搜档网
当前位置:搜档网 › 三角恒等变换的常用技巧

三角恒等变换的常用技巧

三角恒等变换的常用技巧
三角恒等变换的常用技巧

三角恒等变换的常用方法

肖新勇

解答三角函数问题,几乎都要通过恒等变换将复杂问题简单化,将隐性问题明朗化。三角恒等变换的公式很多,主要有“同角三角函数的基本关系”、“诱导公式”、“和、差、倍、半角公式”等,这些公式间一般都存在三种差异,如角的差异、函数名的差异和运算种类的差异,只有灵活有序地整合使用这些公式,消除差异、化异为同,才能得心应手地解决问题,这是三角问题的特点,也是三角问题“难得高分”的根本所在。本文从六个方面解读三角恒等变换的常用技巧。

一、 角变换

角变换的基本思想是,观察发现问题中出现的角之间的数量关系,把“未知角”分解成“已知角”的“和、差、倍、半角”,然后运用相应的公式求解。

例1 已知534cos =??

? ??+πx ,4743ππ<

+x ,而“未知角”是x 和x 2,注意到4

4ππ-??? ??

+=x x ,可直接运用相关公式求出x sin 和x cos 。 【解析】因为ππ4743<

=??? ??

+πx ,所以πππ2423<+

?+πx 10274sin 4cos 4cos 4sin 44sin sin -=??? ??+-??? ??+=??

????-??? ??+=ππππππx x x x , 从而102cos -=x ,7tan =x . 原式=75

28tan 1sin 2cos sin 22-=-+x x x x . 【点评】(1)若先计算出10

2cos -=x ,则在计算x sin 时,要注意符号的选取;(2)本题的另一种自然的思路是,从已知出发,用和角公式展开,结合“平方关系”通过解二元二次方程组求出x sin 和x cos . 但很繁琐,易出现计算错误。

二、名变换

名变换是为了减少函数名称或统一函数而实施的变换,需要进行名变换的问题常常有明显的特征,如已知条件中弦、切交互呈现时,最常见的做法是“切弦互化”,但实际上,诱导公式、倍角公式和万能置换公式,平方关系也能进行名变换。

例2 已知向量)1,tan 1(x a -=,)0,2cos 2sin 1(x x b ++=,求b a x f ?=)(的定义域和值域;

【分析】易知)2cos 2sin 1)(tan 1()(x x x x f ++-=,这是一个“切弦共存”且“单、倍

角共在”的式子,因此既要通过“切化弦”减少函数名称,又要用倍角公式来统一角,使函数式更简明。

【解析】)2cos 2sin 1)(tan 1()(x x x x f ++-=

()

1cos 2cos sin 21cos sin 12-++??? ??

-=x x x x x ()()x x x x sin cos sin cos 2+-=

x 2cos 2=

由0cos ≠x 得,Z k k x ∈+≠,2π

π,22cos 2-≠x

所以,x x f 2cos 2)(=.的定义域是?

?????

∈+≠Z k k x x ,2ππ,值域是(]2,2-. 【点评】本题也可以利用万能置换公式先进行“弦化切”,变形后再进行“切化弦”求解.

三、常数变换

在三角恒等变形过程中,有时需将问题中的常数写成某个三角函数值或式,以利于完善式子结构,运用相关公式求解,如 x x 22cos sin 1+=,?=45tan 1,3tan 3π

=等.

例3 (1)求证: 2

3cos sin 1cos sin 14466=----x x x x ; (2)化简:x x 2cos 32sin +.

【分析】第(1)小题运用()322cos sin 1x x +=和()2

22cos sin 1x x +=把分子、分母都变成齐次式后进行转化;第(2)小题实际上是把同一个角的正弦、余弦的代数和化为熟悉的()?ω+=x A y sin 的形式,有利于系统研究函数的图象与性质. 【解析】(1)左边=x

x x x x x x x 4422266322cos sin )cos (sin cos sin )cos (sin --+--+ 2

3cos sin 2)cos (sin cos sin 3222222=+=x x x x x x . (2)原式=x x 2cos 3tan 2sin π

+

x x 2cos 3cos 3sin

2sin ?+

=ππ3

cos 3sin 2cos 3cos 2sin π

ππx x +=

??? ??+=32sin 2πx 【点评】“1”的变换应用是很多的,如万能置换公式的推导,实际上是利用了x x 22cos sin 1+=把整式化成分式后进行的,又如例4中,也是利用了?=45tan 1,把分

式变成了整式.

四、 边角互化

解三角形时,边角交互呈现,用正、余弦定理把复杂的边角关系或统一成边,运用代数运算方法求解,或统一成角,运用三角变换求解.

例4 在ABC ?中,a b c 、、分别为角A B C 、、的对边,且2a sin A = (2b +c ) sin B + (2c +b ) sin C ,

(1)求角A 的大小;

(2)若sin sin 1B C +=,证明ABC ?是等腰三角形.

