搜档网
当前位置:搜档网 › 可靠性预计与MTBF值计算

可靠性预计与MTBF值计算

可靠性预计与MTBF值计算
可靠性预计与MTBF值计算

靠性预计与MTBF 值计

华为 S9712 产品可靠性指标预计报告

S9712产品可靠性指标预计报告(V1.0)

目录 1可靠性预计方法论 (4) 1.1单元可靠性预计方法 (4) 1.2器件级失效率预计 (4) 1.3单板级失效率预计 (4) 1.4系统级可靠性指标预计 (4) 1.5其他相关参数选取 (5) 2S9712产品典型配置及其可靠性模型 (6) 2.1S9712产品典型配置 (6) 2.2S9712产品典型配置可靠性模型 (6) 3S9712产品系统可靠性指标 (6) 3.1单元可靠性指标预计 (6) 3.2S9712产品系统可靠性指标 (8)

S9712产品可靠性指标预计报告 关键词:S9712产品,典型配置、可靠性预计 摘要:本报告建立了S9712产品典型配置的任务可靠性模型,主要使用商业产品通用的国际标准TELCORDIA SR-332《Reliability Prediction Procedure for Electronic Equipment》和公司企业标准《可靠性指标预计分配规范》,对系统任务可靠性指标进行计算。 缩略语: MTBF : Mean Time Between Failures,平均故障间隔时间,一般适用于可修系统; FITs : Failure in Time,失效率单位,1FITs=10-9/hr; MTTR : Mean Time To Repair,平均修复时间; Reference:

1 可靠性预计方法论 1.1 单元可靠性预计方法 本报告中单元可靠性采用“TELCORDIA SR-332, Reliability Prediction Procedure for Electronic Equipment ”中的Method I,计数法进行可靠性预计,该方法计算得到的是在工作温度40℃,50%的电应力下的失效率。 1.2 器件级失效率预计 元器件失效率计算公式为: Ti Si Qi Gi SSi πππλλ???= 其中: λGi ——第i 个器件的基本失效率; πQi ——第i 个器件的质量等级因子; πSi ——第i 个器件的电应力因子; πTi ——第i 个器件的温度应力因子; 对于情况1和情况2,由于在在40℃温度,50%的电应力下,πS =πT = 1.0。因此该公式可以简化为: Ssi = Gi Qi 1.3 单板级失效率预计 单板失效率是该单板上所有器件失效率的累加: ∑=?=n i SSi i E SS N 1 λπλ 其中: n ——不同器件类型的种类数目; Ni ——第i 种器件的个数; πE ——环境因子,对于地面固定的情况,πE =1.0。 1.4 系统级可靠性指标预计 冗余单元组成的系统,可采用Markov 状态图的方法进行可靠性指标建模。 串联单元组成的系统,直接将各单元的可用度相乘得到系统的可用度。 单元MTBF 是单元失效率的倒数: MTBF=1/λ。 A (Availability) = MTBF/(MTBF+MTTR) Downtime = 525600×(1-A) mins/yr

产品可靠性试验标准

内部机密 产品可靠性测试标准 文件版本:V1.0 江苏中讯数码电子有限公司 企业标准 文档编号 撰写人 审核人 批准人 创建时间 2010.01.01发布 2010.01.01 实施

文件修改履历

目录 一.目的 (4) 二.编制依据 (4) 三.适用范围 (4) 四.定义 (4) 五.主要职责 (4) 六.试验场所 (5) 七.可靠性测试内容 (5) 1.加速寿命测试 (5) 1.1跌落试验 (5) 1.2振动试验 (5) 1.3湿热试验 (6) 1.4静电试验 (6) 2.气候试应性测试 (7) 2.1低温试验 (7) 2.2高温试验 (7) 2.3盐雾试验 (7) 3.结构耐久测试 (8) 3.1按键/叉簧测试 (8) 3.2跌落测试 (8) 4.表面装饰测试 (8) 4.1丝印、喷油测试 (8) 5.特殊条件测试 (9) 5.1低温加电试验 (9) 5.1恒温湿热加电试验 (9) 八.最终检验 (9) 九.判断标准 (9) 十.试验程序 (10)

一 .目的 1.对产品硬件设计、制造进行验证确认符合相应国家标准; 2.在特定的可接受的环境下评估产品的质量和可靠性; 3.在特定的可接受的环境下评估产品的安全性; 4.统一并规范企业内产品硬件测试检验方法。 二.编制依据 1.GB/T2421-1999 电工电子产品环境试验第一部分:总则 2.GB/T2422-1995 电工电子产品环境试验术语 3.GB/T4796-2001 电工电子产品环境参数分类及其严酷程度分级 4.GB/T2423.1-2001 电工电子产品环境试验第1部分:试验方法试验A:低温 5.GB/T2423.1-2001 电工电子产品环境试验第2部分:试验方法试验B:高温 6.GB/T2423.1-2001 电工电子产品环境试验第2部分:试验方法试验Ed:自由跌落7.GB/T2423.10-1995 电工电子产品环境试验第2部分:试验方法试验Fc和导则:振动8.GB/T2423.3-1993 电工电子产品基本环境试验试验Ca:恒定湿热试验方法 9.GB/T2423.17-2001 电工电子产品环境试验第2部分:试验Ka盐雾试验方法 10.GB/T17626.2-1998 电磁兼容试验和测量技术静电放电抗扰度试验 三.适用范围 1.本文件使用于中讯数码有限公司所生产的所有产品。 2.根据技术中心的要求,本标准适用于提供相应的测试环境对一些部件进行可靠性测试四.定义 为了了解、考核、评价、分析和提高产品可靠性而进行的试验。 五.主要职责 1.技术中心 1.1定义项目/产品可靠性测试计划 1.2完成、跟踪项目/产品可靠性测试结果 1.3参与产品可靠性测试问题的分析及改进 1.4提供制定/修改可靠性测试程序及标准建议 1.5参与测试设备/仪器的日常管理、维护 1.6参与可靠性测试设备/仪器的开发 2.质管部

