时间(T) 功率(P) = V x I = 能量(W) = P x T = Q x V 容量 F= 库伦(C) / 电压(V) 将容量、电压转为等效电量 电量 =电压(V) x 电荷量(C) 实例估算: 电压5.5V 1F(1法拉电容)的电量为5.5C(库伦),电压下限是3.8V,电容放电的有效电压差为5.5-3.8=1.7V,所以有效 电量为1.7C。 1.7C=1.7A*S(安秒)=1700mAS(毫安时)=0.472mAh(安时) 若电流消耗以10mA计算,1700mAS/10mA=170S=2.83min(维持时间 分钟)。 转 电荷量 通常,正电荷的电荷量用正数表示.负电荷的电荷量用负数表示. 任何带电体所带电量总是等于某一个最小电量的整数倍 这个最小电量叫做基元电荷 它等于一个电子所带电量的多少,也等于一个质子所带电量的多少 而库仑是电量的单位 1库仑=1安培·秒 库仑是电量的单位,符号为C。它是为纪念物理学家库仑而命名的。若导线中载有1安培的稳恒电流,则在1秒内通过导线横截面积的电量为1库仑。 库仑不是国际标准单位,而是国际标准导出单位。一个电子所带负电荷量e= 1.6021892×10^19库仑(元电荷), 也就是说1库仑相当于6.24146×10^18个电子所带的电荷总量。 电荷量的公式: C=It(其中I是电流,单位A ;t是时间,单位s) 电量 电量表示物体所带电荷的多少。

超级电容容量及放电时间的计算方法

超级电容容量及放电时间的计算方法 2008-10-28 13:10:29 [点击次数:2450] 现在超级电容的很多用户都遇到相同的问题,就是怎样计算一定容量的超级电容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放 电时间的推算,十分地方便。 C(F):超电容的标称容量; R(Ohms):超电容的标称内阻; ESR(Ohms):1KZ下等效串联电阻; Vwork(V):正常工作电压 Vmin(V):截止工作电压; t(s):在电路中要求持续工作时间; Vdrop(V):在放电或大电流脉冲结束时,总的电压降; I(A):负载电流; 超电容容量的近似计算公式, 保持所需能量=超级电容减少的能量。 保持期间所需能量=1/2I(Vwork+ Vmin)t; 超电容减少能量=1/2C(Vwork2 -Vmin2), 因而,可得其容量(忽略由IR引起的压降) C=(Vwork+ Vmin)It/( Vwork2 -Vmin2) 举例如下:

如单片机应用系统中,应用超级电容作为后备电源,在掉电后需要用超级电容维持100mA的电流,持续时间为10s,单片机系统截止工作电压为4.2V,那么需要多大容量的超级电容能 够保证系统正常工作? 由以上公式可知: 工作起始电压Vwork=5V 工作截止电压Vmin=4.2V 工作时间t=10s 工作电源I=0.1A 那么所需的电容容量为: 应用中,很多用户都遇到相同的问题,就是怎样计算一定容量的超级电容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放电时间的推算,十分地方便。 C(F):超电容的标称容量; R(Ohms):超电容的标称内阻; ESR(Ohms):1KZ下等效串联电阻; Vwork(V):正常工作电压 Vmin(V):截止工作电压; t(s):在电路中要求持续工作时间; Vdrop(V):在放电或大电流脉冲结束时,总的电压降; I(A):负载电流; 超电容容量的近似计算公式, 保持所需能量=超级电容减少的能量。

电容计算公式

电容定义式 C=Q/U Q=I*T 电容放电时间计算:C=(Vwork+ Vmin)*l*t/( Vwork2 -Vmin2) 电压(V)= 电流⑴x 电阻(R)电荷量(Q)= 电流⑴x 时间(T)功率(P) = V x I (I=P/U; P=Q*U/T)能量(W) = P x T = Q x V 容量F=库伦(C)/电压(V)将容量、电压转为等效电量电量二电压(V) x 电荷量(C)实例估算:电压5.5V仆(1法拉电容)的电量为5.5C (库伦),电压下限是3.8V,电容放电的有效电压差为5.5-3.8=1.7V ,所以有效电量为1.7C。 1.7C=1.7A*S (安秒)=1700mAS(毫安时)=0.472mAh (安时) 若电流消耗以10mA 计算,1700mAS/10mA=170S=2.83min(维持时间分钟) 电容放电时间的计算 在超级电容的应用中,很多用户都遇到相同的问题,就是怎样计算一定容量的超级电 容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容 量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放电时间的推算,十分地方便。 C(F):超电容的标称容量; R(Ohms):超电容的标称内阻; ESR(Ohms) 1KZ下等效串联电阻;