【分析】本题的条件集三角形的六元素于一身,看似复杂,但等式是关于三边长和三个角的正弦的齐次式,所以可用正弦定理把“角”化为边或把边化为“角”来求解。

【解析】(1)(角化边)由正弦定理

C c B b A a sin sin sin ==得, c b c b c b a )2()2(22+++=,整理得,bc c b a ++=222, 所以212cos 222-=-+=bc a c b A ,因为π<

2π=A . (2)解法一 (边化角)由已知和正弦定理得,

C B C B C B A sin )sin sin 2(sin )sin sin 2(sin 22+++=

即C B C B A sin sin 2)sin (sin 2sin 222-+=,从而41sin sin =

C B , 又sin sin 1B C +=,所以21sin sin =

=C B . 所以C B =,ABC ?是等腰三角形.

解法二 由(1)知3π

=+C B ,B C -=3π

,代入sin sin 1B C +=得,

1sin 21cos 23sin =-+

B B B ,所以13sin =??? ??+B π,23ππ=+B , 所以6π

=B ,6π

=C ,ABC ?是等腰三角形.

【点评】第(1)小题“化角为边”后,把已知条件转化为边的二次齐次式,符合余弦定理的结构,第(2)小题的解法一之所以“化边为角”,是因为不易把条件sin sin 1B C +=化为边的关系,而把条件2sin (2)sin (2)sin a A b c B c b C =+++转化为边的关系却很容易;解法二的基本思路是消元后统一角,再利用“化一公式”简化方程.

五、 升降幂变换

当所给条件出现根式时,常用升幂公式去根号,当所给条件出现正、余弦的平方时,常

用“降幂”技巧,常见的公式有:2

2cos 2sin sin 1??? ??±=±x x x ,2cos 2cos 12x x =+,2

sin 2cos 12x x =-,可以看出,从左至右是“幂升角变半”,而从右至左则是“幂降角变倍”.

例5 化简:6sin 16sin 1-++

【分析】含有根号,需“升幂”去根号.

【解析】原式=+

++3cos 3sin 23cos 3sin 223cos 3sin 23cos 3sin 22-+

=3cos 3sin 3cos 3sin -++ 因为ππ<<343,所以043sin 23cos 3sin

?+=+π,03cos 3sin >-, 所以,原式3cos 2)3cos 3(sin )3cos 2(sin -=-++-=.

【点评】“升降幂技巧”仅仅是解题过程中的一个关键步骤,只有有效地整合各种技巧与方法才能顺利地解题。如例7中用到了常数“变换技巧”。

六、公式变用

几乎所有公式都能变形用或逆向用,如αααcos 22sin sin =,αααsin 22sin cos =,()()βαβαβαtan tan 1tan tan tan ±=±等,实际上,“常数变换”技巧与“升降幂”技巧等也是一种公式变用或逆用技巧.

例6 求值:(1)????80cos 60cos 40cos 20cos ;

(2)??-?-?10tan 70tan 310tan 70tan 。

【分析】第(1)小题中,除?60是特殊角外,其他角成倍角,于是考虑使用倍角公式;第(2)小题中两角差为?60,而3是两角差的正切值,所以与两角差的正切公式有关。

【解析】(1)原式=16

120sin 16160sin 80sin 2160sin 60cos 40sin 280sin 20sin 240sin =??=???????。 (2)原式=??-??+?-?10tan 70tan 3)10tan 70tan 1)(1070tan(=3。

【点评】第(1)小题的一般性结论是: ()

*1sin 22sin 2cos 2cos cos N n n n n ∈=-ααααα . 最后还要指出,这里介绍的所谓技巧只是解决问题时关键步骤的一种特定的做法,每一个问题的解决常常伴随着几种技巧的综合运用,所以,只有准确理解三角公式的内在关系及其基本功能,善于发现问题中角、名、结构的差异,准确地选择转换策略,化异为同,才能准确有效地运用三角恒等变换的常用技巧解决问题.

(作者单位:江西省新余十六中)

第三章:三角恒等变换中角变换的技巧.

1 三角恒等变换中角变换的技巧 一、利用条件中的角表示目标中的角 例1 设a B为锐角,且满足cos a=, tan (a— 3= —,求cos B的值. 二、利用目标中的角表示条件中的角 例2 设a为第四象限的角,若=,贝U tan 2 a=___________________ . 三、注意发现互余角、互补角,利用诱导公式转化角 例3 已知sin=, 0

