搜档网
当前位置:搜档网 › 连接体问题专题详细讲解(20200420125237)

连接体问题专题详细讲解(20200420125237)

连接体问题专题详细讲解(20200420125237)
连接体问题专题详细讲解(20200420125237)

实用标准

连接体问题

一、连接体与隔离体

两个或两个以上物体相连接组成的物体系统,称为连接体。如果把其中某个物体隔离出来,该物体即为隔离体。

二、外力和内力如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的外力,而系统

内各物体间的相互作用力为内力。应用牛顿第二定律列方程不考虑内力。如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的外力。

三、连接体问题的分析方法

1.整体法连接体中的各物体如果加速度相同,求加速度时可以把连接体作为一个整体。运用牛顿第二定律列方程求解。

2.隔离法如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用牛顿第二定律求解,此法称为隔离法。

3.整体法与隔离法是相对统一,相辅相成的。本来单用隔离法就可以解决的连接体问题,但如果这两种

方法交叉使用,则处理问题就更加方便。如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用整体法法求出加速度,再用隔离法法求物体受力。

简单连接体问题的分析方法

1.连接体:两个(或两个以上)有相互作用的物体组成的具有相同大小加速度的整体。

2.“整体法”:把整个系统作为一个研究对象来分析(即当做一个质点来考虑)。

注意:此方法适用于系统中各部分物体的加速度大小方向相同情况。

3.“隔离法”:把系统中各个部分(或某一部分)隔离作为一个单独的研究对象来分析。

注意:此方法对于系统中各部分物体的加速度大小、方向相同或不相同情况均适用。

4.“整体法”和“隔离法”的选择

求各部分加速度相同的连结体的加速度或合外力时,优选考虑“整体法”;如果还要求物体之间的作用力,再用“隔离法”,且一定是从要求作用力的那个作用面将物体进行隔离;如果连结体中各部分加速度不同,一般都是选用“隔离法”。

5.若题中给出的物体运动状态(或过程)有多个,应对不同状态(或过程)用“整体法”或“隔离法”进行受力分析,再列方程求解。

针对训练

1.如图用轻质杆连接的物体AB沿斜面下滑,试分析在下列条件下,杆受到的力是拉力还是压力。

(1)斜面光滑;

文案大全

(2)斜面粗糙。

〖解析〗解决这个问题

的最

好方法是假设法。即假定A 、B 间的杆不存在,此时放A 、B ,若斜 面光滑,A 、B 运动的加为a =g s i n θ,则以后的运动中A 、B 间的距离始终不变,此时若搭上, 显然杆既不受拉力,

也不受压力。若斜面粗糙,A 、B 单独

运动时的加速度示为:a=gsin θ-μgcos θ, 显然,若a 、b 两物体与斜面间的动数μA =μB ,则有a A =a B ,杆仍然不受力,若μA >μB ,则a A <a B , A 、B 间的距离会缩短,搭上杆后,杆会受到压力,若μA <μB ,则a A >a B 杆便受到拉力。 〖答案〗 (1)斜面光滑杆既不受拉力,也不受压力 (2)斜面粗糙μA >μB 杆不受拉力,受压力 斜面粗糙μA <μB 杆受拉力,不受压力 类型二、“假设法”分析物体受力 【例题2】在一正方形的小盒内装一圆球,盒与球一角为θ的斜面下滑,如图所示,若不存在摩擦, 当θ角增大时下滑过程中圆球对壁压力T 及对盒底面的压力N 将如?(提示:令T 不为 零,用整体法和隔离法分析)() A .N 变小,T B .N 变小,T 为零; C .N 变小,T D .N 不变,T 变大。 〖点拨〗物体间有没有相互作用,可以假设不存在,看其加速度的大小。 〖解析〗假设球与盒子分开各自下滑,则各自的加为a =g s i

n

θ,即“” ∴T=0 对球在垂直于斜面方向上:N=mgcos θ ∴N 随θ增大而减小。 〖答案〗B

练 2

的加速度沿水平方向向左运动时,斜面上1.如图所示,火车箱中角为30°的斜面,当火车以10m/s 的物体m 还是与车箱相对静止,分析物体m 所受的摩擦力的方向。 〖解析〗 (1)方法一:m 受三个力作用:重力mg ,弹力N ,静摩擦力的方向难以确定,我们可假定这个力不存在, 那么如图,mg 与N 在水平方向只能产生大小F=mgtg θ的合力,此合力只能产生gtg30°=3g/3的加速度, 小于题目给定的加速度,合力不足,故斜面对物体的静摩擦力沿斜面向下。 (2)方法二:如图,假定所受的静摩擦力沿斜面向上,用正交分解法有: Ncos30°+fsin30=°mg ① Nsin30-°fcos30°=ma ② ①②f

=

5(1-3)

m

N

明f 的方向与假定的方向相反,应是沿斜面向下。 〖答案〗静摩擦力沿斜面向下 度可以忽略)相连放在斜面上,从静止开始共同下类型一、“整体法”与“隔离法” 过0.5s ,细线自行断过1s ,两个 【例题1】如图所示,A 、B 两个滑块用短细线(长 滑块之间的距离

。已知:滑文案大全

斜面间的动摩

是0.25;滑块B 的质量为2kg ,有相同的水平加速度a ,以小球和车整体为研究对 与斜面间的动摩是0.75;sin37°=0.6,象,该整体在水平面上只受推力F 的作用,则根据

c o s 37°

=0

.8。斜θ=

37

°,斜面足够 牛顿第二定律,有: 程中取g=10m/s 2。 2。 F =(M+m )a ① 〖点拨〗此题考查“整体法”与“隔离法”。以小球为研究对象,受力情况如图所示,则: 〖解析〗设A 、B 的质量分别为m 1、m 2

,与斜 F 合=mgcot θ=ma ② 面间动摩分别为μ1、μ2。细线未断之前,以 A 、B 整体为研究对象,设其加速度为a ,根据牛顿 第二定律有 而cot θ= 2()2

RRh Rh ③ (m 1+m 2)gsin θ-μ1m 1gcos θ-μ2m 2gcos θ=(m 1+m 2

) 2 由②③式得:a=10m/s a 将a 代入①得:F=50N 。

a=gsin θ- (mm)gcos 1122 mm 12 2。 =2.4m/s

〖答案〗50N 经0.5s 细线自行断掉时的速度为v=at 1=1.2m/s 。 细线断掉后,以A 为研究对象,设其加速度为a 1,

根据牛顿第二定律有:1.如图所示,一根轻质弹簧上端固定,下端挂

a1= m gsinmgcos 111

m 1

一质量为m 0的平盘,盘中有物体质量为m ,当 盘

静止 2。 =g (sin θ-μ1cos θ)=4m/s

伸长

Δ 滑块

A

2 at 12 2 , 弹性限度内等于() 又以

B 为m 2gsin θ=μ2m 2gcos θ,则a 2=0,即B 做匀速运动,它 A .(1+ l l )(m+m 0)g 在t 2

x

2 B .(1+ l

l )mg Δx=x 1-x 2=vt 2+ 2 at 12 2 -vt 2= 2 at 12 2

=2m C . l

l mg l 〖答案〗2m

(m+m 0)g D .

l

〖解析〗题目描述主要有两个状态:(1)未用

手拉时盘处于静止状态;(2)刚松手时盘处于向上 加速状态。对这两个状态分析即可:

类型三、“整体法”和“隔离法”综合应用

(1)过程一:当弹簧伸长l 静止时,对整体有:

【例题3】如图所示,一内表面光滑的凹形球面小 kl=(m+m 0)g ①

车,半径R=28.2cm ,车内有一小球,当小车以恒定 (2)过程二:伸长Δl 后静止(因向下拉力 加速度向右运动时,小球沿凹形球面上升的最大高 未知,故先不列式)。

度为8.2cm ,若小球的质量m=0.5kg ,小车质量 (3)过程三:刚松手瞬M=4.5kg ,应用多大水平力推车?(水平面光滑) 在

对整体有:k(l+Δl)-(m+m0)g=(m+m0)a②

对m有:N-mg=ma③

由①②③解得:N=(1+Δl/l)mg。

〖答案〗B

2.如图所示,两个质量相同的物体1和2紧靠在

一起,放在光滑的水平桌面上,如果它们分别受到〖点拨〗整体法和隔离法的综合应用。

水平推力F1和F2作用,而且F1>F2,则1施于2 〖解析〗小球上升到最大高度后,小球与小车

的作用力大小为()

文案大全

实用标准

A .F1

B .F2a 相对=a 车-a

2

=0.5m/s

C .

1 2

(F 1+F 2)D .