Vwork(V):正常工作电压 Vmin(V):截止工作电压; t(s):在电路中要求持续工作时间; Vdrop(V):在放电或大电流脉冲结束时,总的电压降; 1(A):负载电流; 超电容容量的近似计算公式, 保持所需能量=超级电容减少的能量。 保持期间所需能量=1/2l(Vwork+ Vmi n)t ; 超电容减少能量=1/2C(Vwork -Vmin ), 因而,可得其容量(忽略由IR引起的压降) C=(Vwork+ Vmin)*l*t/( Vwork 2 -Vmin 2) 举例如下: 如单片机应用系统中,应用超级电容作为后备电源,在掉电后需要用超级电容维持 100mA的电流,持续时间为10s,单片机系统截止工作电压为4.2V,那么需要多大容量的超级电容能够保证系统正常工作? 由以上公式可知: 工作起始电压Vwork = 5V 工作截止电压Vmin= 4.2V 工作时间t=10s 工作电源I = 0.1A 那么所需的电容容量为:

电容器计算公式(2013_04_21)

电容器计算公式 电容器串并联容量 并联:C=C1+C2+…… 串联:2 121C C C C C +?= 电容器总容量 3.0.2 本条是并联电容器装置总容量的确定原则。 如没有进行调相调压计算,一般情况下,电容器容量可按主变压器的容量的10%~30%确定,这就是不具备计算条件时估算电容器安装总容量的简便方法。 谐波 3.0.3 发生谐振的电容器容量,可按下式计算: )1(2K n S Q d cx -= 式中,cx Q ----发生n 次谐波谐振的电容器容量(Mvar)d S ----并联电容器装置安装处的母线短路容量(MVA)n ----谐波次数,即谐波频率与电网基波频率之比K ----电抗率 母线电压升高 5.2.2 本条明确了电容器额定电压选择的主要原则 并联电容器装置接入电网后引起的母线电压升高值可按下式计算: d so s S Q U U =? 式中,s U ?----母线电压升高值(kV) so U ----并联电容器装置投入前的母线电压(kV) Q ---- 母线上所有运行的电容器容量(Mvar) d S ----母线短路容量(MVA) 电容器额定电压 5.2.2 本条明确了电容器额定电压选择的主要原则 电容器额定电压可由公式求出计算值,再从产品标准系列中选取,计算公式如下: )1(305.1K S U U SN CN -= 式中,CN U ----单台电容器额定电压(kV)SN U ----电容器投入点电网标称电压(kV)S ---- 电容器每组的串联段数K ----电抗率

串联电抗器的电抗率 5.5.2 (1)当电网背景谐波为5次及以上时,可配置电抗率4.5%一6%。因为6%的电抗器有明显的放大三次谐波作用,因此,在抑制5次及以上谐波,同时又要兼顾减小对3次谐波的放大,电抗率可选用4.5%。 (2)当电网背景谐波为3次及以上时,电抗率配置有两种方案:全部配12%电抗率,或采用4.5%一6%与12%两种电抗率进行组合。采用两种电抗率进行组合的条件是电容器组数较多,为了节省投资和减小电抗器消耗的容性无功。 电容器对母线短路容量的助增 5.1.2 在电力系统中集中装设大容量的并联电容器组,将会改变装设点的系统网络性质,电容器组对安装点的短路电流起着助增作用,而且助增作用随着电容器组的容量增大和电容器性能的改进(如介质损耗减小、有效电阻降低)、开关动作速度加快而增加。试验研究报告建议:在电容器总容量与安装地点的短路容量之比不超过5%或10%(对应于电抗率K=5%~6%,不超过5%;K=12%~13%,不超过10%),助增作用相对较小,可不考虑。 当K=12%~13%时,%10 d c S Q 式中,c Q ----电容器容量(kVar) d S ----母线短路容量(kVar) 回路导体的额定电流 5.1.3 所以取1.35倍电容器组额定电流作为选择回路设备和导体的条件是安全的也是合理的。 电容器分组原则 3.0.3 变电所装设无功补偿电容器的总容量确定以后,通常将电容器分组安装,分组的主要原则是根据电压波动、负荷变化、谐波含量等因素来确定。

电容电流计算书

电容电流的计算书 电网的电容电流,应包括有电气连接的所有架空线路、电缆线路、发电机、变压器以及母线和电器的电容电流,并应考虑电网5~10年的发展。 1.架空线路的电容电流可按下式估算: I C =(2.7~3.3)U e L×10-3 (F-1) 式中:L——线路的长度(㎞); U e——线路系统电压(线电压KV) I C ——架空线路的电容电流(A); 2.7 ——系数,适用于无架空地线的线路; 3.3 ——系数,适用于有架空地线的线路; 同杆双回线路的电容电流为单回路的1.3~1.6倍。 亦可按附表1所列经验数据查阅。 附表1 架空线路单相接地电容电流(A/km) 2.电缆线路的电容电流可按(F-2)式估算,亦可进行计算 I C=0.1U e L (F-2) 按电容计算电容电流 具有金属保护层的三芯电缆的电容值见附表2。 附表2 具有金属保护层的三芯电缆每相对地电容值(μF/㎞)

