搜档网
当前位置:搜档网 › 51单片机与DS18B20测温的C程序——完整版

51单片机与DS18B20测温的C程序——完整版

51单片机与DS18B20测温的C程序——完整版
51单片机与DS18B20测温的C程序——完整版

/*-----------------------------------------------

名称:18B20温度传感器

日期:2012.8.25

修改:无

内容:18B20单线温度检测的应用样例程序,请将18b20插紧,

然后在数码管可以显示XX.XC,C表示摄氏度,如显示25.3C表示当前温度25.3度

------------------------------------------------*/

#include //包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义

#include

#include

#define uchar unsigned char

#define uint unsigned int

/******************************************************************/

/* 定义端口*/

/******************************************************************/

sbit seg1=P2^0;

sbit seg2=P2^1;

sbit seg3=P2^2;

sbit DQ=P1^3;//ds18b20 端口

sfr dataled=0x80;//显示数据端口

/******************************************************************/

/* 全局变量*/

/******************************************************************/

uint temp;

uchar flag_get,count,num,minute,second;

uchar code tab[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};

//7段数码管段码表共阳

uchar str[6];

/******************************************************************/

/* 函数声明*/

/******************************************************************/

void delay1(uchar MS);

unsigned int ReadTemperature(void);

void Init_DS18B20(void);

unsigned char ReadOneChar(void);

void WriteOneChar(unsigned char dat);

void delay(unsigned int i);

/******************************************************************/

/* 主函数*/

/******************************************************************/

main()

{

unsigned char TempH,TempL;

TMOD|=0x01;//定时器设置

TH0=0xef;

TL0=0xf0;

IE=0x82;

TR0=1;

P2=0x00;

count=0;

while(1)

{

str[5]=0x39; //显示C符号

str[1]=tab[TempH/100]; //十位温度

str[2]=tab[(TempH%100)/10]; //十位温度

str[3]=tab[(TempH%100)%10]|0x80; //个位温度,带小数点

str[4]=tab[TempL];

if(flag_get==1) //定时读取当前温度

{

temp=ReadTemperature();

if(temp&0x8000)

{

str[0]=0x40;//负号标志

temp=~temp; // 取反加1

temp +=1;

}

else

str[0]=0;

TempH=temp>>4;

TempL=temp&0x0F;

TempL=TempL*6/10;//小数近似处理

flag_get=0;

}

}

}

/******************************************************************/ /* 定时器中断*/ /******************************************************************/ void tim(void) interrupt 1 using 1//中断,用于数码管扫描和温度检测间隔

{

TH0=0xef;//定时器重装值

TL0=0xf0;

num++;

if (num==50)

{num=0;

flag_get=1;//标志位有效

second++;

if(second>=60)

{second=0;

minute++;

}

}

count++;

if(count==1)

{P2=0;

dataled=str[0];}//数码管扫描

if(count==2)

{P2=1;

dataled=str[1];}

if(count==3)

{ P2=2;

dataled=str[2];

}

if(count==4)

{ P2=3;

dataled=str[3];

}

if(count==5)

{ P2=4;

dataled=str[4];

}

if(count==6)

{ P2=5;

dataled=str[5];

count=0;}

}

/******************************************************************/ /* 延时函数*/ /******************************************************************/ void delay(unsigned int i)//延时函数

{

while(i--);

}

/******************************************************************/ /* 初始化*/ /******************************************************************/ void Init_DS18B20(void)

unsigned char x=0;

DQ = 1; //DQ复位

delay(8); //稍做延时

DQ = 0; //单片机将DQ拉低

delay(80); //精确延时大于480us

DQ = 1; //拉高总线

delay(10);

x=DQ; //稍做延时后如果x=0则初始化成功x=1则初始化失败

delay(5);

}

/******************************************************************/ /* 读一个字节*/ /******************************************************************/ unsigned char ReadOneChar(void)

{

unsigned char i=0;

unsigned char dat = 0;

for (i=8;i>0;i--)

{

DQ = 0; // 给脉冲信号

dat>>=1;

DQ = 1; // 给脉冲信号

if(DQ)

dat|=0x80;

delay(5);

}

return(dat);

}

/******************************************************************/ /* 写一个字节*/ /******************************************************************/ void WriteOneChar(unsigned char dat)

{

unsigned char i=0;

for (i=8; i>0; i--)

{

DQ = 0;

DQ = dat&0x01;

delay(5);

DQ = 1;

dat>>=1;

delay(5);

}

/******************************************************************/

/* 读取温度*/

/******************************************************************/ unsigned int ReadTemperature(void)

{

unsigned char a=0;

unsigned int b=0;

unsigned int t=0;

Init_DS18B20();

WriteOneChar(0xCC); // 跳过读序号列号的操作

WriteOneChar(0x44); // 启动温度转换

delay(200);

Init_DS18B20();