电力系统可靠性评估指标

电力系统可靠性评估指标 1.1 大电网可靠性的测度指标 1. (电力系统的)缺电概率 LOLP loss of load probability 给定时间区间内系统不能满足负荷需求的概率,即 ∑∈=s i i P LOLP 式中:i P 为系统处于状态i 的概率;S 为给定时间区间内不能满足负荷需求的系统状态全集。 2. 缺电时间期望 LOLE loss of load expectation 给定时间区间内系统不能满足负荷需求的小时或天数的期望值。即 ∑∈=s i i T P LOLE 式中:i P 、S 含义同上; T 为给定的时间区间的小时数或天数。缺电时间期望LOLE 通常用h/a 或d/a 表示。 3. 缺电频率 LOLF loss of load frequency 给定时间区间内系统不能满足负荷需求的次数,其近似计算公式为 ∑∈=S i i F LOLF 式中:i F 为系统处于状态i 的频率;S 含义同上。LOLF 通常用次/年表示。 4. 缺电持续时间 LOLD loss of load duration 给定时间区间内系统不能满足负荷需求的平均每次持续时间,即 LOLF LOLE LOLD = LOLD 通常用小时/次表示。 5. 期望缺供电力 EDNS expected demand not supplied 系统在给定时间区间内因发电容量短缺或电网约束造成负荷需求电力削减的期望数。即 ∑∈=S i i i P C EDNS 式中:i P 为系统处于状态i 的概率;i C 为状态i 条件下削减的负荷功率;S 含义同上。期望缺供电力EDNS 通常用MW 表示。

可靠性评估

可靠性概念理解: 可靠性是部件、元件、产品、或系统的完整性的最佳数量的度量。可靠性是指部件、元件、产品或系统在规定的环境下、规定的时间内、规定条件下无故障的完成其规定功能的概率。从广义上讲,“可靠性”是指使用者对产品的满意程度或对企业的信赖程度。 可靠性的技术是建立在多门学科的基础上的,例如:概率论和数理统计,材料、结构物性学,故障物理,基础试验技术,环境技术等。 可靠性技术在生产过程可以分为:可靠性设计、可靠性试验、制造阶段可靠性、使用阶段可靠性、可靠性管理。我们做的可靠性评估应该就属于使用阶段的可靠性。 机床的可靠性评定总则在GB/T23567中有详细的介绍,对故障判定、抽样原则、试验方式、试验条件、试验方法、故障检测、数据的采集、可靠性的评定指标以及结果的判定都有规范的方法。对机床的可靠性评估时,可以在此基础上加上自己即时的方法,做出准确的评估和数据的收集。 可靠性研究的方法大致可以分为以下几种: 1)产品历史经验数据的积累; 2)通过失效分析(Failure Analyze)方法寻找产品失效的机理; 3)建立典型的失效模式; 4)通过可靠性环境和加速试验建立试验数据和真实寿命之间的对应关系;5)用可靠性环境和加速试验标准代替产品的寿命认证; 6)建立数学模型描述产品寿命的变化规律; 7)通过软件仿真在设计阶段预测产品的寿命; 大致可把可靠性评估分为三个阶段:准备阶段、前提工作、重点工作。 准备阶段:数据的采集(《数控机床可靠性试验数据抽样方法研究》北京科技大学张宏斌) 用于收集可靠性数据, 并对其量化的方法是概率数学和统计学。在可靠性工程中要涉及到不确定性问题。我们关心的是分布的极尾部状态和可能未必有的载荷和强度的组合, 在这种情形下, 经常难以对变异性进行量化, 而且数据很昂贵。因此, 把统计学理论应用于可靠性工程会更困难。当前,对于数控机床可靠性研究数据的收集方法却很少有人提及, 甚至可以说是一片空白。目前, 可靠性数据的收集基本上是以简单随机抽样为主, 甚至在某些情况下只采用了某一个厂家在某一个时间段内生产的机床进行统计分析。由此所引发的问题就是: 这样收集的数据不能够很好地反映数控机床可靠性的真实状况, 同时其精度也不能够令人满意。 由于现在数控机床生产厂家众多、生产量庞大、机床型号多以及成产的批次多,这样都对数据的收集带来了很大的困难。因此,在数据采样时: (1)必须采用合理的抽样方法来得到可靠性数据; (2)简单随机抽样是目前普遍应用的抽样方法,但是必须抽取较大的样本量才能够获得较高的精度和信度; 针对以上的特点有三种数据采集的方法可以选择:简单随机抽样、二阶抽样、分层抽样。 (1)简单随机抽样:从总体N个单元中,抽取n个单元,保证抽取每个单元或者几个单元组合的概率相等。

可靠性指标

第五章 指标的统计与分析 可靠性主要指标依据《供电系统用户供电可靠性评价规程》选择了经常用于分析的六个关键指标分类,包括供电可靠率、用户平均停电时间、用户平均停电次数、平均停电用户数、停电持续时间。要掌握这些指标的定义和计算。 第一节 可靠性主要指标 1、用户平均停电时间 供电用户在统计期间内的平均停电小时数,是反映供电系统对用户停电时间的长短指标,记为AIHC-1, h /∑?=每次停电每次停电持续时间用户数用户平均停电时间(户) 总用户数 若不计外部影响时,则记为AIHC-2, 若不计系统电源不足限电时,则记作AIHC-3。 结合用户平均停电时间示意图讲解 2、供电可靠率 供电可靠率指在统计期间内,对用户有效供电时间总小时数与统计期间小时数的比值,是反映的供电系统对用户供电的可靠度的指标,记作RS 1, 1100%??=-? ??? 用户平均停电时间供电可靠率统计期间时间 若不计外部影响时,则记作RS 2; 若不计系统电源不足限电时,则记作RS 3。 结合可靠率指标计算中各类时间关系示意图讲解 3、用户平均停电次数

