搜档网
当前位置:搜档网 › 函数模型及其应用

函数模型及其应用

函数模型及其应用
函数模型及其应用

函数模型及其应用

一、构建函数模型的基本步骤:

1、审题:弄清题意,分析条件和结论,理顺数量关系;

2、建模:引进数学符号,一般地,设自变量为x ,函数为y ,必要时引入其他相关辅助变量,并用x 、y 和辅助变量表示各相关量,然后根据已知条件建立关系式,即

所谓的数学模型;

3、求模:利用数学方法将得到的常规函数问题予以解答,求得结果;

4、还原:将所得的结果还原为实际问题的意义,再转译成具体问题的回答。

二、常见函数模型:

1、一次函数模型;

2、二次函数模型;

3、分段函数模型;

4、指数函数模型;

5、对数函数模型;

6、对勾函数模型;

7、分式函数模型。

题型1:一次函数模型

因一次函数y kx b =+(0k ≠)的图象是一条直线,因而该模型又称为直线模型,当0

k >时,函数值的增长特点是直线上升;当0k <时,函数值则是直线下降。

例1:某工厂在甲、乙两地的两个分工厂各生产同一种机器12台和6台。现销售给A 地10台,B 地8台。已知从甲地到A 地、B 地的运费分别是400元和800元,从乙地到

A 地、

B 地的运费分别是300元和500元,

(1)设从乙地运x 台至A 地,求总运费y 关于x 的函数解析式;

(2)若总运费不超过9000元,共有几种调运方案;

(3)求出总运费最低的方案和最低运费。

题型2:二次函数模型

二次函数2

y ax bx c

=++(0

a≠)为生活中最常见的一种数学模型,因二次函数可求其最大值(或最小值),故常常最优、最省等最值问题是二次函数的模型。例2:渔场中鱼群的最大养殖量为m吨,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留下适当的空闲量,已知鱼群的年增长量y吨和实际养殖量x吨与空闲率的乘积成正比,比例系数为(0)

k k>。

(1)写出y关于x的函数关系式,并指出这个函数的定义域;

(2)求鱼群年增长量的最大值;

(3)当鱼群的年增长量达到最大值时,求k的取值范围。

例3:某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出。当每辆车的月租金每增加50元时,未租出的车将会增加一辆。租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。

(1)当每辆车的月租金定为3600元时,能租出多少辆车?

(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

练习:某个体经营者把开始六个月试销A、B两种商品的逐月投资与所获纯利润列成

下表:

投资A种商品金额(万

元)

1 2 3 4 5 6

获纯利润(万元)

0.6

5 1.3

9

1.8

5

2

1.8

4

1.4

投资B种商品金额(万

元)

1 2 3 4 5 6

获纯利润(万元)

0.2

5 0.4

9

0.7

6

1

1.2

6

1.5

1

该经营者准备下月投入12万元经营这两种产品,但不知投入A、B两种商品各多少才最合算,请你帮助制定一个资金投入方案,使得该经营者能获得最大的利润,并按你的方案求出该经营者下月可获得的最大纯利润(结果保留两位有效数字)。

题型3:分式函数模型

求得的函数解析式中,分母含有自变量时,此类函数称为分式函数模型,由于分式函数的特征不是很明显,因而在过程中要注意转化。

例4:某地区上年度电价为0.8元/kW h?,年用电量为akW h?,本年度计划将电价降到0.55元/kW h?至0.75元/kW h?之间,而用户期望电价为0.4元/kW h?经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k)。该地区电力的成本为0.3元/kW h?。

(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;(2)设0.2

k a

=,当电价最低定为多少时仍可保证电力部门的收益比上年至少增长20%?(注:收益=实际用电量×(实际电价-成本价))

练习:某地上年度电价为0.8元,年用量为1亿度,本年度计划将电价调至0.55元—0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与)4.0

(-

x元

成反比例,又当65

.0

=

x元时,.8.0

=

y

(1)求y与x之间的函数关系式;

(2)若每度电的成本价为0.3,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量?(实际电价-成本价)]

题型4:分段函数模型

在不同的背景前提下,两个变量之间的关系不一样时,需要我们针对自变量的范围进行分类,求得各种不同情况下的两个变量之间的关系即为分段函数,分段函数易

将数学问题最优化。

例5:某市居民自来水收费标准如下:当每户每月用水不超过4吨时,每吨为1.8元;当用水超过4吨时,超过部分每吨3元。某月甲、乙两户共交水费y元,已知甲、乙两用户该月用水量分别为5x和3x。

(1)求y关于x的函数解析式;

(2)若甲、乙两户该月共交水费26.4元,请分别求出甲乙两户该月的用水量和水费。

练习:1、“依法纳税是每个公民应尽的义务”,国家征收个人工资、薪金所得税是分段计算的:总收入不超过1000元的,免征个人工资、薪金所得税;超过1000元部分需征税,设全月纳税所得额(所得额指工资、薪金中应纳税的部分)为=

x,全

x

月总收入-1000元,税率见下表:

级数全月应纳税所得额x税率

1 不超过500元部分5%

2 超过500元至2000元部分10%

超过2000元至5000元部

3

15%

………45%

9 超过100000元部分

(1)若应纳税额为)(x f ,试用分段函数表示1—3级纳税额)(x f 的计算公式. (2)某人2000年10月份工资总收入为4200元,试计算这个人10月份应纳个人所

得税多少元?