将求得的电缆总电容值乘以1.25即为全系统总的电容近似值(即包括变压器绕组、电 动机以及配电装置等的电容)。单相接地电容电流可由下式求出: I C = 3 U e ωC ×10-3 (F-3) 其中 ω=2πf e 式中 I C —— 单相接地电容电流(A ); U e —— 厂用电系统额定线电压(kV ); ω —— 角频率; f e —— 额定功率(Hz ); C —— 厂用电系统每相对地电容(μF ); 2.2、6~10 kV 电缆和架空线的单相接地电容电流I C 也可通过下式求出近似值。 6kV 电缆线路 = I C 6S 22002.84S 95++U e (A ) (F-4) 10kV 电缆线路 =I C 0.23S 22001.44S 95++U e (A ) (F-5) 式中 S —— 电缆截面 (㎜2) U e —— 厂用电系统额定电压(kV ) 2.3 电容电流的经验值见附表3。 附表3 6~35kV 电缆线路单位长度的电容电流(A/㎞) 2.4 6~10 kV 交联聚乙烯绝缘电力电缆的接地电容电流。 前述各公式主要用于油浸纸绝缘电力电缆,而目前广泛采用的交联聚乙烯绝缘电力电 缆,由于其结构特点,其单独接地电容电流比同截面的纸绝缘电缆的电容电流大,根据厂家提供的参数和现场实测数据,大约增大20%左右,其值见附表4。 附表4 6~10 kV 交联聚乙烯绝缘电缆的接地电容电流

超级电容基本参数概念

超级电容基本参数概念 寿命Lifetime 超级电容器具有比二次电池更长的使用寿命,但它的使用寿命并不是无限的,超级电容器基本失效的形式是电容内阻的增加( ESR)与(或) 电容容量的降低.,电容实际的失效形式往往与用户的应用有关,长期过温(温度)过压(电压),或者频繁大电流放电都会导致电容内阻的增加或者容量的减小。在规定的参数范围内使用超级电容器可以有效的延长超级电容器的寿命。通常,超级电容器具有于普通电解电容类似的结构,都是在一个铝壳内密封了液体电解液,若干年以后,电解液会逐渐干涸,这一点与普通电解电容一样,这会导致电容内阻的增加,并使电容彻底失效。 电压Voltage 超级电容器具有一个推荐的工作电压或者最佳工作电压,这个值是根据电容在最高设定温度下最长工作时间来确定的。如果应用电压高于推荐电压,将缩短电容的寿命,如果过压比较长的时间,电容内部的电解液将会分解形成气体,当气体的压力逐渐增强时,电容的安全孔将会破裂或者冲破。短时间的过压对电容而言是可以容忍的。 极性Polarity 超级电容器采用对称电极设计,也就说,他们具有类似的结构。当电容首次装配时,每一个电极都可以被当成正极或者负极,一旦电容被第一次100%从满电时,电容就会变成有极性了,每一个超级电容器的外壳上都有一个负极的标志或者标识。虽然它们可以被短路以使电压降低到零伏,但电极依然保留很少一部分的电荷,此时变换极性是不推荐的。电容按照一个方向被充电的时间越长,它们的极性就变得越强,如果一个电容长时间按照一个方向充电后变换极性,那么电容的寿命将会被缩短。 温度Ambient Temperature 超级电容器的正常操作温度是-40 ℃~70℃,温度与电压的结合是影响超级电容器寿命的重要因素。通常情况下,超级电容器是温度每升高10℃,电容的寿命就将降低30%~50%,也就说,在可能的情况下,尽可以的降低超级电容器的使用温度,以降低电容的衰减与内阻的升高,如果不可能降低使用温度,那么可以降低电压以抵清高温对电容的负面影响。比如,如果电容的工作电压降低为1.8V,那么电容可以工作于65℃高温下。如果在低于室