WriteOneChar(0xCC); //跳过读序号列号的操作

WriteOneChar(0xBE); //读取温度寄存器等(共可读9个寄存器)前两个就是温度a=ReadOneChar(); //低位

b=ReadOneChar(); //高位

b<<=8;

t=a+b;

return(t);

}

接口实验报告-基于51单片机的脉搏温度测试系统-

摘要 接口实验报告 题目:脉搏波体温自动采集系统院(系):电子工程与自动化学院 专业:仪器仪表工程 学生姓名: 学号: 指导老师:李智 职称:教授 20 年8月28日 I

摘要 本文介绍了一种基于51单片机的心率体温采集系统。首先介绍了51系列单片机的内部相关配置、工作原理以及编程方法,其次介绍了温度传感器PT100的相关测温方法以及通过红外光电传感器TCRT5000对射的方法来抓取人体脉搏信号。此次设计的电路部分主要包括:传感测量电路、放大电路、滤波整形电路、AD转换电路、控制电路、电源供电电路等。上位机为通过VC编程界面。通过上位机按键控制,将PT100及TCRT5000输入的微弱信号进行放大整形,最后AD采集转换传送给单片机,在上位机界面上显示相关体温及心率信息。 本次硬件设计基于比较稳定可行、低成本的设计思想,软件设计采用模块化的设计方法,并且详细分析了红外传感器TCRT5000应用于心率测量上以及PT100应用于温度测量上的原理及优点,阐述了其他各配合电路的组成与工作特点,并且通过仿真进行电路的可行性验证,最后完成实物电路的设计,使得本次课题的预期结果得以实现。 关键词:51单片机;传感器;仿真;AD转换

Abstract Abstract This paper introduced a heart rate and body temperature acquisition system that based on 51 single chip microcomputer. First the internal configurations of 51 single chip microcomputer are introduced. And the paper also tell how 51 single chip microcomputer works and how can we program on it. Then the method of using temperature sensor PT100 to get body temperature is introduced, and we use infrared photoelectric sensor TCRT5000 to get the pulse signal of human body.The design of the circuit mainly comprises sensing circuit, amplifying circuit, filtering and shaping circuit, AD converting circuit, counting and displaying circuit, controlling circuit, power supplying circuit and so on. When the keyboard is pressed, the system starts to get signal. The small signal from PT100 and TCRT5000 will be amplified and shaped. Then ad converter will change the analog signal into digital signal and send to 51 single chip microcomputer. At last LCD1602 will display the information of body temperature and heart rate. Keywords: Piezoelectric sensors;control circuit;counters;Multisim2001 simulation software control circuit. III

基于51单片机的DS18B20数字温度计的实训报告

电子信息职业技术学院 暨国家示性软件职业技术学院 单片机实训 题目:用MCS-51单片机和 18B20实现数字温度计 姓名: 系别:网络系 专业:计算机控制技术 班级:计控 指导教师: * 伟 时间安排:2013年1月7日至 2013年1月11日

摘要 随着国民经济的发展,人们需要对各中加热炉、热处理炉、反应炉和锅炉中温度进行监测和控制。采用单片机来对他们控制不仅具有控制方便,简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。 在日常生活及工业生产过程中,经常要用到温度的检测及控制,温度是生产过程和科学实验中普遍而且重要的物理参数之一。在生产过程中,为了高效地进行生产,必须对它的主要参数,如温度、压力、流量等进行有效的控制。温度控制在生产过程中占有相当大的比例。温度测量是温度控制的基础,技术已经比较成熟。传统的测温元件有热电偶和二电阻。而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,这些方法相对比较复杂,需要比较多的外部硬件支持。我们用一种相对比较简单的方式来测量。 我们采用美国DALLAS半导体公司继DS18B20之后推出的一种改进型智能温度传感器DS18B20作为检测元件,温度围为-55~125 oC,最高分辨率可达0.0625 oC。DS18B20可以直接读出北侧温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的特点。 本文介绍一种基于AT89C51单片机的一种温度测量及报警电路,该电路采用DS18B20作为温度监测元件,测量围0℃-~+100℃,使用LED模块显示,能设置温度报警上下限。正文着重给出了软硬件系统的各部分电路,介绍了集成温度传感器DS18B20的原理,AT89C51单片机功能和应用。该电路设计新颖、功能强大、结构简单。 关键词:单片机,数字控制,温度计, DS18B20,AT89S51