五、分子、分母同乘以2n sin a求COS acos 2 a cos 4 a ?os 8a??C0S 2n—1 a 的值 例 5 求值:sin 10 sin 30 sin 50 sin 70 ° 4聚焦三角函数最值的求解策略 一、化为y = Asin( 3x+(j)+ B的形式求解 例1求函数f(x =的最值. 例2 求函数y = sin2x + 2sin xcos x + 3cos2x的最小值,并写出y取最小值时x的集合. 二、利用正、余弦函数的有界性求解 例3求函数y =的值域. 例4求函数y =的值域. 三、转化为一元二次函数在某确定区间上求最值 例5 设关于x的函数y= cos 2x —2acos x—2a的最小值为f(a,写出f(a的表达式. 例 6 试求函数y = sin x + cos x + 2sin xcos x + 2 的最值. 四、利用函数的单调性求解 例7求函数y =的最值. 例8 在Rt A ABC内有一内接正方形,它的一条边在斜边BC上,设AB = a, / ABC = 0,△ ABC的面积为P,正方形面积为Q.求的最小值. 易错问题纠错 一、求角时选择三角函数类型不当而致错例1 已知sin话,sin护,a和B都是锐角,求a+ B的值.

高中数学必修四第三章-三角恒等变换知识点总结

第三章 三角恒等变换 一、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= + ? ()()tan tan tan 1tan tan αβαβαβ-=-+ ⑹()tan tan tan 1tan tan αβ αβαβ ++=- ? ()()tan tan tan 1tan tan αβαβαβ+=+- 二、二倍角的正弦、余弦和正切公式: sin 22sin cos ααα =222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±? ⑵2222cos2cos sin 2cos 112sin α αααα=-=-=- ?2 2 1cos 2cos 1cos 2sin 2 2 α α αα+=-=, ?2 cos 21cos 2 αα+= ,2 1cos 2sin 2αα-=. ⑶22tan tan 21tan α αα =-. 三、辅助角公式: () 22sin cos sin α+=++a x b x a b x , 2 2 2 2 cos sin a b a b a b ???= = ++其中由,决定

四、三角变换方法: (1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的 相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: ①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4 α的二倍; ②2 304560304515o o o o o o =-=-=; ③()ααββ=+-;④ ()4 24 π π π αα+= --; ⑤2()()()()44 ππ ααβαβαα=++-=+--;等等 (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。如 在三角函数中正余弦是基础,通常化切为弦,变异名为同名。 (3)“1”的代换:在三角函数运算,求值,证明中,有时需要将常数转 化为三角函数值,例如常数“1”的代换变形有: 221sin cos sin90tan45o o αα=+== (4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式, 一般采用降幂处理的方法。降幂并非绝对,有时需要升幂,如对无理式αcos 1+常用升幂化为有理式。 (5)三角函数式的变换通常从:“角、名、形、幂”四方面入手; 基本原则是:见切化弦,异角化同角,倍角化单角,异名化同名, 高次降低次,特殊值与特殊角的三角函数互化等。

三角恒等变换各种题型归纳分析

三角恒等变换 α/4

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换 例1 方法:角不同的时候,能合一变换吗? . cos sin ,,cos sin .cos sin cos sin ) (;cos sin cos sin ) (.cos )(;cos )(;sin )(;sin )(.x x x x x 2203 132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθ θθθαα<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,5 4 cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,24,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==?? ? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπ απα? ?? ?? ? ? -??? ??---? -? -???72cos 36cos )2(;12 5cos 12 cos )1(.34cos 4sin )3(;2 3tan 23tan 1) 2(;2 cos 2 sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.12 4 4 2 2 ππ παα παα α α 求值:化简下列各式: 求下列各式的值:. )70sin(5)10sin(3.3. 2cos )31(2sin )31(,.212 cos 312 sin .1的最大值求大值有最大值?并求这个最 取何值时当锐角?++?+=- ++-x x y θθθπ π

最全面高中数学三角恒等式变形解题常用方法2021(完整版)

高中数学三角恒等式变形解题常用方法 一.知识分析 1. 三角函数恒等变形公式 (1)两角和与差公式 (2)二倍角公式 (3)三倍角公式 (4)半角公式 (5)万能公式 ,, (6)积化和差 , , ,

(7)和差化积 , , ,2.网络结构

3. 基础知识疑点辨析 (1)正弦、余弦的和差角公式能否统一成一个三角公式? 实际上,正弦、余弦的和角公式包括它们的差角公式,因为在和角公式中,是一个任意角,可正可负。另外,公式虽然形式不同,结构不同,但本质相同: 。

