搜档网
当前位置:搜档网 › 伺服电机绝对定位解释

伺服电机绝对定位解释

伺服电机绝对定位解释
伺服电机绝对定位解释

DRVA D0 D2 Y0 Y2

*D0:目标位置,可以是数值或是寄存器,也就是PLC要输出的脉冲数。

*D2:输出脉冲频率,可以是数值或是寄存器。也就是PLC输出的脉冲频率。 *Y0:脉冲输出地址,只能是Y0或Y1。

*Y2:方向控制输出,正向是ON或是OFF,反向是OFF或是ON(根据所控

制执行元件设置来确定)

相关寄存器和位元件:

32位寄存器D8140:脉冲由Y0输出时,记录当前的位置。

32位寄存器D8142:脉冲由Y1输出时,记录当前的位置。

32位寄存器D8146:设定最高脉冲频率,因为此指令的加减速时间是计算

由基底频率升到最高频率的时间,所以改变D8146的值可以更准确的设定执行

元件的加减速时间。

D8145:基底频率。FX的脉冲输出频率并不能从0开始,由一个计算公式

可参考。当您把D2的值设定小于计算的基底频率时,最小输出频率也是按照基底频率输出。

D8148:加减速时间设定。

M8147 : Y000正在输出脉冲时,M8147闭合

M8148 : Y001正在输出脉冲时,M8148闭合。

其用法实例如图一:

当DRVA指令发送完寄存器D0规定的脉冲数后,M8147断开,M1吸合。

图二所示的原点概念:

原点是针对D8140(D8142)所说,DRVA在开始执行前D8140(D8142)的值就是当前

的原点。

如DRVA执行前D8140(D8142)的值为0,那么图二的右行输出脉冲数则为3000,如DRVA执行前D8140(D8142)的值为1000,那么上图的右行输出脉冲数则为2000,如DRVA执行前D8140(D8142)的值为3000,那么上图的右行输出脉冲数则为0。

也就是说绝对位置控制指令DRVA的输出脉冲数是根据D8140(D8142)的值来决定。最好的方法就是先找到机械原点,然后把D8140(D8142)的值用MOV指令清零,让程序原点与机械原点一致,如此便于计算所发脉冲数。

根据图二所示实例如下:(假设D8140(D8142)的值在原点时为0)

右行到目标位置:DRVA K3000 D2 Y0 Y2

左行回到原点:DRVA K0 D2 Y0 Y2

伺服系统的参数调整和性能指标试验

伺服系统的参数调整和性能指标试验 1 伺服系统的参数调整理论基础 伺服系统包括三个反馈回路(位置回路、速度回路以及电流回路)。最内环回路的反应速度最快,中间环节的反应速度必须高于最外环。假使未遵守此原则,将会造成震动或反应不良。伺服驱动器的设计可确保电流回路具备良好的反应效能。用户只需调整位置回路与速度回路增益。 伺服系统方块图包括位置、速度以及电流回路,如图1所示。 图1 伺服系统方块图 一般而言,位置回路的反应不能高于速度回路的反应。因此,若要增加位置回路的增益,必须先增加速度回路增益。如果只增加位置回路的增益,震动将会造成速度指令及定位时间增加,而非减少。 如果位置回路反应比速度回路反应还快,由于速度回路反应较慢,位置回路输出的速度指令无法跟上位置回路。因此就无法达到平滑的线性加速或减速,而且,位置回路会继续累计偏差,增加速度指令。这样,电机速度会超过,位置回路会尝试减少速度指令输出量。但是,速度回路反应会变得很差,电机将赶不上速度指令。速度指令会如图2振动。要是发生这种情形,就必须减少位置回路增益或增加速度回路增益,以防速度指令振动。 图2 速度指令 位置回路增益不可超过机械系统的自然频率,否则会产生较大的振荡。例如,机械系统若是连接机器人,由于机器的机械构造采用减低波动的齿轮,而机械系统的自然频率为10~20Hz,因此其刚性很低。此时可将位置回路增益设定为10至20(1/s)。 如果机械构造系统是晶片安装机、IC黏合机或高精度工具机械,系统的自然频率为70Hz以上。因此,可将位置回路增益设定为70(1/s)或更高。 需要很快的反应时,不只是要确保采用的伺服系统(控制器、伺服驱动器、电机以及编码器)的反应,而且也必须确保机械系统具备高刚性。