51单片机32位流水灯

51单片机32位流水灯 摘要:随着电子工业的发展,电子元器件急剧增加,C51单片机应用非常广泛。本文介绍了一种简易的单片机应用的设计思路及硬件结构。首先研究了51单片机流水灯的基本原理,画出整机框图,接着提出系统的性能指标,计算确定电路形式和元器件参数,然后根据原理图通过Simulink软件进行建模仿真,验证系统的可行性。 关键字:C51;LED;S imulink软件;Protel99SE; 1引言 1.1设计背景及意义 目前,随着电子工业的发展,电子元器件急剧增加,电子元器件的适用围也逐渐广泛起来,在我们的生活当中有许多地方要应用中到灯光,因此,设计全自动,可靠,安全,便捷的灯光效益具有极大的现实必要性。 2.系统概述 该系统主要有C51单片机,LED灯,晶振等。 2.1 设计目的 (1)掌握简易流水灯的工作原理,以及程序的编写等等。 (2)进一步熟悉和掌握常用数字电路元器件的应用; (3)学习数字电路仿真、调试、测试、故障查找和排除的方法、技巧; (4)培养实践技能,提高分析和解决实际问题的能力。 2.2设计容及要求 1、51单片机x1、40Pin 座x1 2、LED x32(建议用5mm 七彩的) 3、电阻470Ωx33 4、晶振12MHz x1 5、10uf 电解电容x1、谐振瓷片电容30pf x2 6·其他的可以看自己的爱好去加 7、其实也可以不用那么多的电阻,用几个排阻就OK了。

2.2电路原理图

2.2重要元器件介绍

(1)C51单片机 (2)12MHZ晶振分为两种封装形式: SMD3225产品详细参数: 频率围:12 ~ 54 MHz 频率公差(25℃)± 10ppm± 30 ppm, or specify 在工作温度围的频率稳定度:± 10ppm± 30 ppm, or specify 工作温度围:- 20 ~ +70 oC, or specify 并联电容(C0):7 pF Max. 驱动级:1~200μW(100μW typical) 负载电容:Series, 8 pF, 12 pF, 15 pF, 20pF, or specify 老化(25℃):± 3 ppm / year Max. 储存温度围:- 40 ~ + 85 oC SMD5032产品详细参数: 频率围:12 ~ 54 MHz 频率公差(25℃)± 10ppm± 30 ppm, or specify 在工作温度围的频率稳定度:± 10ppm± 30 ppm, or specify 工作温度围:- 20 ~ +70 oC, or specify 并联电容(C0):7 pF Max. 驱动级:1~200μW(100μW typical) 负载电容:Series, 8 pF, 12 pF, 15 pF, 20pF, or specify 老化(25℃):± 3 ppm / year Max. 储存温度围:- 40 ~ + 85 oC 3实物

C51单片机实行流水灯程序

#include #define LEDPort P1 unsigned char LED01_[9]= {0xFF,0xFE,0xFD,0xFB,0xF7,0xEF,0xDF,0xBF,0x7F,}; //方式0,方式1灯开关数组。unsigned char LED23_[5]= {0xFF,0x7E,0xBD,0xDB,0xE7}; // 方式2,方式3灯开关数组。 unsigned char LED4_[16]={0XFF,0X7F,0X3F,0X1F,0X0F,0X07,0X03,0X01,0X00,0X01,0X03,0X07,0X0f,0X1 f,0X3f,0X7f}; //方式4 unsigned char LED56_[8]={0XFF,0X3F,0X9F,0XCF,0XE7,0XF3,0XF9,0XFC}; unsigned char LED7_[]={0X0F,0XF0,0X33,0XCC,0X3C,0XC3,0XFF}; unsigned char TAB[9]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80};//定义断码表。 unsigned char i=0,j=9; //数据选择计数。 unsigned char Mode=0; //模式选择,默认为模式0。 unsigned char Count=1; //定时器中断计数。 unsigned char Delay=1; //延迟计数,通过改变改数值改变灯状态延迟时间。 //灯延迟时间=uc_Dalay*定时器溢出时间。 void main() { P2=0X3F; TMOD=0x01; //定时器0模式一。 TH0=0x3C; TL0=0xB0; //溢出时间:50ms。 TR0=1; //定时器0开启。 IT0=1; //外部中断0下降沿触发。 IT1=1; //外部中断1下降沿触发。

51单片机测温程序

#include #include #define uint unsigned int #define uchar unsigned char uinti,numone,numtwo,temp; ucharqian,bai,shi,ge,xiaoshu; sbitdq=P2^2; sbitdula=P2^6; sbitwela=P2^7; uchar code list[]={ 0x3f , 0x06 , 0x5b , 0x4f , 0x66 , 0x6d ,0x7d , 0x07 , 0x7f , 0x6f , 0x77 , 0x7c , 0x39 , 0x5e , 0x79 , 0x71,0x80 }; unsigned char code listone[] = {0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef}; void delay(uint z) { uintx,y; for(x=100;x>0;x--) for(y=z;y>0;y--); } voiddelayone(unsigned char i)

{ while(--i); } /****************************************** 此延时函数针对的是12Mhz的晶振 delay(0):延时518us 误差:518-2*256=6 delay(1):延时7us (原帖写"5us"是错的)delay(10):延时25us 误差:25-20=5 delay(20):延时45us 误差:45-40=5 delay(100):延时205us 误差:205-200=5 delay(200):延时405us 误差:405-400=5*/ voidshuma(uchar temp) { shi=temp/100; ge=temp%100/10; xiaoshu=temp%10; dula=1; P0=list[shi]; dula=0; P0=0xff; wela=1; P0=0xfe;