1 2

(F 1-F )。 由L=

1 2 a

2,得t=2s 。 相对t

〖解析〗因两个物体同一方向以相同加速度运〖答案〗(1)0.6N (2)8.5N (3)2s

动,因此可把两个物体当作一个整体,这个整体受 力如图所示,设每个物体质量为m ,则整体质量为 针

对训练 2m 。1.如图所示,在倾角

为θ的光滑 对整体:F 1-F2=2ma ,

斜面上端系一劲度系数为k 的轻

∴a=(F 1-F 2)/2m 。

弹簧,弹簧下端连有一质量为m

的小球,球被一垂直于斜面的挡板 A 挡住,此时弹簧没有形变。若手

持挡板A 以加速度a (a <gsin θ)沿斜面匀加速下 滑,求,

(1)从挡板开始运动到球与挡板分离所经历的

把1和2隔离,对2受力分析如图(也可以对 时间;

(2)从挡板开始运动到球速达到最大,球所经 1受力分析,列式)

对2:N 2-F 2=ma ,

过的最小路程。

∴N 2=ma+F2=m (F1-F 2)/2m+F 2=(F1+F 2)/2。

〖解析〗

〖答案〗C (1)当球与挡板分离时,挡板对球的作用力为

零,对球由牛顿第二定律得mgsinkxma ,

类型四、临界问题的处理方法

m(gsina)

【例题4】如图所示,小车质量M 为2.0kg ,与水 则球做匀加速运动的位移

为x = 。k

平地面阻力忽略不计,物体质量m =0.50kg ,物体与

小车间的动摩擦因数为0.3,则:

当x=1 2 2得,从挡板开始运动到球与挡板分离 at

所经历的时间为t= 2x a = 2m(gsina) ka

。 (2)球速最大时,其加速度为零,则有 kx ′m =gsin θ,

(1)小车在外力作用下以1.2m/s 2

的加速度向右运 2

的加速度向右运 动时,物体受摩擦力是多大?

球从开始运动到球速最大,它所经历的最小路

程为

(2)欲使小车产生3.5m/s 2

的加速度,给小车需要 2

的加速度,给小车需要 提供多大的水平推力? mg x ′=

s in k

(3)若小车长L =1m ,静止小车在8.5N 水平推力

作用下,物体由车的右端向左滑动,滑离小 〖答案〗(1)

2m(gsina) ka

(2)mgsin θ/k

2.如图所示,自由下落的小球下落一段时间后,

车需多长时间?

与弹簧接触,从它接触弹簧开始,到弹簧压缩到最 〖点拨〗本题考查连接体中的临界问题

〖解析〗m与M间的最大静摩擦力

Ff=mg=1.5N,当m与M恰好相对滑动时的加

F

2

速度为:Ff=maa=

3m/s

m

(1)当a=1.2m/s2时,m未相对滑动,则

F f=ma=0.6N

(2)当a=3.5m/s2时,m与M相对滑动,则

2时,m与M相对滑动,则

Ff=ma=1.5N,隔离M有F-Ff=Ma

F=Ff+Ma=8.5N

(3)当F=8.5N时,a 车=3.5m/s2,a物=3m/s2,短

情况是怎样的?(按论述题要求解答)

〖解析〗先用“极限法”简单分析。

在弹簧的最上端:∵小球合力向下(mg

>kx),∴小球必加速向下;在弹簧最

下端:∵末速为零,∴必定有减速过程,

亦即有合力向上(与v反向)的过程。

∴此题并非一个过程,要用“程序

法”分析。具体分析如下:

小球接触弹簧时受两个力作用:向下的重力和

文案大全

向上的弹力(其中重力为恒力)。向下压缩过程可 分为:两个过程和一个临界点。

(1)过程一:在接触的头一阶段,重力大于弹 力,小球合力向下,且不断变小(∵F 合=mg-kx ,而 x 增大),因而加速度减少(∵a=F 合/m ),由于a 与 v 同向,因此速度继续变大。

(2)临界点:当弹力增大到大小等于重力时, 合外力为零,加速度为零,速度达到最大。 练

(3)过程二:之后小球由于惯性仍向下运动, 1.如图所示,为θ的光

但弹力大于重力,合力向上且逐渐变大(∵F 合= 滑斜面上,有两个用轻质弹簧

连接A 和B ,它们的kx-mg )因而加速度向上且变大,因此速度减小至 零。(注意:小球不会静止在最低点,将被弹簧上质量分别为m A 、m B ,弹簧的劲 推向上运动,请同学们自己分析以后的。度系数为k ,C 为一固定挡板。系统处于静止状态。 〖答案〗综上分

得:

下压弹簧

过程,现开始用一恒力F 沿斜

面方向

A 使之向上运 动,求物块

B 刚要离开时物块

C 时物块A 的加速度 F 合方向先向下后向上,大小先变小后变大;a 方向 先向下后向上,大小先变小后变大;v 方向向下, a ,以及从开始到此时物块A 的位移d ,重力加速度 大小先变大后变小。(向上推的过程也是先加速后为g 。 减速)。〖解析〗此题有三个物体(A 、B 和轻弹簧) 类型五、不同加速度时的“隔离法” 和三个过程或状态。下面用“程序法”和“隔离法”分 析: 【例题5】如图,底坐A 上装有一根直立长杆,其 (1)过程一(状态一):弹簧被A 压缩x 1,A 总质量为M ,杆上套有质量为m 的环B ,它与杆有 和B 均静止 摩擦,当环从底座以初速v 向上飞起时(底座保持 对A 受力分析如图所示, 静止),环的加速度为a ,求环在升起和下落的过程 对A 由平衡条件得:kx 1=m A gsin θ① 中,底座对水平面的压力分别是多大? 〖点拨〗不同加速度时的“隔离法”。 (2)过程二:A 开始向上运动到弹簧恢复原长。此 〖解析〗此题有两个物体又有两个过程,故用 过程A 向上位移为x 1。 “程序法”和“隔离法”分析如下:

(3)过程三:A 从弹簧原长处向上运动x 2,到 (1)环上升时这两个物体的受力如图所示。

B 刚离开

C 时。

对环:f+mg=ma ①

B 刚离开

C 时A 、B 受力分析如图所示, 对底座:f ′N +1-Mg=0②

此时对B :可看作静止,由平衡条件得: 而f ′f =③

kx 2=m B gsin θ② ∴N 1=Mg —m (a-g )。

此时对A :加速度向上,由牛顿第二定律得: (2)环下落时,环和底座的

F-mAgsin θ-kx2=mAa ③受力如图所示。

WORD 格式

对环:环受到的动摩擦力大小不变。 对底座:Mg+f ′—N 2=0④

F(mm)gsin 由②③得:a=AB

m A

联立①③④解得:N 2=Mg+m (a-g )

由①②式并代入d=x 1+x 2解得: 〖答案〗上升N 1=Mg-m (a-g )

d=

(mm)gsin AB

k

下降N 2=Mg+m (a-g )

F(mm)gsin 〖答案a=AB

m A

:通过例

题的解答过程,出解题以

文案大全 下方法和步骤: 1.确定研究对象; 2.明确物理过程;

d= (mm)g sin

AB

k

要使m 能从M 上面滑落下来的条件是:v 2>v 1, 即a 2>a 1,

2.如图所示,有一块木 板静

∴Fmg M

>4解得:F >20N

的水平面上,木②只有一个过程

为M =小滑

对小滑块(受力与①同):x 1= 1 2

a 1t 2=2t 2 2=2t 2 木板之间的动摩擦因数为μ=0.4。(g=10m/s 2) 2)

对木板(受力方向与①同): ①现用恒力F 作用在木板M 上,为了使得m 能从 M 上面滑落下来,求:F 大小的范围。(设最大 a 2= F f M 2 =4.7m/s

静摩擦力等于滑动摩擦力) ②其他条件不变,若恒力F=22.8N ,且始终作用在 x2=

1 2 a 2t 2

=4.7 2=4.7 2 2

t

M 上,使m 最终能从M 上面滑落下来。求:m 由图所示得: 在M 上面滑动的时

间。 〖解析〗①只有一个过程,用“隔离法”分析如

x2-x1=L 即

4.7 ·t 2-2t 2

=1.4 2-2t 2

=1.4 2

下:解得:t=2s 。

对小滑块:水平方向受力如图所示,

a1=

fmg mm

2 =μg =4m/s

对木板:水平方向受力如图所示,〖答案①F >20N ②t=2s

a 2=

F fFmg MM

WORD 格式实用标准

基础巩固一个质量为m的小球。小球上下振动时,框架始终没有跳起,当框架对地面压力为

瞬间,小球的加速度大小为()

1.如图光滑水平面上物块A和B以轻弹簧相连接。在水平拉力F作用下以加速度a作A.g

直线运动,设A和B的质量分别为m A和m B,当突然撤去外力F时,A和B的加速M m B.g m

m度分别为()

C.0 A.0、0

B.a、0

C.

ma

A

m

A

m

B

AB

ma

A

m

m

A

B

F Mm

M

D.g

m

5.如图,用力F拉A、B、C三个物体在光滑

水平面上运动,现在中间的B物体上加一

个小物体,它和中间的物体一起运动,且原

m

A

D.a、a

m

B

2.如图A、B、C为三个完全相同的物体,当水平力F作用于B上,三物体可一起匀速

运动。撤去力F后,三物体仍可一起向前

运动,设此时A、B间作用力为F1,B、C

间作用力为F2,则F1和F2的大小为()拉力F不变,那么加上物体以后,两段绳中的拉力T a和

T b的变化情况

是()

A.T a增大

BT

增大

b

CT.a变小

DT

不变

b

T a T b

ABC

A.F1=F2=0

B.F1=0,F2=F A

v

6.如图所示为杂技“顶竿”表演,一人站在地上,

肩上扛一质量为M的竖直竹竿,当竿上一

C.F1=F

3

2

,F2=F

3

B

C

F质量为m的人以加速度a加速下滑时,竿

对“底人”的压力大小为()

D.F1=F,F2=0 A.(M+m)g m 3.如图所示,质量分别为M、m的滑块A、B

叠放在固定的、倾角为θ的斜面上,A与斜

B.(M+m)g-ma

M

WORD格式

面间、A与B之间的动摩擦因数分别为μ1,

C.(M+m)g+ma μ2,当A、B从静止开始

以相同的加速度下滑时,B受到摩擦力()