配电网电容电流计算

配电网电容电流计算 一、概述 随着城市电网的扩大,电缆出线的增多,系统电容电流大大增大。当系统发生单相接地故障,其接地电弧不能自熄,极易产生间隙性弧光接地过电压,持续时间一长,在线路绝缘弱点还会发展成两相短路事故。因此,当网络足够大时,就需要采用消弧线圈补偿电容电流,这是保证电力系统安全运行的重要技术措施之一。为避免不适当的补偿给电力系统安全运行带来威胁,首先必须正确测定系统的电容电流值,并据此合理调整消弧线圈电流值,才能做到正确调谐,既可以很好地躲过单相接地的弧光过电流,又不影响继电保护的选择性和可靠性。 目前,电容电流的测定方法很多,通常采用附加电容法和金属接地法进行测量和计算,但前者测量方法复杂,附加电容对测量结果影响较大,后者试验中具有一定危险性。目前,根据各种消弧线圈不同的调谐原理,有多种间接测量电网电容电流的方法。其根本思想都是利用电网正常运行时的中性点位移电压、中性点电流以及消弧线圈电感值等参数,计算得到电网的对地总容抗,然后由单相故障时的零序回路,计算当前运行方式下的电容电流。 在实际运行中,对于出线数较多、线路较长或包含大量电缆线路的配电系统,当其发生单相接地故障时,对地电容电流会相当大,接地电弧如果不能自熄灭,极易产生间隙性弧光接地过电压或激发铁磁谐振,持续时间长,影响面大,线路绝缘薄弱点往往还会发展成两相短路事故。因此,DL/T620-1997《交流电气装置的过电压保护和绝缘配合》规定:3~10kV钢筋混凝土或金属杆塔的架空线路构成的系统和所有35kV、66kV系统,当单相接地故障电流大于10A时应装设消弧线圈;3~10kV电缆线路构成的系统,当单相接地故障电流大于30A,又需在接地故障条件下运行时,应采用消弧线圈接地方式。消弧线圈一般为过补偿运行(即流过消弧线圈的电感电流大于电容电流),也就是说装设的消弧线圈的电感必须根据对地电容电流的大小来确定,以防止中性点不接地系统发生单相接地而引起弧光过电压。 故障后,消弧线圈必须快速合理地补偿电容电流,以使接地电弧快速自熄,所以消弧线圈应实时跟踪电网运行方式的变化,在电网正常运行时,测量计算当前运行方式下的电容电流,以合理调节消弧线圈的出力。显然,电网电容电流的

电容器的定义以及相关的公式介绍

[知识学堂] 电容器的定义以及相关的公式介绍 定义 电容(或称电容量)是表征电容器容纳电荷本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。电容器从物理学上讲,它是一种静态电荷存储介质(就像一只水桶一样,你可以把电荷充存进去,在没有放电回路的情况下,刨除介质漏电自放电效应/电解电容比较明显,可能电荷会永久存在,这是它的特征),它的用途较广,它是电子、电力领域中不可缺少的电子元件。 电容的符号是C。 C=εS/d=εS/4πkd(真空)=Q/U 在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是: 1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 电容与电池容量的关系: 1伏安时=25法拉=3600焦耳 1法拉=144焦耳 相关公式 一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电

容器的电容就是1法,即:C=Q/U 但电容的大小不是由Q(带电量)或U(电压)决定的,即:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。常见的平行板电容器,电容为C=εS/d.(ε为极板间介质的介电常数,S 为极板面积,d为极板间的距离。) 定义式C=Q/U 电容器的电势能计算公式:E=CU^2/2=QU/2=Q^2/2C 多电容器并联计算公式:C=C1+C2+C3+…+Cn 多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn 三电容器串联C=(C1*C2*C3)/(C1*C2+C2*C3+C1*C3)

电容电流估算方法

1.1.1 电容电流估算方法 1.1.1.1 6~10kV 电网单相接地电流的计算 在中性点不接地的6~10kV 电网中,电网每相对地存在着分布电容和分布绝缘电阻,在计算接地电流时,可以把它们用集中参数来表示,如图8所示。当电网某相发生单相经电阻接地时(电阻为零便为直接接地),在接地点有一接地电流流过,下面分析一下接地电流的计算。 图8 6~10kV 供电系统 A U 、B U 、C U ——电网各相电源电压;A U ' 、B U ' 、C U ' ——电网各相对地电压; C ——电网每相对地电容;R ——电网每相对地绝缘电阻;E R ——接地电阻 当电网某相(如图8中的A 相)经电阻E R 接地时,按照对称分量法的原理, 可以将故障点处的三相电流、电压分解成正序电流(1A I 、1B I 、1C I )、电压(1A U 、1 B U 、1 C U );负序电流(2A I 、2B I 、2C I )、电压(2A U 、2B U 、2C U )和零序电流0I 、零序电压0U 。可以求出流过电阻E R 的电流E I 和各序电流之间]的关系为: E A A I I I I 3 1021=== (31) 由(31)式得出复合序网如图9所示。 C U

图 9 单相接地故障的复合序网 图9中1Z 、2Z 、0Z 分别表示电网的正序阻抗、负序阻抗、零序阻抗,由于1Z 、2Z 是电网线路和变压器的漏抗与电网对地阻抗的并联,很小,均可忽略,0Z 是电网线路阻抗与电网对地阻抗的串联,有:1Z =2Z ≈0,0Z ≈Z = C j R ω+1 1。 根据对称分量的原理,故障点处的对地电压: ?????++='++='++='0 21021021U U U U U U U U U U U U C C C B B B A A A (32) 可以得出: ???????======0 22211 1C B A C C B B A A U U U U U U U U U (33) 所以在故障点存在有正序电压和零序电压,负序电压接近于零。 下面分析计算一下零序电压和零序电流以及接地电流。根据前面的分析我们知道:流过每相对地电容和对地绝缘电阻及流过接地电阻的电流分别为: E R 3

铝电解电容寿命计算公式

寿命计算式
改版
铝电容器 推定寿命计算式
http://www.chemi-con.co.jp
上海贵弥功贸易有限公司
1
CONFIDENTIAL(秘密的)

