搜档网
当前位置:搜档网 › 数学锐角三角函数的专项培优 易错 难题练习题(含答案)附详细答案

数学锐角三角函数的专项培优 易错 难题练习题(含答案)附详细答案

数学锐角三角函数的专项培优 易错 难题练习题(含答案)附详细答案
数学锐角三角函数的专项培优 易错 难题练习题(含答案)附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.

(1)求观察哨所A 与走私船所在的位置C 的距离;

(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)

(参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)

【答案】(1)观察哨所A 与走私船所在的位置C 的距离为15海里;(2)当缉私艇以每小时617D 处成功拦截. 【解析】 【分析】

(1)先根据三角形内角和定理求出∠ACB =90°,再解Rt △ABC ,利用正弦函数定义得出AC 即可;

(2)过点C 作CM ⊥AB 于点M ,易知,D 、C 、M 在一条直线上.解Rt △AMC ,求出CM 、AM .解Rt △AMD 中,求出DM 、AD ,得出CD .设缉私艇的速度为x 海里/小时,根据走私船行驶CD 所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可. 【详解】

(1)在ABC △中,180180375390ACB B BAC ?????∠=-∠-∠=--=. 在Rt ABC 中,sin AC B AB =

,所以3sin 3725155

AC AB ?

=?=?=(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里.

(2)过点C 作CM AB ⊥,垂足为M ,由题意易知,D C M 、、在一条直线上. 在Rt ACM 中,4

sin 15125

CM AC CAM =?∠=?

=,3

cos 1595

AM AC CAM =?∠=?=.

在Rt ADM △中,tan MD

DAM AM

∠=,

所以tan 7636MD AM ?=?=. 所以222293691724AD AM MD CD MD MC =

+=+==-=,.

设缉私艇的速度为v海里/小时,则有24917

16

=,解得617

v=.

经检验,617

v=是原方程的解.

答:当缉私艇以每小时617海里的速度行驶时,恰好在D处成功拦截.

【点睛】

此题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.

2.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.

(1)求tan∠DBC的值;

(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.

【答案】(1)tan∠DBC=;

(2)P(﹣,).

【解析】

试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;

(2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知

=,通过解方程求得点P的坐标为(﹣,).

试题解析:

(1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0,

解得 x1=﹣1,x2=4.

∴A(﹣1,0),B(4,0).

当x=3时,y=﹣32+3×3+4=4,

∴D(3,4).

如图,连接CD,过点D作DE⊥BC于点E.

∵C(0,4),

∴CD//AB,

∴∠BCD=∠ABC=45°.

在直角△OBC中,∵OC=OB=4,

∴BC=4.

在直角△CDE中,CD=3.

∴CE=ED=,

∴BE=BC﹣DE=.

∴tan∠DBC=;

(2)过点P作PF⊥x轴于点F.

∵∠CBF=∠DBP=45°,

∴∠PBF=∠DBC,

∴tan∠PBF=.

设P(x,﹣x2+3x+4),则=,

解得 x1=﹣,x2=4(舍去),

∴P(﹣,).

考点:1、二次函数;2、勾股定理;3、三角函数

3.如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D 在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A 在点B的左侧),交y轴于点C,设点D的横坐标为a.

(1)如图1,若m=.

①当OC=2时,求抛物线C2的解析式;

②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;

(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).

【答案】(1) ①y=﹣x2+x+2.②.(2)P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).

【解析】

试题分析:(1)①首先写出平移后抛物线C2的解析式(含有未知数a),然后利用点C (0,2)在C2上,求出抛物线C2的解析式;

②认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OP⊥BC.画出图形,如图1所示,利用三角函数(或相似),求出a的值;

(2)解题要点有3个:

i)判定△ABD为等边三角形;

ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;

iii)满足条件的点有4个,即△ABD形内1个(内心),形外3个.不要漏解.

试题解析:(1)当m=时,抛物线C1:y=(x+)2.

∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,

∴D(a,(a+)2).

∴抛物线C2:y=﹣(x﹣a)2+(a+)2(I).

①∵OC=2,∴C(0,2).

∵点C在抛物线C2上,

∴﹣(0﹣a)2+(a+)2=2,

解得:a=,代入(I)式,

得抛物线C2的解析式为:y=﹣x2+x+2.

②在(I)式中,

令y=0,即:﹣(x﹣a)2+(a+)2=0,解得x=2a+或x=﹣,∴B(2a+,0);

令x=0,得:y=a+,∴C(0,a+).

设直线BC的解析式为y=kx+b,则有:

,解得,

∴直线BC的解析式为:y=﹣x+(a+).

假设存在满足条件的a值.

∵AP=BP,

∴点P在AB的垂直平分线上,即点P在C2的对称轴上;

∵点B与点C到直线OP的距离之和≤BC,只有OP⊥BC时等号成立,

∴OP⊥BC.

如图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,

则OP⊥BC,OE=a.

∵点P在直线BC上,

∴P(a,a+),PE=a+.

∵tan∠EOP=tan∠BCO=,

∴,

解得:a=.

∴存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP="BP"

(3)∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,

∴D(a,(a+m)2).

∴抛物线C2:y=﹣(x﹣a)2+(a+m)2.

令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).∵OB=2﹣m,

∴2a+m=2﹣m,

∴a=﹣m.

∴D(﹣m,3).

AB=OB+OA=2﹣m+m=2.

如图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.

∵tan∠ABD=,

∴∠ABD=60°.

又∵AD=BD,∴△ABD为等边三角形.

作∠ABD的平分线,交DE于点P1,则P1E=BE?tan30°=×=1,

∴P1(﹣m,1);

在△ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4.

在Rt△BEP2中,P2E=BE?tan60°=?=3,

∴P2(﹣m,﹣3);

易知△ADP3、△BDP4均为等边三角形,∴DP3=DP4=AB=2,且P3P4∥x轴.

∴P3(﹣﹣m,3)、P4(3﹣m,3).

综上所述,到△ABD的三边所在直线的距离相等的所有点有4个,

其坐标为:P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).

【考点】二次函数综合题.