2、某公司生产一种产品每年投入固定成本0.5万元,此外每生产100件这种产品还需要增加投资0.25万元,经预测知,市场对这种产品的年需求量为500件,且当出售的这种产品的数量为t (单位:百件)时,销售所得的收入约为22

15t t -(万元).

(1)若该公司的年产量为x (单位:百件))0(>x 时,试把该公司生产并销售这种产

品所得的年利润表示为当年产量x 的函数.

(2)当该公司的年产量多大时,当年所得利润最大?

题型5:指数函数模型

形如x y ka =(0a >且1a ≠,k R ∈且0k ≠)的函数模型称为指数函数模型,当1a >时,其增长特点是随着自变量的增大,函数值增大的速度越来越快,我们常称为“指数

爆炸”。

例6:某电器公司生产A 型电脑,2006年这种电脑每台平均生产成本为5000元,并以纯利润20%确定出厂价,从2007年开始,公司通过更新设备和加强管理,使生产成本逐年降低,到2010年,尽管A 型电脑出厂价仅是2006年出厂价的80%,但却实现了50%纯利润的高效益。

(1)求2010年每台A 型电脑的生产成本;

(2)以2006年的生产成本为基数,求2006-2010年生产成本平均每年降低的百分数(精确到0.01,以下数据可供参考:5 2.236=,6 2.449=)

练习:1、某城市现有人口100万,如果20年后该城市人口总数不超过120万,年

自然增长率应控制在多少以内?

2、某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少31,问至少应过滤几次才能使产品达到市场要求?

(已知:4771.03lg ,3010.02lg ==)

3、根据总的发展战略,第二阶段,我国工农业生产总值从2000年到2020年间要翻

两番,问这20年间,年平均增长率至少要多少,才能完成这一阶段构想?

4、按复利计算利率的一种储蓄,本金为a 元,每期利率为r ,设本利和为y ,存期为x ,写出本利和y 随存期x 变化的函数式.如果存入本金1000元,每期利率2.25%,

试计算5期后的本利和是多少?

题型6:对数函数模型

自变量出现在对数函数模型中,当对数的底数1a >时,其增长特点是开始阶段增长得较快,但随着x 的逐渐增大,其函数值变化越来越慢,我们称之为“蜗牛式增长”,由于对数函数与指数函数互为反函数,因而对数函数模型其实是建立在指数函数模

型的基础上。

题型7:对勾函数模型 形如()a f x x x

=+(0,0a x >>)的函数模型,其图像的形状在第一象限犹如“√”,利用奇函数图象的对称性,我们称之为“对勾”,在现实生活中有着广泛的应用,就

目前而言,常利用该函数的单调性来解决函数模型。

例7:某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x (10x ≥)层,则每平方米的平均建

筑费用为56048x +(单位:元)。为了使楼房每平方米的平均综合费用最少,该楼房

应建为多少层?

(注:平均综合费用=平均建筑费用+平均购地费用,=

购地总费用平均购地费用建筑总面积

) 课后作业

1、某商场将空调先按原价提高40%,然后打出广告“大酬宾八折优惠”,结果每台

空调比原来多赚了270元,则原来每台空调为_______元。

2、手机的价格不断降低,若每隔半年其价格降低14,则现价为2560元的手机,两

年后的价格为()

A.900元

B.810元

C.1440元

D.160元

3、某工厂生产某种产品固定成本为2000万元,并且每成产一单位产品,成本增加10万元。又知总收入K 是单位产品数Q 的函数:21()4020K Q Q Q =-

,则总利润()L Q 的最大值为________。

4、某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为21 5.060.15L x x =-和22L x =,其中x 为销售量(单位:辆)。若该公司在这两地共销售15辆车,则能

获得最大利润为_______。

A.45.606万元

B.45.6万元

C.45.56万元

D.45.51万元

5、某人2000年7月1日存入一年期款a 元(年利率为r ,且到期自动转存),则到

2007年7月1日本利全部取出可得()

A .7(1)a r +元

B .6(1)a r +元

C .7(1)a a r ++元

D .26(1)(1)(1)a a r a r a r +++++++…元

6、某产品进货单价40元,按50元一个出售可卖出500个,若每涨价1元,其销售量就减少10个。

(1)定价元时,日销售额最大为。(2)定价元时,日利润最大为。

7、一种放射性元素,最初的质量为500g,按每年10%的速度衰减,则它的质量衰减

到一半所需要的年数为(精确到0.1,lg20.3010

=,lg30.4771

=).

,水池还没有注水部分与总量的比y随时间8、一个水池每小时注入水量是全池的1

10

x(小量)变化的关系式为________。

9、某自来水厂的蓄水池中有400吨水,每天零点开始向居民供水,同时以每小时60吨

的速度向池中注水.已知t小时内向居民供水总量为1206t吨(024)

≤≤,问

t

(1)每天几点时蓄水池中的存水量最少?

(2)若池中存水量不多于80吨时,就会出现供水紧张现象,则每天会有几个小时出

现这种现象?

10、某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下面的问题:

(1)写出该城市人口总数y(万人)与经过年数x(年)的函数关系式.(2)计算大约多少年后该城市人口将达到120万人(精确到1年).