寿命计算式
寿命计算式 目录
? 寿命计算式
A) DC加载保证品 B) 纹波电流加载保证品 C) 螺丝端子型(额定电压350V以上) 螺丝端子型(额定电压 以上) D) 导电性高分子电容器
? 温度测定方法
A) 周围温度测定方法 B) 单元中心发热温度测定方法 1) 单元中心温度测定 2) 周围温度/电容器表面温度测定 3) 纹波电流测定 >>> 发热温度计算
注意事项
纹波电流频率修正系数与温度修正系数使用方法
CONFIDENTIAL(秘密的)
2

寿命计算式
推定寿命计算式
A) DC加载保证品 ) 加载保 品
Lx L = Lo × 2
Tx ? To 10
×2
? ?T 5
Lx (hrs):推定寿命 Lo (hrs):保证寿命 Tx (℃):最大可能周围温度 To (℃):实际使用周围温度 ( ) 纹波电流发热温度 ⊿T (℃):纹波电流发热温度 <应用系列> 贴片型:全般 引钱型:SRM/SRE/KRE/SRA/KMA/SRG/KRG/SMQ/SMG/ 引钱型 SRM/SRE/KRE/SRA/KMA/SRG/KRG/SMQ/SMG/ SME-BP/KME-BP/LLA
CONFIDENTIAL(秘密的)
3

超级电容选用计算

二、超级电容的主要特点、优缺点 尽管超级电容器能量密度是蓄电池的5%或是更少,但是这种能量的储存方式可以应用在传统蓄电池不足之处与短时高峰值电流之中。相比电池来说,这种超级电容器有以下几点优势: 1.电容量大,超级电容器采用活性炭粉与活性炭纤维作为可极化电极,与电解液接触的面积大大增加,根据电容量的计算公式,两极板的 表面积越大,则电容量越大。因此,一般双电层电容器容量很容易超过1F,它的出现使普通电容器的容量围骤然跃升了3~4个数量级,目前单体超级电容器的最大电容量可达5000F。 2.充放电寿命很长,可达500000次,或90000小时,而蓄电池的充放电寿命很难超过1000次;可以提供很高的放电电流,如2700F的超级电容器额定放电电流不低于950A,放电峰值电流可达1680A,一般蓄电池通常不能有如此高的放电电流,一些高放电电流的蓄电池在如 此高的放电电流下的使用寿命将大大缩短。 3.可以数十秒到数分钟快速充电,而蓄电池在如此短的时间充满电将是极危险的或是几乎不可能。 4.可以在很宽的温度围正常工作(-40℃~+70℃),而蓄电池很难在高温特别是低温环境下工作;超级电容器用的材料是安全和无毒的,而铅酸蓄电池、镍镉蓄电池均具有毒性;而且,超级电容器可以任意并联使用来增加电容量,如采取均压措施后,还可以串联使用。 因此,可以用简短的词语总结出超级电容的优点: ● 在很小的体积下达到法拉级的电容量; ● 无须特别的充电电路和控制放电电路 ● 和电池相比过充、过放都不对其寿命构成负面影响; ● 从环保的角度考虑,它是一种绿色能源; ● 超级电容器可焊接,因而不存在象电池接触不牢固等问题。 缺点:

电容充放电计算公式

标 签:电容充放电公式 电容充电放电时间计算公式设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)]

再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函 解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感