提高伺服系统定位精度的方法

分析了伺服系统定位误差形成的原因,提出了伺服系统采用分段线性减速并以开环方式精确定位的方法,给出了相应的程序流程图,对提高数控机床伺服系统的定位精度具有实用参考价值。 数控机床的定位精度直接影响到机床的加工精度。传统上以步进电动机作驱动机构的机床,由于步进电动机的固有特性,使得机床的重复定位精度可以达到一个脉冲当量。但是,步进电动机的脉冲当量不可能很小,因而定位精度不高。伺服系统的脉冲当量可以比步进电动机系统小得多,但是,伺服系统的定位精度很难达到一个脉冲当量。由于CPU性能已有极大提高,故采用软件可以有效地提高定位精度。我们分析了常规控制算法导致伺服系统定位精度误差较大的原因,提出了分段线性减速并以开环方式精确定位的方法,实践中取得了很好的效果。 一、伺服系统定位误差形成原因与克服办法 通常情况下,伺服系统控制过程为:升速、恒速、减速和低速趋近定位点,整个过程都是位置闭环控制。减速和低速趋近定位点这两个过程,对伺服系统的定位精度有很重要的影响。 减速控制具体实现方法很多,常用的有指数规律加减速算法、直线规律加减速算法。指数规律加减速算法有较强的跟踪能力,但当速度较大时平稳性较差,一般适用在跟踪响应要求较高的切削加工中。直线规律加减速算法平稳性较好,适用在速度变化范围较大的快速定位方式中。 选择减速规律时,不仅要考虑平稳性,更重要的是考虑到停止时的定位精度。从理论上讲,只要减速点选得正确,指数规律和线性规律的减速都可以精确定位,但难点是减速点的确定。通常减速点的确定方法有: (1)如果在起动和停止时采用相同的加减速规律,则可以根据升速过程的有关参数和对称性来确定减速点。 (2)根据进给速度、减速时间和减速的加速度等有关参数来计算减速点,在当今高速CPU 十分普及的条件下,这对于CNC的伺服系统来说很容易实现,且比方法(1)灵活。 伺服控制时,由软件在每个采样周期判断:若剩余总进给量大于减速点所对应的剩余进给量,则该瞬时进给速度不变(等于给定值),否则,按一定规律减速。 理论上讲,剩余总进给量正好等于减速点所对应的剩余进给量时减速,并按预期的减速规律减速运行到定位点停止。但实际上,伺服系统正常运转时每个采样周期反馈的脉冲数是几个、十几个、几十个甚至更多,因而实际减速点并不与理论减速点重合。如图1所示,其最大误差等于减速前一个采样周期的脉冲数。若实际减速点提前,则按预期规律减速的速度降到很低时还未到达定位点,可能需要很长时间才能到达定位点。若实际减速点滞后于理论减速点,则到达定位点时速度还较高,影响定位精度和平稳性。为此,我们提出了分段线性减速方法。在低速趋近定位点的过程中,设速度为V0(mm/s),伺服系统的脉冲当量为δ(μm),采样周期为τ(ms),则每个采样周期应反馈的脉冲数为:N0=V0τ/δ。由于实际反馈的脉冲数是个整数,可能有一个脉冲的误差,即此时速度检测误差最大值为l/N0=δ/(V0τ)。采样周期越小、速度越低,则速度检测误差越大。为了满足定位精度是一个脉冲的要求,应使V0很小,使得N0≤1,此时速度检测误差达到100%甚至更高。如果此时仍然实行位置闭