A.等于零B

A

D.(M-m)g

7.如图,在竖直立在水平面的

轻弹簧上面固定一块质量不计的薄板,将薄

板上放一重物,并用手将重物往下压,然后

B.方向平行于斜面向上

C.大小为μ1mgcosθθ突然将手撤去,重物即被弹射出去,则在弹射过程中,(即重物与弹

D.大小为μ2mgcosθ

簧脱离之前),重物的运

F

4.如图所示,质量为M的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定动情况是()A.一直加速

B.先减速,后加速

文案大全

实用标准

C.先加速、后减速D.匀加速始运动54m用3s时间,当该恒力作用在乙8.如图所示,木块A和B用一轻弹簧相连,

物体上,能使乙在3s内速度由8m/s变到-

竖直放在木块C上,三者静置于地面,它们的质量之比是

1:2:3,设所有接触面都光滑,当沿水平方A

B

C

4m/s。现把甲、乙绑在一起,在恒力F作用

下它们的加速度的大小是。

从静止开始运动3s内的位移是。

4.如图所示,三个质量相同的木块顺次连接,

放在水平桌面上,物体与平面间0.2,

向抽出木块C的瞬时,A和B的加速度分

别是a A=,a B

=。

用力F拉三个物体,它们运动的加速度为

9.如

示a

2,若去掉最后一个物体,前两物体

1m/s

加速度为m/s2。

2。

,在前进的车厢的竖

直后壁上放一个物

体,物体与壁间的静摩擦因数μ=0.8,要使

5.如图所示,在水平力F=12N的作用下,放在

物体不致下滑,车厢至少应以多大的加速度

2

前进?(g=10m/s

)光滑水平面上的m1,运动的位移x与时间

1,运动的位移x与时间

2

t满足关系式:

x3t4t,该物体运动

10.如图所示,箱子的质量M=5.0kg,与水平的初速度v

0,物体的质量m1= 地面的动摩擦因数μ=0.22。在箱子顶板处。若改用下图装置拉动m1,使m1的运

系一细线,悬挂一个质动状态与前面相同,则m2的质量应为

2的质量应为

θ。(不计摩擦)量m=1.0kg的小球,箱

子受到水平恒力F的作

用,使小球的悬线偏离竖直方向θ=30°角,

则F应为多少?(g=10m/s

2)

能力提升

1.两个物体A和B,质量分别为m1和m2,互

相接触放在光滑水平面上,如图所示,对物

体A施以水平的推力F,则物体A对物体B

6.如图所示,一细

P 的作用力等于()

线的一端固定于

m

1 A.F

mm

12 倾角为45°的光

滑楔形滑块A的

a

A

m 2

B.F

mm

12 C.F F

AB

m1m2

顶端P处,细线

的另一端拴一质

量为的小球。当

滑块至少以加速

度=ma

45

向左运动时,小球对滑块的压力等于零。当

m

1 D.F

m

2 m1

m2

滑块以a=2g的加速度向左运动时,线的拉

力大小F=。

2.如图所示,倾角为的7.如图所示,质量为M的木板可沿倾角为θ

F斜面上放两物体m1和

的光滑斜面下滑,木板上站着一个质量为m m2,用与斜面平行的

的人,问

力F推m1,使两物加速上滑,不管斜面是

(1)为了保持木板与斜面

否光滑,两物体之间的作用力总相对静止,计算人运

为。动的加速度?

(2)为了保持人与斜面相3.恒力F作用在甲物体上,可使甲从静止开

文案大全

WORD格式

M 实用标准

对静止,木板运动的加速度是多少?

A.

θ

mag(sincos)

8.如图所示,质量分别为m和2m 的两物体A、B叠放在一起,放

在光滑的水平地面上,已知A、A

B

F

cos

B.

B间的最大摩擦力为A物体重力的μ倍,若mamgsin

用水平力分别作用在A或B上,使A、B保持相对静止做加速运动,则作用于A、B上的最大拉力与之比为多少?

FF

AB cossin

9.如图所示,质量为80kg的物体放在安装在

小车上的水平磅称上,小车沿斜面无摩擦地向下运动,现观察到物体在磅秤上读数只有600N,则斜面的倾角θ为多少?物体对磅C.

ma g(sincos

cossin

)

秤的静摩擦力为多少?

10.如图所示,一根轻弹簧上端固定,下端挂一质量为m o的平盘,盘中D.

m a g(sinsoc

cossin

)

有一物体,质量为m,当盘静止

3.在无风的天气里,雨滴在空中竖直下落,时,弹簧的长度比自然长度伸长

由于受到空气的阻力,最后以某一恒定速了L。今向下拉盘使弹簧再伸长

△L后停止,然后松手放开,设

弹簧总处在弹性限度以内,刚刚

松开手时盘对物体的支持力等于多少?

度下落,这个恒定的速度通常叫做收尾速

度。设空气阻力与雨滴的速度成正比,下

列对雨滴运动的加速度和速度的定性分

析正确的是()

综合应用

①雨滴质量越大,收尾速度越大

1.如图所示,一根轻质弹簧上端固定,下端②雨滴收尾前做加速度减小速度增加的运

挂一个质量为m0的平盘,盘中有一物体,

0的平盘,盘中有一物体,

③雨滴收尾速度大小与雨滴质量无

④雨滴收尾前做加速度增加速度也增加的

质量为m,当盘静止时,弹簧的长度比其

运动

自然长度伸长了l,今向下拉盘,使弹簧

A.①②B.②④再伸长l后停止,然后松手,设弹簧总

C.①④D.②③

处在弹性限度内,则刚松手时盘对物体的

4.如图所示,将一个质量为支持力等于()

A.(1l)

lmg m的物体,放在台秤盘上

一个倾角为的光滑斜

B.(1l)(0)

lmmg 面上,则物体下滑过程中,台秤的示数与未放m

C.lmg

l

l(mm0)g

D.l

时比较将()

A.增加mgB.减少mg

2D.减少mg2(1+sin2) C.增加mgcos

5.质量为m和M的两个物体用轻绳连接,用一大小不变的拉力F拉M,使两物体在

2.质量为m的三角形木楔A置于倾角为的

图中所示的AB、BC、CD三段轨道上都做固定斜面上,如图所示,它与斜面间的动摩

匀加速直线运动,物体在三段轨道上运动擦因数为,一水平力F作用在木楔A的

时力F都平行于轨道,且动摩擦因数均相

竖直面上。在力F的推动下,木楔A沿斜

同,设在AB、BC、CD上运动时m和M

面以恒定的加速度a向上滑动,则F的大

小为()之间的绳上的拉力分别为T1、T2、T3,则文案大全

它们的大小()此时这个物体相对地面的加速度是。A.T1=T2=T3

B.T1>T2>T3 C.T1<T2<T3mMF C

D

8.如图所示,光滑水平面上有两物体m1与m2

用细线连接,设细线能承受的最大拉力为

D.T1<T2=T3

AB

6.如图所示,在光滑水平面上,放着两块长度

T,m1m2,现用水平拉力F拉系统,要

使系统得到最大加速度F应向哪个方向

拉?

9.如图所示,木块A质量为1kg,木块B质量

相同,质量分别为

M1和M2的木板,在两木板的左端各放一个

大小、形状、质量完全相同的物块,开始时,各物均静止,今在两物体上各作用一水平恒为2kg,叠放在水平地面上,AB之间最大静摩擦力为5N,B与地面之间摩擦系数为5.,今用水平力F作用于A,保持AB相对静止的条件是F不超过N

力F1、F2,当物块和木块分离时,两木块的(

2 g10m/s)。

速度分别为v1、v2,物体和木板间的动摩擦因数相同,下列说法:

①若F1=F2,M1>M2,则v1>v2;

②若F1=F2,M1<M2,则v1>v2;

③F1>F2,M1=M2,则v1>v2;

④若F1<F2,M1=M2,则v1>v2,其中正确的是()10.如图所示,5个质量相同的木块并排放在光滑的水平桌面上,当用水平向右推力F

推木块1,使它们共同向右加速运动时,求

A.①③B.②④

第2与第3块木块之间弹力及第4与第5 C.①②D.②③

块木块之间的弹力?

7.如图所示,小车上固定着光滑的斜面,斜面

的倾角为,小车以恒定的加速度向左运

动,有一物体放于斜

a面上,相对斜面静止,

文案大全

基础巩固

1.D2.C3.BC4.D5.A6.B7.C8.0、

2

9.