超级电容常识

超级电容常识 超级电容基本知识 寿命 超级电容具有比电池更长的使用寿命,但是寿命也不是无限延长的。寿命终止失效模式为等效串联内阻的增加(ESR)升高和容量降低。超级电容实际的寿命失效取决于应用要求,比如长期置于 高温下,高电压和超电流将会导致ESR升高和容量降低。这些参数降低将会延长超级电容的寿命。 电压 超级电容具有推荐的额定工作电压,电压值是根据超级电容在最高的额定温度下最长寿命来设定的。如果使用电压超出额定电压,将会导致寿命缩短,若过压时间较长则内部电解液将会分解为气体,当气体的压力逐渐增强时,超级电容内部将会漏液或防爆阀破裂。 极性 超级电容采用对称的电极设计,正负极具有类似的结构,当电容首次装配时,任一电极都可以被当成正极或者负极,一旦超级电容被第一次充满电时,超级电容将会形成极性化。所以我们在生产过程中将会100%的充放电将极性定型,同时在每一个电容的外壳上面都有一个负极标志。提醒一点:虽然超级电容可以被放电使电压降低到零电压,但是电极还是保留非常少的电荷,此时变换极 性是不可以的。超级电容按照一个方向被充电的时间越长,他们的极性就变得越强。若此时更改极性将会使电容的寿命缩短或损坏。 环境温度 能量型超级电容的正常工作温度是-25℃--70℃,功率型超级电容的正常工作温度是-40℃--60℃,温度及电压对超级电容寿命有影响。一般来说,超级电容的环境温度每升高10℃,超级电容的寿 命就会缩短一半。也就是说在可能的情况下尽可能在最低温度下使用超级电容,那么就可以降低电容的衰减与ESR的升高。若低于正常室温环境下,那么可以降低电压以抵消高温对电容的负面 影响。相反在低温下提高超级电容的工作电压,可以有效的抵消超级电容在低温下内阻的升高。在高温情况下,电容内阻升高。在低温下,电容的内阻升高时暂时的,因为在低温下电解液的稠性升高,降低了电离子的远动速度。 放电特性 超级电容放电时,是按照一条斜率曲线放电,当确定应用时超级电容的容量与内阻要求时,最重要的就是要了解电阻及容量对放电特性的影响。在高脉冲电流应用时,ESR是重要的因素。而在低电流应用时,容量是最重要的因素。计算公式如下: Vd=I(R+T/C) Vd是起始工作电压与截止电压之差,I是放电电流,R是超级电容的(ESR),T是放电时间,C是电容的容量。在脉冲应用中,由于瞬间放电流很大,为减少电压的降幅,选用低内阻(ESR) 的超级电容,而在低电流应用中则需要选用高容量的超级电容。 充电方法 超级电容可用各种方法进行充电,如:恒定电流、恒定功率、恒定电压或与能量储存器,或者电源并联(如电池、DC变换器等)。如果超级电容与电池并联,加一个低阻值串联电阻将降低超级 电容的充电电流,并提高电池的使用寿命。但是如果使用串联电阻,必须要保证电容的电压输出端是直接与应用器连接而不是通过电阻与应用器连接,否则超级电容的低内阻特性将是无效的。在高脉冲电流放电时,许多电池系统寿命均会缩短。 超级电容最大充电电流I计算公式如下: I=V/5R I是推荐的充电电流,V是充电电压,R是超级电容的ESR。超级电容持续大电流或者高压充电,超级电容将会过度发热,过度发热将会导致ESR增加,电解液分解气化,缩短寿命、漏液、防爆 阀爆裂。如果要使用高于额定值的电流或电压充电请与生产厂商联系。 自放电与漏电流 以不同方法进行测量时自放电与漏电流在本质上是相同的,针对超级电容的结构,从正极到负极具备高的耐电流特性。也就是说保留电容电荷,需要少量的额外电流,这个电流就是漏电流。而当移除充电电压时,电容不在负荷时,额外的电流会促使超级电容放电,称为自放电流。 电容串联 单体超级电容的电压一般为2.5V或2.7V,而在许多应用领域要求高电压,超级电容可以设置串联的方法来提高工作电压。确保单一的超级电容电压不超过其最大的额定工作电压是很重要的,否 则会导致电解液分解产生气体,ESR升高,寿命减短。 在放电或者充电时,在稳定状态下因容量和漏电流的差异,都将会导致串联的超级电容电压不平衡现象。在充电时,串联的超级电容将起到电压分配作用,因此低容量单体超级电容将承受更大的电压。例如: 2.5V1F的超级电容串联,两个容量分别为+20%与-20%,则电压分配如下: V1=V供*(C1/(C1+C2)) V供是供给给串联两端的充电电压。 假设V1是+20%容量偏差的电容,若供应充电电压是5V,则: V1=5*(1.2/(1.2+0.8))=3V 所以,为避免超出3V的超级电容浪涌电压范围,串联超级电容的容量必须在同一个趋势范围内。在选择上可以用主动电压平衡电路来降低因容量不平衡而产生的电压不平衡。注意大多数的电压 平衡方法都是取决于具体的应用。 主动电压平衡 主动电压平衡电路能使串联的超级电容上的电压与额定电压驱同而不管有多少电压不平衡产生。同时在确保精确的电压平衡时,主动平衡电路在稳定的状态下只有非常低的电流,只有当电压超出平衡范围时才会产生比较大的电流,这些特性使得主动电压平衡电路是超级电容频繁充放电及如电池等能量组件使用的最理想电路。 被动电压平衡 被动电压平衡电路是忽略超级电容的低内阻直接用高电阻来做平衡电路的一种方式,采用与电容并联电阻进行分压,这就允许电流从高电压的超级电容上流至低电压的超级电容上实现电压的平衡。最重要的是选择平衡电阻值来提供超级电容更高电流的流动而不增加超级电容的漏电流。同时要注意:“漏电流在温度升高的时候会上升的”。 被动平衡电路使用在不频繁对超级电容进行充放电的应用,同时要能够承受平衡电阻的额外电流负载时推荐使用。使用平衡电阻时,建议使用平衡电阻的应能提供最差超级电容漏电流50倍以上 的额外电流,根据最高使用温度选择在3.3KΩ-22KΩ。尽管更大阻值的平衡电阻在大多数情况下也能工作,但其不可能在不匹配的超级电容串联时起到保护作用。 逆向电压防护 当串联使用的超级电容被快速放电时,低容量超级电容的电压将潜在地变为负电压。这是不允许的,同时会降低超级电容的使用寿命。一个简单的防护逆向电压的方法是在超级电容上的两端增加一个二极管。使用适当的额定的限流二极管替代标准的二极管,还可以保护超级电容出现过电压现象。在选择二极管时,“二极管必须能够承受电源的峰值电流”。 脉动电流 超级电容虽然有比较低的内阻,但是相对电解电容而言,其内阻还是比较大的,若应用在脉冲电流的环境中容易引起内部发热,从而导致电解液分解、ESR增加,从而引起超级电容寿命缩短。为了保证超级电容的使用寿命,在应用在脉冲环境中时,最好要保证超级电容表面的温度上升不超过3℃。 比能量: 是指电容器在单位重量或单位体积下所给出的能量。(通常也叫:重量比能量、体积比能量、能量密度)单位:WH/KG、WH/L 超级电容器的能量与本身的容量与电压有关。其计算方式: E=CV2/2 (单位焦耳J)