供电用户在统计期间内的平均停电次数,是反映供电系统对用户停电频率的指标, /∑=(每次停电用户数)用户平均停电次数(次户)总用户数 4、平均停电用户数 在统计期间内,平均每次停电的用户数,是反映平均停电范围大小的指标,其公式如下 /∑=(每次停电用户数)平均停电用户数(户次)停电次数 5、预安排停电平均持续时间 在统计期间内,预安排停电的每次平均停电小时数。本指标统计的是统计期间内平均每次预安排工作的持续停电时间,主要反映了总体预安排工作的合理性, h /∑=(预安排停电时间)预安排停电平均持续时间(次)预安排停电次数 6、故障停电平均持续时间 在统计期间内,故障停电的每次平均停电小时数。本指标统计的是统计期间内平均每次故障停电的持续停电时间,主要反映了平均每次对故障停电恢复能力的水平, h /∑=(故障停电时间)故障停电平均持续时间(次)故障停电次数

天然气管网系统可靠性评价指标研究

天然气管网系统可靠性评价指标研究 发表时间:2019-09-22T01:20:04.140Z 来源:《基层建设》2019年第19期作者:刘亮[导读] 摘要:科技的进步,促进人们对能源需求的增多。贵州乌江新能源开发有限责任公司贵州省贵阳市 550002摘要:科技的进步,促进人们对能源需求的增多。天然气作为清洁的化石能源已经广泛应用于现代化建设当中,其需求量迅猛增长。天然气管网作为连接上游气源和下游市场的生命线,在国民经济和能源安全领域具有重要作用和意义。因此,确保供气管网系统安全可靠至关重要。本文就天然气管网系统可靠性评价指标展开探讨。 关键词:天然气管网系统;可靠性指标;供气可靠性 1可靠性指标天然气管网系统可靠性指标是开展天然气管网系统可靠性评价的前提,也是后期实行可靠性管理的基础。可靠性指标体系的应用对象分为系统和单元两方面,其中系统包括管网、管道、站场3个层级,单元则包括管段、压缩机组、阀门、工艺管道、储气库、LNG接收站、资源及市场等各级系统的主要组成要素。结合天然气管道生产实际,管网系统的可靠性指标应至少包含以下3类:狭义的可靠性类,反映系统在规定条件下和规定时间内完成规定功能的能力;健壮性类,反映系统抗干扰能力;维修性类,反映系统发生故障后通过修复,从而恢复正常工作能力。可靠性指标体系的不同应用对象由于各自不同特点,可能适用上述3类指标中的2种或3种,如管网系统只涉及可靠性及健壮性两类指标,管道、站场系统以及一般设备单元泽可适用全部类别指标。(图1) 图1 天然气管网系统可靠性指标分类示意图对每个对象的广义各类可靠性指标而言,考虑到其多项指标间的逻辑计算关系及管理的需要,需将每类指标划分为基本指标、中间指标、综合指标3个层次(图2)。其中,基本指标为可在现场直接测量或能够利用基本参数简单计算而获得的指标;中间指标是能够反映对象某项特定性能,并能利用若干基本指标计算而获得的指标;综合指标则是狭义的可靠性类/维修性类/健壮性类的综合性能指标。一般而言,基本指标和中间指标数量不限,而综合指标数量较少,一般为1。此外,根据天然气管道管理需要,某些对象还可设置附属指标,其虽然不参与基本指标、中间指标及综合指标的计算,但可以从不同角度反映对象可靠性(狭义)、维修性及健壮性方面的能力,属于常用管理指标。在确立天然气管网系统可靠性具体指标时,要遵循以下3个原则:①能够准确反映出对象的性能,指标具体含义精准、无异议;②尽量不使用需要现场打分或专家咨询等主观手段获取分值的指标;③确保指标计算所需基础数据能够通过统计或现场检测的方法获取,否则该指标不能有效使用。 图2 天然气管网系统可靠性(广义)指标分层示意图 2管网系统水力可靠性评价指标天然气管网水力可靠性是指系统在规定时间和条件下,完成规定的供气任务的能力,用于对系统的供气能力进行评价。采用输出可用度AT、载流可用度Ao以及时刻t水平c的可用度Ac(t)等指标对油气生产运输系统的水力可靠性进行评价。 3供气可靠度供气可靠度指管网系统在规定条件和时间内,完成规定供气任务的概率。系统平均供气不足时间SAIDI指在给定时间和规定条件下,管网系统因各类原因导致的不能满足供气任务的时间均值。系统平均供气不足频率SAIFI指在给定时间和规定条件下,管网系统因各类原因造成下游用户缺气的平均次数。具体表达式为: 4天然气管道行业的可靠性评价方法天然气管道的可靠性是指在规定时间内,系统按照规定运行条件完成规定输送任务的能力。考虑到天然气管道的任务输量及最大承压等因素,相对原油管道,天然气管道系统的冗余度较小,且用户需求多样,管道的局部失效就可能引发大面积连锁事故的发生。限于此,天然气管道系统对管体结构安全性和供气保障能力都有较高的要求。中国工程院院士黄维和率先提出了天然气管道系统可靠性的概念,并对系统可靠性的评价方法和管理框架进行了初步设计。对于单条天然气管道系统的可靠性分析,重点在于管体结构可靠,在统计学方法的基础上明确各管道之间的逻辑关系,为天然气管网系统的可靠性分析奠定基础。而对于天然气管网系统的可靠性管理,需综合系统工程理论和现代物流理论的研究方法,统筹规划各子系统的可靠性历史结果,运用统计和概率的方法反映管网系统的可靠程度。天然气管道系统可靠的基本要求为保障运行安全,因而对于可靠性的研究也应以满足需求侧的供应要求作为评价标准,在保障管体结构安全的前提下实现自身功能。目前,可将天然气管道可靠性评价方法分为结构可靠性和供气可靠性两类,以实现“全方位、全生命周期”的科学管理,保障管道系统安全高效地运行。结语