(2)怎样正确理解正切的和差角公式? 正确理解正切的和差角公式需要把握以下三点: ①推导正切和角公式的关键步骤是把公式,右边的“分子”、“分母”都除以,从而“化弦为切”,导出了。 ②公式都适用于为任意角,但运用公式时,必须限定,都不等于。 ③用代替,可把转化为,其限制条件同②。 (3)正弦、余弦、正切的和差角公式有哪些应用? ①不用计算器或查表,只通过笔算求得某些特殊角(例如15°,75°,105°角等)的三角函数值。 ②能由两个单角的三角函数值,求得它们和差角的三角函数值;能由两个单角的三角函数值与这两个角的范围,求得两角和的大小(注意这两个条件缺一不可)。 ③能运用这些和(差)角公式以及其它有关公式证明三角恒等式或条件等式,化简三角函 数式,要注意公式可以正用,逆用和变用。运用这些公式可求得简单三角函数式的最大值或最 小值。 (4)利用单角的三角函数表示半角的三角函数时应注意什么? 先用二倍角公式导出,再把两式的左边、右边分别相除,得到,由此得到的三个公式:,, 分别叫做正弦、余弦、正切的半角公式。公式中根号前的符号,由所在的象限来确定,如果没有给出限制符号的条件,根号前面应保持正、负两个符号。另外,容易 证明。 4. 三角函数变换的方法总结 三角学中,有关求值、化简、证明以及解三角方程与解几何问题等,都经常涉及到运用三 角变换的解题方法与技巧,而三角变换主要为三角恒等变换。三角恒等变换在整个初等数学中

简单的三角恒等变换(基础)

第20讲:简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理问题的能力. 【要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式:21cos 22cos αα+=, 21cos 22sin αα-= 降幂公式:21cos 2cos 2αα+=,21cos 2sin 2 α α-= 要点诠释: 利用二倍角公式的等价变形:2 1cos 2sin 2α α-=,2 1cos 2cos 2 α α+=进行“升、降幂”变 换,即由左边的“一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为“降幂”变换. 要点二:辅助角公式 1.形如sin cos a x b x +的三角函数式的变形: sin cos a x b x + x x ??? 令cos ??= = sin cos a x b x + )sin cos cos sin x x ??+ )x ?+ (其中?角所在象限由,a b 的符号确定,?角的值由tan b a ?= 确定, 或由sin ?= 和cos ?= 2.辅助角公式在解题中的应用 通 过 应 用 公 式 sin cos a x b x + = )x ?+(或 sin cos a x b x + =)α?-),将形如sin cos a x b x +(,a b 不同时为零)收缩为一

三角恒等变换~最全的总结·学生版

三角恒等变换---完整版 三角函数------三角恒等变换公式: 考点分析:(1)基本识别公式,能结合诱导公式中两个常用的小结论快速进行逻辑判断。“互补两角正弦相等,余弦互为相反数。互余两角的正余弦相等。”(2)二倍角公式的灵活应用,特别是降幂、和升幂公式的应用。(3)结合同角三角函数,化为二次函数求最值 (4)角的整体代换 (5)弦切互化 (6)知一求二 (7)辅助角公式逆向应用

(1)熟悉公式特征:能结合诱导公式中两个常用的小结论“互补两角正弦相等,余弦互为相反数。互余两角的正余弦相等。”快速进行逻辑判断。注意构造两角和差因子 1、(二倍角公式)(2007文)下列各式中,值为 3 2 的是( ) A .2sin15cos15 B .2 2 cos 15sin 15- C .2 2sin 151- D .22 sin 15cos 15+ 2、(二倍角公式+平方差公式)(2008六校联考)(sin 75sin15)(cos15cos 75)-+的值是 A.1 B. 1 2 C. 22 D. 32 3、(两角和差公式+诱导公式)(2009四校联考) 84cos 54sin 6cos 36sin -等于 A .-1 2 B .12 C .- 32 D . 32 4.(两角和差公式)下列各式中值为的是(). A . s in45°cos15°+cos45°sin15° B . sin45°cos15°﹣cos45°sin15° C . cos75°cos30°+sin75°sin30° D . 5、(拆角+两角和差公式)(一中2014届高三10月段考数学(理)试题)化简三角式=- 5 cos 5sin 355cos 2() A . 2 3 B .1 C .2 D .3 6、(补全公式)(2013六校联考回归课本题)cos20°·cos40°·cos60°·cos80°=( ) A . 14 B .18 C .116 D .1 32 常见变式:计算sin 10°sin 30°sin 50°sin 70°的=__. 7、(构造两角和差因子+两式平方后相加)若sin α-sin β=32,cos α-cos β=12,则cos(α-β)的值为()A.1 2 B. 32C.3 4 D .1 8.(诱导公式)【2015高一期末】sin163°sin223°+sin253°sin313°等于 B A .- 12 B. 12 C 33 9、(构造两角和差因子+两边平方)【2015高考,理12】=+ 75sin 15sin .. 10、(逆向套用公式)tan 23°+tan 37°+3tan 23°tan 37°的值是________.