电容计算公式

电容计算公式 教你两条不变应万变得原理: 1.电容器的计算依据是高斯通量定理和电压环流定律; 2.电感的计算依据是诺伊曼公式。要一两个答案查书就够了,要成高手只能靠你自己~慢慢学,慢慢练。 容量是电容的大小与电压没有关系。电压是电容的耐压范围。可变电容一般用在低压电路中电容的计算公式: 平板C=Q/U=Q/Ed=εS/4πkd 1. 所以E=4πkQ/εS即场强E与两板间距离d无关。2.当电容器两端接电时,即电压U一定时,U=Ed,所以U和d成正比。 容抗用XC表示,电容用C(F)表示,频率用f(Hz)表示,那么Xc=1/2πfc 容抗的单位是欧。知道了交流电的频率f和电容C,就可以用上式把容抗计算出来。 感抗用XL表示,电感用L(H)表示,频率用f(Hz)表示,那么XL=2πfL感抗的单位是欧。知道了交流电的频率f和线圈的电感L,就可以用上式把感抗计算出来。 已知容抗与感抗,则对应的电压与电流可以用欧姆定律算出,如果电容与电阻和电感一起使用,就要考虑相位关系了。 2、电容器的计算公式: C=Q\U =S\4*3.1415KD Q为电荷量 U为电势差 S为相对面积 D为距离 3.1415实际是圆周率 K为静电力常数并联:C=C1+C2 电路中各电容电压相等;总电荷量等于各电容电荷量之和。串 联:1/C=1/C1+1/C2 电路中各电容电荷量相等;总电压等于各电容电压之和。 电容并联的等效电容等于各电容之和!电容的并联使总电容值增大。当电容的耐压值符合要求,但容量不够时,可将几个电容并联。

3、Q=UI=I2Xc=U2/Xc 这是单相电容的 Xc=1/2*3.14fc 为什么我看到一个三相电容上面标的额定容量是30Kvar,而额定容量是472微法。额定电压是450伏。额定电流是38.5安三角接法, 答:C,KVar/(U×U×2×π×f×0.000000001) ,30/(450×450×2×3.14×50×0.000000001)?472(μF) 4、我知道电容公式有C=εS/D和C=Q/U,那么他们与电容"C"的关系,我特别想知道:我知道"U"与电容成反比,但是我在听老师讲时,没听到为什么成反比,就像知道"Q"与电容的关系时,就明白,一个电容放得的电荷越多就越大,还有"ε"是什么,与电容有什么关系, 再请问在计算中应注意什么,电容是如何阻直通交的呢, 五一长假除了旅游还能做什么, 辅导补习美容养颜家庭家务加班须知 答:电容c是常数,只跟自身性质有关,即使没有电压,电荷它也是存在的,ε是介电,跟电介质的性质有关,交流能不停的对电容充电放电(因为交流的方向是变化的),二直流无此性质,所以通交流阻直流,更专业的话,大学物理里面会讲,如果你要求不高的话就不用深究了 5、电 容降压 在常用的低压电源中,用电容器降压(实际是电容限流)与用变压器相比,电容降压的电源体积小、经济、可靠、效率高,缺点是不如变压器变压的电源安全。通过电容器把交流电引入负载中,对地有220V电压,人易触电,但若用在不需人体接触的电路内部电路电源中, 本弱点也可克服。如冰箱电子温控器或遥控电源的开/关等电源都是用电容器降压而制作的。 相对于电阻降压,对于频率较低的50Hz交流电而言,在电容器上产生的热能损耗很小,所以电容器降压更优于电阻降压。