高一数学必修1-函数模型及其应用

高一数学必修1 函数模型及其应用(1) 【学习导航】 知识网络 学习要求 1.了解解实际应用题的一般步骤; 2.初步学会根据已知条件建立函数关系式的方法; 3.渗透建模思想,初步具有建模的能力. 自学评价 1.数学模型就是把 实际问题 用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题,得出关于实际问题的数学描述. 2. 数学建模就是把实际问题加以 抽象概括 建立相应的 数学模型 的过程,是数学地解决问题的关键. 3. 实际应用问题建立函数关系式后一般都要考察 定义域 . 【精典范例】 例1.写出等腰三角形顶角y (单位:度)与底角x 的函数关系. 【解】1802y x =- ()090x << 点评: 函数的定义域是函数关系的重要组成部分.实际问题中的函数的定义域,不仅要使函数表达式有意义,而且要使实际问题有意义. 例2.某计算机集团公司生产某种型号计算机的固定成本为200万元,生产每台计算机的可变成本为3000元,每台计算机的售价为5000元.分别写出总成本C (万元)、单位成本P (万元)、销售收入R (万元)以及利润L (万元)关于总产量x (台)的函数关系式.

分析:销售利润()L x =销售收入()R x -成本()C x ,其中成本()C x = (固定成本+可变成本). 【解】总成本与总产量的关系为 2000.3,C x x N *=+∈. 单位成本与总产量的关系为 200 0.3,P x N x *= +∈. 销售收入与总产量的关系为 0.5,R x x N *=∈. 利润与总产量的关系为 0.2200,L R C x x N *=-=-∈ . 例3.大气温度()y C 随着离开地面的高度()x km 增大而降低,到上空11km 为止,大约每上升1km ,气温降低6C ,而在更高的上空气温却几乎没变(设地面温度为22C ). 求:(1)y 与x 的函数关系式; (2) 3.5x km =以及12x km =处的气温. 【解】(1)由题意, 当011x ≤≤时,226y x =-, ∴当11x =时,2261144y =-?=-, 从而当11x >时,44y =-. 综上,所求函数关系为 []226,0,1144,(11,) x x y x ?-∈? =? -∈+∞??; (2)由(1)知, 3.5x km =处的气温为 226 3.51y =-?=C , 12x km =处的气温为44C -. 点评:由于自变量在不同的范围中函数的表达式不同,因此本例第1小题得到的是关于自变量的分段函数;第2小题是已知自变量的值,求函数值的问题. 追踪训练一 1.生产一定数量的商品时的全部支出称为生产成本,可表示为商品数量的函数,现知道一企

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第13课时函数模型及其应用

第二章 函数与导数第13课时 函数模型及其应用 第三章 (对应学生用书(文)、(理)33~36页 ) , 1. (必修1P 110练习1)某地高山上温度从山脚起每升高100 m 降低0.6 ℃.已知山顶的温度是14.6 ℃,山脚的温度是26 ℃,则此山的高为________m. 答案:1 900 解析:(26-14.6)÷0.6×100=1 900. 2. (必修1P 71习题10改编)已知某种产品今年产量为1 000件,若计划从明年开始每年的产量比上一年增长10%,则3年后的产量为________件. 答案:1 331 解析:1 000×(1+10%)3 =1 331. 3. (必修1P 35练习3改编)已知等腰三角形的周长为20,底边长y 是关于腰长x 的函数,则该函数的定义域为________. 答案:(5,10) 4. (必修1P 110复习10)在不考虑空气阻力的情况下,火箭的最大速度v(单位:m/s)和燃料的质量M(单位:kg)、火箭(除燃料外)的质量m(单位:kg)的函数关系式为v =2 000ln ? ?? ??1+M m .当燃料质量是火箭质量的________倍时,火箭的最大速度可以达到12 km/s. 答案:e 6 -1 解析:由2 000ln ? ?? ??1+M m =12 000,得1+M m =e 6,所以M m =e 6 -1. 5. (必修1P 100练习3改编)某商品在近30天内每件的销售价格P(元)与时间t(天)的函 数关系为P =? ????t +20,0

高一数学函数模型及其应用练习题2

函数模型及其应用测试题 一、选择题 1.某工厂的产值月平均增长率为P,则年平均增长率是() A.11 +-D.12 (1)1 P P +- (1)P +B.12 (1)P +C.11 (1)1 答案:D 2.某人2000年7月1日存入一年期款a元(年利率为r,且到期自动转存),则到2007年7月1日本利全部取出可得() A.7 a r +元 (1) (1) a r +元B.6 C.7 (1)(1)(1) +++++++ …元 a a r a r a r (1) a a r ++元D.26 答案:A 3.如图1所示,阴影部分的面积S是h的函数(0) ≤≤,则该函数的图象可 h H 能是() 答案:C 4.甲、乙两个经营小商品的商店,为了促销某一商品(两店的零售价相同),分别采取了以下措施:甲店把价格中的零头去掉,乙店打八折,结果一天时间两店都卖出了100件,且两店的销售额相同,那么这种商品的价格不可能是()A.4.1元B.2.5元C.3.75元D.1.25元 答案:A 5.某厂工人收入由工资性收入和其他收入两部分构成.2003年该工厂工人收入3150元(其中工资性收入1800元,其他收入1350元).预计该地区自2004年开始的5年内,工人的工资性收入将以每年6%的年增长率.其他收入每年增加160元.据此分析,2008年该厂工人人均收入将介于() A.42004400 元 元B.44004600 C.46004800 元D.48005000 元 答案:B 二、填空题 6.兴修水利开渠,其横断面为等腰梯形,如图2,腰与水平线夹角为60 ,要求浸水周长(即断面与水接触的边界长)为定值l,同渠深h=,可使水渠量最大.