4.如图,已知点从出发,以1个单位长度/秒的速度沿轴向正方向运动,以

为顶点作菱形,使点在第一象限内,且;以为圆心,为半径作圆.设点运动了秒,求:

(1)点的坐标(用含的代数式表示);

(2)当点在运动过程中,所有使与菱形的边所在直线相切的的

值.

【答案】解:(1)过作轴于,

,,

,,

点的坐标为.

(2)①当与相切时(如图1),切点为,此时,

,,

②当与,即与轴相切时(如图2),则切点为,,

过作于,则,

,.

③当与所在直线相切时(如图3),设切点为,交于,

则,,

过作轴于,则,

化简,得,

解得,

所求的值是,和.

【解析】

(1)过作轴于,利用三角函数求得OD、DC的长,从而求得点的坐标

⊙P 与菱形OABC 的边所在直线相切,则可与OC 相切;或与OA 相切;或与AB 相切,应分三种情况探讨:①当圆P 与OC 相切时,如图1所示,由切线的性质得到PC 垂直于OC ,再由OA=+t ,根据菱形的边长相等得到OC=1+t ,由∠AOC 的度数求出∠POC 为30°,在直角三角形POC 中,利用锐角三角函数定义表示出cos30°=oc/op ,表示出OC , 等于1+t 列出关于t 的方程,求出方程的解即可得到t 的值;②当圆P 与OA ,即与x 轴相切时,过P 作PE 垂直于OC ,又PC=PO ,利用三线合一得到E 为OC 的中点,OE 为OC 的一半,而OE=OPcos30°,列出关于t 的方程,求出方程的解即可得到t 的值;③当圆P 与AB 所在的直线相切时,设切点为F ,PF 与OC 交于点G ,由切线的性质得到PF 垂直于AB ,则PF 垂直于OC ,由CD=FG ,在直角三角形OCD 中,利用锐角三角函数定义由OC 表示出CD ,即为FG ,在直角三角形OPG 中,利用OP 表示出PG ,用PG+GF 表示出PF ,根据PF=PC ,表示出PC ,过C 作CH 垂直于y 轴,在直角三角形PHC 中,利用勾股定理列出关于t 的方程,求出方程的解即可得到t 的值,综上,得到所有满足题意的t 的值.

5.如图,已知二次函数2

12

y x bx c =

++的图象经过点A (-3,6),并与x 轴交于点B (-1,0)和点C ,顶点为点P . (1)求这个二次函数解析式;

(2)设D 为x 轴上一点,满足∠DPC =∠BAC ,求点D 的坐标;

(3)作直线AP ,在抛物线的对称轴上是否存在一点M ,在直线AP 上是否存在点N ,使AM +MN 的值最小?若存在,求出M 、N 的坐标:若不存在,请说明理由.

【答案】(1)点C 坐标为(3,0),点P (1,-2);(2)点P (7,0);(3)点N (-

75,14

5). 【解析】 【分析】

(1)将点A 、B 坐标代入二次函数表达式,即可求解; (2)利用S △ABC = 12×AC×BH= 12×BC×y A ,求出sinα= 222105

BH AB ==,则tanα= 12,在△PMD 中,tanα=

MD

PM 12

22x =+,即可求解; (3)作点A 关于对称轴的对称点A′(5,6),过点A′作A′N ⊥AP 分别交对称轴与点M 、交AP 于点N ,此时AM+MN 最小,即可求解.

【详解】

(1)将点A、B坐标代入二次函数表达式得:

9

633

2

1

2

b

b c

?

=-+

??

?

?=--+

??

,解得:

1

3

2

b

c

=-

?

?

?

=-

??

,故:抛物线的表达式为:y=

1

2

x2-x-

3

2

令y=0,则x=-1或3,令x=0,则y=-

3

2

故点C坐标为(3,0),点P(1,-2);

(2)过点B作BH⊥AC交于点H,过点P作PG⊥x轴交于点G,

设:∠DPC=∠BAC=α,

由题意得:AB10,AC2BC=4,PC2,

S△ABC=

1

2

×AC×BH=

1

2

×BC×y A,

解得:BH2

sinα=

BH

AB

22

210

=

5

,则tanα=

1

2

由题意得:GC=2=PG,故∠PCB=45°,

延长PC,过点D作DM⊥PC交于点M,

则MD=MC=x,

在△PMD中,tanα=

MD

PM22

x+

1

2

解得:x2CD2x=4,

故点P(7,0);

(3)作点A关于对称轴的对称点A′(5,6),

过点A′作A′N⊥AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,

直线AP表达式中的k值为:8

4

=-2,则直线A′N表达式中的k值为

1

2

设直线A′N的表达式为:y=1

2

x+b,

将点A′坐标代入上式并求解得:b=7

2

故直线A′N的表达式为:y=1

2

x+

7

2

…①,

当x=1时,y=4,

故点M(1,4),

同理直线AP的表达式为:y=-2x…②,

联立①②两个方程并求解得:x=-7

5

故点N(-7

5

14

5

).

【点睛】

本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等知识,其中(3),利用对称点求解最小值,是此类题目的一般方法.

6.如图,正方形OABC的顶点O与原点重合,点A,C分别在x轴与y轴的正半轴上,点

A的坐标为(4,0),点D在边AB上,且tan∠AOD=1

2

,点E是射线OB上一动点,

EF⊥x轴于点F,交射线OD于点G,过点G作GH∥x轴交AE于点H.

(1)求B,D两点的坐标;

(2)当点E在线段OB上运动时,求∠HDA的大小;

(3)以点G为圆心,GH的长为半径画⊙G.是否存在点E使⊙G与正方形OABC的对角线所在的直线相切?若不存在,请说明理由;若存在,请求出所有符合条件的点E的坐标.

【答案】(1)B (4,4),D (4,2);(2)45°;(3)存在,符合条件的点为(8﹣

2,8﹣2)或(2,2)或42164216++??或16421642,77?-- ??