10-李明元,戴伟明,罗晓松,孙静-CINRADCD伺服系统一次俯仰定位精度故障的维修实例

CINRAD/CD伺服系统一次俯仰定位精度故障的维修实例 李明元1戴伟明2罗晓松1孙静1 (贵州省遵义市气象局贵州遵义邮编: 563002 国营784厂四川成都邮编:610051) 摘要:简要介绍了CINRAD/CD伺服系统的工作原理、主要部件与功能,根据控制流程分析了遵义市CINRAD/CD伺服系统一次俯仰定位精度故障的检查排除。初步提出了故障排除思路。 关键词:伺服系统俯仰定位精度故障思路 引言: 新一代全相参多普勒天气雷达已在我国陆续布网建设,相应的雷达技术保障工作随之开展。为满足汛期全天连续不间断立体扫描,雷达系统故障的排除需准确、快捷,否则影响利用雷达资料开展短时临近预报工作。近几年来,随着雷达技术保障工作的开展,探讨雷达性能参数测试〔1-2〕、维护维修方法〔3-4〕、各分机维修个例〔5-10〕的文献已不少,但是针对具体个例进行系统全面分析的却比较少见,从这些文献谈到的故障来看,发射系统和伺服系统的故障率最高。本文针对伺服系统俯仰定位精度故障的维修实例,系统全面讨论该故障的检查和排除,有利于维护人员快速排除伺服系统俯仰定位精度故障,由于方位伺服系统电路和俯仰伺服系统电路大部分相同,只是各元件参数取值不同,因此可同时作为方位定位精度故障排除的参考。 CINRAD/CD伺服系统定位控制的系统增益、系统阻尼由伺服放大器的模拟电路调整(电位器RP5调整系统增益,电位器RP8调整系统阻尼),雷达运行较长时间后,系统特性参数和控制电路的参数可能发生变化,这会导致伺服系统定位精度变差,甚至不能满足雷达扫描的要求。通过对电位器RP5和RP8的调整,可以调节伺服系统的系统增益和系统阻尼,从而改善伺服系统的静态特性和动态特性,使伺服系统的定位精度满足雷达扫描的要求。当然,伺服系统的定位精度还由执行元件反馈、天线传动机构的回差、位置监测装置的精度决定。排除雷达伺服系统定位精度故障需要从多方面考虑,这不仅需要全面掌握伺服系统的工作原理,还要有合理排除故障的思路。现对排查俯仰定位精度故障个例作综合阐述。 1 伺服系统工作原理 伺服系统的工作原理是主控单元(计算机)给定天线的位置(输入角码),