2019届高考数学一轮复习第二章函数的概念与基本初等函数课时跟踪训练13函数模型及其应用文20180

课时跟踪训练(十三) 函数模型及其应用 [基础巩固] 一、选择题 1.物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T 内完成预测的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( ) [解析] 由运输效率(单位时间的运输量)逐步提高得,曲线上的点的切线斜率应逐渐增大,故函数的图象应一直是下凹的. [答案] B 2.(2018·河南洛阳期中)已知某种动物繁殖量y (只)与时间x (年)的关系为y =a log 3(x +1),设这种动物第2年有100只,到第8年它们发展到( ) A .100只 B .200只 C .300只 D .400只 [解析] 由题意知100=a log 3(2+1),∴a =100,∴y =100log 3(x +1),当x =8时,y =100log 39=200. [答案] B 3.(2017·福建质检)当生物死亡后,其体内原有的碳14的含量大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用一般的放射性探测器探测不到,则它经过的“半衰期\”个数至少是( ) A .8 B .9 C .10 D .11 [解析] 设死亡生物体内原有的碳14含量为1,则经过n (n ∈N * )个“半衰期”后的含 量为? ????12n ,由? ????12n < 11000 得n ≥10.所以,若探测不到碳14含量,则至少经过了10个“半衰期”.故选C. [答案] C

函数模型及其应用

2021年新高考数学总复习第二章《函数与基本初等函数》 函数模型及其应用 1.几类函数模型 函数模型函数解析式 一次函数模型f(x)=ax+b(a,b为常数,a≠0) 反比例函数模型f(x)= k x+b(k,b为常数且k≠0) 二次函数模型 f(x)=ax2+bx+c (a,b,c为常数,a≠0) 指数函数模型 f(x)=ba x+c (a,b,c为常数,b≠0,a>0且a≠1) 对数函数模型 f(x)=b log a x+c (a,b,c为常数,b≠0,a>0且a≠1) 幂函数模型f(x)=ax n+b (a,b为常数,a≠0) 2.三种函数模型的性质 函数 性质 y=a x(a>1) y=log a x(a>1) y=x n(n>0) 在(0,+∞)上 的增减性 单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳 图象的变化 随x的增大逐渐表 现为与y轴平行 随x的增大逐渐表 现为与x轴平行 随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x

题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.( × ) (2)函数y =2x 的函数值比y =x 2的函数值大.( × ) (3)不存在x 0,使0x a 0,b ≠1)增长速度越来越快的形象比喻.( × ) 题组二 教材改编 2.某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( ) A .收入最高值与收入最低值的比是3∶1 B .结余最高的月份是7月 C .1至2月份的收入的变化率与4至5月份的收入的变化率相同 D .前6个月的平均收入为40万元 答案 D 解析 由题图可知,收入最高值为90万元,收入最低值为30万元,其比是3∶1,故A 正确;由题图可知,7月份的结余最高,为80-20=60(万元),故B 正确;由题图可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,故C 正确;由题图可知,前6个月的平均收入为1 6 ×(40+60+30+30+50+60)=45(万元),故D 错误.

函数模型的应用实例练习题及答案解析

1.某公司为了适应市场需求,对产品结构做了重大调整.调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与产量x 的关系,则可选用( ) A .一次函数 B .二次函数 C .指数型函数 D .对数型函数 解析:选D.一次函数保持均匀的增长,不符合题意; 二次函数在对称轴的两侧有增也有降; 而指数函数是爆炸式增长,不符合“增长越来越慢”; 因此,只有对数函数最符合题意,先快速增长,后来越来越慢. 2 A .y =2x -1 B .y =x 2 -1 C .y =2x -1 D .y =-+2 解析:选D.画散点图或代入数值,选择拟合效果最好的函数,故选D. 3.如图表示一位骑自行车者和一位骑摩托车者在相距80 km 的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息: ①骑自行车者比骑摩托车者早出发了3小时,晚到1小时; ②骑自行车者是变速运动,骑摩托车者是匀速运动; ③骑摩托车者在出发了小时后,追上了骑自行车者. 其中正确信息的序号是( ) A .①②③ B .①③ C .②③ D .①② 解析:选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了小时后,追上了骑自行车者,正确. 4.长为4,宽为3的矩形,当长增加x ,且宽减少x 2 时面积最大,此时x =________, 面积S =________. 解析:依题意得:S =(4+x )(3-x 2)=-12 x 2 +x +12 =-12(x -1)2 +1212,∴当x =1时,S max =1212 . 答案:1 121 2 1 ( ) A .指数函数 B .反比例函数 C .一次函数 D .二次函数 解析:选C.画出散点图,结合图象(图略)可知各个点接近于一条直线,所以可用一次函数表示. 2.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( ) A .14400亩 B .172800亩

考点12 函数模型及其应用(教师版)单元检测系列(基础类) 备战2021年高考

考点12 函数模型及其应用 1、某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( ) A.p +q 2 B .(p +1)(q +1)-12 C.pq D .(p +1)(q +1)-1 【答案】D 【解析】设第一年年初生产总值为1,则这两年的生产总值为(p +1)(q +1).设这两年生产总值的年平均增长率为x ,则(1+x )2=(p +1)(q +1),解得x =(p +1)(q +1)-1,故选D. 2、在标准温度和大气压下,人体血液中氢离子的物质的量的浓度(单位m ol/L ,记作[H + ])和氢氧根离子的物质的量的浓度(单位m ol/L ,记作[OH - ])的乘积等于常数10 -14 .已知p H 值的定义为pH =-lg [H + ],健康人体 血液的p H 值保持在7.35~7.45之间,那么健康人体血液中的[H + ] [OH -]可以为(参考数据:lg 2≈0.30,lg 3≈0.48)( ) A.12 B .1 3 C .16 D .110 【答案】C 【解析】∵[H + ]·[OH - ]=10-14 ,∴[H + ][OH -] =[H +]2× 1014,∵7.35<-lg [H + ]<7.45, ∴10 -7.45 <[H + ]<10 -7.35 ,∴10 -0.9 <[H + ][OH -] =1014·[H +]2<10-0.7,10-0.9=1100.9 >110,lg(100.7)=0.7>lg 3>lg 2,∴100.7>3>2,10 -0.7 <13<12,∴110<[H + ][OH -]<1 3 .故选C. 3、一水池有两个进水口,一个出水口,每个水口的进、出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示. 给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水,则一定正确的是( ) A .① B .①② C .①③ D .①②③