基于51单片机及DS18B20温度传感器的数字温度计程序(详细注释)

基于51单片机及DS18B20温度传感器的数字温度计程序(详细注释)

电路实物图如下图所示: C 语言程序如下所示: /******************************************************************** zicreate ----------------------------- Copyright (C) https://www.sodocs.net/doc/da14697947.html, -------------------------- * 程序名; 基于DS18B20的测温系统 * 功 能: 实时测量温度,超过上下限报警,报警温度可手动调整。K1是用来 * 进入上下限调节模式的,当按一下K1进入上限调节模式,再按一下进入下限 * 调节模式。在正常模式下,按一下K2进入查看上限温度模式,显示1s 左右自动 * 退出;按一下K3进入查看下限温度模式,显示1s 左右自动退出;按一下K4消除 * 按键音,再按一下启动按键音。在调节上下限温度模式下,K2是实现加1功能, * K1是实现减1功能,K3是用来设定上下限温度正负的。 * 编程者:Jason * 编程时间:2009/10/2 *********************************************************************/ #include //将AT89X52.h 头文件包含到主程序 #include //将intrins.h 头文件包含到主程序(调用其中的_nop_()空操作函数延时) #define uint unsigned int //变量类型宏定义,用uint 表示无符号整形(16位) #define uchar unsigned char //变量类型宏定义,用uchar 表示无符号字符型(8位) uchar max=0x00,min=0x00; //max 是上限报警温度,min 是下限报警温度 bit s=0; //s 是调整上下限温度时温度闪烁的标志位,s=0不显示200ms ,s=1显示1s 左右 bit s1=0; //s1标志位用于上下限查看时的显示 void display1(uint z); //声明display1()函数 #include"ds18b20.h" //将ds18b20.h 头文件包含到主程序 #include"keyscan.h" //将keyscan.h 头文件包含到主程序 #include"display.h" //将display.h 头文件包含到主程序

基于AT89C51单片机的测温系统

引言 本文主要介绍了一个基于AT89C51单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感器DS18B20的数据采集过程,并介绍了利用C语言编程对DS18B20的访问,该系统可以方便的实现实现温度采集和显示,使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点。DS18B20与AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量。数字温度计与传统的温度计相比,具有读数方便、测温范围广、测温精确、功能多样话等优点。其主要用于对测温要求准确度比较高的场所,或科研实验室使用,该设计使用STC89C52单片机作控制器,数字温度传感器DS18B20测量温度,单片机接受传感器输出,经处理用LED数码管实现温度值显示。 .

一、设计要求 通过基于MCS-51系列单片机AT89C51和DS18B20温度传感器检测温度,熟悉芯片的使用,温度传感器的功能,数码显示管的使用,C语言的设计;并且把我们这一年所学的数字和模拟电子技术、检测技术、单片机应用等知识,通过理论联系实际,从题目分析、电路设计调试、程序编制调试到传感器的选定等这一完整的实验过程,培养了学生正确的设计思想,使学生充分发挥主观能动性,去独立解决实际问题,以达到提升学生的综合能力、动手能力、文献资料查阅能力的作用,为毕业设计和以后工作打下一个良好的基础。 以MCS-51系列单片机为核心器件,组成一个数字温度计,采用数字温度传感器DS18B20为检测器件,进行单点温度检测,检测精度为0.5摄氏度。温度显示采用3位LED数码管显示,两位整数,一位小数。具有键盘输入上下限功能,超过上下限温度时,进行声音报警。 二、基本原理 原理简述:数字温度传感器DS1820把温度信息转换为数字格式;通过“1-线协议”,单片机获取指定传感器的数字温度信息,并显示到显示设备上。通过键盘,单片机可根据程序指令实现更灵活的功能,如单点检测、轮转检测、越数字温度传感器的温度检测及显示的系统原理图如图DS1820限检测等。基于 图 2.1 基于DS1820的温度检测系统框图 三:主要器件介绍(时序图及各命令序列,温度如何计算等) 系统总体设计框图 由于DS18B20数字温度传感器具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠,所以在该设计中采用DS18B20数字温度传感器测量温度。 测温电路设计总体设计框图如图所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,显示采用4位LED数码管,报警采用蜂鸣器、LED灯实现,键盘用来设定报警上下限温度。 .. . 测温电路设计总体设计框图图3.11.控制模块 AT89S52单片机是美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含有8kb的可系统编程的Flash只读程序存储器,器件采用ATMEL公