X_Y伺服系统(定位控制系统)概要

X_Y伺服系统(定位控制系统) 随着SMC/SMD尺寸的减少而精度不断提高,对贴片机的贴装精度要求越来越高。换言之,对X—Y定位系统的要求越来越高,而X—Y定位系统则由X—Y伺服系统来保证,即上述的滚珠丝杆—直线导轨以及同步齿形带—直线导轨,是由交流伺服电机驱动,并在位移传感器以及控制系统的指挥下实现精确定位的。因此位移传感器的精度起到关键的作用。目前贴片机上使用的位移传感器常有圆光栅编码器、磁栅尺、光栅尺,现将他们的结构与远离介绍如下。 (1)圆光栅编码器 通常圆光栅编码器的转动部位上装有两片圆光栅,圆光栅是由玻璃片和透明塑料制程,并在片上镀有明暗相间的放射状铬线,相邻的明暗间距称为一个栅节,整个圆周总栅节数为编码器的脉冲数。铬线数的多少也表示其精度的高低,显然,铬线数越多,其精度越高。其中一片光栅固定在转动部位用做指示标光栅,另一片则随转动轴同步运动并用来计数,因此指标光栅与转动光栅组成一对扫描系统,相当于计数传感器。 编码器在工作时,可以检测出转动件的位置、角度及角度加速度,它可以将这些物理量装换成电信号,传输给控制系统,控制系统就可以根据这些量来控制驱动装置。因此,圆光栅编码器通常装在伺服电机中,而电机直接与滚珠丝杆相连。 贴片机在工作时,将位移量转换为编码信号,输入编码器中。挡电机工作时,编码器就能记录丝杆的旋转数并将信息反馈给比较器,直至符合被测线性位移量,这样就将旋转运动转换为线性运动,保证贴片头运动到所需位置上。 采用圆光栅编码器的位移控制系统结构简单,抗干扰性强,测量精确度取决编码器中光栅盘上的光栅数以及滚珠丝杆导轨的精度。 (2)磁栅尺 磁栅尺由磁栅尺、磁头检测电路组成,利用电磁特性和录磁原理对位移进行测量。磁栅尺实在非导磁性标尺基础上采用化学涂覆或电镀工艺在非磁性标尺上沉积一层磁性膜(一般10~20μm),在磁性膜上录制代表一定长度、具有一定波长的方波或正弦波磁轨迹信号。磁头在磁栅尺上移动读取磁信号,并转变成电信号输入控制电路,最终控制着AC伺服电机的运行,通常磁栅尺直接安装在X,Y导轨上。 磁栅尺的优点是制造简单,安装方便,稳定性高,量程范围大。其测量精度高达1~5μm,一般高精度自动贴片机采用此装置;贴片重复精度一般为0.002mm。 (3)光栅尺 该系统同磁栅尺系统相类似,也由光栅尺、光栅读数头与检测电路组成。光栅尺是在透明玻璃或金属镜面上真空沉积镀膜,利用光刻技术制作均匀密集条纹(每毫米100~300条条纹),条纹距离相等且平行,光栅读数头由指示光栅、光源、透镜及光敏器件组成。指示光栅有相同密度的条纹。光栅尺根据物理学的莫尔条纹形成原理进行位移测量,测量精度高,一般为0.1~1μm。光栅尺在高精度贴片机中应用,其定位精度比磁栅尺还要高1到2个数量级。

伺服性能指标

衡量伺服系统性能的主要指标有频带宽度和精度。频带宽度简称带宽,由系统频率响应特性来规定,反映伺服系统的跟踪的快速性。带宽越大,快速性越好。伺服系统的带宽主要受控制对象和执行机构的惯性的限制。惯性越大,带宽越窄。一般伺服系统的带宽小于15赫,大型设备伺服系统的带宽则在1~2赫以下。自20世纪70年代以来,由于发展了力矩电机及高灵敏度测速机,使伺服系统实现了直接驱动,革除或减小了齿隙和弹性变形等非线性因素,使带宽达到50赫,并成功应用在远程导弹、人造卫星、精密指挥仪等场所。伺服系统的精度主要决定于所用的测量元件的精度。因此,在伺服系统中必须采用高精度的测量元件,如精密电位器、自整角机、旋转变压器、光电编码器、光栅、磁栅和球栅等。此外,也可采取附加措施来提高系统的精度,例如将测量元件(如自整角机)的测量轴通过减速器与转轴相连,使转轴的转角得到放大,来提高相对测量精度。采用这种方案的伺服系统称为精测粗测系统或双通道系统。通过减速器与转轴啮合的测角线路称精读数通道,直接取自转轴的测角线路称粗读数通道。 1.3交流伺服系统性能指标 位置伺服系统的主要控制目标是输出值迅速跟踪指令值的变化。应用场合不同,对伺服系统的具体要求也会有所差异,但是大体要求是基本一致的,具体来说,在机电一体化产品中,对伺服系统的性能指标要求主要包括 (1)定位精度 系统最终定位点与指令目标值之间的静态误差即为定位精度,定位精度是评价位置伺服系统定位准确度的一个关键指标。对自带码盘、性能优异的交流伺服系统而言,应当满足±1个脉冲的定位精度要求。 (2)调速范围 即电机最高转速与最低转速之比,用D 表示。 max min /D n n 上式中,max n maxn 为最高转速,min n 为最低转速。通常应满足D ≥10000才能满足低速加工和高速返回的要求。 (3)调速静态特性 对绝大多数负载来说,机械特性越硬,负载变化时速度瞬态变化越小,工作越稳定,所以希望机械特性越硬越好。 (4)调速动态特性 动态特性,即速度变化的暂态特性,主要包括两个方面:一为升速和降速过程是否快捷、灵敏且无超调。这就要求电机转子惯量小,转矩/惯量比大,单位体积有较大的电机转矩输出。二是当负载突增突减时,系统的转速能否自动调节