12.5m/s 3

2 g

解:设物体的质量为m,在竖直方向上有:mg=F,F为摩擦力在临界情况下,F=μF N,F N为物体所受水平弹力。又由牛顿第二定律得:

F N=ma由以上各式得:加速度a F mg

N

mm

10

0.8

22

m/s12.5m/s

10.48N

解:对小球由牛顿第二定律得:mgtgθ=ma①对整体,由牛顿第二定律得:

F-μ(M+m)g=(M+m)a②

由①②代入数据得:F=48N

能力提升

1.B

2.

m

2 FF

N

mm

12

提示:先取整体研究,利用牛顿第二定律,求出共同的加速度

a F(mm)g cos(mm)gsin

1212

mm

12

F

mm

12

gcosgsin

再取m2研究,由牛顿第二定律得F N-m2gsinα-μm2gcosα=m2a

整理得

m

2 FF

N

mm

12

2,13.5m

3.3m/s

4.2.5

5.4m/s,2kg,3kg

6.g、5mg

7.(1)(M+m)gsinθm/,(2)(M+m)gsinθM/。

解析:

(1)为了使木板与斜面保持相对静止,必须满足木板在斜面上的合力为零,所以人施于木板的摩擦力F应沿斜面向上,故人应加速下跑。现分别对人和木板应用牛顿第二定律得:

对木板:Mgsinθ=F。

对人:mgsinθ+F=ma人(a

人为人对斜面的加速度)。

解得:a

Mm

人=sin

g

m

文案大全

实用标准

方向沿斜面向下。

(2)为了使人与斜面保持静止,必须满足人在木板上所受合力为零,所以木板施于人的摩擦力应沿斜面向上,故人相对木板向上跑,木板相对斜面向下滑,但人对斜面静止不动。现分别对人和木板应用牛顿第二定律,设木板对斜面的加速度为a

木,则:

对人:mgsinθ=F。

对木板:Mgsinθ+F=Ma

木。解得:a

Mm

木=sin

g

m ,方向沿斜面向下。即人相对木板向上加速跑动,而木板沿斜面向

下滑动,所以人相对斜面静止不动。

8.1:2

解析:当力F作用于A上,且A、B刚好不发生相对滑动时,对B由牛顿第二定律得:μmg=2ma ①

对整体同理得:F A=(m+2m)a②

由①②得 F

A 3mg

2

当力F作用于B上,且A、B刚好不发生相对滑动时,对A由牛顿第二定律得:

μmg=ma′③

对整体同理得F B=(m+2m)a′④

由③④得F B=3μmg

所以:F A:F B=1:2

9.346N

解析:取小车、物体、磅秤这个整体为研究对象,受总重力Mg、斜面的支持力N,由牛顿第二定律得,Mgsinθ=Ma,∴a=gsinθ取物体为研究对象,受力情况如图所示。

将加速度a沿水平和竖直方向分解,则有

f静=macosθ=mgsinθcosθ①

2

mg-N=masinθ=mgsin

θ②

22

由式②得:N=mg-mgsin

θ=mgcosθ,则cosθ=由式①得,f静=mgsinθcosθ代入数据得

f静=346N。 N

mg

代入数据得,θ=30°

根据牛顿第三定律,物体对磅秤的静摩擦力为346N。

10.mg(1+

L

L

)

解析:盘对物体的支持力,取决于物体状态,由于静止后向下拉盘,再松手加速上升状态,则物体所受合外力向上,有竖直向上的加速度,因此,求出它们的加速度,作用力就很容易求了。

将盘与物体看作一个系统,静止时:

kL=(m+m0)g①

再伸长△L后,刚松手时,有

k(L+△L)-(m+m0)g=(m+m0)a②

由①②式得

k(LL)(mm)g L

ag

mmL

刚松手时对物体F N-mg=ma

则盘对物体的支持力

F N=mg+ma=mg(1+

L

L

)

最新《气体》专题二-理想气体连接体问题(教师版)

《气体》专题二 理想气体连接体问题 气体连接体问题涉及两部分(或两部分以上)的气体,它们之间无气体交换,但在压强或体积这些量间有一定的关系。 一、解决此类问题的关键: 1.分析两类对象: (1)力学对象(活塞、液柱、气缸等) (2)热学对象(一定质量的气体) 2.寻找三种关系: (1)力学关系(压强关系) (2)热学关系(气体状态参量P 、V 、T 之间的关系) (3)几何关系(体积变化关系) 二、解决此类问题的一般方法: l .分别选取每部分气体为研究对象,确定初、末状态及其状态参量,根据气态方程写出状态参量间的关系式。 2.分析相关联气体间的压强或体积之间的关系并写出关系式。 3.联立求解并选择物理意义正确的解。 【例1】如图所示,在固定的气缸A 和B 中分别用活塞封闭一定质量的理想气体,活塞面积之比为S A :S B = 1:2.两活塞以穿过B 的底部的刚性细杆相连,可沿水平方向无摩擦滑动.两个气缸都不漏气.初始时,A 、B 中气体的体积皆为V 0,温度皆为T 0=300K 。A 中气体压强p A =1.5p 0,p 0是气缸外的大气压强.现对A 加热,使其中气体的压强升到 p A = 2.0p 0,同时保持B 中气体的温度不变.求此时A 中气体温度T A ’. 解:活塞平衡时,有p A S A + p B S B = p 0 (S A + S B ) ① p’ A S A + p’ B S B = p 0 (S A + S B ) ② 已知 S B =2S A ③ B 中气体初、末态温度相等,设末态体积为V B , 则有 p’B V B = p B V 0 ④ 设A 中气体末态的体积为V A ,因为两活塞移动的 距离相等,故有 ⑤ 由气态方程 ⑥ 解得 ⑦ 【例2】用钉子固定的活塞把容器分成A 、B 两部分,其容积之比V A ∶V B =2∶1,如图所示,起初A 中空气温度为127 ℃、压强为1.8×105 Pa ,B 中空气温度为27 ℃,压强为1.2×105 Pa.拔去钉子,使活塞可以无摩

连接体问题专题详细讲解20912

连接体问题 一、连接体与隔离体 两个或两个以上物体相连接组成的物体系统,称为连接体。如果把其中某个物体隔离出来,该物体即为隔离体。 二、外力和力如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的外力,而系统各 物体间的相互作用力为力。应用牛顿第二定律列方程不考虑力。如果把物体隔离出来作为研究对象,则这些力将转换为隔离体的外力。 三、连接体问题的分析方法 1.整体法连接体中的各物体如果加速度相同,求加速度时可以把连接体作为一个整体。运用牛顿第二定律列方程求解。 2.隔离法如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用牛顿第二定律求解,此法称为隔离法。 3.整体法与隔离法是相对统一,相辅相成的。本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用整体法法求出加速度,再用隔离法法求物体受力。 简单连接体问题的分析方法 1.连接体:两个(或两个以上)有相互作用的物体组成的具有相同大小加速度的整体。 2.“整体法”:把整个系统作为一个研究对象来分析(即当做一个质点来考虑)。 注意:此方法适用于系统中各部分物体的加速度大小方向相同情况。 3.“隔离法”:把系统中各个部分(或某一部分)隔离作为一个单独的研究对象来分析。 注意:此方法对于系统中各部分物体的加速度大小、方向相同或不相同情况均适用。 4.“整体法”和“隔离法”的选择 求各部分加速度相同的连结体的加速度或合外力时,优选考虑“整体法”;如果还要求物体之间的作用力,再用“隔离法”,且一定是从要求作用力的那个作用面将物体进行隔离;如果连结体中各部分加速度不同,一般都是选用“隔离法”。 5.若题中给出的物体运动状态(或过程)有多个,应对不同状态(或过程)用“整体法”或“隔离法”进行受力分析,再列方程求解。

连接体问题专题详细讲解

连接体问题一、连接体与隔离体 两个或两个以上物体相连接组成的物体系统,称为连接体。如果把其中某个物体隔离出来,该物体即为隔离体。 二、外力和内力如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的外力,而系统内各物体间的相互作用力为内力。应用牛顿第二定律列方程不考虑内力。如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的外力。 三、连接体问题的分析方法 1.整体法连接体中的各物体如果加速度相同,求加速度时可以把连接体作为一个整体。运用牛顿第二定律列方程求解。 2.隔离法如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用牛顿第二定律求解,此法称为隔离法。 3.整体法与隔离法是相对统一,相辅相成的。本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用整体法法求出加速度,再用隔离法法求物体受力。 简单连接体问题的分析方法 1.连接体:两个(或两个以上)有相互作用的物体组成的具有相同大小加速度的整体。 2.“整体法”:把整个系统作为一个研究对象来分析(即当做一个质点来考虑)。 注意:此方法适用于系统中各部分物体的加速度大小方向相同情况。 3.“隔离法”:把系统中各个部分(或某一部分)隔离作为一个单独的研究对象来分析。 注意:此方法对于系统中各部分物体的加速度大小、方向相同或不相同情况均适用。 4.“整体法”和“隔离法”的选择 求各部分加速度相同的连结体的加速度或合外力时,优选考虑“整体法”;如果还要求物体之间的作用力,再用“隔离法”,且一定是从要求作用力的那个作用面将物体进行隔离;如果连结体中各部分加速度不同,一般都是选用“隔离法”。 5.若题中给出的物体运动状态(或过程)有多个,应对不同状态(或过程)用“整体法”或“隔离法”进行受力分析,再列方程求解。 针对训练 1.如图用轻质杆连接的物体AB沿斜面下滑,试分析在下列条件下,杆受到的力是拉力还是压力。 (1)斜面光滑; (2)斜面粗糙。 〖解析〗解决这个问题的最好方法是假设法。即假定A、B间的杆不存在,此时同时释放A、B,若斜面光滑,A、B运动的加速度均为a=g sinθ,则以后的运动中A、B间的距离始终不变,此时若将杆再搭上,显然杆既不受拉力,也不受压力。若斜面粗糙,A、B单独运动时的加速度都可表示为:a=g sinθ-μg cosθ,显然,若a、b两物体与斜面间的动摩擦因数μA=μB,则有a A=a B,杆仍然不受力,若μA>μB,则a A<a B,A、B间的距离会缩短,搭上杆后,杆会受到压力,若μA<μB,则a A>a B杆便受到拉力。 〖答案〗 (1)斜面光滑杆既不受拉力,也不受压力 (2)斜面粗糙μA>μB杆不受拉力,受压力 斜面粗糙μA<μB杆受拉力,不受压力 类型二、“假设法”分析物体受力 【例题2】在一正方形的小盒内装一圆球,盒与球一起沿倾角为θ的斜面下滑,如图所示,若不存在摩擦,当θ角增大时,下滑过程中圆球对方盒前壁压力T及对方盒底面的压力N将如何变化?(提示:令T不为零,用整体法和隔离法分析)()