(完整版)51单片机流水灯程序

1.第一个发光管以间隔200ms 闪烁。 2. 8 个发光管由上至下间隔1s 流动,其中每个管亮500ms, 灭500ms 。 3. 8 个发光管来回流动,第个管亮100ms 。 4. 用8 个发光管演示出8 位二进制数累加过程。 5. 8 个发光管间隔200ms 由上至下,再由下至上,再重复一次,然后全部熄灭再以300ms 间隔全部闪烁 5 次。重复此过程。 6. 间隔300ms 第一次一个管亮流动一次,第二次两个管亮流动,依次到8 个管亮,然后重复整个过程。 7. 间隔300ms 先奇数亮再偶数亮,循环三次;一个灯上下循环三次;两个分别从两边往中间流动三次;再从中间往两边流动三次;8 个全部闪烁 3 次;关闭发光管,程序停止。 1 #include #define uint unsigned int sbit led 仁P"0; void delay(); void main() { while(1) { led1=0; delay(); led1=1; delay(); } } void delay() {

uint x,y; for(x=200;x>0;x--) for(y=100;y>0;y--); } #include #include #define uint unsigned int #define uchar unsigned char sbit p P1A0; uchar a; void delay(); void main() { a=0xfe; P1=a; while(1) { a=_crol_(a,1); delay(); P1=a; delay(); } } void delay() { uint b; for(b=55000;b>0;b--); } 3 #include #include #define uint unsigned int #define uchar unsigned char void delay() { uint x,y; for(x=100;x>0;x--) for(y=110;y>0;y--); } void main() { uchar a,i; while(1) a=0xfe; for(i=0;i<8;i++) { P1=a; delay(100); a=_crol_(a,1); } a=0x7f; for(i=0;i<8;i++) { P1=a; delay(100); a=_cror_(a,1);

基于51单片机的温度警报器的设计

西安文理学院物理与机械电子工程学院课程设计任务书

目录 摘要 (3) 1 引言 (3) 1.1课题背景 (3) 1.2研究内容和意义 (5) 2 芯片介绍 (5) 2.1 DS18B20概述 (5) 2.1.1 DS18B20封装形式及引脚功能 (6) 2.1.2 DS18B20内部结构 (6) 2.1.3 DS18B20供电方式 (9) 2.1.4 DS18B20的测温原理 (10) 2.1.5 DS18B20的ROM命令 (11) 2.2 AT89C52概述 (13) 2.2.1单片机AT89C52介绍 (13) 2.2.2功能特性概述 (13) 3 系统硬件设计 (13) 3.1 单片机最小系统的设计 (13) 3.2 温度采集电路的设计 (14) 3.3 LED显示报警电路的设计 (15) 4 系统软件设计...................................................15 4.1 流程图........................................................15 4.2 温度报警器程序.................................................16 4.3 总电路图..................................................... 19 5总结 (20)

摘要 随着时代的进步和发展,温度的测试已经影响到我们的生活、工作、科研、各个领域,已经成为了一种非常重要的事情,因此设计一个温度测试的系统势在必行。 本文主要介绍了一个基于AT89C52单片机的数字温度报警器系统。详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行了介绍,该系统可以方便的实现温度的采集和报警,并可以根据需要任意上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当做温度处理模块潜入其他系统中,作为其他主系统的辅助扩展。DS18B20与AT89C52结合实现最简温度报警系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 关键词:单片机;温度检测;AT89C52;DS18B20; 1 引言 1.1课题背景 温度是工业对象中主要的被控参数之一,如冶金、机械、食品、化工各类工业生产中,广泛使用的各种加热炉、热处理炉、反应炉等,对工件的温度处理要求严格控制。随着科学技术的发展,要求温度测量的范围向深度和广度发展,以满足工业生产和科学技术的要求。 基于AT89C51单片机提高了系统的可移植性、扩展性,利于现代测控、自动化、电气技术等专业实训要求。以单片机为核心设计的温度报警器,具有安全可靠、操作简单方便、智能控制等优点。 温度对于工业生产如此重要,由此推进了温度传感器的发展。温度传感器主要经过了三个发展阶段[1]: (1)模拟集成温度传感器。该传感器是采用硅半导体集成工艺制成,因此亦称硅传感器或单片集成温度传感器。此种传感器具有功能单一(仅测量温度)、