伺服系统定位误差形成原因与克服办法

伺服系统定位误差形成原因与克服办法 通常情况下,伺服系统控制过程为:升速、恒速、减速和低速趋近定位点,整个过程都是位置闭环控制。减速和低速趋近定位点这两个过程,对伺服系统的定位精度有很重要的影响。减速控制具体实现方法很多,常用的有指数规律加减速算法、直线规律加减速算法。指数规律加减速算法有较强的跟踪能力,但当速度较大时平稳性较差,一般适用在跟踪响应要求较高的切削加工中。直线规律加减速算法平稳性较好,适用在速度变化范围较大的快速定位方式中。选择减速规律时,不仅要考虑平稳性,更重要的是考虑到停止时的定位精度。从理论上讲,只要减速点选得正确,指数规律和线性规律的减速都可以精确定位,但难点是减速点的确定。 通常减速点的确定方法有: (1)如果在起动和停止时采用相同的加减速规律,则可以根据升速过程的有关参数和对称性来确定减速点。

(2)根据进给速度、减速时间和减速的加速度等有关参数来计算减速点,在当今高速CPU十分普及的条件下,这对于CNC的伺服系统来说很容易实现,且比方法(1)灵活。伺服控制时,由软件在每个采样周期判断:若剩余总进给量大于减速点所对应的剩余进给量,则该瞬时进给速度不变(等于给定值),否则,按一定规律减速。 理论上讲,剩余总进给量正好等于减速点所对应的剩余进给量时减速,并按预期的减速规律减速运行到定位点停止。但实际上,伺服系统正常运转时每个采样周期反馈的脉冲数是几个、十几个、几十个甚至更多,因而实际减速点并不与理论减速点重合。其最大误差等于减速前一个采样周期的脉冲数。若实际减速点提前,则按预期规律减速的速度降到很低时还未到达定位点,可能需要很长时间才能到达定位点。若实际减速点滞后于理论减速点,则到达定位点时速度还较高,影响定位精度和平稳性。 为此,我们提出了分段线性减速方法。在低速趋近定位点的过程中,设速度为V0(mm/s),伺服系统的脉冲当量为δ(μm),采样周期为τ(ms),则每个采样周期应反馈的

伺服系统的位置控制模式

伺服系统的位置控制模式 一、实训目的。 伺服系统是现在定位控制中使用非常广泛的一个系统,和步进系统比较具有控制精度高,转速快,带负载能力强等特点,当然价钱也比步进系统要贵的多。伺服系统在定位控制中应包含三个方面的设备,一是伺服电机,二是伺服驱动器,三是控制的上位机,控制的上位机可以是PLC,单片机,还可以是专用的定位控制单元或模块,如FX2N-1PG、FX2N-10GM、FX2N-20GM等。在我们这个实习中,采用PLC作为控制器,重点是学习伺服驱动器的用法,如系统的接线、参数设置、程序调试等。 二、实训任务。 以PLC作为上位机进行控制。控制要求如图4-1所示,按下启动按钮,电机旋转,拖动工作台从A点开始向右行驶30mm,停2秒,然后向左行驶返回A点,再停2秒,如此循环运行,按下停止按钮,工作台行驶一周后返回A点。画出控制原理图,设置运行参数,写出控制程序并进行调试。要求工作台移动的速度要达到10mm/s。丝杆的螺距为5mm。 图4-1 控制工作台示意图 三、相关知识。 1、了解伺服驱动器和伺服电机的工作原理。 2、了解伺服驱动器在位置控制模式中参数的设置和影响控制精度的因素。 3、了解伺服驱动器“电子齿轮”的概念和计算方法。 四、实训设备。 由伺服驱动器MR-J2S-10A、伺服电机HC-MFS13B、DC24V电源、接触器、中间继电器、按钮等组成的实训板。 FX2N-64MT的PLC 万用表、螺丝刀等。