,理由见解析 【解析】 【分析】

(1)由正方形性质知AB=OA=4,∠OAB=90°,据此得B (4,4),再由tan ∠AOD= 1

2

得AD=

1

2

OA=2,据此可得点D 坐标; (2)由1tan 2GF GOF OF ∠==知GF=1

2

OF ,再由∠AOB=∠ABO=45°知OF=EF ,即GF=

1

2

EF ,根据GH ∥x 轴知H 为AE 的中点,结合D 为AB 的中点知DH 是△ABE 的中位线,即HD ∥BE ,据此可得答案;

(3)分⊙G 与对角线OB 和对角线AC 相切两种情况,设PG=x ,结合题意建立关于x 的方程求解可得. 【详解】

解:(1)∵A (4,0), ∴OA =4,

∵四边形OABC 为正方形, ∴AB =OA =4,∠OAB =90°, ∴B (4,4),

在Rt △OAD 中,∠OAD =90°, ∵tan ∠AOD =12

, ∴AD =

12OA =1

2

×4=2, ∴D (4,2);

(2)如图1,在Rt△OFG中,∠OFG=90°

∴tan∠GOF=GF

OF =

1

2

,即GF=

1

2

OF,

∵四边形OABC为正方形,

∴∠AOB=∠ABO=45°,

∴OF=EF,

∴GF=1

2

EF,

∴G为EF的中点,

∵GH∥x轴交AE于H,

∴H为AE的中点,

∵B(4,4),D(4,2),

∴D为AB的中点,

∴DH是△ABE的中位线,

∴HD∥BE,

∴∠HDA=∠ABO=45°.

(3)①若⊙G与对角线OB相切,

如图2,当点E在线段OB上时,

过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG2x,OF=EF=2x,

∵OA=4,

∴AF=4﹣2,

∵G为EF的中点,H为AE的中点,∴GH为△AFE的中位线,

∴GH=1

2AF=

1

2

×(4﹣22x)=2﹣2x,

则x=2﹣2x,

解得:x=22﹣2,

∴E(8﹣42,8﹣42),

如图3,当点E在线段OB的延长线上时,

x=2x﹣2,

解得:x=2+2,

∴E(8+42,8+42);

②若⊙G与对角线AC相切,

如图4,当点E在线段BM上时,对角线AC,OB相交于点M,

过点G作GP⊥OB于点P,设PG=x,可得PE=x,

EG=FG2,

OF=EF=2x,

∵OA=4,

∴AF=4﹣2,

∵G为EF的中点,H为AE的中点,

∴GH为△AFE的中位线,

∴GH =

12AF =1

2

×(4﹣22x )=2﹣2x , 过点G 作GQ ⊥AC 于点Q ,则GQ =PM =3x ﹣22, ∴3x ﹣22=2﹣2x , ∴422

7

x +=

, ∴42164216,77E ??++ ? ???

; 如图5,当点E 在线段OM 上时,

GQ =PM =22﹣3x ,则22﹣3x =2﹣2x , 解得422

7

x -=

, ∴16421642,77E ??

-- ? ???

; 如图6,当点E 在线段OB 的延长线上时,

3x ﹣22x ﹣2, 解得:422

7

x =

(舍去); 综上所述,符合条件的点为(8﹣2,8﹣2)或(2,2)或

42164

216

,

??

++

?

?

??

16421642

,

??

--

?

?

??

【点睛】

本题是圆的综合问题,解题的关键是掌握正方形和直角三角形的性质、正切函数的定义、三角形中位线定理及分类讨论思想的运用.

7.如图,在ABC

△中,10

AC BC

==,

3

cos

5

C=,点P是BC边上一动点(不与点,A C 重合),以PA长为半径的P与边AB的另一个交点为D,过点D作DE CB

⊥于点E.

()1当P与边BC相切时,求P的半径;

()2联结BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围;

()3在()2的条件下,当以PE长为直径的Q与P相交于AC边上的点G时,求相交所得的公共弦的长.

【答案】(1)

40

9

;(2))

2

5880

010

320

x x

y x

x

-+

=<<

+

;(3)105

-

【解析】

【分析】

(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=

3

5

,则sinC=

4

5

,sinC=

HP

CP

=

R

10R

-

=

4

5

,即可求解;

(2)PD∥BE,则

EB

PD

BF

PF

,即:2

2

4880

5

x x x y

x y

--+

=,即可求解;

(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:5

求解.

【详解】

(1)设⊙P与边BC相切的切点为H,圆的半径为R,

连接HP ,则HP ⊥BC ,cosC=35,则sinC=35

, sinC=

HP CP =R 10R -=45,解得:R=40

9

; (2)在△ABC 中,AC=BC=10,cosC=

3

5

, 设AP=PD=x ,∠A=∠ABC=β,过点B 作BH ⊥AC ,

则BH=ACsinC=8, 同理可得:

CH=6,HA=4,AB=45,则:tan ∠CAB=2BP=()2

284x +-=2880x x -+, DA=

25x ,则BD=45-25

x ,

如下图所示,

PA=PD ,∴∠PAD=∠CAB=∠CBA=β,

tanβ=2,则cosβ=

5,sinβ=

5

EB=BDcosβ=(45-

25

x)×

5

=4-

2

5

x,

∴PD∥BE,

∴EB

PD

BF

PF

,即:2

2

4880

5

x x x y

x y

--+-

=,

整理得:y=()

2

5x x8x80

0x10

-+

<<;

(3)以EP为直径作圆Q如下图所示,

两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,

∵点Q时弧GD的中点,

∴DG⊥EP,

∵AG是圆P的直径,

∴∠GDA=90°,

∴EP∥BD,

由(2)知,PD∥BC,∴四边形PDBE为平行四边形,

∴AG=EP=BD,

∴5

设圆的半径为r,在△ADG中,

55

AG=2r,

5

5

51

+

则:

5

5

相交所得的公共弦的长为5

【点睛】

本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.

8.已知抛物线y=﹣1

6

x2﹣

2

3

x+2与x轴交于点A,B两点,交y轴于C点,抛物线的对称

轴与x轴交于H点,分别以OC、OA为边作矩形AECO.

(1)求直线AC的解析式;

(2)如图,P为直线AC上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP 面积最大时,求|PM﹣OM|的值.

(3)如图,将△AOC沿直线AC翻折得△ACD,再将△ACD沿着直线AC平移得△A'C′D'.使得点A′、C'在直线AC上,是否存在这样的点D′,使得△A′ED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.

【答案】(1) y=1

3

x+2;(2) 点M坐标为(﹣2,

5

3

)时,四边形AOCP的面积最大,此时

|PM﹣OM|61 (3)存在,D′坐标为:(0,4)或(﹣6,2)或(

3

5

-,

19

5

).