三角恒等变换知识点和例题

三角恒等变换基本解题方法 1、两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβαβαβαβααα αα αβααβααβααααα =±=???→=-↓=-=-±±=?-↓=-m m 如(1)下列各式中,值为12 的是 A 、1515sin cos o o B 、221212cos sin ππ - C 、22251225tan .tan .-o o D (2)命题P :0tan(A B )+=,命题Q :0tan A tan B +=,则P 是Q 的 A 、充要条件 B 、充分不必要条件 C 、必要不充分条件 D 、既不充分也不必要条件 (3)已知35 sin()cos cos()sin αβααβα---=,那么2cos β的值为____ (4 )11080sin sin -o o 的值是______ (5)已知0tan110a =,求0tan 50的值(用a ,乙求得的结果是212a a -,对甲、乙求得的结果的正确性你的判断是______ 2. 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与 角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。基本的技巧有: (1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--, 22αβαβ++=?,()() 222αββααβ+=---等),

三角恒等式证明9种基本技巧

三角恒等式证明9种基本技巧 三角恒等式的证明是三角函数中一类重要问题,这类问题主要以无条件和有条件恒等式出现。根据恒等式的特点,可采用各种不同的方法技巧,技巧常从以下各个方面表示出来。 1.化角 观察条件及目标式中角度间联系,立足于消除角间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是证明三角恒等式时一种常用技巧。 例1求证:tan 23x - tan 21x =x x x 2cos cos sin 2+ 思路分析:本题的关键是角度关系:x=23x -2 1 x ,可作以下证明: 2.化函数 三角函数中有几组重要公式,它们不仅揭示了角间的关系,同时揭示了函数间的相互关系,三角变换中,以观察函数名称的差异为主观点,以化异为为同(如化切为弦等)的思路,恰当选用公式,这也是证明三角恒等式的一种基本技巧。 例2 设A B A tan )tan(-+A C 22sin sin =1,求证:tanA 、tanC 、tanB 顺次成等比数列。 思路分析:欲证tan 2 C = tanA ·tanB ,将条件中的弦化切是关键。 3.化幂 应用升、降幂公式作幂的转化,以便更好地选用公式对面临的问题实行变换,这也是三角恒等式证明的一种技巧。 例3求证 cos4α-4cos2α+3=8sin 4 α 思路分析:应用降幂公式,从右证到左:

将已知或目标中的常数化为特殊角的函数值以适应求征需要,这方面的例子效多。如 1=sin 2 α+cos 2 α=sec 2 α-tan 2 α=csc 2 α-cot 2 α=tan αcot α=sin αcsc α=cos αsec α,1=tan450 =sin900 =cos00 等等。如何对常数实行变换,这需要对具体问题作具体分析。 例4 求证 αααα2 2sin cos cos sin 21--=α α tan 1tan 1+- 思路分析:将左式分子中“1”用“sin 2 α+cos 2 α”代替,问题便迎刃而解。 5.化参数 用代入、加减、乘除及三角公式消去参数的方法同样在证明恒等式时用到。 例5 已知acos 2 α+bsin 2 α=mcos 2 β,asin 2 α+bcos 2 α=nsin 2 β,mtan 2 α=ntan 2 β(β≠n π) 求证:(a+b)(m+n)=2mn 6.化比 一些附有积或商形式的条件三角恒等式证明问题,常可考虑应用比例的有关定理。用等比定理,合、分比定理对条件加以变换,或顺推出结论,或简化条件,常常可以为解题带来方便。 例6 已知(1+ cos α)(1- cos β)=1- 2 ( ≠0,1)。求证:tan 2 2α= -+11tan 22 β 思路分析:综观条件与结论,可考虑从条件中将 分离出来,以结论中 -+11为向导,应用合比定理即可达到论证之目的。

三角恒等变换---最全的总结_-学生版

精品文档 三角恒等变换---完整版 三角函数 —— 三角恒等变换公式: 升幂公式 - 2 1+cos = 2 cos — 2 1-cos =2 si n 2 2 1 ± sin =( sin — 2 2 cos — ) 2 2 2 1=sin + cos sin =2 sin cos 2 2 降幂公式 .2 1 cos 2 cos 2 1 cos 2 sin 2 2 + cos =1 sin 2 2 1 . sin cos = —sin 2 2 考点分析:(1)基本识别公式,能结合诱导公式中两个常用的小结论快速进行逻辑判断。 “互补两角正弦相 等,余弦互为相反数。互余两角的正余弦相等。 ”(2) 二倍角公式的灵活应用,特别是降幕、和升幕公式的 两角和与差的三角函数关系 sin( 1 )=sin cos cos sin cos( )=cos cos sin sin ■丄 . 、 tan tan tan( )’ 1 tan tan 倍角公式 sin2 =2sin cos 2 2 cos2 =cos -sin =2cos 2 -1=1-2sin 2 tan 2 2ta n 1 tan 2 sin — 2 i1 cos 1 cos \ 2 ,c °s 2 : 2 tan — 2 1 cos _ 1 cos sin \ 1 cos sin 1 cos :cos Gi HJ"I" UffTI! ! I I ! I ■— —?■ 应用。(3)结合同角三角函数,化为二次函数求最值 一求二 (7)辅助角公式逆向应用 (4)角的整体代换 (5)弦切互化 (6 )知 半角公式 平方关系 2 2 sin + cos =1, 商数关糸 sin -------- =ta n