电子产品可靠性试验国家实用标准应用清单

电子产品可靠性试验国家标准清单 GB/T 15120.1-1994 识别卡记录技术第1部分: 凸印 GB/T 14598.2-1993 电气继电器有或无电气继电器 GB/T 3482-1983 电子设备雷击试验方法 GB/T 3483-1983 电子设备雷击试验导则 GB/T 5839-1986 电子管和半导体器件额定值制 GB/T 7347-1987 汉语标准频谱 GB/T 7348-1987 耳语标准频谱 GB/T 9259-1988 发射光谱分析名词术语 GB/T 11279-1989 电子元器件环境试验使用导则 GB/T 12636-1990 微波介质基片复介电常数带状线测试方法 GB/T 2689.1-1981 恒定应力寿命试验和加速寿命试验方法总则 GB/T 2689.2-1981 寿命试验和加速寿命试验的图估计法(用于威布尔分布) GB/T 2689.3-1981 寿命试验和加速寿命试验的简单线性无偏估计法(用于威布尔分布) GB/T 2689.4-1981 寿命试验和加速寿命试验的最好线性无偏估计法(用于威布尔分布) GB/T 5080.1-1986 设备可靠性试验总要求 GB/T 5080.2-1986 设备可靠性试验试验周期设计导则 GB/T 5080.4-1985 设备可靠性试验可靠性测定试验的点估计和区间估计方法(指数分布)

GB/T 5080.5-1985 设备可靠性试验成功率的验证试验方案 GB/T 5080.6-1985 设备可靠性试验恒定失效率假设的有效性检验 GB/T 5080.7-1986 设备可靠性试验恒定失效率假设下的失效率与平均无故障时间的验证试验方案GB/T 5081-1985 电子产品现场工作可靠性有效性和维修性数据收集指南 GB/T 6990-1986 电子设备用元器件(或部件)规中可靠性条款的编写指南 GB/T 6991-1986 电子元器件可靠性数据表示方法 GB/T 6993-1986 系统和设备研制生产中的可靠性程序 GB/T 7288.1-1987 设备可靠性试验推荐的试验条件室便携设备粗模拟 GB/T 7288.2-1987 设备可靠性试验推荐的试验条件固定使用在有气候防护场所设备精模拟 GB/T 7289-1987 可靠性维修性与有效性预计报告编写指南 GB/T 9414.1-1988 设备维修性导则第一部分: 维修性导言 GB/T 9414.2-1988 设备维修性导则第二部分: 规与合同中的维修性要求 GB/T 9414.3-1988 设备维修性导则第三部分: 维修性大纲 GB/T 9414.4-1988 设备维修性导则第五部分: 设计阶段的维修性研究 GB/T 9414.5-1988 设备维修性导则第六部分: 维修性检验 GB/T 9414.6-1988 设备维修性导则第七部分: 维修性数据的收集分析与表示 GB/T 12992-1991 电子设备强迫风冷热特性测试方法 GB/T 12993-1991 电子设备热性能评定

可靠性定义及其度量指标

可靠性定义及其度量指标 【大纲考试内容要求】: 1、了解机械失效三个阶段和维修度、有效度、平均无故障工作时间; 2、熟悉可靠性、故障率、可靠性预计、人机界面设计要点。 【教材内容】: 第四节机械的可靠性设计与维修性设计 一、可靠性定义及其度量指标 (一)可靠性定义 所谓可靠性是指系统或产品在规定的条件和规定的时间内,完成规定功能的能力。 这里所说的规定条件包括产品所处的环境条件(温度、湿度、压力、振动、冲击、尘埃、雨淋、日晒等)、使用条件(载荷大小和性质、操作者的技术水平等)、维修条件(维修方法、手段、设备和技术水平等)。在不同规定条件下,产品的可靠性是不同的。 规定时间是指产品的可靠性与使用时间的长短有密切关系,产品随着使用时间或储存时间的推移,性能逐渐劣化,可靠性降低。所以,可靠性是时间的函数。这里所规定的时间是广义的,可以是时间,也可以用距离或循环次数等表示。 (二)可靠性度量指标 1.可靠度 可靠度是可靠性的量化指标,即系统或产品在规定条件和规定时间内完成规定功能的概率。可靠度是时间的函数,常用R(t)表示,称为可靠度函数。 产品出故障的概率是通过多次试验中该产品发生故障的频率来估计的。例如,取N个产品进行试验,若在规定时间t内共有Nf(t)个产品出故障,则该产品可靠度的观测值可用下式近似表示:R(t)≈[N—Nf(t)]/N (4—7) 与可靠度相反的一个参数叫不可靠度。它是系统或产品在规定条件和规定时间内未完成规定功能

的概率,即发生故障的概率,所以也称累积故障概率。 不可靠度也是时间的函数,常用F(t)表示。同样对N个产品进行寿命试验,试验到瞬间的故障数为Nf(t),则当N足够大时,产品工作到t 瞬间的不可靠度的观测值(即累积故障概率)可近似表示为: F(t)≈Nf(t)/N (4—8) 可靠度数值应根据具体产品的要求来确定,一般原则是根据故障发生后导致事故的后果和经济损失而定。 2.故障率(或失效率) 故障率是指工作到t 时刻尚未发生故障的产品,在该时刻后单位时间内发生故障的概率。故障率也是时间的函数,记为γ(t),称为故障率函数。 产品的故障率是一个条件概率,它表示产品在工作到t 时刻的条件下,单位时间内的故障概率。它反映t 时刻产品发生故障的速率,称为产品在该时刻的瞬时故障率且γ(t),习惯称故障率。故障率的观测值等于N个产品在t时刻后单位时间内的故障产品数△Nf(t)/△t与在t时刻还能正常工作的产品数Ns(t)之比,即: γ(t)=△Nf(t)/[Ns(t)·△t] (4——9) 故障率(失效率)的常用单位为(1/106h)。 产品在其整个寿命期间内各个时期的故障率是不同的,其故障率随时间变化的曲线称为寿命的曲线,也称浴盆曲线,如图4—6所示。 由图可见,产品的失效过程可分为以下3个阶段:

军用飞机可靠性维修性指标确定方法

军用飞机可靠性维修性指标确定方法 来源:航空标准化与质量1999 作者:任占勇发表时间:2010-07-07 09:42:32 摘要介绍了军用飞机常用的可靠性维修性量值及其相互关系,阐述了确定军用飞机可靠性维修性指标的基本依据和考虑因素,给出了确定可靠性维修性指标的基本程序。 关键词军用飞机可靠性维修性指标 随着GJB 450《装备研制与生产的可靠性大纲》和GJB 368《装备维修性通用规范》的实施和应用,装备的可靠性维修性(以下简写为R/M)水平已作为合同指标摆到与装备的性能指标同等重要的程度。因此,R/M指标也就成了订购方和承制方共同关心的问题。尽管已经制定了GJB 1909.1《装备可靠性维修性参数选择和指标确定要求总则》和GJB 1909.5《装备可靠性维修性参数选择和指标确定要求军用飞机》,但由于我国R/M工程起步较晚,尚缺乏定量设计的经验和量化数据,在R/M指标的确定过程中仍存在许多问题,如确定指标时应考虑哪些因素,各个量值间的相互关系等。本文针对军用飞机R/M指标的确定作一简要论述,以供应用GJB 1909.5时参考和借鉴。 1常用的R/M量值及其相互关系 1.1目标值、门限值和研制结束门限值 目标值、门限值和研制结束门限值均为使用指标,它们一般以使用参数的形式表示,主要用于订购方表述对飞机R/M的使用需求。 目标值是订购方在权衡分析后期望飞机在成熟期达到的使用指标。实现这一指标要求,可使军用飞机达到最佳的效费比,同时,它也是确定门限值和规定值的依据。 门限值是订购方根据目标值及有关因素,如飞机的复杂程度、现有技术水平、投入的经费等经综合分析后,要求飞机在成熟期必须达到的使用指标。这一指标,是满足军用飞机规定任务所必需的最低的R/M水平,同时,它也是确定研制结束门限值和最低可接受值的依据。 研制结束门限值是订购方根据门限值及有关因素,如进度要求、飞机预期的使用频度、达到成熟期的时间要求、预期的增长率等经综合分析后,要求飞机在研制结束时必须达到的使用指标。这一指标,可使交付订购方的飞机具有初步的作战能力,同时,它也是确定研制结束最低可接受值的依据。 表1和表2给出了部分国外航空产品的R/M目标值、门限值和研制结束门限值。 表1国外部分航空产品的R/M 的目标值与门限值 产品名称参数门限值目标值门限值与目标值之比, % F/A-18战 斗机 MFHBF(FH) 3.7 5.0 74 B-1B轰炸 机 MTBM(FH) 1.0 2.0 50 UH-60A直MFHBF(FH) 3.5 4.0 88

可靠性评价文件

喷气织机 可靠性评价文件 (试行) 二O一O年六月

可靠性文件前言 前言 为了提高我国纺织机械产品质量水平和可靠性,增强企业竞争力,中国纺织机械器材工业协会提出了建立纺织关键设备可靠性评价体系的要求,并组织喷气织机生产企业、使用单位和科研院所编写了本文件。本文件经中国纺织机械器材工业协会组织审核后定稿。 本文件共由三个部分组成: ——第一部分:喷气织机可靠性试验评定规范 ——第二部分:喷气织机可靠性分配的原则和方法 ——第三部分:喷气织机的故障模式及判据 参与编制单位:无锡丝普兰喷气织机制造有限公司、必佳乐(苏州工业园区)纺织机械有限公司、经纬纺织机械股份有限公司、中国纺织机械股份有限公司、山东日发纺织机械有限公司、广东丰凯机械股份有限公司、浙江泰坦股份有限公司、石家庄纺织机械有限责任公司、青岛星火集团、常熟纺织机械厂有限公司、东华大学、中国恒天集团、国家纺织机械质量监督检验中心

喷气织机可靠性试验评定规范 1 范围 本文件规定了喷气织机(以下简称织机)可靠性测定试验方法及其评价指标的计算方法。 本文件适用于对批量生产的织机进行可靠性测定试验及评定,织机上的器材(喷嘴、钢筘、综框、综丝、停经片等)、电气装置(电控箱、储纬器、电磁离合器、经停装置、纬停装置等)和微机控制系统,也可以同主机同时进行测定试验。 2 引用文件 GB /T3187 —1994 可靠性、维修性术语 GB/T5080.1—1986 设备可靠性试验 总要求 GB/T5080.4—1985 设备可靠性试验 可靠性测定试验的点估计和区间估计方法(指数分布) GJB 899—1990 可靠性鉴定和验收试验 FZ/T 9400× 喷气织机 3 试验的目的 3.1 通过可靠性试验,了解喷气织机现有的可靠性水平,找出产品薄弱环节,为企业提高产品可靠性提供依据,不断满足用户对设备的可靠性要求。 3.2 通过测定喷气织机可靠性的指标值,验证产品的可靠性水平,提高生产企业的知名度和影响力。 4 测定试验指标及计算方法 4.1 早期失效期 早期失效期主要反映产品因环境、设计、工艺、安装等方面不良引起的故障。 4.2 早期失效期考核要求 4.2.1 对于新产品设计,企业应进行产品的分阶段的可靠性设计和评审。 4.2.2 零部件加工和整机安装,应具备相应的过程控制和工艺流程规范。 4.2.3 整机出厂前,经检测合格后,应按相关试验条件进行运转试验。 4.3 早期失效期的平均无故障工作时间MTBF ∑==n i i t r MTBF 1 1. ……………… ( 1 ) 式中:r — 在试验时间内织机累计故障次数 n — 织机抽样试验台数 t i — 在评定周期内第i 台织机的实际工作时间 注:试验中若r = 0,则延长试验时间,直到出现故障为止。 4.4 偶然失效率期的平均无故障工作时间MTBF