【解析】

【分析】

(1)令x=0,则y=2,令y=0,则x=2或﹣6,求出点A、B、C坐标,即可求解;(2)连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,即可求解;

(3)存在;分①A′D′⊥A′E;②A′D′⊥ED′;③ED′⊥A′E三种情况利用勾股定理列方程求解即可.

【详解】

(1)令x=0,则y=2,令y=0,则x=2或﹣6,∴A(﹣6,0)、B(2,0)、C(0,

2),函数对称轴为:x=﹣2,顶点坐标为(﹣2,8

3

),C点坐标为(0,2),则过点C

的直线表达式为:y=kx+2,将点A坐标代入上式,解得:k

1

3

=,则:直线AC的表达式

为:y

1

3

=x+2;

(2)如图,过点P作x轴的垂线交AC于点H.

四边形AOCP面积=△AOC的面积+△ACP的面积,四边形AOCP面积最大时,只需要△ACP

的面积最大即可,设点P坐标为(m,

1

6

-m2

2

3

-m+2),则点G坐标为(m,

1

3

m+2),

S△ACP

1

2

=PG?OA

1

2

=?(

1

6

-m2

2

3

-m+2

1

3

-m﹣2)?6

1

2

=-m2﹣3m,当m=﹣3时,上式

取得最大值,则点P坐标为(﹣3,5

2

).连接OP交对称轴于点M,此时,|PM﹣OM|有

最大值,直线OP的表达式为:y

5

6

=-x,当x=﹣2时,y

5

3

=,即:点M坐标为(﹣2,

5 3),|PM﹣OM|的最大值为:2222

555

(32)()2()

233

-++--+=61.

(3)存在.

∵AE=CD,∠AEC=∠ADC=90°,∠EMA=∠DMC,∴△EAM≌△DCM(AAS),∴EM=DM,AM=MC,设:EM=a,则:MC=6﹣a.在Rt△DCM中,由勾股定理得:MC2=

DC2+MD2,即:(6﹣a)2=22+a2,解得:a

8

3

=,则:MC

10

3

=,过点D作x轴的垂线交x

轴于点N,交EC于点H.在Rt△DMC中,1

2

DH?MC

1

2

=MD?DC,即:DH

108

33

?=?2,

则:DH

8

5

=,HC22

6

5

DC DH

=-=,即:点D的坐标为(

618

55

-,);

设:△ACD沿着直线AC平移了m个单位,则:点A′坐标(﹣6

1010

,D′坐标

为(

618

55

1010

-++),而点E坐标为(﹣6,2),则

培优锐角三角函数辅导专题训练含详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

人教数学锐角三角函数的专项培优易错试卷练习题附答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.(6分)某海域有A ,B 两个港口,B 港口在A 港口北偏西30°方向上,距A 港口60海里,有一艘船从A 港口出发,沿东北方向行驶一段距离后,到达位于B 港口南偏东75°方向的C 处,求该船与B 港口之间的距离即CB 的长(结果保留根号). 【答案】. 【解析】 试题分析:作AD ⊥BC 于D ,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据 正切的定义求出CD 的长,得到答案. 试题解析:作AD ⊥BC 于D ,∵∠EAB=30°,AE ∥BF ,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD= ,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°, ∴∠C=60°,在Rt △ACD 中,∠C=60°,AD=,则tanC= ,∴CD= =, ∴BC= .故该船与B 港口之间的距离CB 的长为 海里. 考点:解直角三角形的应用-方向角问题. 2.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为 1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=, 2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到

1cm)? 【答案】 【解析】 于F,根据锐角三角函数的定义用θ1、θ2表示出DF、EF的值,又可证过A作AF CD 四边形ABCE为平行四边形,故有EC=AB=25cm,再再根据DC=DE+EC进行解答即可. 3.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm. (1)AE的长为 cm; (2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值; (3)求点D′到BC的距离. 【答案】(1);(2)12cm;(3)cm. 【解析】 试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案: ∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.

初中数学锐角三角函数的难题汇编含答案

初中数学锐角三角函数的难题汇编含答案 一、选择题 1.如图,点O 为△ABC 边 AC 的中点,连接BO 并延长到点D,连接AD 、CD ,若BD=12,AC=8,∠AOD =120°,则四边形ABCD 的面积为( ) A .23 B .22 C .10 D .243 【答案】D 【解析】 【分析】 分别过点A 、C 作BD 的垂线,垂足分别为M 、N ,通过题意可求出AM 、CN 的长度,可计算三角形ABD 和三角形CBD 的面积,相加即为四边形ABCD 的面积. 【详解】 解:分别过点A 、C 作BD 的垂线,垂足分别为M 、N , ∵点O 为△ABC 边 AC 的中点,AC=8, ∴AO=CO=4, ∵∠AOD =120°, ∴∠AOB=60°,∠COD=60°, ∴342 AM AM sin AOB AO ===∠, 342 CN CN sin COD CO ===∠, ∴AM=23CN=3 ∴12231232ABD BD AM S ?===g △ 12231232BD CN S ?===g △BCD , ∴=123123243ABD BCD ABCD S S S +==△△四边形 故选:D. 【点睛】

本题考查了三角函数的内容,熟练掌握特殊角的三角函数值是解题的关键. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( ) A .500sin55m o B .500cos55m o C .500tan55m o D .500cos55m o 【答案】B 【解析】 【分析】 根据已知利用∠D 的余弦函数表示即可. 【详解】 在Rt △BDE 中,cosD= DE BD , ∴DE=BD ?cosD=500cos55°. 故选B . 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键. 3.如图,在ABC ?中,4AC =,60ABC ∠=?,45C ∠=?,AD BC ⊥,垂足为D ,ABC ∠的平分线交AD 于点E ,则AE 的长为( ) A .22 B .223 C .23 D .322 【答案】C 【解析】 【分析】 在Rt △ADC 中,利用等腰直角三角形的性质可求出AD 的长度,在Rt △ADB 中,由AD 的长度及∠ABD 的度数可求出BD 的长度,在Rt △EBD 中,由BD 的长度及∠EBD 的度数可求出DE 的长度,再利用AE=AD?D E 即可求出AE 的长度. 【详解】 ∵AD ⊥BC ∴∠ADC=∠ADB=90?