高考中常用函数模型归纳及应用

高考中常用函数模型.... 归纳及应用 一. 常数函数y=a 判断函数奇偶性最常用的模型,a=0时,既是奇函数,又是偶函数,a ≠0时只是偶函数。关于方程解的个数问题时常用。 例1.已知x ∈(0, π],关于方程2sin(x+ 3 π )=a 有两个不同的实数解,则实数a 的取植范围是( )A .[-2,2] B.[ 3,2] C.( 3,2] D.( 3,2) 解析;令y=2sin(x+3π ), y=a 画出函数y=2sin(x+3 π ),y=a 图象如图所示,若方程有两个不同的解,则两个函数图象有两个不同的交点, 由图象知( 3,2),选D 二. 一次函数y=kx+b (k ≠0) 函数图象是一条直线,易画易分析性质变化。常用于数形结合解决问题,及利用“变元”或“换元”化归 为一次函数问题。有定义域限制时,要考虑区间的端点值。 例2.不等式2x 2 +1≤m(x-1)对一切│m │≤2恒成立,则x 的范围是( ) A .-2≤x ≤2 B. 4 31- ≤x ≤0 C.0≤x ≤ 4 71+ D. 4 71-≤x ≤ 4 1 3- 解析:不等式可化为m(x-1)- 2x 2+1≥0 设f(m)= m(x-1)- 2x 2 +1 若x=1, f(m)=-3<0 (舍) 则x ≠1则f(m)是关于m 的一次函数,要使不等式在│m │≤2条件下恒成立,只需? ? ?≥-≥0)2(0 )2(f f ,解之可得答案D 三. 二次函数y=ax 2 +bx+c (a ≠0) 二次函数是应用最广泛的的函数,是连接一元二次不等式和一元二次方程的纽带。很多问题都可以化归和转化成二次函数问题。比如有关三次函数的最值问题,因其导数是二次函数,最后的落脚点仍是二次函数问题。 例3.(1).若关于x 的方程x 2 +ax+a 2 -1=0有一个正根和一个负根,则a 的取值范围是( ) 解析:令f(x)= x 2 +ax+a 2 -1由题意得f(0)= a 2 -1 <0,即-1<a <1即可。 一元二次方程的根分布问题可借助二次函数图象解决,通常考虑二次函数的开口方向,判别式对称轴与根的位置关系,端点函数值四个方面。也可借助韦达定理。

2019高考数学一轮复习课时规范练13函数模型及其应用理新人教A版

课时规范练13 函数模型及其应用 一、基础巩固组 1.某产品的总成本y(单位:万元)与产量x(单位:台)之间的函数关系是y=3 000+20x-0.1x2(0

函数模型及其应用教案

Modeling and Problem Solving ——函数模型及其应用教案 中澳课程部王晓叶 学情分析:澳方MathB每次的Paper Test都分为两部分,其中Knowledge and Procedures(知识与过程)这个和普通高中数学相似,学生A/B率比较高,但是另外一部分Modeling and Problem Solving(建模与实际问题的解决)学生的A/B率不高。这一部分内容题目普遍很长、生词量较多,并且都是将数学知识应用于实际生活中,所以大多数学生遇到此类题目都是放弃不做。MathB这门课又特别注重实际生活问题的解决,而我们的学生这方面意识比较薄弱,抽象概括能力较弱。所以,我们的教学任务是提高学生的考试成绩等级,提高OP成绩。但是另一方面,12年级的学生大多数能灵活的使用图形计算器,具有一定的英语语言基础。 教学目标:1.了解函数模型在现实生活中的运用。 2.能够建立恰当的函数模型,并对函数模型进行简单的分析。 3.利用所得函数模型解释有关现象,对某些发展趋势进行预测。 教学重难点:1.建立合适的函数模型 2.利用得到的函数模型解决实际问题 教学过程 一、引入案例、探索新知(如何确定最合适的函数模型)(18分钟) 案例:根据《Daily Mail》报道,上个月一名中国留学生将自己车速飙到180公里/小时的录像传到了Instagram个人网页上,并以配以中文:“从Albany开回Perth,一路180公里/小时,将4.5小时的车程缩短到3.5小时。” 目前,他正在接受警方调查。 警察表示,视频显示这名男子在限速110公里/小时的高速公路开到了180公里/小时,他将面临巨额罚款、吊销驾照以及拘留。 Example1:The table below shows the relationship between the velocity of a car and the Velocity 10 20 30 40 50 60 70 80 90 Distance 2 10 15 20 27 38 47 60 75 a. Use the calculator to find the relationship between the velocity of a car and the distance after it braking. b. What’s the minimum safe following distance for a car travelling at 110 km/h on the motor way? 项目罚款扣分超速少于10km/h 163澳元扣2分超速10km/h-20km/h 357澳元扣3分 超速20km/h-30km/h 726澳元扣5分 超速30km/h-40km/h 866澳元扣7分未系安全带341澳元扣3分闯红灯437澳元扣3分开车使用手机315澳元扣3分