5讲 连接体问题与典型例题

5讲 牛顿运动定律与连接体问题 一、连接体概述 相互连接并且有共同的加速度的两个或多个物体组成的系统可以看作连接体。 如下图所示: 还有各种不同形式的连接体的模型图,不一一描述。只以常见的模型为例。 二、问题分类 1.已知外力求内力(先整体后隔离) 如果已知连接体在合外力的作用下一起运动,可以先把连接体系统作为一个整体,根据牛顿第二定律求出他们共同的加速度;再隔离其中的一个物体,求相互作用力。 2.已知内力求外力(先隔离后整体) 如果已知连接体物体间的相互作用力,可以先隔离其中一个物体,根据牛顿第二定律求出他们共同的加速度;再把连接体系统看成一个整体,求解外力的大小。 三、典型例题(以图1模型为例) 【例题1】 如上图所示,质量分别为m 1、m 2 的两个物块放在光滑的水平面上,中间用细绳相连,在F 拉力的作用下一起向右做匀加速运动,求中间细绳的拉力为多大? 解析:两个物块组成连接体系统,具有共同的加速度,把他们看作整体,根据牛顿第二定律可得: 12()F m m a =+ 解得:加速度12 F a m m = + 再隔离后面的物块m 1,它受重力G 、支持力N 和拉力T 三个力作用,根据牛顿第二 定律可得: 1T m a = 带入可得:112 m T F m m = + 图1 图2 图3 图4

【例题2】 如图所示,质量分别为m 1、m 2的两个物块,中间用细绳相连,在F 拉力的作用下一起向上做匀加速运动,求中间细绳的拉力为多大? 解析:两个物块具有共同的加速度,把他们看作整体,根据牛顿第二定律可得: 1212 ()()F m m g m m a -+=+ 解得:加速度1212 ()F m m g a m m -+= + 再隔离后面的物块m 1,它受重力G 、和拉力T 两个力作用,根据牛顿第二定律可得: 12111 12()F m m g T m g m a m m m -+-==+ 带入可得:112 m T F m m = + 由以上两个例题可得:对于在已知外力求内力的连接体问题中,系统中各物体的内力是按照质量关系分配牵引力的。只与连接体系统的质量和牵引力有关,与系统的加速度a 、摩擦因数μ、斜面倾角θ无关。 即: 112 m T F m m = + 【例3】如图所示,固定在水平面上的斜面其倾角θ=37o,长方体木块A 的MN 面上钉着一颗小钉子,质量m =1.5kg 的小球B 通过一细线与小钉子相连接,细线与斜面垂直.木块与斜面间的动摩擦因数μ=0.50.现将木块由静止释放,木块将沿斜面下滑.求在木块下滑的过程中小球对木块MN 面的压力大小.(取g =10m/s 2,sin37o=0.6,cos37o=0.8) 解析:以木块和小球整体为研究对象,设木块的质量为M ,下滑的加速度为a ,沿斜面方向,根据牛顿第二定律有: (M +m )g sin37o-μ(M +m )g cos37o=(M +m )a 解得:a =g (sin37o-μcos37o)=2m/s 2 以小球B 为研究对象,受重力mg ,细线拉力T 和MN 面对小球沿斜面向上的弹力F N ,沿斜面方向,根据牛顿第二定律有: mg sin37o-F N =ma 解得:F N =mg sin37o-ma =6N . 由牛顿第三定律得,小球对木块MN 面的压力大小为6N . [例4]如图2-3所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的 2 1,

连接体专题 (1)

专题:连接体问题 一、加速度相同的连接体 例|1在右图中,质量分别为m 1、m 2的物体由弹簧相连接,在恒力F 作用下共同向右运动,弹簧的长度恒定,物块与水平面间动摩擦因数为μ。求:弹簧的弹力? 练1.如右图所示,物体m 1、m 2用一细绳连接,两者在竖直向上的力F 的作用下向上加速运动,重力加速度为g ,求细绳上的张力? 例|2在右图中,质量分别为m 、M 的物体由相连接,在恒力F 作用下运动,物块与水平面间动摩擦因数为μ,求细绳上的张力? 练2.一工人用力F 沿倾角为θ的斜面推着货箱A 、B 匀加速上升,已知A 、B 的质量分别为1m 和2m ,两货箱与斜面间的动摩擦因数都为μ,重力加速度为g ,试分析货箱A 对B 的作用力。 例|3如图右,m 1、m 2用细线吊在定滑轮,当m 1、m 2开始运动时,求细线受到的张力? 练3.如图所示,小华坐在吊台上,通过定滑轮把自己和吊台共同提起.小华的质量 ,吊台的质量 ,起动时的加速度为 .(取 )求: ()绳上的张力大小. ()小华对吊台压力的大小. 1 m 2m F F

例|4如图甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体A(与弹簧固联),在物体A的上方再放上物体B,初始时物体A、B处于静止状态。现用竖直向上的拉力F作用在物体B上,使物体B-直竖直向上做匀加速直线运动,拉力F 与物体B的位移x之间的关系如图乙所示。已知经过t=0.1s物体A、B分离,物体A的质量为m A=lkg,重力加速度g=l0m/s2,求: (1)物体B的质量m B; (2)弹簧的劲度系数k。 练4.质量的物块A与质量的物块B放在倾角θ=30°的光滑斜面上处于静止状态,轻质弹簧一端与物块B连接,另一端与固定档板连接,弹簧的劲度系数k=400 N/m,现给物块A施加一个平行于斜面向上的力F,使物块A沿斜面向上做匀加速运动,已知力F在前0.2s内为变力,0.2s后为恒力,()求:力F的最大值与最小值? 二、加速度不相同的连接体 例|5质量为M的箱体放在水平面上,其内部柱子上有一物块正以加速度a下滑,物块的质量为m。求箱体对地面的压力? 例|6在以下所述情形下,分别求出地面对斜面体的摩擦力和支持力: (1)质量为m的物块在质量为M的斜面上静止和沿斜面匀速下滑; (2)质量为m的物块在沿着斜面向上的拉力F作用下沿斜面匀速上 滑,斜面体质量为M,始终静止; (3)质量为m的物块以加速度a沿斜面加速下滑,斜面体质量为M,保持静止。练6.如图所示,一质量M=6kg的斜面体置于粗糙水平地面上,倾角为 30。质量m=4kg 的物体以a=3m/s2的加速度沿斜面下滑,而斜面体始终保持静止。求:地面对斜面体的摩擦力及支持力。(g=10m/s2) m M 30 m M a

4连接体问题及解题方法

4连接体问题及处理方法 一、连接体问题 1.连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统. 2.连接体题型 (1)系统内所有物体相对静止,即运动情况相同,a 也相同------相对静止问题 (2)系统内物体相对运动,运动情况不同,a 也不同------相对运动问题 二、处理方法 1 整体法分析系统受力时只分析外力不必分析内力;在用隔离法解题时要注意判明隔离体的运动方向和加速度方向,同时为了方便解题,一般我们隔离受力个数少的物体.2.相对静止类:程。(整体与隔离结合使用) 例1.A 、B 两物体靠在一起,放在光滑水平面上,m B =6Kg ,今用水平力F A =6N 推A ,用水平力F B =3N 拉B ,A 、B 有多大? 3.相对运动问题:例2.如图所示,光滑水平面上静止放着长L =1.6 m 、质量为M =3 kg 的木板.一 个质量为m =1 kg 的小木块放在木板的最右端,m 与M 之间的动摩擦因数μ= 0.1,今对木板施加一水平向右的拉力F ,若2s 时两者脱离,则F 为多大? 4.判断相对静止还是相对运动:以最容易达到最大加速度的物体作为切入点,进入分析 例3.如图所示,m 1=40 kg 的木板放在无摩擦的地板上,木板上又放m 2=10 kg 的石块,石块与木板间的动摩擦因数μ=0.6,试问 (1)当水平力F =50 N 时,石块与木板间有无相对滑动? (2)当水平力F =100 N 时,石块与木板间有无相对滑动?(g =10 m/s 2)此时m 2的 加速度为多大? 5.方法总结 ①.当它们具有共同加速度时,一般是先整体列牛顿第二定律 方程,再隔离受力个数少的物体分析列牛顿第二定律方程. ②.当它们的加速度不同且涉及到相对运动问题,一般采用隔 离法分别分析两个物体的运动情况,再找它们运动或受力的联 系点列辅助条件方程. 练习题 1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( ) A .211m m m + F B .212m m m + F C .F D .2 1m m F 2.上题若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则A 对B 作用力等于为( ) 3.如图所示,光滑平面上以水平恒力F 拉动小车和木块,一起做无相对滑动的加 速运动,若小车质量为M ,木块质量为m ,加速度大小为a ,木块和小车间的动摩