三角恒等变换知识点总结

、知识点总结 1、两角和与差的正弦、 ⑴cos cos ⑶sin si n 三角恒等变换专题 余弦和正切公式: cos sin si n :⑵ cos cos cos si n si n cos cos si n :⑷ sin si n cos cos si n ⑸tan tan tan 1 tan tan ⑹ta n tan tan 1 tan tan 2、二倍角的正弦、 余弦和正切公式: ⑴ sin 2 2si n cos 1 sin 2 ⑵ cos2 cos 2 ?2 sin 2cos 2 升幕公式 1 cos 2cos 2 — 2 降幕公式 2 cos cos2 1 (tan (tan 1 cos 2 ,1 sin 2 .2 sin tan tan 2 cos tan tan 2 sin cos tan tan tan tan (si n ) ; ). cos )2 1 2si n 2 2sin 2 — 2 1 cos2 ⑶tan2 1 2ta n tan 2 万能公式 半角公式 2 tan a cos - 2 a tan - 2 1 "一个三角函数,一个角,一次方”的y A sin ( x a 2 2 a tan — 2 2 a tan - 2 4、合一变形 把两个三角函数的和或差化为 形式。 sin 2 si n ,其中tan 5. (1)积化和差公式 1 cos = [sin( 2 1 cos =— [cos( 2 和差化积公式 si n cos (2) si n + )+sin( + )+cos( +sin = 2 sin ------ cos --- 2 2 )] )] cos si n si n 1 sin = [sin( + )-sin( 2 1 sin = - — [cos( + )-cos( 2 )] )] -sin = 2 cos ----- sin --- 2 2

知识讲解-三角恒等变换-基础

三角恒等变换 【考纲要求】 1、会用向量的数量积推导出两角差的余弦公式. 2、能利用两角差的余弦公式导出两角差的正弦、正切公式. 3、能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. 4、能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【知识网络】 【考点梳理】 考点一、两角和、差的正、余弦公式 ()sin()sin cos cos sin ()S αβαβαβαβ±±=± ()cos()cos cos sin sin ()C αβαβαβαβ±±=m ()tan tan tan()()1tan tan T αβαβ αβαβ ±±±= - 要点诠释: 1.公式的适用条件(定义域) :前两个公式()S αβ±,()C αβ±对任意实数α,β都成立,这表明该公式是R 上的恒等式;公式()T αβ±③中,∈,且R αβk (k Z)2 ±≠ +∈、、π αβαβπ 2.正向用公式()S αβ±,()C αβ±,能把和差角()±αβ的弦函数表示成单角α,β的弦函数;反向用,能把右边结构复杂的展开式化简为和差角()±αβ 的弦函数。公式()T αβ±正向用是用单角的正切值表示和差角 ()±αβ的正切值化简。 考点二、二倍角公式 1. 在两角和的三角函数公式()()(),,S C T αβαβαβαβ+++=中,当时,就可得到二倍角的三角函数公式 222,,S C T ααα: sin 22sin cos ααα= 2()S α;

ααα22sin cos 2cos -=2()C α; 22tan tan 21tan α αα = -2()T α。 要点诠释: 1.在公式22,S C αα中,角α没有限制,但公式2T α中,只有当)(2 24 Z k k k ∈+≠+ ≠ππ αππ α和时才成立; 2. 余弦的二倍角公式有三种:ααα2 2 sin cos 2cos -==1cos 22 -α=α2 sin 21-;解题对应根据不同函数名的需要,函数不同的形式,公式的双向应用分别起缩角升幂和扩角降幂的作用。 3. 二倍角公式不仅限于2α和α的二倍的形式,其它如4α是2α的二倍, 24α α是的二倍,332 α α是 的二倍等等,要熟悉这多种形式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公 式的关键。 考点三、二倍角公式的推论 降幂公式:ααα2sin 21 cos sin = ; 22cos 1sin 2 αα-=; 22cos 1cos 2 αα+=. 万能公式:α α α2 tan 1tan 22sin +=; α α α2 2tan 1tan 12cos +-=. 半角公式:2cos 12 sin α α -± =; 2cos 12 cos α α +± =; α α α cos 1cos 12 tan +-± =. 其中根号的符号由2 α 所在的象限决定. 要点诠释: (1)半角公式中正负号的选取由 2 α 所在的象限确定; (2)半角都是相对于某个角来说的,如2 3α 可以看作是3α的半角,2α可以看作是4α的半角等等。 (3)正切半角公式成立的条件是α≠2k π+π(k ∈Z)