函数模型及其应用教案

适用学科 高中数学
适用年级
高一
适用区域 通用
课时时长(分钟)
2 课时
知识点 1.几类不同增长的函数模型的特点
2.用已知函数模型解决实际问题
3.建立函数模型解决实际问题
教学目标 1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上
升、指数爆炸、对数增长等不同函数类型增长的含义;
2.了解社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)
的实例。
教学重点 了解函数模型的广泛应用。
教学难点 了解函数模型的广泛应用。
【教学建议】 本课内容是函数的应用,它的本质就是我们学习过的函数做为模型在现实问题刻画过程
中的基本操作过程和常见函数图象与性质在应用中的升华.本课内容是课本必修 1 中第三章 的重点内容之一,课本中还渗透了函数拟合的基本思想,这也为后面高中的学习做了铺垫。 通过本节的学习,要使学生从中体会函数模型刻画现实问题的基本过程并体会函数在数学及 其它地方的应用的广泛性,能初步运用函数的思想解决现实生活中的一些简单问题, 函数 模型本身就来源于现实,学生可以从理解知识升华到熟练应用知识,使他们能辩证地看待知 识理解与知识应用间的关系,与所学的函数知识前后紧紧相扣,相辅相成. 【知识导图】
教学过程
一、导入
【教学建议】 导入是一节课必备的一个环节,是为了激发学生的学习兴趣,帮助学生尽快进入学习状
第1页

态。
导入的方法很多,仅举两种方法:
① 情境导入,比如讲一个和本讲内容有关的生活现象;
② 温故知新,在知识体系中,从学生已有知识入手,揭示本节知识与旧知识的关系,帮学
生建立知识网络。
提供一个教学设计供讲师参考:
环节
教学内容设计
材料:澳大利亚兔子数“爆炸”
在教科书第三章的章头图中,有一大群
喝水、嬉戏的兔子,但是这群兔子曾使澳
大利亚伤透了脑筋.1859 年,有人从欧洲

带进澳洲几只兔子,由于澳洲有茂盛的牧
草,而且没有兔子的天敌,兔子数量不断

增加,不到 100 年,兔子们占领了整个澳
大利亚,数量达到 75 亿只.可爱的兔子变

得可恶起来,75 亿只兔子吃掉了相当于 75
亿只羊所吃的牧草,草原的载畜率大大降

低,而牛羊是澳大利亚的主要牲口.这使
澳大利亚头痛不已,他们采用各种方法消
灭这些兔子,直至二十世纪五十年代,科
学家采用载液瘤病毒杀死了百分之九十的
野兔,澳大利亚人才算松了一口气.
师生双边互动 师:指出:一般而言,在理想条件 (食物或养料充足,空间条件充裕, 气候适宜,没有敌害等)下,种群 在一定时期内的增长大致符合“J” 型曲线;在有限环境(空间有限, 食物有限,有捕食者存在等)中, 种群增长到一定程度后不增长,曲 线呈“S”型.可用指数函数描述一 个种群的前期增长,用对数函数描 述后期增长的
第2页

2019年高考数学总复习 课时作业(12)函数模型及其应用 理.doc

2019年高考数学总复习课时作业(12)函数模型及其应用理 基础热身 1.若一根蜡烛长20 cm,点燃后每小时燃烧5 cm,则蜡烛燃烧剩下的高度h(cm)与燃烧时间t(h)的函数关系用图像表示为() 图K12-1 2.某公司招聘员工,面试对象人数按拟录用人数分段计算,计算公式为 y=其中x代表拟录用人数, y代表面试对象人数.若面试对象人数为60,则该公司的拟录用人数为() A.15 B.40 C.25 D.70 3.据统计,每年到鄱阳湖国家湿地公园越冬的白鹤数量y(只)与时间x(年)近似地满足关系y=a log3(x+2),观察发现2012年(作为第1年)到该湿地公园越冬的白鹤数量为3000只,估计到2018年到该湿地公园越冬的白鹤的数量为 () A.4000只 B.5000只 C.6000只 D.7000只 4.某品牌平板电脑投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y与投放市场的月数x之间的关系的是() A.y=100x B.y=50x2-50x+100 C.y=50×2x D.y=100log2x+100 5.[2017·河北武邑中学调研]“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R与广告费A之间满足关系R=a(a为常数),广告效应为D=a-A.那么精明的商人为了取得最大广告效应,投入的广告费应 为.(用常数a表示) 能力提升

6.已知每生产100克饼干的原材料加工费为1.8元.某食品加工厂对饼干采用两种包装,包装费用、销售价格如下表所示: 型号小包装大包装 重量100克300克 包装费0.5元0.7元 销售价格3.0元8.4元 则下列说法中正确的是() ①买小包装实惠;②买大包装实惠;③卖3小包比卖1大包盈利多;④卖1大包比卖3小包盈利多. A.①③ B.①④ C.②③ D.②④ 7.[2017·北京丰台区测试]血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度.药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图K12-2所示. 图K12-2 根据图中提供的信息,下列关于成人使用该药物的说法中不正确的是 () A.首次服用该药物1单位约10分钟后,药物发挥治疗作用 B.每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒 C.每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用 D.首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒 8.[2017·南昌二模]某商场2017年1月份到12月份销售额呈现先下降后上升的趋势,下列四个函数中,能较准确地反映商场月销售额f(x)与月份x的关系且满足f(1)=8,f(3)=2的函数为() A.f(x)=20×