培优锐角三角函数之欧阳光明创编

锐角三角函数 欧阳光明(2021.03.07) 题型:锐角三角函数基本概念(1) 例:已知α为锐角,下列结论: (1)sin α+cos α=1;(2)若α>45°,则sin α>cos α;(3)若 cos α>21,则α<60°;(4)ααsin 1)1(sin 2-=-。正确的有()A.(1)(2)(3)(4) B.(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3) 变式: 1、下列各式中,不正确的是() A.160cos 60sin 0202=+ B .130cos 30sin 00=+ C.0055cos 35sin = D.tan45°>sin45° 2、已知∠A 满足等式A A cos sin 12=-,那么∠A 的取值范围是() A.0°<∠A ≤90° B.90°<∠A<180° C.0°≤∠A<90° D.0°≤∠A ≤90° 3.α是锐角,若sin α=cos150,则α= 4。若sin53018\=0.8018,则cos36042\= 题型:锐角三角函数基本概念(2) 例:已知 sin α·cos α=81,且45°<α<90°,则COS α-sin α的值为() A.23B.2 3- C.43D.23± 变式: 1、已知△ABC 中,∠C=90°,下列各式中正确的是()

A.sinA+cosB=sinC B.sinA+sinB=sinC C.2cos 2sin C B A += D.2tan 2tan C B A += 2、已知sin α+cos α=m,sin α×cos α=n ,则m,n 的关系式() A.m=n B.m=2n+1 C.122+=n m D.n m 212 -= 题型:求三角函数值 例:如图,菱形的边长为5,AC 、BD 相交于点O , AC=6,若a ABD =∠,则下列式子正确的是() A.sin α=54 B.cos α=53 C.tan α=34 D.cot α=34 变式:1、设0°<α<45°,sin αcos α=167 3,则sin α= 2、已知sin α-cos α=5 1,0°<α<180°,则tan α的值是( )43B.43- C.34D.34- 3、如图,在正方形ABCD 中,M 为AD 的中点,E 为AB 上一点,且BE=3AE ,求sin ∠ECM 。 4、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE 。 (1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值。 题型:三角函数值的计算(1) 例:计算:000020246tan 45tan 44tan 42sin 48sin ??-+= 变式:1、计算: 2002020010)60cot 4()60tan 25.0(?= 2、计算:0 000002000027tan 63tan 60cot 360sin 60cot 45cos )45sin 30)(cos 45cos 60(sin -++- 题型:三角函数值的计算(2)

初中数学锐角三角函数的难题汇编及解析

初中数学锐角三角函数的难题汇编及解析 一、选择题 1.如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点E ,若∠A =30°,则sin ∠E 的值为( ) A . 12 B . 2 C . 3 D . 3 【答案】A 【解析】 【分析】 首先连接OC ,由CE 是⊙O 切线,可证得OC ⊥CE ,又由圆周角定理,求得∠BOC 的度数,继而求得∠E 的度数,然后由特殊角的三角函数值,求得答案. 【详解】 如图,连接OC , ∵CE 是⊙O 的切线, ∴∠OCE=90°, ∵OA=OC , ∴∠OCA=∠A=30°, ∴∠COE=∠A+∠OCA=60°, ∴∠E=180°-90°-60°=30°, ∴sinE=sin30°=12 . 故选A. 2.如图,在ABC ?中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且1 2 MN BC = ,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM x =,BMD ?的面积减去CNE ?的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )

A . B . C . D . 【答案】A 【解析】 【分析】 设a =1 2BC ,∠B =∠C =α,求出CN 、DM 、EN 的长度,利用y =S △BMD ?S △CNE ,即可求解. 【详解】 解:设a = 1 2 BC ,∠B =∠C =α,则MN =a , ∴CN =BC?MN?BM =2a?a?x =a?x ,DM =BM·tanB =x·tanα,EN =CN?tanC =(a?x )·tanα, ∴y =S △BMD ?S △CNE = 1 2 (BM·DM?CN·EN )=()()2 21tan tan 22 2x a x a tan x a ααα????-?=? ? --, ∵ 2 a tan α ?为常数, ∴上述函数图象为一次函数图象的一部分, 故选:A . 【点睛】 本题考查了动点问题的函数图象、等腰三角形的性质、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.

培优锐角三角函数

锐角三角函数 题型:锐角三角函数基本概念(1) 例:已知α为锐角,下列结论: (1)sin α+cos α=1;(2)若α>45°,则sin α>cos α;(3)若cos α> 2 1 ,则α<60°;(4)ααsin 1)1(sin 2-=-。正确的有( )A.(1) (2)(3)(4) B.(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3) 变式: 1、下列各式中,不正确的是( ) A.160cos 60sin 0 2 2 =+ B .130cos 30sin 0 =+ C.0 55cos 35sin = °>sin45° 2、已知∠A 满足等式A A cos sin 12=-,那么∠A 的取值范围是( ) °<∠A ≤90° °<∠A<180° °≤∠A<90° °≤∠A ≤90° 3.α是锐角,若sin α=cos150,则α= 4。若sin53018\=,则cos36042\= 题型:锐角三角函数基本概念(2) 例:已知sin α·cos α= 8 1 ,且45°<α<90°,则COS α-sin α的值为( ) A. 23 B.23- C.4 3 D.23± 变式: 1、已知△ABC 中,∠C=90°,下列各式中正确的是( ) A.sinA+cosB=sinC +sinB=sinC C.2cos 2sin C B A += D.2 tan 2tan C B A += 2、已知sin α+cos α=m,sin α×cos α=n ,则m,n 的关系式( ) A.m=n =2n+1 C.122 +=n m D.n m 212 -= 题型:求三角函数值 例:如图,菱形的边长为5,AC 、BD 相交于点O ,AC=6,若a ABD =∠,则 下列式子正确的是( ) A.sin α= 54 α=53 α=34 α=3 4 变式:1、设0°<α<45°,sin αcos α= 16 7 3,则sin α= 2、已知sin α-cos α= 51,0°<α<180°,则tan α的值是( )43 B.43- C.34 D.3 4- 3、如图,在正方形ABCD 中,M 为AD 的中点,E 为AB 上一点,且BE=3AE ,求sin ∠ECM 。