基于单片机的数字温度计设计开题报告

****大学综合性设计实验 开题报告 ?实验题目:数字温度计的设计 ?学生专业10电气工程与自动化 ?同组人:———————— ?指导老师: 2013年4月

1.国内外现状及研究意义 随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段: ①传统的分立式温度传感器 ②模拟集成温度传感器 ③智能集成温度传感器。 目前的智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对传感器的要求也越来越高,现在的温度传感器正在基于单片机的基础上从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展,并朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展,本文将介绍智能集成温度传感器DS18B20的结构特征及控制方法,并对以此传感器,AT89S51单片机为控制器构成的数字温度测量装置的工作原理及程序设计作了详细的介绍。与传统的温度计相比,其具有读数方便,测温范围广,测温准确,输出温度采用数字显示,主要用于对测温要求比较准确的场所,或科研实验室使用。该设计控制器使用ATMEL公司的AT89S51单片机,测温传感器使用DALLAS公司DS18B20,用液晶来实现温度显示。 2.方案设计及内容 (一)、方案一 采用热电偶温差电路测温,温度检测部分可以使用低温热偶,热电偶由两个焊接在一起的异金属导线所组成,热电偶产生的热电势由两种金属的接触电势和单一导体的温差电势组成。通过将参考结点保持在已知温度并测量该电压,便可推断出检测结点的温度。数据采集部分则使用带有A/D 通道的单片机,在将随被测温度变化的电压或电流采集过来,进行A/D 转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。热电偶的优点是工作温度范围非常宽,且体积小,

(完整word版)51单片机流水灯

51单片机的流水灯控制 班级:100712 姓名:全建冲 学号:10071047

一、设计要求 用51单片机设计一个流水灯的控制方案,要求采用定时器定时,利用中断法控制流水灯的亮灭,画出电路图和程序流程图,写出程序代码以及代码注释。 二、电路原理图 原理图分析: 本原理图采用STC89S52单片机控制8个LED灯,其中8个LED灯的负极接单片机的P1端口,正极通过1KΩ排阻连接到电源上。原理图中还给出了晶振与复位端,以保证控制器的稳定工作。

三、程序流程图

四、程序代码及注解 1.非中断定时器控制 #include #include//包含了_crol_函数的头文件 #define uchar unsigned char #define uint unsigned int uint i=0; uchar a=0xfe; void main() { TMOD=0x01;//设置工作方式为定时器0,16位手动重装初值 TH0=(65536-46080)/256;//50毫秒定时赋初值 TL0=(65536-46080)%256; TR0=1;//启动定时器0 while(1) { If(TF==1)//读溢出标志位 { TH0=(65536-46080)/256;//重新赋初值 TL0=(65536-46080)%256;

i++; if(i==10)//500毫秒定时 { i=0; P1=a;//P1端口赋值 a=_crol_(a,1);//循环左移 } TF=0;//清除定时器溢出标志 } } } 程序分析:本程序采用非中断定时器法控制流水灯,核心语句在于读取标志位TF位,TF为定时器溢出标志位,溢出时硬件自动置一,所以循环读取标志位以判断定时器是否溢出,而每次溢出需要手动清零,否则定时器无法再次溢出,利用标志i读取10次即可达到500毫秒的定时。另外需要注意的是单片机晶振为11.0592MHz,所以计时一个数的时间为12/11.0592=1.085us,故定时50毫秒的计数为50000/1.085=46080。 2.中断定时器控制 #include

基于AT89C51单片机的温度传感器

基于AT89C51单片机的温度传感器 目录 摘要.............................................................. I ABSTRACT........................................................... I I 第一章绪论 (1) 1.1 课题背景 (1) 1.2本课题研究意义 (2) 1.3本课题的任务 (2) 1.4系统整体目标 (2) 第二章方案论证比较与选择 (3) 2.1引言 (3) 2.2方案设计 (3) 2.2.1 设计方案一 (3) 2.2.2 设计方案二 (3) 2.2.3 设计方案三 (3) 2.3方案的比较与选择 (4) 2.4方案的阐述与论证 (4) 第三章硬件设计 (6) 3.1 温度传感器 (6) 3.1.1 温度传感器选用细则 (6) 3.1.2 温度传感器DS18B20 (7) 3.2.单片机系统设计 (13)

3.3显示电路设计.................................错误!未定义书签。 3.4键盘电路设计................................错误!未定义书签。 3.5报警电路设计.................................错误!未定义书签。 3.6通信模块设计.................................错误!未定义书签。 3.6.1 RS-232接口简介..............................错误!未定义书签。 3.6.2 MAX232芯片简介.............................错误!未定义书签。 3.6.3 PC机与单片机的串行通信接口电路.............错误!未定义书签。 第四章软件设计..................................错误!未定义书签。 4.1 软件开发工具的选择..........................错误!未定义书签。 4.2系统软件设计的一般原则.......................错误!未定义书签。 4..3系统软件设计的一般步骤......................错误!未定义书签。 4.4软件实现....................................错误!未定义书签。 4.4.1系统主程序流程图.........................错误!未定义书签。 4.4.2 传感器程序设计...........................错误!未定义书签。 4.4.3 显示程序设计.............................错误!未定义书签。 4.4.4 键盘程序设计.............................错误!未定义书签。 4.4.5 报警程序设计.............................错误!未定义书签。 4.4.6 通信模块程序设计.........................错误!未定义书签。 第五章调试与小结..................................错误!未定义书签。致谢...............................................错误!未定义书签。参考文献...........................................错误!未定义书签。附录...............................................错误!未定义书签。系统电路图.......................................错误!未定义书签。系统程序.........................................错误!未定义书签。