知识讲解_函数模型的应用举例_基础---

函数模型的应用实例 【学习目标】 1.能够找出简单实际问题中的函数关系式,应用指数函数、对数函数模型解决实际问题,并初步掌握数学建模的一般步骤和方法. 2.通过具体实例,感受运用函数建立模型的过程和方法,体会指数函数、对数函数模型在数学和其他学科中的应用. 3.通过函数应用的学习,体会数学应用的广泛性,树立事物间相互联系的辩证观,培养分析问题、解决问题的能力,增强数学的应用意识. 【要点梳理】 【高清课堂:函数模型的应用实例392115 知识要点】 要点一:解答应用问题的基本思想和步骤 1.解应用题的基本思想 2.解答函数应用题的基本步骤 求解函数应用题时一般按以下几步进行: 第一步:审题 弄清题意,分清条件和结论,理顺数量关系,初步选择模型. 第二步:建模 在细心阅读与深入理解题意的基础上,引进数学符号,将问题的非数学语言合理转化为数学语言,然后根据题意,列出数量关系,建立函数模型.这时,要注意函数的定义域应符合实际问题的要求. 第三步:求模 运用数学方法及函数知识进行推理、运算,求解数学模型,得出结果. 第四步:还原 把数学结果转译成实际问题作出解答,对于解出的结果要代入原问题中进行检验、评判,使其符合实际背景. 上述四步可概括为以下流程: 实际问题(文字语言)?数学问题(数量关系与函数模型)?建模(数学语言)?求模(求解数学问题)?反馈(还原成实际问题的解答). 要点二:解答函数应用题应注意的问题 首先,要认真阅读理解材料.应用题所用的数学语言多为“文字语言、符号语言、图形语言”并用,往往篇幅较长,立意有创新脱俗之感.阅读理解材料要达到的目标是读懂题目所叙述的实际问题的意义,领悟其中的数学本质,接受题目所约定的临时性定义,理解题目中的量与量的位置关系、数量关系,确立解体思路和下一步的努力方向,对于有些数量关系较复杂、较模糊的问题,可以借助画图和列表来理清它. 其次,建立函数关系.根据前面审题及分析,把实际问题“用字母符号、关系符号”表达出来,建立函数关系. 其中,认真阅读理解材料是建立函数模型的关键.在阅读这一过程中应像解答语文和外语中的阅读问题

高考数学一轮复习课时规范练13函数模型及其应用理新人教A

课时规范练13 函数模型及其应用 一、基础巩固组 1.某产品的总成本y (单位:万元)与产量x (单位:台)之间的函数关系是y=3 000+20x-0.1x 2(0

高三数学一轮复习课时作业12 函数模型及其应用 文 北师大版

[时间:45分钟 分值:100分] 基础热身 1.某物体一天中的温度T 是时间t 的函数T (t )=t 3-3t +60,时间单位是小时,温度 单位是℃,t =0表示中午12时,其后t 值取为正,则上午8时的温度是( ) A .8℃ B.112℃ C.58℃ D.18℃ 2 则x ,y ) A .y =a +bx B .y =a +b x C .y =ax 2 +b D .y =a +b x 3.f (x )=x 2,g (x )=2x ,h (x )=log 2x ,当x ∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是( ) A .f (x )>g (x )>h (x ) B .g (x )>f (x )>h (x ) C .g (x )>h (x )>f (x ) D .f (x )>h (x )>g (x ) 4.某工厂生产一种仪器的固定成本为20000元,每生产一台仪器需增加投入100元.已知该仪器的每台售价P (元)与每月生产量x 台的关系为P =500-x .为使该厂每月所获利润最大,则该厂每月生产这种仪器的台数为________.(注:利润=销售收入-总成本) 能力提升 5.下列所给4 图K12-1 (1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速. A .(1)(2)(4) B .(4)(2)(3) C .(1)(2)(3) D .(4)(1)(2) 6.若一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,则燃烧剩下的高度h (cm)与燃烧时间t (小时) 图K12- 图K12-3 7.有一批材料可以围成200 m 长的围墙,现用此材料在一边靠墙的地方围成一块矩形场地,且内部用材料隔成三个面积相等的矩形(如图K12-3),则围成的矩形场地的最大面积为( ) A .1000 m 2 B .2000 m 2 C .2500 m 2 D .3000 m 2 8.已知每生产100克饼干的原材料加工费为1.8元.某食品加工厂对饼干采用两种包装,其包装费用、销售价格如下表所示:

几个常见函数模型的应用

高三数学复习小专题 几个常见函数模型的应用 一、函数x e x y = 的性质应用 1.(2014年天津理)已知函数()x f x x ae =-)(R a ∈,R x ∈.已知函数()y f x =有两个零点12,x x ,且12x x <. (Ⅰ)求a 的取值范围; (Ⅱ)证明:21 x x 随着a 的减小而增大; (Ⅲ)证明:12x x +随着a 的减小而增大. 二、函数x e y x =的性质应用 2.(2014年山东理)设函数22()(ln )x e f x k x x x =-+(k 为常数, 2.71828e =???是自然对数的底数). (Ⅰ)当0k ≤时,求函数()f x 的单调区间; (Ⅱ)若函数()f x 在(0,2)内存在两个极值点,求k 的取值范围.