锐角三角函数难点解析

锐角三角函数难点解析 本章“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。 本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。本章重点是锐角三角函数的概念和直角三角形的解法。锐角三角函数的概念既是本章的难点,也是学习本章的关键。难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA

表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。 本章内容与已学“相似三角形”“勾股定理”等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。

初中数学锐角三角函数的难题汇编附答案

初中数学锐角三角函数的难题汇编附答案 一、选择题 1.如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin∠E的值为() A.1 2 B. 2 C. 3 D. 3 【答案】A 【解析】 【分析】 首先连接OC,由CE是⊙O切线,可证得OC⊥CE,又由圆周角定理,求得∠BOC的度数,继而求得∠E的度数,然后由特殊角的三角函数值,求得答案. 【详解】 如图,连接OC, ∵CE是⊙O的切线, ∴∠OCE=90°, ∵OA=OC, ∴∠OCA=∠A=30°, ∴∠COE=∠A+∠OCA=60°, ∴∠E=180°-90°-60°=30°, ∴sinE=sin30°=1 2 . 故选A. 2.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()

A.πB.2πC.3πD.(31)π + 【答案】C 【解析】 【分析】 由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3的正三角形.可计算边长为2,据此即可得出表面积. 【详解】 解:由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3的正三角形. ∴正三角形的边长 3 2 sin60 == ? . ∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π ∴侧面积为1 222 2 ππ ??=,∵底面积为2r ππ =, ∴全面积是3π. 故选:C. 【点睛】 本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 3.如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D 重合,EF为折痕,则sin∠BED的值是() A 5 B. 3 5 C. 2 2 D. 2 3 【答案】B 【解析】 【分析】 先根据翻折变换的性质得到DEF AEF ???,再根据等腰三角形的性质及三角形外角的性

中考数学锐角三角函数(大题培优 易错 难题)

中考数学锐角三角函数(大题培优易错难题) 一、锐角三角函数 1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°. (1)求∠BPQ的度数; (2)求该电线杆PQ的高度(结果精确到1m).备用数据:, 【答案】(1)∠BPQ=30°; (2)该电线杆PQ的高度约为9m. 【解析】 试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可; (2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解. 试题解析:延长PQ交直线AB于点E, (1)∠BPQ=90°-60°=30°; (2)设PE=x米. 在直角△APE中,∠A=45°, 则AE=PE=x米; ∵∠PBE=60° ∴∠BPE=30° 在直角△BPE中,33 米, ∵AB=AE-BE=6米, 则3 , 解得:3

则BE=(33+3)米. 在直角△BEQ中,QE= 3 3 BE= 3 3 (33+3)=(3+3)米. ∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米). 答:电线杆PQ的高度约9米. 考点:解直角三角形的应用-仰角俯角问题. 2.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP. (1)求证:直线CP是⊙O的切线. (2)若BC=2,sin∠BCP=,求点B到AC的距离. (3)在第(2)的条件下,求△ACP的周长. 【答案】(1)证明见解析(2)4(3)20 【解析】 试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可; (2)利用锐角三角函数,即勾股定理即可. 试题解析:(1)∵∠ABC=∠ACB, ∴AB=AC, ∵AC为⊙O的直径, ∴∠ANC=90°, ∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB, ∵∠CAB=2∠BCP, ∴∠BCP=∠CAN, ∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°, ∵点D在⊙O上, ∴直线CP是⊙O的切线; (2)如图,作BF⊥AC

锐角三角函数(培优)

知识要点 1、 锐角三角函数定义? 斜边的对边αα∠= sin 斜边的邻边αα∠=cos 的邻边的对边 ααα∠∠= t a n 的对边的邻边ααα∠∠=cot 2、 特殊角的三角函数值300 、450 、600 、的记忆规律: 3、 角度变化与锐角三角函数的关系 当锐角α在00∽900 之间变化时,正弦(切)值随着角度的增大而增大;余弦(切)值随着角度的增大而减少。 4、 同角三角函数之间有哪些关系式 平方关系:sin 2A +cos 2 A =1; 商数关系:sinA/cosA =tanA ; 倒数关系:tanA ·tan B =1; 5、 互为余角的三角函数有哪些关系式? Sin (900-A )=cosA ; cos (900-A )=sin A ; tan (900 -A )=ctan A ; 一、选择题 1.在Rt △ABC 中,∠C =900 ,∠A =∠B ,则sinA 的值是( ).A . 2 1 B .22 C .23 D .1 2.在△ABC 中,∠A =105°,∠B =45°,tanC 的值是( ). A . 2 1 B .33 C .1 D .3 3.在Rt △ABC 中,如果各边的长度都缩小至原来的 5 1 ,那么锐角A 的各个三角函数值( ). A .都缩小 5 1 B .都不变 C .都扩大5倍 D .仅tan A 不变 4.如图,菱形ABCD 对角线AC =6,BD =8,∠ABD =α.则下列结论正确的是( ). A .sin α= 54 B .cos α= 53 C .tan α= 34 D .tan α= 4 3 5.在Rt △ABC 中,斜边AB 是直角边AC 的3倍,下列式子正确的是( ). A .423sin = A B .3 1 cos =B C .42tan =A D .tan 4B = 6.已知ΔABC 中,∠C =90?,CD 是AB 边上的高,则CD :CB 等于( ). A .sinA B .cosA C .tanA D . 1 tan A 7.等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ).A. 513 B. 1213 C.10 13 D.512 8.如图,在△EFG 中,∠EFG =90°,FH ⊥EG ,下面等式中,错误..的是( ). A. sin EF G EG = B. sin EH G EF = C. sin GH G FG = D. sin FH G FG = 9.身高相同的三个小朋友甲、乙、丙风筝,他们放出的线长分别为300米、250米、200米,线与地面所成的角为30°、45°、60°(风筝线是拉直的),则三人所放的风筝( ).