2020年高考物理专题复习:连接体问题的解题技巧练习题

2020年高考物理专题复习:连接体问题的解题技巧练习题 1. 如图,一个固定斜面上两个质量相同的小物块A 和B 紧挨着匀速下滑,A 与B 的接触面光滑。已知A 与斜面之间的动摩擦因数是B 与斜面之间动摩擦因数的2倍,斜面倾角为α。则B 与斜面之间的动摩擦因数是( ) A. 2tan 3α B. 2cot 3α C. tan α D. cot α 2. 如图甲所示,在粗糙的水平面上,质量分别为m 和M 的物块A 、B 用轻弹簧相连,两物块与水平面间的动摩擦因数相同,它们的质量之比m :M=1:2。当用水平力F 作用于B 上且两物块以相同的加速度向右加速运动时(如图甲所示),弹簧的伸长量为1x ;当用同样大小的力F 竖直向上拉B 且两物块以相同的加速度竖直向上运动时(如图乙所示),弹簧的伸长量为2x ,则21:x x 等于( ) A. 1:1 B. 1:2 C. 2:1 D. 2:3 3. 一辆小车静止在水平地面上,bc 是固定在车上的一根水平杆,物块M 穿在杆上,M 通过细线悬吊着小物体m ,m 在小车的水平底板上,小车未动时细线恰好在竖直方向上。现使小车如下图分四次分别以4321a a a a 、、、向右匀加速运动,四种情况下M 、m 均与车保持相对静止,且图甲和图乙中细线仍处于竖直方向,已知8:4:2:1:::4321=a a a a ,M 受到的摩擦力大小依次为4321f f f f 、、、,则错误.. 的是( )

A. 2:1:21=f f B. 3:2:21=f f C. 2:1:43=f f D . tanα=2tanθ 4. 如图,机车a 拉着两辆拖车b ,c 以恒定的牵引力向前行驶,连接a 、b 间和b 、c 间的绳子张力分别为T 1、T 2,若行驶过程中发现T 1不变,而T 2增大,则造成这一情况的原因可能是( ) A. b 车中有部分货物落到地上 B. c 车中有部分货物落到地上 C. b 车中有部分货物抛到c 车上 D. c 车上有部分货物抛到b 车上 5. 如图所示,光滑固定斜面C 倾角为θ,质量均为m 的两物块A 、B 一起以某一初速度沿斜面向上做匀减速直线运动。已知物块A 上表面是水平的,则在该减速运动过程中,下列说法正确的是( ) A. 物块A 受到B 的摩擦力水平向左 B. 物块B 受到A 的支持力做负功 C. 两物块A 、B 之间的摩擦力大小为mgsinθcosθ D. 物块B 的机械能减少 6. 如图所示,在光滑水平面上有两个质量分别为m 1和m 2的物体A 、B ,m 1>m 2,A 、B 间水平连接着一轻质弹簧秤。若用大小为F 的水平力向右拉B ,稳定后B 的加速度大小为a 1,弹簧秤示数为F 1;如果改用大小为F 的水平力向左拉A ,稳定后A 的加速度大小为a 2,弹簧

连接体问题

连接体问题 本节目标: 1、知道什么是连接体 2、明确连接体问题的处理方法 3、掌握研究对象的选取原则 典型例题: 例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( ) A. F m m m 211+ B. F m m m 2 12 + C. F D. F m m 21 练习: 1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。 2.如图所示,倾角为α的斜面上放两物体m 1和m 2,用与斜面平行的力F 推m 1,使两物加速上滑,不管斜面是否光滑,两物体之间的作用力总为 。 例 2. 如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间的静摩擦因数μ=0.8,要使物体不致下滑,车厢至少应以多大的加速度前进?(g =10m/s 2 ) 练习: 3、如图所示,箱子的质量M =5.0kg ,与水平地面的动摩擦因数μ=0.22。在箱子顶板处系一细线,悬挂一个质量m =1.0kg 的小球,箱子受到水平恒力F 的作用,使小球的悬线偏离竖直方向θ=30°角,则F 应为多少?(g =10m/s 2 ) 4、如图3所示的三个物体质量分别为m 1、m 2和m 3,带有滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦以及绳子的质量均不计,为使三个物体无相对运动,水平推力F 等于多少? 例3:如图所示:把质量为M 的的物体放在光滑的水平高台上,用一条可以忽略质量而且不变形的细绳绕过定滑轮把它与质量为m 的物体连接起来,求:物体M 和物体m 的运动加速度各是多大? 细绳的拉力是多大? 练习: 5、若装置变为如图所示。则物体M 和物体m 的运动加速度各是多大? 细绳的拉力是多大? 例4、如图所示,质量为M 的木板可沿倾角为θ的光滑斜面下滑,木板上站着一个质量为m 的人,问(1)为了保持木板与斜面相对静止,计算人运动的加速度? (2)为了保持人与斜面相对静止,木板运动的加速度是多少? 练习: 6、如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定一个质量为m 的小球。小球上下振动时,框架始终没有跳起,当框架对地面压力为零瞬间,小球的加速度大小为( ) A.g B. g m m M - C.0 D.g m m M + 7、如图所示为杂技“顶竿”表演,一人站在地上,肩上扛一质量为M 的竖直竹竿,当竿上一质量为m 的人以加速度a 加速下滑时,竿对“底人”的压力大小为 A.(M+m )g B.(M+m )g -ma C.(M+m )g+ma D.(M -m )g

连接体问题 专题训练

连接体问题 1. 连接体:两个或两个以上相互联系的物体组成连接体。 2. 整体法:当两个或两个以上有相互联系的物体相对同一参考系具有相同加速度时,可选整体为研究对象。 3. 隔离法:把题目中每一物体隔离出来分别进行受力分析、列方程 4. 选取研究对象的原则有两点: (1)受力情况简单,与已知量、未知量关系密切。 (2)先整体后隔离。 构成连接体的各部分之间的重要的联系纽带之一就是加速度,当两个或两个以上的物体相对同一参考系具有相同加速度时,有些题目也可采用整体与隔离相结合的方法,一般步骤用整体法或隔离法求出加速度,然后用隔离法或整体法求出未知力。 【典型例题】 例1. 光滑水平面上A、B两物体m A =2kg、m B =3kg,在水平外力F=20N作用下向右加速运 动。求 (1)A、B两物体的加速度多大? (2)A对B的作用力多大? 解:设两物体加速度大小为a,A对B作用力为F 1 ,由牛顿第三定律得B对A的作用力 F 2=F 1 。 对A受力如图 由牛顿第二定律F 合A =m A a 得: F-F 2 =m A a 20-F 2 =2a ① 对B受力如图 由牛顿第二定律F 合B =m B a 得: F 1 =m B a F 1 =3a ② 由①、②联立得:a=4m/s2 F 1 =12N F=20N 而F 1 =12N ,所以不能说力F通过物体A传递给物体B。分析:(1) (2)①+②得 F=(m A +m B )a 即:因为A、B具有相同加速度,所以可把A、B看作一个整体应用牛顿第二定律

思考:本题应怎样解更简单? 对AB 整体受力如图 竖直方向平衡,故F N =(m A +m B )g 由牛顿第二定律F 合=(m A +m B )a 得: a=2 204/32A B F m s m m ==++ 对B 受力如图 由牛顿第二定律F 合B =m B a 得:F 1= m B a=3?4=12N 例2. 如图所示,质量为m 的物块放在倾角为θ的斜面上,斜面体的质量为M ,斜面与物块无摩擦,地面光滑,现对斜面施一个水平推力F ,要使物块相对斜面静止,力F 应多大 ? 解析:两物体无相对滑动,说明两物体加速度相同,方向水平。对于物块m ,受两个力作用,其合力水平向左。先选取物块m 为研究对象,求出它的加速度,它的加速度就是整体加速度,再根据F =(M+m )a 求出推力F ,步骤如下: 先选择物块为研究对象,受两个力,重力mg 、支持力F N ,且两力合力方向水平,如图 所示,由图可得: tan mg ma θ=,tan a g θ=? 再选整体为研究对象,根据牛顿第二定律()()tan F M m a M m g θ=+=+。 答案:()tan M m g θ+

连接体问题的解题思路

连接体问题的求解思路 【例题精选】 【例1】在光滑的水平面上放置着紧靠在一起的两个物体A和B(如图),它们的质量分别为m A、m B。当用水平恒力F推物体A时,问:⑴A、B两物体的加速度多大?⑵A物体对B物体的作用力多大? 分析:两个物体在推力的作用下在水平面上一定做匀加速直线运动。对整体来说符合牛顿第二定律;对于两个孤立的物体分别用牛顿第二定律也是正确的。因此,这一道连接体的问题可以有解。 解:设物体运动的加速度为a,两物体间的作用力为T,把A、B两个物体隔离出来画在右侧。因为物体组只在水平面上运动在竖直方向上是平衡的,所以分析每个物体受力时可以只讨论水平方向的受力。A物体受水平向右的推力F和水平向左的作用力T,B物体只受一个水平向右的作用力T。对两个物体分别列牛顿第二定律的方程:对m A满足 F-T= m A a ⑴ 对m B满足 T = m B a ⑵ ⑴+⑵得 F =(m A+m B)a ⑶ 经解得: a = F/(m A+m B)⑷ 将⑷式代入⑵式可得 T= Fm B/(m A+m B) 小结:①解题时首先明确研究对象是其中的一个物体还是两个物体组成的物体组。如果本题只求运动的加速度,因为这时A、B两物体间的作用力是物体组的力和加速度无关,那么我们就可以物体组为研究对象直接列出⑶式动力学方程求解。若要求两物体间的作用力就要用隔离法列两个物体的动力学方程了。 ②对每个物体列动力学方程,通过解联立方程来求解是解决连接体问题最规的解法,也是最保险的方法,同学们必须掌握。 【例2】如图所示,5个质量相同的木块并排放在光滑的水平桌面上,当用水平向右推力F推木块1,使它们共同向右加速运动时,求第2与第3块木块之间弹力及第4与第 5块木块之间的弹力。