三角恒等变换技巧

三角恒等变换技巧 三角恒等变换不但在三角函数式的化简、求值和证明三角恒等式中经常用到,而且.由于通过三角换元可将某些代数问题化归为三角问题;立体几何中的诸多位置关系以其交角来刻画,最后又以三角问题反映出来;由于参数方程的建立,又可将解析几何中的曲线问题归结为三角问题.因此,三角恒等变换在整个高中数学中涉及面广.是常见的解题“工具”.而且由于三角公式众多.方法灵活多变,若能熟练地掌握三角恒等变换,不但能增强对三角公式的记忆,加深对诸多公式内在联系的理解,而且对发展学生的逻辑思维能力,提高数学知识的综合运用能力都大有裨益 · 一、 切割化弦 “切割化弦”就是把三角函数中的正切、余切、正割、余割都化为正弦和余弦,以有利于问题的解决或发现解题途径.其实质是”‘归一”思想. 【例1】 证明:ααααααααcot tan cos sin 2cot cos tan sin 22 +=++ 证明:左边ααα αααααcos sin 2sin cos cos cos sin sin 22 +?+?= ααααααααααααc o s s i n 1 c o s s i n )c o s (s i n c o s s i n c o s c o s s i n 2s i n 2224224=+=++= 右边α αααααααααcos sin 1 cos sin cos sin sin cos cos sin 22=+=+= ∴左边~右边.原等式得证. 点评“切割化弦”是将正切、余切、正割、余割函数均用正弦、余弦函数表示,这是一种常用的、有效的解题方法.当涉及多种名称的函数时,常用此法减少函数的种类. 【例2】 已知θ同时满足b a b a b a 2sec cos 2cos sec 22 =-=-θθθθ和, 且b a ,均不为零,试求“b a ,”b 的关系. 解:?????=-=-② ① b a b a b a 2sec cos 2cos sec 2 2 θθθθ 显然0cos ≠θ,由①×θ2 cos +②×θcos 得: 0cos 2cos 22=+θθb a ,即0cos =+b a θ 又0≠a ,∴a b -=θcos 代入①得a a b b a 2223=+ 0)(222=-?b a ∴22b a = 点评 本例是化弦在解有关问题时的具体运用,其中正割与余弦、余割与正弦之间的倒数关系是化弦的通径. 【例3】 化简)10tan 31(50sin 00+ 解:原式=000000 010cos ) 10sin 2310cos 21(250sin )10cos 10sin 31(50sin +?=+ 110 cos 80sin 10cos 10cos 40sin 210cos )1030sin(250sin 0 000000 00===+?= 点评 这里除用到化切为弦外,其他化异角函数为同角函数等也是常用技巧. 二、 角的拆变 在三角恒等变换中经常需要转化角的关系,在解题过程中必须认真观察和分析结论中是哪个角,条件中有没有这些角,哪些角发生了变化等等.因此角的拆变技巧,倍角与半角的相对性等都十分重要,应用也相当广泛且非常灵活.常见的拆变方法有:α可变为

必修四三角函数和三角恒等变换知识点及题型分类的总结

三角函数知识点总结 1、任意角: 正角: ;负角: ;零角: ; 2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在x 轴上的角的集合为 终边在y 轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角α终边相同的角的集合为 4、已知α是第几象限角,确定()*n n α ∈N 所在象限的方法:先把各象限均分n 等份, 再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象 限对应的标号即为n α 终边所落在的区域. 5、 叫做1弧度. 6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 . 7、弧度制与角度制的换算公式: 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l= .S= 9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距 离是() 220r r x y =+>,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:. 12、同角三角函数的基本关系:(1) ; (2) ;(3) 13、三角函数的诱导公式: ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.

三角恒等变换知识点总结详解

第三章 三角恒等变换 一、知识点总结 1、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= +? (()()tan tan tan 1tan tan αβαβαβ-=-+) ; ⑹()tan tan tan 1tan tan αβ αβαβ ++= -? (()()tan tan tan 1tan tan αβαβαβ+=+-) . 2、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=.2 2 2 )cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±? ⑵2 222cos2cos sin 2cos 112sin ααααα=-=-=- ?升幂公式2 sin 2cos 1,2cos 2cos 12 2 α αα α=-=+ ?降幂公式2cos 21cos 2αα+= ,2 1cos 2sin 2 αα-=. ⑶2 2tan tan 21tan α αα = -. 3、 ? (后两个不用判断符号,更加好用) 4、合一变形?把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(??形式。()sin cos ααα?A +B = +,其中tan ?B = A . 5.(1)积化和差公式 sin α·cos β=21[sin(α+β)+sin(α-β)]cos α·sin β=21 [sin(α+β)-sin(α-β)] cos α·cos β=21[cos(α+β)+cos(α-β)]sin α·sin β= -2 1 [cos(α+β)-cos(α-β)] (2)和差化积公式 sin α+sin β= 2 cos 2 sin 2β αβ α-+sin α-sin β=2 sin 2 cos 2β αβ α-+ αααα ααα半角公式cos 1cos 12tan 2cos 12sin ;2cos 12cos : +-±=-± =+±=2 tan 12tan 1 cos ;2tan 12tan 2 sin : 2 2 2α α αααα万能公式+-=+=