超级电容选取计算

超级电容选取计算 在超级电容的应用中,很多用户都遇到相同的问题,就是怎样计算一定容量的超级电容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放电时间的推算,十分地方便。 C(F):超电容的标称容量; R(Ohms):超电容的标称内阻; ESR(Ohms):1KZ下等效串联电阻; Vwork(V):正常工作电压 Vmin(V):截止工作电压; t(s):在电路中要求持续工作时间; Vdrop(V):在放电或大电流脉冲结束时,总的电压降; I(A):负载电流; 超电容容量的近似计算公式, 保持所需能量=超级电容减少的能量。 保持期间所需能量=1/2I(Vwork+ Vmin)t; 超电容减少能量=1/2C(Vwork2 -Vmin2), 因而,可得其容量(忽略由IR引起的压降) C=(Vwork+ Vmin)It/( Vwork2 -Vmin2) 举例如下: 如单片机应用系统中,应用超级电容作为后备电源,在掉电后需要用超级电容维持100mA的电流,持续时间为10s,单片机系统截止工作电压为4.2V,那么需要多大容量的超级电容能够保证系统正常工作? 由以上公式可知: 工作起始电压Vwork=5V 工作截止电压Vmin=4.2V 工作时间t=10s 工作电源I=0.1A 那么所需的电容容量为:

C=(Vwork+ Vmin)It/( Vwork2 -Vmin2) =(5+4.2)*0.1*10/(5*5 -4.2*4.2) =1.25F 根据计算结果,可以选择5.5V 1.5F电容就可以满足需要了。 实例: 假设磁带驱动的工作电压5V,安全工作电压3V。如果直流马达要求0.5A 保持2秒(可以安全工作),问需要选用多大容量的超级电容? 解: C=(Uwork+ Umin)It/(Uwork*Uwork -Umin*Umin) =(5+3)*0.5*2/(5*5-3*3) =0.5F 因为5V的电压超过了单体电容器的标称工作电压。因而,可以将两电容器串联。如两相同的电容器串联的话,那每只的电压即是其标称电压2.5V。 如果我们选择标称容量是1F的电容器,两串为0.5F。考虑到电容器-20%的容量偏差,这种选择不能提供足够的裕量。可以选择标称容量是 1.5F 的电容器,能提供1.5F/2=0.75F。考虑-20%的容量偏差,最小值1.2F/2=0.6F。这种超级电容器提供了充足的安全裕量。大电流脉冲后,磁带驱动转入小电流工作模式,用超电容剩余的能量

电容电流计算

Y型时的电流: I相=Qc/(1.732×U相) △型时的电流: I线=Qc/(1.732×U线) (Qc=三相电容额定总量,单位:KVAR,U=电容额定电压,单位:KV) 公式:I=P/(根3×U),I表示电流,单位“安培”(A);P表示功率,单位:无功“千乏”(Kvar),有功“千瓦”(KW);根3约等于1.732;U表示电压,单位“千伏”(KV)。 I=40/(1.732×10)…………(10KV的电容) I=2.3(A) I=40/(1.732*0.4)…………(0.4KV的电容) I=57.7(A)。 回答人的补充 2009-11-30 16:54 计算单台电容器额定电流注意要点 一、当单台电容器为三相时,其标注的额定电压如6.6KV/√3和6.6KV。这两种标注方式主要区别在于说明此三相电容内部接线方式分为星型Y和三角型Δ两种。而加在三相电容器三个接线端电压均为线电压6.6KV。计算其额定电流时和标注中6.6KV/√3分母上的√3无关,不管是Y接法Δ接法, U均为6.6KV。而不是6.6KV/√3。根据三相电功率P=√3IU得出I=P/√3U(不论星型Y和三角型Δ接法。不考虑COSΦ。)。P为电容器额定容量Karv ,U为电网线电压。 二、当单台电容器为单相时,其标注的额定电压如6.6KV/√3和6.6KV,这两种标注方式主要区别在于说明: 1、标称6.6KV /√3的单台电容当组成电容器组接在三相电网时只能接成Y,电网线电压为6.6KV时,此时电容两个接线柱实际电压为6.6KV/√3即3.8KV。

否则当接成Δ时电容器就会过电压,当单只电容接电源时只能接在3.8KV电网中而不是6.6KV电网。这时计算单台电容器电流时I=P/U, P为电容器额定容量Karv , U为6.6KV/√3即3.8KV也就是电网电压的相电压而不是线电压6.6KV。 2、标称6.6KV的单台电容当组成电容器组接在三相电网时只能接成Δ,如果接成Y时,由于电容器两端实际电压降成相电压6.6KV/√3即3.8KV,他就达不到它的标称 Karv 值。如果三只这样的电容器组成电容器组按Δ型可直接接在线电压为6.6KV的三相电网中。单只电容可直接接在三相6.6KV其中两相上。计算电流时I=P/U,P为电容器额定容量Karv ,U为电网线电压。 信息来源: https://www.sodocs.net/doc/d8321067.html, 三、综上所述单台电容器计算电流时分以下三种情况: 1、电容器为三相电容时:(不论星型Y和三角型Δ接法,不考虑COSΦ)。 I=P/√3U P为电容器额定容量Karv ,U为电网线电压KV。 2、电容器为单相时: a、当标称电压为U/√3时 I=P/(U/√3)即I=√3(P/U) P为电容器额定容量Karv ,U为电网线电压KV。 b、当标称电压为U时 I=P/U P为电容器额定容量Karv ,U为电网线电压KV。

相关主题