人教版初中数学锐角三角函数的难题汇编及解析

人教版初中数学锐角三角函数的难题汇编及解析 一、选择题 1.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( ) A .60海里 B .45海里 C .3 D .3 【答案】D 【解析】 【分析】 根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP 的长,求出答案. 【详解】 解:由题意可得:∠B=30°,AP=30海里,∠APB=90°, 故AB=2AP=60(海里), 则此时轮船所在位置B 处与灯塔P 之间的距离为:22303AB AP -= 故选:D . 【点睛】 此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键. 2.在半径为1的O e 中,弦AB 、AC 32,则BAC ∠为( )度. A .75 B .15或30 C .75或15 D .15或45 【答案】C 【解析】 【分析】 根据题意画出草图,因为C 点位置待定,所以分情况讨论求解. 【详解】 利用垂径定理可知:32 2 AE = .

sin∠AOD= 3 2 ,∴∠AOD=60°; sin∠AOE= 2 2 ,∴∠AOE=45°; ∴∠BAC=75°. 当两弦共弧的时候就是15°. 故选:C. 【点睛】 此题考查垂径定理,特殊三角函数的值,解题关键在于画出图形. 3.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为() A.23B.3C.33D.3 【答案】A 【解析】 【分析】 【详解】 设AC=x,在Rt△ABC中,∠ABC=30°,即可得AB=2x,3, 所以BD=BA=2x,即可得33)x, 在Rt△ACD中,tan∠DAC= (32) 32 CD x AC + ==, 故选A. 4.直角三角形纸片的两直角边长分别为6,8,现将ABC V如图那样折叠,使点A与点B 重合,折痕为DE,则tan CBE ∠的值是()

锐角三角函数培优题目

锐角三角函数培优题目 三角函数揭示了直角三角形中边与锐角之间的关系,是数形结合的桥梁之一,有以下丰富的性质: 1.单调性; 2.互余三角函数间的关系; 3.同角三角函数间的关系. 平方关系:sin 2α+cos 2α=1; 商数关系:tgα=ααcos sin ,ctgα=α αsin cos ; 倒数关系:tgαctgα=1. 【例题求解】 【例1】 已知在△ABC 中,∠A 、∠B 是锐角,且sinA = 135,tanB=2,AB=29cm , 则S △ABC = . 思路点拨 过C 作CD ⊥AB 于D ,这样由三角函数定义得到线段的比,sinA= 135=AC CD ,tanB=2=BD CD ,设CD=5m ,AC =13m ,CD =2n ,BD =n ,解题的关键是求出m 、n 的值. 注:设△ABC 中,a 、b 、c 为∠A 、∠B 、∠C 的对边,R 为△ABC 外接圆的半径,不 难证明:与锐角三角函数相关的几个重要结论: (1) S △ABC =C ab B ac A bc sin 21sin 21sin 21== ; (2)R C c B b A a 2sin sin sin ===. 【例2】 在△ABC 中.∠ACB =90°,∠ABC =15°,BC=1,则AC=( ) A .32+ B .32- C .0.3 D .23- 思路点拨 由15°构造特殊角,用特殊角的三角函数促使边角转化. 注:(1)求(已知)非特角三角函数值的关是构造出含特殊角直角三角形. (2)求(已知)锐角角函数值常根据定转化为求对应线段比,有时需通过等的比来转换.

锐角三角函数难题

- 锐角三角函数难题 一、选择题(共12小题) 1.(2011?怀柔区二模)如图,长方形ABCD中,AB=2,BC=3;E是AB的中点,F是BC上的一点,且CF=BC,则图中线段AC与EF之间的最短距离是() A.0.5 B.C.1D. 2.(2009?石景山区一模)已知:如图,在△ABC中,D是AB边上的一点,且BD=2AD,CD=10,,则BC边上的高AE的长为() A.4.5 B.6C.8D.9 3.(2013?模拟)如图,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为() A. cm2B.cm2C.cm2D. cm2 4.(2010?)如图所示,已知AD是等腰△ABC底边上的高,且tan∠B=,AC上有一点E,满足AE:CE=2:3,则tan∠ADE的值是() A.B.C.D.

5.(2009?)如图,在Rt△ABC中,∠A=90°,AB=AC=8,点E为AC的中点,点F在底边BC上,且FE⊥BE,则△CEF的面积是() A.16 B.18 C.6D.7 6.(2010?凉山州)已知在△ABC中,∠C=90°且△ABC不是等腰直角三角形,设sinB=n,当∠B是最小的角时,n 的取值围是() A.B.C.D. 7.(2008?资阳)如图,已知Rt△ABC≌Rt△DEC,∠E=30°,D为AB的中点,AC=1,若△DEC绕点D顺时针旋转,使ED,CD分别与Rt△ABC的直角边BC相交于M,N.则当△DMN为等边三角形时,AM的值为()A.B.C.D.1 8.(2010?)如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为() A.7B.C.D.9 9.(2008?枣庄)如图,两个高度相等且底面直径之比为1:2的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是() A.cm B.6cm C.8cm D.10cm 10.(2007?)如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为()

锐角三角函数的难题汇编

锐角三角函数的难题汇编 一、选择题 1.cos60tan45 +o o的值等于() A.3 2 B. 2 2 C. 3 2 D.1 【答案】A 【解析】 【分析】 根据特殊角的三角函数值计算即可.【详解】 解:原式 13 1 22 =+=. 故选A. 【点睛】 本题考查了特殊角的三角函数值,解题的关键是熟练掌握特殊角的三角函数值. 2.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为() A.πB.2πC.3πD.31)π 【答案】C 【解析】 【分析】 3 为2,据此即可得出表面积. 【详解】 3的正三角形. ∴正三角形的边长 3 2 ==. ∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π ∴侧面积为1 222 2 ππ ??=,∵底面积为2r ππ =, ∴全面积是3π.