连接体问题专题用

精心整理 牛顿运动定律的应用----连接体问题专题 一、连接体概述 两个或两个以上物体相互连接参与运动的系统称为连接体。如几个物体叠放在一起,或并排挤放在一起,或用绳子、细杆等连在一起。如下图所示:连接体一般具有相同的运动情况(速度、加速度)。 二、连接体的分类 根据两物体之间相互连接的媒介不同,常见的连接体可以分为三大类。 1.接触连接:两个物体通过接触面的弹力或摩擦力的作用连接在一起。 2.轻绳(杆)连接:两个物体通过轻绳或轻杆的作用连接在一起; 3.轻弹簧连接:两个物体通过弹簧的作用连接在一起; 三、连接体的运动特点 轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度大小总是相等。 轻杆——轻杆平动时,连接体具有相同的平动速度 轻弹簧——在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大时,两端连接体的速率相等。 四、处理连接体问题的基本方法 1.内力和外力:(1)系统:相互作用的物体称为系统。系统由两 个或两个以上的物体组成。 (2)系统内部物体间的相互作用力叫内力,系统外部物体对系统 内物体的作用力叫外力。 2.整体法:是将两个或两个以上物体组成的整个系统或整个过程作为研究对象进行分析的方法。 3.隔离程中隔离出 五、整 实际上则需要交替而定。 1.求内 2.求外 3.当系将绳等效在【典例1】m施加一个大小为多大(2)两物(3)若两大? (2)在 (3)试

受到的拉力? 练习2、如图所示,质量为m1和m2的两个物块(m1>m2)用一根不可伸长的轻绳跨过一个光滑的小定滑轮相连,开始时用手托住m1,系统处于静止 状态,求放手后二者的加速度大小和绳子上的拉力大小。(不计空 气阻力) 【典例3】如图所示,两个质量分别为m1=3kg、m2=2kg的物体置于 光滑的水平面上,中间用轻质弹簧测力计连接。两个大小分别为F1=30N、F2=20N的水平拉力分别作用在m1、m2上,则( ) A.弹簧测力计的示数是50N B.弹簧测力计的示数是24N C.突然撤去F2的瞬间,m2的加速度大小为4m/s2 D.突然撤去F2的瞬间,m1的加 速度大小为10m/s2 课后练习 1.(多选)如图所示,水平地面上有两块完全相同的木块A、B,水平推力F作 用在木块A上,用F AB表示木块A、B间的相互作用力,下 列说法可能正确的是( ) A.若地面是完全光滑的,则F AB=F B.若地面是完全光滑的,则F AB=F/2 C.若地面是有摩擦的,且木块A、B未被推动,可能F AB=F /3 D.若地面是有摩擦的,且木块A、B被推动,则F AB=F/2 2.(多选)如图所示,在光滑地面上,水平外力F拉动小车和木块一起做无相对滑 动的加速运动,小车质量是M ,木块质量是m,力大小是F, 加速度大小是a,木块和小车之间动摩擦因数是μ,则在 这个过程中,木块受到的摩擦力大小是() A.μmg B. C.μ(M+m)g D.ma 3.如图所示 运动。 Q的质 4.(多选)如 水平面 B间作 动时, A.在 C.在 A.与斜面倾 C.与系统运 6.如图所示间用一轻弹述正确的是 D.若在只撤 7.如图所示

连接体问题专题详细讲解

题问连接体一、连接体与隔离体两个或两个以上物体相连接组成的物体系统,称为连接体。如果把其中某个物体隔离出来,该物体即为隔离体。如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的外二、外力和内力力,而系统内各物体间的相互作用力为内力。应用牛顿第二定律列方程不考虑内力。如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的外力。三、连接体问题的分析方法求加速度时可以把连接体作为一个整体。运用连接体中的各物体如果加速度相同,1.整体法牛顿第二定律列方程求解。必须隔离其中一个物体,对该物体应用牛顿第二.隔离法如果要求连接体间的相互作用力,2 定律求解,此法称为隔离法。.整体法与隔离法是相对统一,相辅相成的。本来单用隔离法就可以解决的连接体问题,但3如果这两种方法交叉使用,则处理问题就更加方便。如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用整体法法求出加速度,再用隔离法法求物体受力。简单 连接体问题的分析方法 1.连接体:两个(或两个以上)有相互作用的物体组成的具有相同 大小加速度的整体。 2.“整体法”:把整个系统作为一个研究对象来分析(即当做一个质点来考虑)。注意:此方法适用于系统中各部分物体的加速度大小方向相同情况。3.“隔离法”:把系 统中各个部分(或某一部分)隔离作为一个单独的研究对象来分析。注意:此方法对于系统中 各部分物体的加速度大小、方向相同或不相同情况均适用。4.“整体法”和“隔离法”的选择; 如果还要求物体之间的作用整体法”求各部分加速度相同的连结体的加速度或合外力时,优选考 虑“,且一定是从要求作用力的那个作用面将物体进行隔离;如果连结体中各部分加速度不隔离法”力,再用“”。同,一般都是选用“隔离法进行受隔离法”整体法”或“5.若题中给出的物体运动状态(或过程)有多个,应对不同状态(或过程)用“力分析,再列方程求解。针 对训练沿斜面下滑,试分析在下列条件下,杆受到的力是拉力还是压力。1.如图用轻质杆 连接的物体AB )斜面光滑;(1 )斜面粗糙。(2 ,若斜B间的杆不存在,此时同时释放A、解决这个问题的最好方法是假设法。即假定〖解析〗A、B间的距离始终不变,此时若将杆再搭上,A、Bg运动的加速度均为a=sinθ,则以后的运 动中面光滑,A、B,cosθsin=gθ-μg显然杆既不受拉力,也不受压力。若斜面粗糙,A、B单 独运动时的加速度都可表示为:a,<,则aaμ,则有=μa=a,杆仍然不受力,若>μμa显然,若、b两物体与斜面间的动摩擦因数BBABAAAB杆便受到拉力。><μ,则aaμA、B间的距离会 缩短,搭上杆后,杆会受到压力,若BBAA〖答案〗)斜面光滑杆既不受拉力,也不受压力(1 μ杆不受拉力,受压力>(2)斜面粗糙μBA杆受拉力,不受压力μ<斜面粗糙μBA类型二、“假设法”分析物体受力 的斜面下滑,如图所示,若不存在摩擦,【例题2】在一正方形的小盒内装一圆球,盒与球一起 沿倾角为θ不为角增大时,下滑过程中圆球对方盒前壁压力T及对方盒底面的压力T?(提示: 令N将如何变化当θ)零,用整体法和隔离法分析)( T为零;B.N变小,A.N变小,T变大; 变大。.N不变,TC.N变小,T变小;D物体间有没有相互作用,可以假设不存在,看 其加速度的大小。〖点拨〗”一样快sinθ,即“〖解析〗假设球与盒子分开各自下滑,则各自的 加速度均为a=g=0 T∴θN=mgcos对球在垂直于斜面方向上:θ∴N增大而减小。随B

专题:连接体的力学问题(学生版)

专题:连接体力学问题 一、学习目标 1.知道什么是连接体与隔离体。 2.知道什么是内力和外力。 3.学会连接体问题的分析方法,并用来解决简单问题。 二、知识点归纳 1、连接体与隔离体 两个或两个以上物体相连接组成的物体系统,称为 。如果把其中某个物体隔离出来,该物体即为 。 2、外力和内力 如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的 力,而系统内各物体间的相互作用力为 。 应用牛顿第二定律列方程不考虑 力。如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的 力。 3、连接体问题的分析方法 1>.整体法:连接体中的各物体如果 ,求加速度时可以把连接体作为一个整体。运用 列方程求解。 2>.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用 求解,此法称为隔离法。 3>.整体法与隔离法是相对统一,相辅相成的。本来单用隔离法就可以解决的连接体 问题,但如果这两种方法交叉使用,则处理问题就更加方便。如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用 法求出 ,再用 法求 。 三、典型例题 例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示, 对物体A 施以水平的推力F ,则物体A 对物体 B 的作用力等于( ) A. F m m m 211+ B.F m m m 2 12 + C.F D. F m 2 1 扩展:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。

2.如图所示,倾角为α的斜面上放两物体m 1和m 2,用与斜面 平行的力F 推m 1,使两物加速上滑,不管斜面是否光滑,两物体 之间的作用力总为 。 例2.如图所示,质量为M 的木板可沿倾角为θ的光滑斜面下滑, 木板上站着一个质量为m 的人,问(1)为了保持木板与斜面相 对静止,计算人运动的加速度?(2)为了保持人与斜面相对静止, 木板运动的加速度是多少? 【针对训练】 1.如图光滑水平面上物块A 和B 以轻弹簧相连接。在水平拉力F 作用下以加速度a 作直线运动,设A 和B 的质量分别为m A 和m B ,当突然撤去外力F 时,A 和B 的加速度分别为( ) A.0、0 B.a 、0 C. B A A m m a m +、B A A m m a m +- D.a 、a m m B A - 2.如图A 、B 、C 为三个完全相同的物体,当水平力F 作用 于B 上,三物体可一起匀速运动。撤去力F 后,三物体仍 可一起向前运动,设此时A 、B 间作用力为f 1,B 、C 间作 用力为f 2,则f 1和f 2的大小为( ) A.f 1=f 2=0 B.f 1=0,f 2=F C.f 1= 3F ,f 2=F 32 D.f 1=F ,f 2=0 3.如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间 的静摩擦因数μ=0.8,要使物体不致下滑,车厢至少应以多大的 加速度前进?(g =10m/s 2) 4.如图所示,箱子的质量M = 5.0kg ,与水平地面的动摩擦因 数μ=0.22。在箱子顶板处系一细线,悬挂一个质量m =1.0kg 的小球,箱子受到水平恒力F 的作用,使小球的悬线偏离竖直 方向θ=30°角,则F 应为多少?(g =10m/s 2)