软件可靠性的评价准则

软件可靠性的评价准则 迄今为止,尚无一个软件可靠性模型对软件的不同特性和不同使用环境都有效。已公开发表的100余种软件可靠性模型,表达形式不同,适应性各异,与实际的软件开发过程有较大差异。而且,新模型还在不断发表。因此,在进行软件可靠性预计、分析、分配、评价和设计之前,对软件可靠性模型进行评价及选择与软件项目相符或相近的模型非常重要。通过建立有效的评价准则,在考虑它们与各种软件的关系的基础上,对拟评价的可靠性模型就有效性、适应性和模型能力等进行评价,判定它们的价值,比较它们的优劣,然后选择有效的软件可靠性模型。另一方面,在可接受的模型之间无法做出明确的选择时,可根据模型的使用环境等,在模型评价准则的基础上,进行模型择优。当然,软件可靠性模型的评价不仅依赖于模型的应用,还依赖于理论的支持和丰富的、高质量可靠性数据的支持。软件可靠性模型的评价最早始于1984年Iannino、Musa、Okumoto和Littlewood所提出的原则。根据这一原则,结合后人的工作,形成了基本的软件可靠性评价准则集。它们是软件可靠性模型比较、选择和应用的基础。 准则一:模型预测有效 软件可靠性模型最重要的评价指标是模型预测的有效性。它根据软件现在和过去的故障 行为,用模型预测软件将来的故障行为和可靠性水平。它主要通过能有效描述软件故障随机过程特性的故障数方式对模型进行描述与评价。基于软件故障时间特性的随机过程也是一种常用的方法,而且这两种方法相互重叠。 要确定软件可靠性模型预测的有效性,首先要比较模型预测质量。这种比较通常通过相 对误差法、偏值、U图法、Y图法、趋势法等方法进行。故障数度量是一种在工程上被广泛应 用的方法。此外,还可以通过比较不同数据集合所做出的中位线图形来评价模型预测的有效性。如果一个模型产生的曲线最接近于0,则该模型是最优的。而且,这种有效性测定方法有效地克服了规范化图形评价与具体软件项目之间的联系,保证了它的独立性。 用给定可靠性数据对软件可靠性模型进行比较时,必须考察拟合模型与观察数据的一致 性和符合性。当然,根据拟合模型进行采样,是否可以获得足够的观察数据非常重要。拟合优度检验是一种系统地表达并证明观察数据和拟合模型之间全局符合性的方法,使用最广泛的是x2检验。 1.准确性 软件可靠性模型预测的准确性可用前序似然函数来测定。设观察到的失效数据对应于软 件相继失效之间的时间序列t1,t2,..,ti-1,并用这些数据来预测软件在未来可能的Ti,即希 望得到Ti的真实概率密度函数Fi(t)的最优估计值。假设以t1,t2,...,ti-1为基础预测Ti的 分布Fi(t)的概率密度函数 @@42D11000.GIF;表达式1@@ 对Ti+1,Ti+2,...,Ti+n的这种向前一步预测,即进行了n+1次预测之后的前序似然函数为 @@42D11001.GIF;表达式2@@ 由于这种度量常常接近于0,所以常用其自然对数进行比较。假定比较的两个软件可靠性 模型分别为A和B,则对它们进行n次预测之后的前序似然比为 @@42D11002.GIF;表达式3@@

系统可靠性和安全性区别和计算公式

2.1 概述 2.1.1 安全性和可靠性概念 [10] 安全性是指不发生事故的能力,是判断、评价系统性能的一个重要指标。它表明系 统在规定的条件下,在规定的时间内不发生事故的情况下,完成规定功能的性能。其中事故指的是使一项正常进行的活动中断,并造成人员伤亡、职业病、财产损失或损害环境的意外事件。 可靠性是指无故障工作的能力,也是判断、评价系统性能的一个重要指标。它表明 系统在规定的条件下,在规定的时间内完成规定功能的性能。系统或系统中的一部分不能完成预定功能的事件或状态称为故障或失效。系统的可靠性越高,发生故障的可能性越小,完成规定功能的可能性越大。当系统很容易发生故障时,则系统很不可靠。2.1.2 安全性和可靠性的联系与区别 [10] 在许多情况下,系统不可靠会导致系统不安全。当系统发生故障时,不仅影响系统 功能的实现,而且有时会导致事故,造成人员伤亡或财产损失。例如,飞机的发动机发生故障时,不仅影响飞机正常飞行,而且可能使飞机失去动力而坠落,造成机毁人亡的后果。故障是可靠性和安全性的联结点,在防止故障发生这一点上,可靠性和安全性是一致的。因此,采取提高系统可靠性的措施,既可以保证实现系统的功能,又可以提高系统的安全性。 但是,可靠性还不完全等同于安全性。它们的着眼点不同:可靠性着眼于维持系统 功能的发挥,实现系统目标;安全性着眼于防止事故发生,避免人员伤亡和财产损失。可靠性研究故障发生以前直到故障发生为止的系统状态;安全性则侧重于故障发生后故障对系统的影响。 由于系统可靠性与系统安全性之间有着密切的关联,所以在系统安全性研究中广泛 利用、借鉴了可靠性研究中的一些理论和方法。系统安全性分析就是以系统可靠性分析