基于51单片机的数字温度计设计

基于51单片机的数字温度计设计 一.课题选择 随着时代的发展,控制智能化,仪器小型化,功耗微量化得到广泛关注。单片机控制系统无疑在这方面起到了举足轻重的作用。单片机的应用系统设计业已成为新的技术热点,其中数字温度计就是一个典型的例子,它可广泛应用与生产生活的各个方面,具有巨大的市场前景。 二.设计目的 1.理解掌握51单片机的功能和实际应用。 2.掌握仿真开发软件的使用。 3.掌握数字式温度计电路的设计、组装与调试方法。 三.实验要求 1.以51系列单片机为核心器件,组成一个数字式温度计。 2.采用数字式温度传感器为检测器件,进行单点温度检测。 3.温度显示采用4位LED数码管显示,三位整数,一位小数。 四.设计思路 1.根据设计要求,选择STC89C51RC单片机为核心器件。 2.温度检测采用DS18B20数字式温度传感器。与单片机的接口为P 3.6引脚。 3.采用usb数据线连接充电宝供电,接电后由按钮开关控制电路供电。 硬件电路设计总体框图为图1: 五.系统的硬件构成及功能 1.主控制器 单片机STC89C51RC具有低电压供电和体积小等特点,有40个引脚,其仿真图像如下图所示:

2.显示电路 显示电路采用4位共阳LED数码管,从P3口RXD,TXD串口输出段码。LED数码管在仿真软件中如下图所示: 3.温度传感器 DS18B20是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。DS18B20的性能特点如下: 1.独特的单线接口仅需一个端口引脚进行通讯。 2.简单的多点分布应用。 3.无需外部器件。 4.可通过数据线供电。 5.零待机功耗。 6.测温范围-55~+125摄氏度。 其电路图如下图所示:

基于51单片机的温度测量系统

基于51单片机的温度测量系统 原作者:飓风添加时间:2008-04-03 原文发表:2008-04-03 人气:128 来源:赵 娜赵刚于珍珠郭守清 本文章共3366字,分3页,当前第1 摘要: 单片机在检测和控制系统中得到广泛应用, 温度则是系统常需要测量、控制和保持一个量。本文从硬件和软件两方面介绍了AT89C2051单片机 温度控制系统设计,对硬件原理图和程序框图作了简洁描述。 关键词: 单片机AT89C2051;温度传感器DS18B20;温度;测量 引言 单片机在电子产品中应用已经越来越广泛,并且在很多电子产品中也将其用 到温度检测和温度控制。为此在本文中作者设计了基于atmel公司AT89C2051 温度测量系统。这是一种低成本利用单片机多余I/O口实现温度检测电路, 该电路非常简单, 易于实现, 并且适用于几乎所有类型单片机。 一.系统硬件设计 系统硬件结构如图1所示。 https://www.sodocs.net/doc/da14697947.html,提示请看下图: 1.1 数据采集 数据采集电路如图2所示, 由温度传感器DS18B20采集被控对象实时温度, 提供给AT89C2051P3.2口作为数据输入。在本次设计中我们所控对象为所处 室温。当然作为改进我们可以把传感器与电路板分离,由数据线相连进行通讯,便于测量多种对象。 DS18B20是DALLAS公司生产一线式数字温度传感器,具有3引脚TO-92小 体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D 转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展16位数字量方 式串行输出,支持3V~5.5V电压范围,使系统设计更灵活、方便;其工作电

单片机课程设计—数字温度计

第1章概述 1.1 数字温度计简介 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 此次课程设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机AT89S51,测温传感器使用DS18B20,用3位共阳极LED数码管以串口传送数据,实现温度显示,能准确达到以上要求。 1.2 设计内容及要求 本次单片机课程设计将以51系列单片机为核心,以开发板为平台;设计一个数字式温度计,要求使用温度传感器(可以采用DS18B20或采用AD590)测量温度,再经单片机处理后,由LED数码管显示测量的温度值。测温范围为0~100℃,精度误差在0.5℃以内。

第2章系统总体方案设计 2.1数字温度计设计的方案 在做数字温度计的单片机电路中,对信号的采集电路大多都是使用传感器,这是非常容易实现的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。采集之后,通过使用51系列的单片机,可以对数据进行相应的处理,再由LED显示电路对其数据进行显示。 2.2系统设计框图 温度计电路设计总体设计方框图如图 2.1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用6位LED数码管以串口传送数据实现温度显示。此外,还添加了报警系统,对温度实施监控。 图2.1 数字温度计框图