三、函数x xe y =的性质应用 3.已知函数x e x f x +=)(,2)(-=x a x g . (1)若0>x 时)()(x g x f >恒成立,求a 的取值范围; (2)讨论函数)()()(x g x f x F -=的零点的个数. 四、函数x x y ln =的性质应用 4.(2014年湖北理)π为圆周率,e=2.718 28…为自然对数的底数. (Ⅰ)求函数x x x f ln )(=的单调区间; (Ⅱ)求e 3,3e ,e π,πe ,3π,π3这6个数中的最大数与最小数. (Ⅲ)将e 3,3e ,e π,πe ,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.

5.(2013年北京理科)设L 为曲线C :x x y ln =在点(1,0)处的切线. (1)求L 的方程; (2)证明:除切点(1,0)之外,曲线C 在直线L 的下方. 6.求证:3≥n 时,).()1(1*+∈+>N n n n n n 五、函数x x y ln = 的性质应用

2021届高考数学一轮复习 第二章13函数模型及其应用 练案【含解析】

2021届高考数学一轮复习 第二章13函数模型及其应用 练案【含解 析】 A 组基础巩固 一、单选择 1.现有一组数据如下: t 1.99 3.0 4.0 5.1 6.12 v 1.5 4.04 7.5 12 18.01 ( C ) A .v =log 2t B .v =log 12t C .v = t 2-1 2 D .v =2t -2 [解析] 解法一:v 值随t 值增大,且增长速度越来越快,故应选择幂函数模型,仅选项C 符合. 解法二:取t =1.99≈2(或t =5.1≈5),代入A 得v =log 22=1≠1.5;代入B ,得v =log 1 22=-1≠1.5;代入C ,得v =22 -1 2=1.5;代入D ,得v =2×2-2=2≠1.5.其余4组数据同 样代入可知C 最合要求.故选C. 2.(2020·安阳模拟)某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,可以生产最低档次产品60件,每提高一个档次将少生产3件产品,则每天获得利润最大时生产产品的档次是( C ) A .7 B .8 C .9 D .10 [解析] 由题意,当生产第k 档次的产品时,每天可获得利润为y =[8+2(k -1)][60-3(k -1)]=-6(k -9)2 +864(1≤k ≤10,k ∈N ),所以当k =9时,获得利润最大,故选C. 3.(2020·安徽马鞍山模拟)某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2017年全年投入科研经费1 300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2 000万元的年份是(参考数据:lg 1.12≈ 0.05,lg 1.3≈0.11,lg 2≈0.30)( B ) A .2020年 B .2021年 C .2022年 D .2023年 [解析] 若2018年是第一年,则第n 年科研费为1 300×1.12n ,由1 300×1.12n >2 000,可得lg 1.3+n lg 1.12>lg 2,得n ×0.05>0.19,n >3.8,n ≥4,即4年后,到2021年科研

2015届高考数学一轮复习 课时跟踪检测12 函数模型及其应用 文 湘教版

课时跟踪检测(十二)函数模型及其应用第Ⅰ组:全员必做题 1.设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图像为() 2.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是() A.y=100x B.y=50x2-50x+100 C.y=50×2x D.y=100log2x+100 3.一水池有两个进水口,一个出水口,每个水口的进、出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示. 给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水,则一定正确的是() A.①B.①②C.①③D.①②③ 4.某种新药服用x小时后血液中的残留量为y毫克,如图所示 为函数y=f(x)的图像,当血液中药物残留量不小于240毫克时, 治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二 次服药最迟的时间应为() A.上午10:00 B.中午12:00 C.下午4:00 D.下午6:00 5.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S.则S最小时,电梯所停的楼层是() A.7层B.8层C.9层D.10层 6.一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,满

第13讲 函数模型及其应用(原卷版)

第13讲函数模型及其应用思维导图 知识梳理 1.几种常见的函数模型

题型归纳题型1 用函数图象刻画变化过程 【例1-1】(2020?徐汇区二模)某地区的绿化面积每年平均比上一年增长20%,经过x 年,绿化面积与原绿化面积之比为y ,则()y f x 的图象大致为( ) A . B . C . D . 【例1-2】(2019秋?琼山区校级期末)两个学校1W 、2W 开展节能活动,活动开始后两学校的用电量1()W t 、2()W t 与时间t (天)的关系如图所示,则一定有( ) A .1W 比2W 节能效果好 B .1W 的用电量在[0,0]t 上的平均变化率比2W 的用电量在[0,0]t 上的平均变化率大 C .两学校节能效果一样好 D .1W 与2W 自节能以来用电量总是一样大 【跟踪训练1-1】(2019秋?武昌区期末)在2h 内将某种药物注射进患者的血液中.在注射期间,血液中的药物含量呈线性增加;停止注射后,血液中的药物含量呈指数衰减.能反映血液中药物含量Q 随时间t 变化的图象是( )

A.B. C.D. 【跟踪训练1-2】(2020?来宾模拟)近两年为抑制房价过快上涨,政府出台了--系列以“限购、限外、限贷、限价”为主题的房地产调控政策.各地房产部门为尽快实现稳定房价,提出多种方案,其中之一就是在规定的时间T内完成房产供应量任务Q.已知房产供应量Q与时间t的函数关系如图所示,则在以下四种房产供应方案中,供应效率(单位时间的供应量)逐步提高的是() A.B. C.D. 【名师指导】 判断函数图象与实际问题中两变量变化过程相吻合的两种方法 (1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象. (2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案. 题型2 应用所给函数模型解决实际问题 【例2-1】(2020?山东)基本再生数 R与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个 感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用

相关主题