连接体问题分析策略及解决方法

图2 连接体问题分析策略及解决方法 广东 张彪 所谓连接体就是具有相互作用的几个物体的组合。在每年的高考物理题中,都或多或少地涉及到有关连接体方面的考题,以考查受力分析、过程分析,特定状态分析为命题重点,将知识重点与思维方法统一起来,从中考查分析问题的能力和综合应变能力。 一、解决这类问题的一种基本方法——“隔离法”。还可根据题目中所创设的物理环境,选取整体为对象,运用物理规律求解,这样能简化解题过程,提高答题速度和准确性。 【例1】如图1所示,一根轻质弹簧上端固定,下端挂一个质量为m 0的平盘,盘中有一物体,质量为m ,当盘静止时,弹簧的长度比其自然长度伸长了l ,今向下拉盘,使弹簧再伸长?l 后停止,然后松手,设弹簧总处在弹性限度内,则刚松手时盘对物体的支持力等于: A .()1+?l l mg B .()()10++?l l m m g C .?lmg l D .?l m m g l ()+0 分析:根据题意由盘及物体组成的系统先后经过了三个状态:(1)盘中放物,弹簧被伸长,系统处于平衡态,此时有kl g m m =+)(0,(2)手对盘有向下拉力F ,弹簧被再伸长了?l ,系统仍平衡,即l k F l l k F g m m ?=?+=++,可得)()(0。(3)撤去拉力F 的瞬间,系统失去平衡,盘及物体有向上的加速度,此时系统受合力的大小与撤去的力F 相等,方向与F 相反。可用整体法求出此刻系统的加速度 ,用隔离法以物体为对象,求出盘对物体的支持力 。 答案:A [点评] ①解题时首先明确研究对象。如果题中只求物体组运动的加速度,则两物体间的作用力是物体组的内力,与加速度无关,就可以物体组为研究对象直接列出动力学方程求解加速度。若要求两物体间的作用力就要用隔离法列两个物体的动力学方程了。 ②也可以对每个物体列动力学方程,通过解联立方程来求解是解决连接体问题最规范的解法,也是最保险的方法,但是较麻烦一些。 二、在有些问题中,相互作用的两个物体的加速度不同,则只有应用隔离法解决。关键要正确地分别对物体受力分析,分别列方程,再结合两个物体运动的相关联系信息点(如位移关系、速度关系、时间关系、动量关系、能量关系等)联立解决。 【例2】 有一个质量M =4.0kg ,足够长的木板,在水平向 右F =8.0N 的外力作用下,以V 0=2.0m/S 的速度在地面上匀速运 图1

连接体问题专题用

牛顿运动定律的应用----连接体问题专题 一、连接体概述 两个或两个以上物体相互连接参与运动的系统称为连接体。如几个物体叠放在一起,或并排挤放在一起,或用绳子、细杆等连在一起。如下图所示: 连接体一般具有相同的运动情况(速度、加速度)。 二、连接体的分类 根据两物体之间相互连接的媒介不同,常见的连接体可以分为三大类。 1. 接触连接:两个物体通过接触面的弹力或摩擦力的作用连接在一起。 2. 轻绳(杆)连接:两个物体通过轻绳或轻杆的作用连接在一起; 3. 轻弹簧连接:两个物体通过弹簧的作用连接在一起; 三、连接体的运动特点 轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度大小总是相等。 轻杆——轻杆平动时,连接体具有相同的平动速度 轻弹簧——在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大时,两端连接体的速率相等。 四、处理连接体问题的基本方法 1. 内力和外力:(1)系统:相互作用的物体称为系统。系统由两个或两个以上的物体组成。 (2)系统内部物体间的相互作用力叫内力,系统外部物体对系统内物体的作用力叫外力。 2. 整体法:是将两个或两个以上物体组成的整个系统或整个过程作为研究对象进行分析的方法。 3. 隔离法:是将所研究的对象包括物体、状态和某些过程,从系统或全过程中隔离出来进行研究的方法。 五、整体法与隔离法的综合应用 实际上,不少问题既可用“整体法”也可用“隔离法”解,也有不少问题则需要交替应用“整体法”与“隔离法”。因此,方法的选用也应视具体问题而定。 1. 求内力:先整体求加速度,后隔离求内力。 2. 求外力:先隔离求加速度,后整体求外力。 3. 当系统内各物体由细绳通过滑轮连接,物体加速度大小相同时,也可以将绳等效在一条直线上,建立沿绳的自然坐标系,用整体法处理。 【典例1】如图所示,在光滑桌面上并排放着质量分别为m、M的两个物体,对m施加一个水平推力F,则它们一起向右做匀加速直线运动,则(1)其加速度大小为多大 (2)两物体间的弹力的大小为多大 (3)若两个物体与地面的动摩擦因数均为μ,则两物体间的弹力的大小为多大 练习1、若将上题中两个物体放到一倾角为a的光滑斜面上,沿斜面向上做匀 加速直线运动,则两物体间的弹力的大小为多大 【典例2】如图所示,物体A的质量是1 kg,放在光滑的水平桌面上,在下 列两种情况下,物体A的加速度各是多大(滑轮摩擦不计,绳子质量不计,g =10 m/s2)(1)用F=1 N的力拉绳子; (2)在绳端挂一个质量为0.1 kg的物体B. (3)试讨论:在什么情况下绳端悬挂的物体B的重力可近似等于物体A所受到的拉力 练习2、如图所示,质量为m1和m2的两个物块(m1>m2)用一根不可伸长的轻绳跨过一个光滑的小定滑轮相连,开始时用手托住m1,系统处于静止状态,求放手后二者的加速度大小和绳子上的拉力大小。(不计空气阻力) 【典例3】如图所示,两个质量分别为m1=3 kg、m2=2 kg的物体置于光滑的水平面上, 中间用轻质弹簧测力计连接。两个大小分别为F1=30 N、F2=20 N的水平拉力分别作用在 m1、m2上,则( ) A. 弹簧测力计的示数是50 N B. 弹簧测力计的示数是24 N C. 突然撤去F2的瞬间,m2的加速度大小为4 m/s2 D. 突然撤去F2的瞬间,m1的加速度大小为10 m/s2 课后练习 1. (多选)如图所示,水平地面上有两块完全相同的木块A、B,水平推力F作用在木块A上,用F AB表示 木块A、B间的相互作用力,下列说法可能正确的是( ) A. 若地面是完全光滑的,则F AB=F B. 若地面是完全光滑的,则F AB=F/2 C. 若地面是有摩擦的,且木块A、B未被推动,可能F AB=F/3 D. 若地面是有摩擦的,且木块A、B被推动,则F AB=F/2 2. (多选)如图所示,在光滑地面上,水平外力F拉动小车和木块一起做无相对滑动的加速运动,小车质量 是M,木块质量是m,力大小是F,加速度大小是a,木块和小车之间动摩擦因数是μ,则在这个过程中,木块受到的摩擦力大小是 () A.μmg B. C.μ(M+m)g D.ma 3. 如图所示,用力F推放在光滑水平面上的物体P、Q、R ,使其一起做匀加速运

高考物理连接体模型问题归纳

绳牵连物”连接体模型问题归纳 广西合浦廉州中学秦付平 两个物体通过轻绳或者滑轮这介质为媒介连接在一起,物理学中称为连接体,连结体问题是物体运动过程较复杂问题,连接体问题涉及多个物体,具有较强的综合性,是力学中能考查的重要内容。从连接体的运动特征来看,通过某种相互作用来实现连接的物体,如物体的叠合,连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。从能量的转换角度来说,有动能和势能的相互转化等等,下面本文结合例题归纳有关“绳牵连物”连接体模型的几种类型。 一、判断物体运动情况 例1如图1所示,在不计滑轮摩擦和绳质量的条件下,当小车匀速向右运动时,物体A的受力情况是() A.绳的拉力大于A的重力 B.绳的拉力等于A的重力 C.绳的拉力小于A的重力 D.拉力先大于A的重力,后小于重力

解析:把小车的速度为合速度进行分解,即根据运动效果向沿绳的方向和与绳垂直的方向进行正交分解,分别是v2、v1。如图1所示,题中物体A的运动方向与连结处绳子的方向相同,不必分解。A的速度等 于v2,,小车向右运动时,逐渐变小,可知逐渐变大,故A向上做加速运动,处于超重状态,绳子对A的拉力大于重力,故选项A正确。 点评:此类问题通常是通过定滑轮造成绳子两端的连接体运动方向不一致,导致主动运动物体和被动运动物体的加速、减速的不一致性。解答时必须运用两物体的速度在各自连接处绳子方向投影相同的规律。 二、求解连接体速度 例2质量为M和m的两个小球由一细线连接(),将M置于半径为R的光滑半球形容器上口边缘,从静止释放,如图2所示。求当M滑至容器底部时两球的速度。两球在运动过程中细线始终处于绷紧状态。 解析:设M滑至容器底部时速度为,m的速度为。根据运动效果,将沿绳的方向和垂直于 绳的方向分解,则有:,对M、m系统在M从容器上口边缘滑至碗底的过程,由机械能

相关主题