发电设备可靠性评价指标

发电设备可靠性评价指标 8.1计划停运系数(POF ) %100%100?=?=PH POH POF 统计期间小时计划停运小时 8.2非计划停运系数(UOF ) %100%100?=?=PH UOH UOF 统计期间小时非计划停运小时 8.3强迫停运系数(FOF ) %100%100?=?= PH FOH FOF 统计期间小时强迫停运小时 8.4可用系数(AF ) %100%100?=?=PH AH AF 统计期间小时可用小时 8.5运行系数(SF ) %100%100?=?= PH SH SF 统计期间小时运行小时 8.6机组降低出力系数(UDF ) %100%100?=?=PH EUNDH UDF 统计期间小时降低出力等效停运小时 8.7等效可用系数(EAF ) %100%100?-=?=PH EUNDH AH EAF 统计期间小时效停运小时可用小时-降低出力等 8.8毛容量系数(GCF ) %100%100??=??=GMC PH GAAG GCF 毛最大容量统计期间小时毛实际发电量 8.9利用系数(UTF) 利用小时 UTH UTF=--------------×100%=----×100% 统计期间小时 PH 8.10出力系数(OF ) %100%100??=??=GMC SH GAAG OF 毛最大容量运行小时毛实际发电量 %100%100?=?=SH UTH 运行小时利用小时 8.11强迫停运率(FOR ) %100%100?+=?=SH FOH GAAG FOR 时强迫停运小时+运行小强迫停运小时 8.12非计划停运率(UOR ) %100%100?+=?= SH UOH UOH UOR 小时非计划停运小时+运行非计划停运小时 8.13等效强迫停运率(EFOR ) %100321?+++=效备用停机小时之和 第类非计划降低出力等强迫停运小时运行小时停运小时之和类非计划降低出力等效、、第强迫停运小时EFOR =%100) 321()321(?+++++++ERUDH ERUDH ERUDH FOH SH EDH EUDH EUDH FOH 8.14强迫停运发生率(FOOR )(次/年)

产品可靠性

产品可靠性 元件、产品、系统在一定时间内、在一定条件下无故障地执行指定功能的能力或可能性。可通过可靠度、失效率、平均无故障间隔等来评价产品的可靠性。 目录 1简介2要素3定义4测试5重要性6主要特征7意义8实施9其他信息10集成电路的可靠性10.1可靠性设计10.2可靠性测试 1简介 根据国家标准GB-6583的规定,环境可靠性是指:产品在规定的条件下、在规定的时间内完成规定的功能的能力。产品在设计、应用过程中,不断经受自身及外界气候环境及机械环境的影响,而仍需要能够正常工作,这就需要用试验设备对其进行验证,这个验证基本分为研发试验、试产试验、量产抽检三个部分。 一般所说的“可靠性”指的是“可信赖的”或“可信任的”。我们说一个人是可靠的,就是说这个人是说得到做得到的人,而一个不可靠的人是一个不一定能说得到做得到的人,是否能做到要取决于这个人的意志、才能和机会。同样,一台仪器设备,当人们要求它工作时,它就能工作,则说它是可靠的;而当人们要求它工作时,它有时工作,有时不工作,则称它是不可靠的。 对产品而言,可靠性越高就越好。可靠性高的产品,可以长时间正常工作(这正是所有消费者需要得到的);从专业术语上来说,就是产品的可靠性越高,产品可以无故障工作的时间就越长。 简单的说,狭义的“可靠性”是产品在使用期间没有发生故障的性质。例如一次性注射器,在使用的时间内没有发生故障,就认为是可靠的;再如某些一旦发生故障就不能再次使用的产品,日光灯管就是这类型的产品,一般损坏了只能更换新的。 从广义上讲,“可靠性”是指使用者对产品的满意程度或对企业的信赖程度。而这种满意程度或信赖程度是从主观上来判定的。为了对产品可靠性做出具体和定量的判断,可将产品可靠性可以定义为在规定的条件下和规定的时间内,元器件(产品)、设备或者系统稳定完成功能的程度或性质。例如,汽车在使用过程中,当某个零件发生了故障,经过修理后仍然能够继续驾驶。 产品实际使用的可靠性叫做工作可靠性。工作可靠性又可分为固有可靠性和使用可靠性。固有可靠性是产品设计制造者必须确立的可靠性,即按照可靠性规划,从原材料和零部件的选用,经过设计、制造、试验,直到产品出产的各个阶段所确立的可靠性。使用可靠性是指已生产的产品,经过包装、运输、储存、安装、使用、维修等因素影响的可靠性。 2要素 可靠性包含了耐久性、可维修性、设计可靠性三大要素。 耐久性:产品使用无故障性或使用寿命长就是耐久性。例如,当空间探测卫星发射后,人们希望它能无故障的长时间工作,否则,它的存在就没有太多的意义了,但从某一个角度来说,任何产品不可能100%的不会发生故障。 可维修性:当产品发生故障后,能够很快很容易的通过维护或维修排除故障,就是可维修性。像自行车、电脑等都是容易维修的,而且维修成本也不高,很快的能够排除故障,这些都是事后维护或者维修。而像飞机、汽车都是价格很高而且非常注重安全可靠性的要求,这一般通过日常的维护和保养,来大大延长它的使用寿命,这是预防维修。产品的可维修性与产品的结构有很大的关系,即与设计可靠性有关。

风力发电设备可靠性评价规程

风力发电设备可靠性评价规程(试行) 1 范围 1.1 本规程规定了风力发电设备可靠性的统计办法和评价指标。适用于我国境内的所有风力发电企业发电能力的可靠性评价。 1.2 风力发电设备的可靠性统计评价包括风电机组的可靠性统计评价和风电场的可靠性统计评价两部分。 1.3 风电机组的可靠性统计评价范围以风电机组出口主开关为界,包括风轮、传动变速系统、发电机系统、液压系统、偏航系统、控制系统、通讯系统以及相应的辅助系统。 1.4 风电场的可靠性统计评价范围包括风电场内的所有发电设备,除了风电机组外,还包括箱变、汇流线路、主变等,及其相应的附属、辅助设备,公用系统和设施。 2 基本要求 2.1 本规程中指标评价所要求的各种基础数据报告,必须尊重科学、事实求是、严肃认真、全面而客观地反应风力发电设备的真实情况,做到准确、及时、完整。 2.2 与本规程配套使用的“风电设备可靠性管理信息系统”软件及相关代码,由中国电力企业联合会电力可靠性管理中心(以下简称“中心”)组织编制,全国统一使用。 3状态划分 风电机组(以下简称机组)状态划分如下: 运行 (S) 可用(A) 调度停运备用