五、实训步骤。 1、画出控制系统的原理图并接线。 (1)系统控制主电路(如图4-2)。 图4-2 系统控制主电路 (2)系统控制回路(如图4-3). 图4-3 系统控制回路 2.设置参数. 首先将设置参数NO.19=000E,然后再设置下表4-1中的参数,设置完毕后,把系统断电,重新启动,则参数有效。

如何提高伺服电机定位精度

如何提高伺服电机定位精度 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。 直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护不方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。 交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以

做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。 伺服电机内部的转子是永磁铁,伺服驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 交流伺服电机和无刷直流伺服电机在功能上的区别:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。

伺服系统定位偏差减低的方法

伺服系统定位误差如何减少 分析了伺服系统定位误差形成的原因,提出了伺服系统采用分段线性减速并以开环方式精确定位的方法,给出了相应的程序流程图,对提高数控机床伺服系统的定位精度具有实用参考价值。 数控机床的定位精度直接影响到机床的加工精度。传统上以步进电动机作驱动机构的机床,由于步进电动机的固有特性,使得机床的重复定位精度可以达到一个脉冲当量。但是,步进电动机的脉冲当量不可能很小,因而定位精度不高。伺服系统的脉冲当量可以比步进电动机系统小得多,但是,伺服系统的定位精度很难达到一个脉冲当量。由于CPU性能已有极大提高,故采用软件可以有效地提高定位精度。我们分析了常规控制算法导致伺服系统定位精度误差较大的原因,提出了分段线性减速并以开环方式精确定位的方法,实践中取得了很好的效果。 一、伺服系统定位误差形成原因与克服办法 通常情况下,伺服系统控制过程为:升速、恒速、减速和低速趋近定位点,整个过程都是位置闭环控制。减速和低速趋近定位点这两个过程,对伺服系统的定位精度有很重要的影响。 减速控制具体实现方法很多,常用的有指数规律加减速算法、直线规律加减速算法。指数规律加减速算法有较强的跟踪能力,但当速度较大时平稳性较差,一般适用在跟踪响应要求较高的切削加工中。直线规律加减速算法平稳性较好,适用在速度变化范围较大的快速定位方式中。 选择减速规律时,不仅要考虑平稳性,更重要的是考虑到停止时的定位精度。从理论上讲,只要减速点选得正确,指数规律和线性规律的减速都可以精确定位,但难点是减速点的确定。通常减速点的确定方法有: (1)如果在起动和停止时采用相同的加减速规律,则可以根据升速过程的有关参数和对称性来确定减速点。 (2)根据进给速度、减速时间和减速的加速度等有关参数来计算减速点,在当今高速CPU 十分普及的条件下,这对于CNC的伺服系统来说很容易实现,且比方法(1)灵活。 伺服控制时,由软件在每个采样周期判断:若剩余总进给量大于减速点所对应的剩余进给量,则该瞬时进给速度不变(等于给定值),否则,按一定规律减速。 对输出电压低的故障,检修的关键测试点为:稳压电源中,光电耦合器内含发光二极管的两端电压降。 1、当测得发光二极管的两端电压降结果为1V甚至大于1V。说明取样电路有故障。如取样三极管的基极下偏置电阻开路,发射极所接稳压二极管短路。此时的输出电压低是取样电路误调整所至。 2、当测得发光二极管的两端电压降结果为0V。这说明取样电路将输出电压低的情况如实反映给了光电耦合器。查V512基极电压,如为正值,说明V512基极电压不符合输出电压低的检测,正常时此电压应当是负压。 V512基极为正电压时有两种可能:

相关主题