最经典的51单片机经典流水灯汇编程序

单片机流水灯汇编程序设计 开发板上的8只LED为共阳极连接,即单片机输出端为低电平时即可点亮LED。 程序A: ;用最直接的方式实现流水灯 ORG 0000H START:MOV P1,#01111111B ;最下面的LED点亮 LCALL DELAY;延时1秒 MOV P1,#10111111B ;最下面第二个的LED点亮 LCALL DELAY;延时1秒 MOV P1,#11011111B ;最下面第三个的LED点亮(以下省略) LCALL DELAY MOV P1,#11101111B LCALL DELAY MOV P1,#11110111B LCALL DELAY MOV P1,#11111011B LCALL DELAY MOV P1,#11111101B LCALL DELAY MOV P1,#11111110B LCALL DELAY MOV P1,#11111111B ;完成第一次循环点亮,延时约0.25秒 AJMP START ;反复循环 ;延时子程序,12M晶振延时约250毫秒 DELAY: MOV R4,#2 L3: MOV R2 ,#250 L1: MOV R3 ,#250 L2: DJNZ R3 ,L2 DJNZ R2 ,L1 DJNZ R4 ,L3 RET END 程序B: ;用移位方式实现流水灯

ajmp main ;跳转到主程序 org 0030h ;主程序起始地址 main: mov a,#0feh ;给A赋值成11111110 loop: mov p1,a ;将A送到P1口,发光二极管低电平点亮 lcall delay ;调用延时子程序 rl a ;累加器A循环左移一位 ajmp loop ;重新送P1显示 delay: mov r3,#20 ;最外层循环二十次 d1: mov r4,#80 ;次外层循环八十次 d2: mov r5,#250 ;最内层循环250次 djnz r5,$ ;总共延时2us*250*80*20=0.8S djnz r4,d2 djnz r3,d1 ret end 51单片机经典流水灯程序,在51单片机的P2口接上8个发光二极管,产生流水灯的移动效果。 ORG 0 ;程序从0地址开始 START: MOV A,#0FEH ;让ACC的内容为11111110 LOOP: MOV P2,A ;让P2口输出ACC的内容 RR A ;让ACC的内容左移 CALL DELAY ;调用延时子程序 LJMP LOOP ;跳到LOOP处执行 ;0.1秒延时子程序(12MHz晶振)=================== DELAY: MOV R7,#200 ;R7寄存器加载200次数 D1: MOV R6,#250 ;R6寄存器加载250次数 DJNZ R6,$ ;本行执行R6次 DJNZ R7,D1 ;D1循环执行R7次 RET ;返回主程序

基于51单片机的温度测量系统仿真

基于51单片机的温度测量系统仿真专题实验内容与设计要求 主要设计条件 1、Proteus或者其它软件 2、实验室现有软硬件设施 2、相关参考文献 报告书格式

1.专题实验设计报告书封面。 2.专题设计任务书。 3. 报告书目录。 4.正文 5.总结。 6.参考文献。 7.附录。 8.专题设计评分表。 正文部分包括(概述、总体设计、硬件电路设计及调试等) 进度安排 第一天:布置课题任务,课题内容介绍。 第二天~第五天:仔细了解分析实验任务,明确实验要求,收集实验专题设计资料。阅读相关资料,设计方案确定,相关元器件选型;进行电路和软件设计,编写实验报告。

一.温度测量系统的重要性 在现今科技高速发展的时代,各行各业对控制和测量的要求越来越高,其中,温度测量和控制在很多行业中都有比较重要的应用,尤其在工业上,如炼钢时对温度高低的控制。要控制好温度,测量是前提,测量的精度影响着后续工序的进行,因此温度测量的方法和选取就显得相当重要了。 二.设计目的与意义 随着电子技术的高速发展,对电子方面人才的要求越来越高,不仅要求其具备相关的专业理论知识,还要求其具有较强的设计、制作等实践动手能力。此次专题实验无疑是对从事测控专业的人的一次很好的锻炼和考验,是培养测控技术的人才的一次良好的机会,为其提供了一个理论知识与实践相结合的平台。通过本次专题实验,引导学生结合所学的测控电路理论知识,思考设计方案,以小组合作方式,分工完成各个部分,从而掌握相关的测量显示电路的设计和调试技术,一方面提高了学生的实践动手和协作能力,另一方面培养了学生综合运用所学理论知识进行工程设计的能力。 通过此次专题实验,可以培养学生的工程设计能力,包括动手能力、独立思考设计能力、解决实际设计过程中遇到的问题以及团队协作能力等,为今后的专业学习和工程实践打下坚实的基础。 三.实验方案 3.1系统方案 3.1.1方案一 该方案为ICL7107 A/D转换&译码方案。 常见A/D转换器的转换方式有非积分式和积分式两类,如逐次逼近比较式A/D转换、斜坡电压式A/D转换等属于非积分式,其特点是转换速度快,但抗干扰能力差。电压反馈型 V-F变换、双积分式A/D转换则属于积分式,其特点是抗干扰能力强、测量精度高,但转换速度低,在转换速度要求不太高的情况下,获得广泛应用。 工作方框图如图1所示:

相关主题