高三数学9种常用三角恒等变换技巧总结

高中数学:9种常用三角恒等变换技巧总结 三角恒等变换不但在三角函数式的化简、求值和证明三角恒等式中经常用到,而且.由于通过三角换元可将某些代数问题化归为三角问题;立体几何中的诸多位置关系以其交角来刻画,最后又以三角问题反映出来;由于参数方程的建立,又可将解析几何中的曲线问题归结为三角问题.因此,三角恒等变换在整个高中数学中涉及面广.是常见的解题“工具”.而且由于三角公式众多.方法灵活多变,若能熟练地掌握三角恒等变换,不但能增强对三角公式的记忆,加深对诸多公式内在联系的理解,而且对发展学生的逻辑思维能力,提高数学知识的综合运用能力都大有裨益。 “切割化弦”就是把三角函数中的正切、余切、正割、余割都化为正弦和余弦,以有利于问题的解决或发现解题途径.其实质是”‘归一”思想. 在三角恒等变换中经常需要转化角的关系,在解题过程中必须认真观察和分析结论中是哪个角,条件中有没有这些角,哪些角发生了变化等等.因此角的拆变技巧,倍角与半角相对性等都十分重要,应用也相当广泛且非常灵活.常见的拆变方法有:α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α可视为α/2的倍角等等.

遇平方可用“降次”公式,这是常用的解题策略.本题中首先化异角为同角,消除角的差异,然后化简求值.关于积化和差、和差化积公式,教材中是以习题形式给出的,望引起重视. 跟代数恒等变换一样.在三角变换时,有时适当地应用”‘加一项再减去这一项”. “乘一项再除以同一项”的方法常能使某些问题巧妙简捷地得以解决.

根据题目的特点,总体设元,然后构造与其相应的对偶式,运用方程的思想来解决三角恒等 变换,也是常用的方法,本题也可以采用降次、和积互化等方法。.目前高考中,纯三角函数式的化简与证明已不多见,取而代之的题目经常是化简某一三角函数,并综合考查这一函数的其他性质.但。凡是与三角函数有关的问题,都以恒等变形、条件变形为解题的基石,因此本专题内容的重要性不言而喻.至于在三角条件恒等证明中如何用三内角和的性质、正余弦定理进行边角关系转换等,我们就不另加赘述了.

三角恒等变换各种题型归纳分析

三角恒等变换基础知识及题型分类汇总 /4的两倍,3α是 “二倍角”的

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换(利用辅助角公式结合正余弦的和角差角公式进行变形) 例1 方法:角不同的时候,能合一变换吗? .cos sin ,,cos sin .cos sin cos sin )(;cos sin cos sin )(.cos )(;cos )(; sin )(;sin )(.x x x x x 2203132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθθθθα α<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,54cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,2 4,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==??? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπαπα????? ??-??? ??---?-?-???72cos 36cos )2(;125cos 12cos )1(.34cos 4sin )3(;23tan 23tan 1)2(;2cos 2sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.124422πππααπαααα求值:化简下列各式:求下列各式的值:.)70sin(5)10sin(3.3.2cos )31(2sin )31(,.212 cos 312sin .1的最大值求大值有最大值?并求这个最取何值时当锐角?++?+=-++-x x y θθθππ

三角恒等变换 知识点总结

三角恒等变换 知识点总结 1、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβαβαβ ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-). 2、二倍角的正弦、余弦和正切公式: ⑴ sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±? ⑵2222cos2cos sin 2cos 112sin ααααα=-=-=- ?升幂公式2 sin 2cos 1,2cos 2cos 122α ααα=-=+ ?降幂公式2cos 21cos 2αα+=,21cos 2sin 2 αα-=. 3、 22tan tan 21tan ααα= -. 4、 ?(后两个不用判断符号,更加好用) 5、合一变形?把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(??形式。()sin cos ααα?A +B =+,其中tan ?B =A . 6、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下: (1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角 与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的 αα半角公式2t an 2cos :==2tan 12tan 1 cos ;2tan 12tan 2 sin :2 22αααααα万能公式+-=+=

三角函数和三角恒等变换知识点及题型分类总结

三角函数知识点总结 1、任意角。 2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 3、与角α终边相同的角的集合为 4、 叫做1弧度. 5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 . 6、弧度制与角度制的换算公式 7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则L= . S= 8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是 () 220r r x y =+>,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限 余弦为正. 10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 11、同角三角函数的基本关系:(1) ;(2) 。 12、三角函数的诱导公式: ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ???.()6sin cos 2παα??+= ???,cos sin 2παα??+=- ???. 口诀:奇变偶不变,符号看象限. 重要公式 ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβ αβαβ ++= -(()()tan tan tan 1tan tan αβαβαβ+=+-).

相关主题