备用 (DR) (R) 场内原因受累停运备用 在使用受累停运备用 (PRI) (ACT) (PR) 场外原因受累停运备用 (PRO) 计划停运 不可用(U) (PO) 非计划停运 (UO) 4 状态定义 4.1 在使用(ACT)——机组处于要进行统计评价的状态。在使用状态分为可用(A)和不可用(U)。 4.2 可用(A)——机组处于能够执行预定功能的状态,而不论其是否在运行,也不论其提供了多少出力。可用状态分为运行(S)和备用(R)。 4.2.1 运行(S)——机组在电气上处于联接到电力系统的状态,或虽未联接到电力系统但在风速条件满足时,可以自动联接到电力系统的状态。机组在运行状态时,可以是带出力运行,也可以是因风速过高或过低没有出力。 4.2.2 备用(R)——机组处于可用,但不在运行状态。备用可分为调度停运备用(DR)和受累停运备用(PR)。

电子产品可靠性的主要指标

5.1.2 可靠性的主要指标 5.1.1节提到可以用产品平均正常工作时间的长短来表示产品可靠性的大小,除此之外,还有其他一些方法来表示产品的可靠性的大小。表达可靠性的主要数量指标通常 有可靠度、故陈率、平均寿命、失效率和平均修复时间。 1.可冕废[正常工作的概率3 产品的可靠度是指产品在规定的条件和规定的时间内,完成规定功能的概率,用 只(‘)表示。图5—1是在时间轴上表示各个时刻点上产品的工作情况。希迪电子 受试验的产品的起始数为N,即在T=o时刻,有N个产品能正常工作,在o到‘时 间内发生故障的产品数为M,到了=:时刻还朗正常工作的产品数为N—n,这个数与受试 验产品起始数N之比,即为‘时刻产品工作的概率,也就是产品在‘时刻的可靠度只(c), 用公式表示即为 由于R(t)是一个概率,所以 在试验开始时,R(t)=1,产品全部完好。随着试验期的延长,R(t)<1。即出现了失 效产品。试验一直延续下去,直到产品全部达到了寿命终止期,因此,R(t)越 接近于1,表示可靠度越大,该产品的可靠性也越大。 式中N要足够大。否则会得出不正确的结论,的含义是产品超过了规定的时间,即超过了使用寿命。 2.故潭串 故障率用F(t)表示,表示产品在t时刻发生故障的概率,显然F(t)与R(t)是对立事 件,g此二者的关系应为 3.平均寿命

产品的平均寿命指一批产品的寿命的平均值,用表示。这里有两种情况,一种是不可修复的产品,即发生故障后不能修理或一次性使用的产品,如海底电缆、人造卫星上的产品‘另一种是可修复的产品,即发生故障后经修理,仍能继续使用,如电视机、手机等电子产品,它们都是居于这一种。这两种产品的平均寿命的含义不一样。 (1)对不可修复的产品。如图5—3所示为一批不可修复的产品的工作寿命示意图。 设一批不可修复的产品总数为N,钽电容其中第i个产品工作到‘‘时刻发生故障,这个产品的寿 命为Ti,这一批产品各自的寿命分别为t1,t2,…Ti,…,Tn,这一批产品的平均寿命为,根据平均寿命的定义可知 显然它是指发生故障前正常工作时间的平均值,记作MTTF(Mean Time To Failure)。 显然,式[5—7)表示的是一批可修复的产品两次相邻故障问的平均正常工作时间,称 为可修复产品的平均寿命,记作MTBF(Mean Time Btween Failure)。 4.失效率

系统可靠性分配报告

项目名称 系统可靠性分配报告 编制:___________________ 审核:___________________ RAMS经理:___________________ 技术经理:___________________

目录 1.概述 (3) 2.可靠性建模 (3) 3.可靠性指标分配 (3) 3.1可靠性指标分配方法 (3) 3.2可靠性指标分配原则 (4) 3.3系统的可靠性分配 (6)

1.概述 正文宋体、小四、行距固定值20磅 …… 2.可靠性建模 正文宋体、小四、行距固定值20磅 …… 3.可靠性指标分配 可靠性分配即根据项目技术协议中规定的可靠性指标,按照一定的方法合理的分配到各个子系统功能模块或部组件,确定薄弱环节,采取有效的措施改进设计,从而保证各部组件、各分系统以及全系统达到可靠性指标要求。可靠性分配时一个自上而下,由大到小,从整体到局部,逐步分解,分配到各分系统,设备和元器件的过程。可靠性分配的目的是使各级设计人员明确其可靠性设计要求,根据要求估计所需的人力、时间和资源,并研究实现这个要求的可能性及办法。 3.1可靠性指标分配方法 可靠性分配中采用了评分分配法。该分配方法是通过有经验的设计人员或专家对影响可靠性的几种因素评分,并对评分值进行综合分析以获得各单元产品之间的可靠性相对比值,再根据该比值给每个分系统或设备分配可靠性指标。它适用于具备一定的人员技术素质基

础,可以发挥人员的主观能动性,发挥人员的工程经验,并使评分结果具有一定的收敛性。 3.2可靠性指标分配原则 ①对于复杂度高的分系统、设备等,应分配较低的可靠性指标。因为产品越复杂,其组成单元就越多,要达到高可靠性就越困难并且更为费钱。 ②对于技术上不成熟的产品,分配较低的可靠性指标。对于这种产品提出高可靠性要求会延长研制时间,增加研制费用。 ③对于处于恶劣环境条件下工作的产品,应分配较低的可靠性指标。因为恶劣的环境会增加产品的故障率。 ④当把可靠度作为分配参数时,对于需要长期工作的产品,分配较低的可靠性指标。因为产品的可靠性随着工作时间的增加而降低。 ⑤对于重要度高的产品,应分配较高的可靠性指标。因为重要度高的产品的故障会影响人身安全或任务的完成。 评分法对上述因素进行综合评价,依据评价结果对可靠性指标进行分配。首先按照各因素对可靠性的要求,划分4个等级,等级标号越高对可靠性要求越低,分配的不可靠度或故障率越高。表1给出了可靠性影响因素等级划分标准。

相关主题