故选:C . 【点睛】 本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 3.如图,△ABC 内接于半径为5的⊙O ,圆心O 到弦BC 的距离等于3,则∠A 的正切值等于( ) A . 35 B . 45 C . 34 D . 43 【答案】C 【解析】 试题分析:如答图,过点O 作OD ⊥BC ,垂足为D ,连接OB ,OC , ∵OB=5,OD=3,∴根据勾股定理得BD=4. ∵∠A= 1 2 ∠BOC ,∴∠A=∠BOD. ∴tanA=tan ∠BOD=4 3 BD OD =. 故选D . 考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义. 4.如图,矩形纸片ABCD ,4AB =,3BC =,点P 在BC 边上,将CDP ?沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP OF =,则cos ADF ∠的值为( )

锐角三角函数的难题汇编附答案

锐角三角函数的难题汇编附答案 一、选择题 1.将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,则CD的长为() A.43B.12﹣43C.12﹣63D.63 【答案】B 【解析】 【分析】 过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=60°,进而可得出答案. 【详解】 解:过点B作BM⊥FD于点M, 在△ACB中,∠ACB=90°,∠A=45°,AC=122, ∴BC=AC=122. ∵AB∥CF, ∴BM=BC×sin45°= 2 12212 ?= CM=BM=12, 在△EFD中,∠F=90°,∠E=30°, ∴∠EDF=60°, ∴MD=BM÷tan60°=43, ∴CD=CM﹣MD=12﹣43. 故选B. 【点睛】 本题考查了解直角三角形,难度较大,解答此类题目的关键根据题意建立直角三角形利用所学的三角函数的关系进行解答. 2.如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,己知菱形的一

个内角为60°,A 、B 、C 都是格点,则tan ABC ∠=( ) A .3 B .3 C .3 D .3 【答案】A 【解析】 【分析】 直接利用菱形的对角线平分每组对角,结合锐角三角函数关系得出EF,的长,进而利用EC tan ABC BE ∠= 得出答案. 【详解】 解:连接DC ,交AB 于点E . 由题意可得:∠AFC=30°, DC ⊥AF, 设EC=x,则EF=x 3x tan 30? , ∴BF AF 2EF 23x === EC 3tan ABC BE 923x 3x 33= ===+∠, 故选:A 【点睛】 此题主要考查了菱形的性质以及解直角三角形,正确得出EF 的长是解题关键. 3.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A ,B 在同一水平面上).为了测量A ,B 两地之间的距离,一架直升飞机从A 地起飞,垂直上升1000米到达C 处,在C 处观察B 地的俯角为α,则AB 两地之间的距离约为( )

锐角三角函数-基础+培优

A B C D α A (第7题) 1l 3l 2l 4l A D E B 图 C 一、锐角三角函数定义:sin αα∠= 的() ( ) cos αα∠=的()() tan α= () () 例1.在△ABC 中,∠C =90°,sinA =3 2 ,求cosA 、tanB . 例2.△ABC 中,已知∠ACB =90°,CD ⊥AB 于D ,AC =63,BD =3. (1)求cosA (2)求BC 的长及△ABC 的面积. 例3.如图,在△ABC 中,∠C =90°,∠B =30°,AD 是∠BAC 的角平分线,与BC 相交于点D ,且AB =43,求AD 的长. 例4.如图1,已知AD 是等腰△ABC 底边上的高,且tan ∠B=43 ,AC 上有一点E ,满足AE:CE=2:3则tan ∠ADE 的值是 练习.1.在7,35,90==∠=AB B 中,则BC 的长为( ) (A ) 35sin 7 (B ) 35 cos 7(C ) 35cos 7 (D ). 35tan 7 2.在Rt △ABC 中,斜边AB 是直角边AC 的3倍,下列式子正确的是( ). A .423sin = A B .3 1 cos =B C .42tan =A D .2tan B = 3.已知ΔABC 中,∠C =90 ,CD 是AB 边上的高,则CD :CB 等于( ). A .sinA B .cosA C .tanA D . 1 tan A 4. Rt△ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,那么c 等于( ) A.cos sin a A b B + B.sin sin a A b B + C sin sin a b A B +. D.cos sin a b A B + 5. 如图,在Rt△ABC 中,∠ACB=90°,CD⊥AB,垂足为D .若AC=5,BC=2,则sin∠ACD 的值为 6. 在Rt △ABC 中,∠C =90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cot A = a b .则下列关系式中不成立...的是( )(A )tan A ·cot A =1 (B )sin A =tan A ·cos A (C )cos A =cot A ·sin A (D )tan 2A +cot 2A =1 7.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= . 8.如图,已知矩形ABCD 的两边AB 与BC 的比为4:5,E 是AB 上的一点,沿CE 将ΔEBC 向上翻折,若B 点恰好落在边AD 上的F 点,则tan ∠DCF 等于 C B A E F D 第8题 C M B A 第7题 D B C A C B 第2题

中考数学锐角三角函数(大题培优)及答案

中考数学锐角三角函数(大题培优)及答案 一、锐角三角函数 1.如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°.小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF=1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.(参考数 值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36) 【答案】6.4米 【解析】 解:∵底部B 点到山脚C 点的距离BC 为6 3 米,山坡的坡角为30°. ∴DC=BC?cos30°=3 639=?=米, ∵CF=1米, ∴DC=9+1=10米, ∴GE=10米, ∵∠AEG=45°, ∴AG=EG=10米, 在直角三角形BGF 中, BG=GF?tan20°=10×0.36=3.6米, ∴AB=AG-BG=10-3.6=6.4米, 答:树高约为6.4米 首先在直角三角形BDC 中求得DC 的长,然后求得DF 的长,进而求得GF 的长,然后在直角三角形BGF 中即可求得BG 的长,从而求得树高 2.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60??,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处. (1)求之间的距离 (2)求从无人机'A 上看目标的俯角的正切值.

【答案】(1)120米;(2)23 5 . 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3,在Rt △ABC 中,求得DC= 3 3 AC=203,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ? =6012 =120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3, 在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴DC=3AC=203 ∴DE=503 ∴tan ∠A 'A D= tan ∠'A DC= 'A E DE =503= 2 35 答:从无人机'A 上看目标D 的俯角的正切值是 2 35 . 【点睛】 本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键. 3.如图,在△ABC 中,AB=7.5,AC=9,S △ABC = 81 4 .动点P 从A 点出发,沿AB 方向以每秒5个单位长度的速度向B 点匀速运动,动点Q 从C 点同时出发,以相同的速度沿CA 方向向A 点匀速运动,当点P 运动到B 点时,P 、Q 两点同时停止运动,以PQ 为边作正△PQM

中考数学锐角三角函数(大题培优 易错 难题)附详细答案

中考数学锐角三角函数(大题培优易错难题)附详细答案 一、锐角三角函数 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

相关主题